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Abstract

The availability of multicore processors has led to significant inter-
est in compiler techniques for speculative parallelization of sequen-
tial programs. Isolation of speculative state from non-speculative
state forms the basis of such speculative techniques as this separa-
tion enables recovery from misspeculations. In our prior work on
CorD [35, 36] we showed that for array and scalar variable based
programs copying of data between speculative and non-speculative
memory can be highly optimized to support state separation that
yields significant speedups on multicore machines available to-
day. However, we observe that in context of heap-intensive pro-
grams that operate on linked dynamic data structures, state separa-
tion based speculative parallelization poses many challenges. The
copying of data structures from non-speculative to speculative state
(copy-in operation) can be very expensive due to the large sizes
of dynamic data structures. The copying of updated data structures
from speculative state to non-speculative state (copy-out operation)
is made complex due to the changes in the shape and size of the dy-
namic data structure made by the speculative computation. In ad-
dition, we must contend with the need to translate pointers internal
to dynamic data structures between their non-speculative and spec-
ulative memory addresses. In this paper we develop an augmented
design for the representation of dynamic data structures such that
all of the above operations can be performed efficiently. Our ex-
periments demonstrate significant speedups on a real machine for
a set of programs that make extensive use of heap based dynamic
data structures.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers

General Terms Performance, Languages, Design, Experimenta-
tion

Keywords Speculative Parallelization, Multicore Processors

1. Introduction
The thread level speculation (TLS) [7, 9, 10, 16, 21, 25, 31, 33, 37]
technique has become increasingly important due to the availabil-
ity of multicores. It allows the compiler to optimistically extract
parallelism from sequential programs. In particular, the compiler
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creates multiple threads to execute different portions of a program
in parallel optimistically assuming that no dependences exist be-
tween these selected portions. TLS detects misspeculations, i.e. vi-
olations of these assumptions by detecting if dependences that were
assumed to be absent manifest at runtime. To ensure the correct-
ness of the execution, TLS must appropriately handle the results
of speculative computations. Although considerable research work
has been carried out on TLS, most of the work is hardware based
and not ready for use. This is due to the architectural redesigns
[7, 21, 31, 37] requiring non-trivial hardware changes (e.g., spe-
cial buffers [10, 25, 26], versioning cache [9], versioning memory
[8]) for detecting misspeculations and handling speculative results
which have not been incorporated in commercial multicores.

Another avenue of optimistically extracting parallelism from
programs is based upon a purely software realization of TLS. While
developing an efficient software implementation of TLS is chal-
lenging, the benefits of this approach are clear as it can be ap-
plied to existing widely available multicore systems. Recently, soft-
ware based TLS techniques have been proposed in [5, 17–19, 34–
36]. These techniques have been shown to be quite effective in
optimistic parallelization of streaming applications on multicores.
While the work in [17–19] requires the programmer to provide re-
covery code, the works in [5, 14, 34–36] are based upon realization
of state separation with no programmer help. In [5, 14] Ding et al.
achieve state separation by creating separate processes for a non-
speculative and speculative computations – since each process has
its own address space, state separation is achieved. In CorD [34–
36] we use a single process with multiple threads - a nonspeculative
main thread and speculative parallel threads. To achieve state sep-
aration, storage is allocated separately for the threads and copying
operations are performed to transfer data between threads.

While the above software TLS techniques have been shown to
achieve speedups without requiring any modifications to the archi-
tecture of existing multicores, they cannot be used for programs
with heap based dynamic data structures. In case of Ding et al. [5],
shared variables which are assumed not to be involved in depen-
dences must be allocated on separate pages. This is because page
level access tracking is employed to detect misspeculations. How-
ever, in programs that employ dynamic data structures that may
contain millions of data items, it is not practical to allocate each
of them on a separate page. Thus, the process based approach pro-
posed by Ding et al. [5] is not suitable for dynamic data structures.
The work proposed by Kulkarni et al. [17–19] handles dynamic
data structures but is not general as it is aimed at work list based
applications.

In our work on CorD [34–36], shared variables that may be
modified by speculative threads are copied into speculative threads
memory space and modifications to these variables are tracked to
detect misspeculations. In case of dynamic data structures inability
to separate parts of a large dynamic data structure that are shared



from those that are not shared will lead to too much copying and
access tracking overhead as safe assumption is consider the entire
data structure as shared. Thus, additional mechanisms are required
to prevent unnecessary copying and checking in order to make our
approach practical for programs with large dynamic data structures.

In this paper we develop mechanisms that enable CorD to effi-
ciently supports speculative execution of programs that operate on
heap based linked dynamic data structures. In particular, we address
the following challenges in the context of heap-intensive programs:

• What to Copy-In ? Complexities of pointer analysis makes it
difficult to identify the portion of the dynamic data structure that
is referenced by the speculative computation. Conservatively
copying the entire data structure may not be practical when the
size of the data structure is very large.

• How to Copy-Out ? The copying of updated data structure
from speculative state to non-speculative state is made complex
due to the changes in the shape and size of the dynamic data
structure that may be made by the speculative computation.

• How to handle internal pointers ? In addition, both copy-in
and copy-out operations must contend with the need to translate
pointers internal to dynamic data structures between their non-
speculative and corresponding speculative memory addresses.

In this paper we address all of the challenges outlined above.
First, we propose the copy-on-write scheme which limits the copy-
ing to only those nodes in the dynamic data structure that are mod-
ified by the speculative computation. When a speculative thread
writes to a node in a dynamic data structure for the first time, the
node is copied into speculative state. If a speculative thread only
reads a node in the non-speculative state, it is allowed to directly
access the node from the non-speculative state. Second, we present
the heap prefix augmentation for the representation of dynamic data
structures and double pointers representation for internal pointers.
These representations enable the translation of addresses during
copy-in and copy-out to be efficiently handled, the implementation
of runtime access checks preceding data structure accesses to be
optimized, and runtime misspeculation checks preceding copy-out
operations to be optimized. Our experiments demonstrate signifi-
cant speedups on a real machine for a set of programs that make
extensive use of heap based dynamic data structures.

2. State Separation for Dynamic Data Structures

We begin by briefly summarizing our CorD [35] execution model
and then discuss the challenges that must be overcome to specula-
tively parallelize programs with dynamic data structures.

2.1 State Separation In CorD

(The CorD Model) As shown in Fig. 1, separate memory is al-
located to hold the non-speculative state of the computation and
the state corresponding to the speculative threads. When a specu-
lative thread is created, it speculatively copies-in values of needed
variables from non-speculative memory (also called D space) to
speculative memory (also called P space), performs the specula-
tive computation, and if speculation is successful, the results pro-
duced are copied-out from speculative to non-speculative state. To
enable copying-out of values, a mapping table is used by each
speculative thread. In the mapping table, each copied-in variable
has an entry, which have five fields, namely D Address, P Address,
Length, WriteFlag and Version. The first three fields define the ad-
dress mapping information. When a variable is modified in P space,
its WriteFlag is set which indicates it needs to be copied-out if the
speculation succeeds. If misspeculation occurs, i.e. the speculative
computation does not conform to the sequential program seman-
tics, the speculative state is discarded and computation is repeated.

To implement misspeculation detection, version numbers are main-
tained for each variable. In particular, when a thread performs a
copy-in operation for a variable, it copies the current version num-
ber of the variable into the Version field in the variable’s mapping
entry. The current version number is maintained by the main thread
for each variable, and it is incremented each time the variable is
copied out. When detecting the misspeculation, the main thread
compares this version with the one stored in the Version field for
each variable. If the versions of every speculatively-read (copied-
in) variable are the same, then the speculation is successful. This
is because these variables used by a speculative thread have not
changed from the time they were read until the time at which spec-
ulative results are produced. However, if the version of any variable
has been changed by an earlier speculative thread being executed
in parallel on another core, then misspeculation occurs. The trans-
fer of data from (to) D space to (from) P space at the start (end) of
a speculative computation must be highly optimized to minimize
the impact of copying overhead on execution time performance. In
[35, 36] we developed techniques for achieving such optimizations
for programs that mainly operate upon data held in global arrays
and scalar variables.

Figure 1. Separating Speculative And Non-speculative State.

(An Example) Fig. 2 illustrates CorD using an example.
Fig. 2(a) shows a sequential while loop which basically perform
some computation using variable key. If the computation returns
FALSE, the value of key is updated. Fig. 2(b)-(d) shows a possible
situation where two consecutive iterations are executed in parallel
under the CorD model. As shown in Fig. 2(d), the non-speculative
address of variable key is 0xA and its current version v is stored in
the version table.

From the code executed by the main thread, one can see that
two parallel threads are created. Before sending the start signal to
each parallel thread, the main thread creates two local copies of key
– key’ and key” for thread 1 and thread 2 respectively. It also adds a
mapping entry into the mapping table of each parallel thread. The
entry shows the D address, P address, length and current version of
key. The WriteFlag is also set to false.

When a parallel thread executes code speculatively, it uses its
own local copy of key as shown in Fig. 2(b) and 2(c). Since the
computation in thread 1 returns FALSE, thread 1 must update
key’ and set the WriteFlag to true. Thread 2 simply performs the
computation using key” and does not need to change the WriteFlag
in the mapping table. Clearly, thread 2 is using a stale value of
key because the previous iteration has changed the value. This
misspeculation is detected by the main thread as shown in Fig. 2(d).
When thread 1 finishes, the main thread compares the version of key
stored in the mapping table with the one stored in the version table.
Since they are the same, copy-out operations are performed and



Figure 2. Separating Speculative And Non-speculative State.

the version of key is incremented. When thread 2 finishes, the main
thread finds a mismatch between two versions of key (i.e., v and
v+1), and thus asks this parallel thread to re-execute the code using
the latest value key. Note that the version comparison statement
shown in Fig. 2(d) should be performed for all copied variables
and a misspeculation is reported if any mismatch is found.

From the above example one can see how state separation is
achieved using copying. Together with the version comparison
based misspeculation detection, CorD is able to aggressively and
safely exploit the parallelism in a sequential loop.

2.2 Challenges For Dynamic Data Structures

A dynamic data structure consists of large number of nodes such
that each node contains some data fields and pointer fields. The
pointer fields are used to link together the nodes in the data structure
(e.g., link lists, trees, queues etc.). Such data structures are also
called dynamic data structures because the shape and size of the
data structure can change as the program executes. Size of the data
structure changes as nodes are added or removed and changes in
link pointers can further change the shape of the data structure.
The memory for each node is dynamically allocated from the heap
when the node is created and freed by returning it to the heap when
the node is eliminated. Dynamic data structures are extensively
used in wide range of applications. The applications used in our
experimentation are C programs with following characteristics:

• each node is allocated and deallocated through explicit calls to
library functions malloc and free; and

• nodes are accessed through pointers variables that point to the
nodes such as pointer fields that link the nodes in the data
structure.

The state separation based speculative parallelization for pro-
grams using dynamic data structures is much more challenging than
for those using scalar variables or static data structures such as ar-
rays. In this section, we will describe the challenges and develop
techniques to address them.

Given a parallelized computation which consists of a non-
speculative main thread that spawns multiple speculative threads,
in CorD model state separation is achieved by performing spec-
ulative computations in separate memory space. While for array
or scalar variables the separation can be simply achieved by cre-
ating a copy of such variables in the speculative thread, achieving
state separation for programs using dynamic data structures poses
many challenges. A dynamic data structure may contain millions
of nodes (e.g., the program Hash in our experiments creates 3

typedef struct node{
int key;
int val;
struct node *next;

}
NODE *head;

while (...) {
...

1: NODE *tmp = find key(head, key);
2: if (tmp!=NULL and tmp!=head) {
3: NODE *prev = get prev node(head, tmp);
4: prev → next = tmp → next;
5: tmp → next = head;
6: head = tmp;
7: }
8: else {
9: if (!tmp) { //update the lru queue
10: //insert the new node
11: NODE *n = (NODE *)malloc(sizeof(NODE));
12: n→ key = ...;
13: n→ val = ...;
14: n→ next = head;
15: head = n;

//delete the least-recent used node
16: NODE *m = get second last node(head);
17: free(m→ next);
18: m→ next = NULL;
19: }
20: }
21: if (writeflag)
22: {
23: head→val = ...;//modify data
24: }
25: ... = head→val;
26: ...
}

Figure 3. Least Recent Use Buffer.

million nodes at runtime). This leads to a large overhead due to
copying operations, mapping table accesses, and misspeculation
checks. Moreover, need for address translation arises because a
node may have many pointers pointing to it and after the node has
been copied, accesses via these pointers must be handled correctly.

For a program using dynamic data structure, four types of
changes to the dynamic data structure can be encountered:

• pointer fields in some nodes are modified causing the shape of
the data structure to change;

• a new node is created and linked to the dynamic data structure;

• an existing node is deleted from the dynamic data structure
causing the size of the data structure to change; and

• values of data fields in some nodes are modified.

Fig. 3 shows an example where all the above changes are en-
countered. In this example, a link list is used to implement a least-
recent-use (LRU) buffer. A LRU buffer has a fixed length and it
buffers most recently used data. When data is requested, we first
search for any matching elements in LRU (line 1). If a match is
found and the element is not in the front of LRU buffer, we move
this element to the front by adjusting the pointers (lines 2-7). If
no match is found, we create a new node, insert it in the front and
delete the last node (lines 8-20). After the requested data is put at
the front, we check if we need to modify the data (lines 21-24). Fi-
nally we read the data in this buffer (line 25). Let us assume that the
requested data is frequently at the front of LRU buffer and branches



at lines 2, 8 and 21 are rarely taken. Thus, iterations in the while
loop (lines 1-25) can be speculatively executed in parallel.

When a parallel thread is created, all pointers (head, tmp, prev,
m and n) will have their own local storage in the corresponding
speculative space. Note that head’s local storage (denoted by head’)
will contain the content of head, as it is defined outside the paral-
lelizable region. We use *P to denote a node pointed to by pointer
P. Next we describe the challenges via this example.
Overhead Challenge. As we can see the function call find key at
line 1 traverses all nodes in the LRU buffer. If the original CorD
model is used, and the LRU buffer contains a million nodes at run-
time, then the overhead of this traversal will be prohibitively high.
First, the copying overhead is large as all these nodes can be po-
tentially modified by speculative thread and hence will be copied
into speculative state. Second, the mapping table that maintains
correspondence between addresses in non-speculative and specu-
lative memory is large, because for every copied node, we need
to maintain a mapping entry. A large mapping table will lead to
an expensive lookup and update. Last but not least, the version ta-
ble is large. In the original CorD model, a global version number
of each node is stored in the version table and used in perform-
ing misspeculation checks. In particular, if a node is modified, its
global version is compared with its local version stored in the map-
ping entry. Searching for the global version number of a node in
a large version table requires time. Besides, the search has to be
done for all modified nodes. Finally, finding modified nodes from
a large mapping table is very time-consuming. Consequently, the
misspeculation check will be very time consuming.
Address Translation Challenge. A node in a dynamic data struc-
ture is allocated on the heap at runtime. Its address is stored in
one or several pointer variables and its access is performed through
such pointers. This creates the address translation problem. In par-
ticular, when a node is copied into speculative state by a copy-in
operation, all pointers in speculative thread holding its address and
being used in the computation must change their content to the ad-
dress of the copied node accordingly. For example, in Fig. 3 line 5,
a parallel thread will use head’ which is holding a non-speculative
state address as it is a copy of head. If the node *head has been
copied during the execution of function find key, we must change
the value of pointer head’ to the address of the head node’s local
copy, and then assign this new value to tmp → next. This requires
comparison of each pointer being accessed (in this example head’)
with the addresses stored in the mapping table. Similarly, when a
node is copied back to non-speculative state by a copy-out oper-
ation, all pointers containing its current local copy address need
to hold its non-speculative state address now. In Fig. 3, when line
6 is executed, head’ will point to the node *tmp, a local copy of
some node in the non-speculative state. Therefore, when the value
of head’ is copied back to head, the address needs to be changed to
the address of that node. This can be done by consulting the map-
ping table with the address stored in head’.

If the branch at line 8 is taken, copying out node *n is a chal-
lenge. At line 14, the next field of node *n is assigned with the
address of head node’s local copy. However, when committing the
result, the node *n is represented as the starting address and length.
Therefore, we cannot find which part of *n is the starting address
of the next pointer field, and thus, cannot translate the address. One
solution might be to store the address of next pointer in the map-
ping table, but again, this may lead to an even larger mapping ta-
ble as one node may contain multiple pointer fields that are modi-
fied. Similarly, when line 17 is executed, we also need the address
translation so that the correct node in non-speculative state is deal-
located. In the case of data field modification (line 23), however,
there is no need for address translation.

2.3 Copy-On-Write Scheme

To address the overhead challenge, primarily we must find a way
to reduce the number of nodes that are copied to speculative state.
Therefore, we propose the use of copy-on-write scheme to limit the
copying to only those that are modified by the speculative thread.
A node in non-speculative state is allowed to be read by speculative
threads. It will be copied into a thread’s speculative state only when
it is about to be modified. The copying is implemented through an
access check – a block of code inserted by compiler to guard every
node reference via a pointer. Based on the type of reference, read
or write, access check code differs.

(Write Access) Upon a write to a node, the access check will
determine if the node is already in the speculative state. If this is
the case, the execution can proceed. Otherwise, the access check
concludes that the address belongs to a node in non-speculative
state. In this case the speculative thread must determine if this is
the first write to the node and thus the node must be copied into
the speculative space. However, if this is not the first write to the
node, then the node has already been copied into speculative state.
Thus, the address being referenced in the non-speculative state has
to be translated into the corresponding address in the speculative
state. This translation is enabled by ensuring that the mapping table
is updated by creating entries for copied nodes. In other words,
the access checks will consult the mapping table to determine if
the current pointer refers to a node in speculative state or non-
speculative state.

(Read Access) Upon a read to a node, the access check allows
the execution to continue if the node is in speculative state. How-
ever, if the node is in non-speculative state, the access check stores
the thread task ID for this node indicating when the node has been
read. After this step, the execution can proceed. The thread task ID
is an integer maintained by each thread. It is initially zero and incre-
mented by one every time the thread is assigned a task to perform
by the main thread. As we will see shortly, this information is used
during misspeculation checks. It is worth noting that in this copy-
on-write scheme, if a node is only read by a speculative thread,
it will never have an entry in the mapping table. In other words,
all mapping entries contain nodes that have been modified by the
speculative thread.

(Example) Applying this scheme to the example in Fig. 3, we
can observe the following two advantages. First, there is no need
to copy every node in a dynamic data structure into speculative
state when function find key is executed. Therefore, the size of the
mapping table is reduced. Second, the need for address translation
is greatly reduced. In particular, if node *head is never updated
during execution, then we will not make a copy of this node. Con-
sequently, the pointer tmp→next at line 5 and n→next at line 14
will get the correct non-speculative address of this node without
address translation. For line 17, we can also simply mark the ad-
dress stored in m→next as deallocated, instead of making a copy of
a node *(m→next) and then translating the address.

2.4 Heap Prefix

Although the copy-on-write scheme can reduce the size of mapping
table, the access and update of this table may still impose large
overhead on the parallel execution. In particular, for each heap
access, the access check needs to consult the mapping table to see
if a node has been copied or not. This requires a walk through the
entire table. Similarly, the misspeculation check needs to search
the version number of each modified node in the version table.
This requires traversing the table multiple times. To efficiently
perform the access checks and misspeculation checks we associate
meta-data with each node that tracks certain information related to
accesses of the node. We call this meta-data by the name of heap
prefix. Next we describe the details of heap-prefix and show how



it is effective in reducing the overhead of using mapping table and
version table.

Figure 4. Heap Prefix Format.

For each memory chunk allocated on the heap, we allocate 2∗n
additional bytes in front of it where n is the total number of specu-
lative threads. These bytes represent the heap prefix which is used
to store important information to assist in access checks. The for-
mat of the heap prefix is shown in Fig. 4. The first n bytes im-
mediately before the program’s original heap data are the status
bytes. The additional n bytes are meta-data bytes. In the status byte,
byte i represents the status for speculative thread i and it can rep-
resent four different possible status values. Status NOT COPIED
means the heap data has not been copied into thread i’s speculative
state. Status ALREADY COPIED means the heap data has been
copied into thread i’s speculative space, and the index of this entry
in thread i’s mapping table is stored in the corresponding meta-
data byte. Status ALREADY READ means the heap data has been
read by thread i, and the corresponding meta-data bytes stores the
task ID of thread i. Status INTERNAL indicates that the node is
already in the speculative state. Therefore, status NOT COPIED,
ALREADY COPIED and ALREADY READ only appear in heap
elements of non-speculative state and status INTERNAL only ap-
pears in heap elements in speculative state. In the meta-data bytes,
meta-data byte i stores either a index number of the mapping table
of thread i, or the task ID of thread i.

Note that one can put the meta-data associated with each node
in a different place and use hash function to locate it [32]. However,
we tried the hash-based solution and observed that it caused over
6x slowdowns for the benchmarks we used. The reason is that a
hash based lookup requires the execution of a hash function, which
takes more time than performing a simple offset calculation. Thus,
large number of lookups make the hash based solution yield visible
slowdowns.

2.4.1 Implementing Access Checks

With the status bytes and meta-data bytes in the heap prefix, the
access check for a heap node access in thread i can be implemented
as shown in Fig. 5. Thread i’s status s in the node’s prefix is
examined and following actions are taken.

If s is NOT COPIED and the access is a read, s is updated
to ALREADY READ and the task ID of thread i is stored in the
meta-data byte i (lines 7-10). If the access is a write, s is updated to
ALREADY COPIED. A new local copy of the node is then created
with the corresponding status byte to be set to INTERNAL. Next,
a mapping entry is added into the mapping table to reflect this copy
operation and the index of the entry is stored in the meta-data byte
i. Finally, the pointer points to the newly created node (lines 11-18).

If s is ALREADY COPIED, then that means the node has
been copied; thus, address translation is needed. Fortunately, the
mapping entry can be quickly located through meta-data byte i and
we only need to adjust the pointer to point to the address of the
local copy (lines 20-23). Finally, if s is ALREADY COPIED and
the access is a write, then we perform the copy-in operation as when
s is NOT COPIED (lines 25-32). Otherwise, the access is a read
or s is INTERNAL. In both cases, no further actions are required.

Fig. 6 shows an example of using heap prefix to perform ac-
cess checks. First, assuming the node is allocated at 0xA in non-

1: type = access type, READ or WRITE;
2: p = the pointer holding the starting address

of the node being accessed;
3: len = the size of the node being accessed;
4: s = thread i’s status at *p;
5: m = thread i’s meta-data byte at *p;

6: if (s == NOT COPIED)
7: if (type == READ) {
8: s = ALREAD READ;
9: m = task ID;
10: }
11: else { // type == WRITE
12: s = ALREADY COPIED;
13: pointer q = make copy(*p);
14: set thread i’s status at *q to INTERNAL;
15: index = update mapping table(p, q, len);
16: set thread i’s meta-data byte at node to index;
17: p = q;
18: }
19: }
20: else if (s == ALREADY COPIED) {
21: index = thread i’s meta-data byte at node;
22: p = get P address from mapping table entry index;
23: }
24: else if (s == ALREADY READ) {
25: if (type == WRITE) {
26: s = ALREADY COPIED;
27: pointer q = make copy(*p);
28: set thread i’s status at *q to INTERNAL;
29: index = update mapping table(p, q, len);
30: set thread i’s meta-data byte at node to index;
31: p = q;
32: }
33: }
34: else { //s == INTERNAL
35: ; //do nothing
36: }

Figure 5. Access Checks.

speculative state (D space), consider the execution of speculative
thread T3. Before any reference to this node in T3, the status byte
for T3 shows that the node has not been copied into its speculative
state (P space) yet (as shown on the left).

Suppose there is a write to this node during the execution, the
access check will make a copy of this node as it sees the status is
NOT COPIED. Therefore, the following actions will be taken. A
new node is allocated at 0xB in P space and initialized with the
original node value; a mapping entry is created in the mapping
table (its index is x); T3’s status of the original node is changed to
ALREADY COPIED indicating that this node has been copied into
speculative memory, and the corresponding meta-data byte of T3
stores the index of mapping entry (x); T3’s status of the copied node
is set to ALREADY COPIED which means this node is already in
speculative state. In the later execution of T3, if the original node is
accessed through some other pointers, the access checks can easily
translate those pointers to point to 0xB by looking at the heap prefix
and the x-th mapping entry. Similarly, if the node starting at 0xB
is about to be accessed by a pointer, the access check code will
confirm the access to be valid by simply looking at the prefix of this
node. After committing T3’s result, the local copy of the node will
be deallocated and T3’s status byte and meta byte in the prefix of
the original node will be reinitialized to zero (shown on the right).

In summary, there are two main advantages of using heap-prefix
to implement access checks. First, the status byte can tell the access
checks whether or not a node has been copied. Second, the meta-
data bytes allow the speculative thread to find the mapping entry in
O(1) time, which speeds up the process of address translation for
copy-in operations.



Figure 6. An Example Of Heap Status Transition.

2.4.2 Implementing Misspeculation Checks

To determine if speculation is successful, misspeculation checks
have to be performed. The main thread maintains a version number
for each variable in a version table. When a speculative thread uses
a variable, it makes note of the variable’s current version number.
When the results of a speculative thread are to be committed to non-
speculative state, misspeculation check is performed by the main
thread. The main thread ensures that the current version number of
a variable is the same as it was when the variable was first used
by the speculative thread. If no mismatch is found, the speculation
is considered as successful. Otherwise, misspeculation occurs and
the result will be discarded. This is because speculative thread must
have prematurely read the variable. This method worked effectively
for array variables and scalar variables [35, 36].

In a program using dynamic data structures, however, the num-
ber of nodes in the structure can be very large, and hence the version
table can become very large. Consequently, searching a node in the
version table can impose large runtime overhead. Now that we have
the heap prefix that can tell how the node is being used by other
threads at any time, we can exploit this information to perform the
misspeculation check for the dynamic data structure without using
a version table.

The key idea of our approach is that when the main thread
checks the result of thread i, it also checks if any other thread is
using a node modified by thread i. If so, that thread’s execution
will fail as it is working on an incorrect speculatively read value.
This method works because the main thread commits results of
speculative threads’ in a sequential order.

1: if (spec[i] == FAIL)
2: return FAIL;
3: for each node mapping entry e in mapping[i] {
4: for each thread j’s status on e.addr non-spec s[j] {
5: if (s[j] == ALREADY COPIED)
6: spec[j] = FAIL;
7: if (s[j] == ALREADY READ

and meta-data[j] == taskID[j])
8: spec[j] = FAIL;
9: }
10: }
11: return SUCCESS;

Figure 7. Misspeculation Checks For Heap Objects.

Fig. 7 shows our algorithm. For each node mapping entry e
in the mapping table of thread i, the main thread examines other
thread’s status byte of the node starting at e.addr non-spec. If an-
other thread’s status byte is ALREADY COPIED, then speculation
of that thread fails (line 5-6). Note that status ALREADY COPIED
means the node has been modified and hence has an entry in the
mapping table. When the node is copied back, the status byte and
meta-data byte for thread i is reset to zero.

If the main thread finds that another thread j’s status byte is
ALREADY READ, then situation may be more complex because
the status ALREADY READ can be set during the current work
assigned to thread j or during a previously assigned work to thread
j. The latter case happens if in an earlier iteration, thread j only
read this node. Therefore, there was no entry in the mapping table
and hence the status byte and meta-data byte were not cleared.
However, these two cases can be distinguished using the task ID
stored in the meta-data byte j. The main thread only needs to check
if the meta-data byte j’s value is equal to thread j’s current task ID.
If they are the same, then thread j’s execution is marked as failed.

Figure 8. A Possible Data Race During Misspeculation Check.

Note that there exists a data race between checking thread j’s
status byte and setting the byte. However, this data race is harmless
as it does not affect correctness. This is because we require the
main thread to commit the result before checking other threads’
status bytes and the speculative thread to update the status byte
before accessing the node. Fig. 8 shows an example where step
2 and 3 are clearly racing against each other. If step 2 reads the
value after step 3, then thread j’s execution will be marked as
failed which is correct, because thread j may read the old value
of x (step 4 happens before step 1). If step 2 reads the value before
step 3, thread j’s execution will not be marked as failed. This is
also correct because thread j is using the latest value of x.

In summary, the advantage of using heap-prefix in implement-
ing misspeculation checks is that status bytes is used to identify any
two threads that are accessing the same node. This eliminates the
requirement of maintaining a version number of each node.

2.4.3 Discussion On Meta-data Bytes

For each thread, we choose to use one byte to store the meta-data,
i.e., the index of the mapping entry or the task ID. Since one byte
can at most hold 256 numbers, using one byte may impose some
limitations in certain situations and hence needs to be discussed.

First, if the meta-data byte of a thread is used to store mapping
entry indexes, the mapping table size must have less than 256
entries to avoid overflow. This means for each task, the number
of modified node should be less than 256. In some cases, this
assumption may not be true. If a mapping table overflow occurs,
the corresponding task should be considered as failed to ensure the
correctness. However, having too many overflow events means that
using one byte is not enough and performance loss results. To solve
this problem, we can profile the program to find out how many
nodes are modified in each task on average and choose multiple
bytes to store the indexes for each thread if necessary.

Second, if the task ID is stored in one byte, the number may
also wrap around and cause a problem in a very extreme case.
Specifically, when thread i writes a node at iteration a and thread
j reads the same node at iteration b where b ≡ a (mod 256) and
it never uses the node after that, we may incorrectly mark thread j
as failed. However, even if this extreme case arises, the correctness
is not affected at all – a false misspeculation is reported and the
computation is unnecessarily repeated.



2.5 Double Pointers

As described earlier, the need for address translation can be reduced
by using copy-on-write scheme. The address translation is needed
only for a copied node. It can be done by using the status byte
and meta byte during the copy-in operation. However, we need to
efficiently perform the address translation for a pointer during a
copy-out operation. This is because nodes being copied-out may
have many pointer fields.

Figure 9. Internal Pointer.

Fig. 9 shows a simple example involving two nodes pointed to
by pointers p and p→child1. The node *p has already been copied
in from non-speculative address 0xA to speculative address 0xB as
shown in the mapping table. Now when the assignment is about
to execute, the node *(p→child1) will be copied from 0xC into
0xD. The value of (p→child1) will also change to 0xD so that
the assignment takes effect on the local copy starting at 0xD. At
the time of committing results to non-speculative state, the main
thread must scan the mapping table to copy these two nodes back
to the non-speculative state. However, the value in (p→child1) is
still 0xD and of course it needs to be translated to 0xC. To do this,
one way would be to locate the field by adding it to the mapping
table, and then comparing the value in this pointer with all P addr
in the mapping table. This process entails significant overhead in
programs using dynamic data structures as all nodes are linked into
the structure through pointers.

To tackle the above problem, we present an augmented pointer
representation – double pointers. For each pointer variable p, the
compiler will allocate 8 bytes. 4 bytes for the non-speculative state
address (denoted by p.D addr) and 4 bytes for speculative state
address (denoted by p.P addr). When a node is allocated by the
main thread and pointed to by p, its starting address is stored in
p.D addr. When a node is created by a speculative thread and
pointed by a pointer p’, the starting address of this node is stored in
p’.P addr. If the node is created as a part of the copy-in operation,
we set p’.D addr to be p.D addr (assuming p’ is the local copy of
p). Otherwise, we set p’.D addr to be p’.P addr. For any reference
of a pointer p, if it is in the main thread, then p.D addr will be used;
otherwise p.P addr will be used. For a pointer assignment p = q, all
8 bytes will be copied.

Figure 10. Double Pointer.

With this scheme, we can easily resolve the problem shown in
Fig. 9. Consider now the illustration in Fig. 10 where A denotes
*p and B denotes *(p→child1). As we can see in Fig. 9(a), before
the assignment, A’s local copy keeps B’s non-speculative address
in the D addr field. Its P addr field has been set to NULL. After
the assignment, a local copy of B has been created and pointed
by the P addr field of pointer p→child1. When we copy these two

nodes back, we do not have to go to the mapping table for address
translation. Instead, we can directly copy them back, as A still holds
B’s address in the non-speculative state.

The double pointers scheme also ensures the correctness when
the shape of a dynamic data structure changes due to the update of
some pointer fields in the computation. Let us consider the example
in Fig. 3 again where three possible pointer related changes are
encountered.

(Changing the Shape) If the branch at line 2 is taken, the
node pointed to by tmp will be moved into the front of the buffer
and pointed by head. Fig. 11 shows the process of this shape
transformation under our scheme. As shown in Fig. 11(a) Before
executing line 4, the parallel thread has two local pointers prev’ and
tmp’, which are the copies of pointers prev and tmp respectively.
Since the statement at line 4 updates the node pointed to by prev’
(node B), a local copy of node B is created through the access
check, and the P addr field of prev’ points to this copy. After line
4, the next pointer field of node B’ contains the address of node D.

Figure 11. Changing The Shape Of Dynamic Data Structure.

When executing line 5 as shown in Fig. 11(b), a local copy of
node C is created and pointed by the P addr field of pointer tmp’.
After this statement, all 8 bytes of the original pointer head are
copied into the next pointer field in node C’. Thus, the D addr
field in next contains the address of node A. The statement at line
6 creates a local copy of pointer head. As shown in Fig. 11(c),
after copying the contents of pointer tmp’, its D addr field has the
address of node C and P addr has the address of node C’. Finally,
copy-out operations in the result-committing stage will change the
content of pointer head and the next pointer field of node B and C.
The updated pointer is represented by the dash line in Fig. 11(d),
which reflects the update to the LRU buffer.

(Adding A New Node) If the branch at line 9 is taken, a new
node is allocated and the least recent used node is deallocated.
Fig. 12 shows the process of adding a new node. In Fig. 12(a), a
new node N is created by a parallel thread and pointed by a local
pointer n’. After line 14, the next field of this new node is the same
as the head pointer whose D addr bytes are storing the address of
node A. After line 15, the parallel thread changes the content of
head pointer by creating head’ and making its both D addr and
P addr fields store the address of node N (see Fig. 12(b)). When
copy-out operation, the main thread can recognize the new node by
checking if the two fields of head’ are the same. After the copying
operation, pointer head is pointing the new node N which is now in
the front of the LRU buffer (see Fig. 12(c)).



Figure 12. Adding A New Node Into A Dynamic Data Structure.

(Deleting A Node) Fig. 13 shows the process of executing lines
16-18, which deallocates the last node in the LRU buffer. As shown
in Fig. 13 (a), after executing line 16, a local pointer m’ is created
by a parallel thread and pointing to the second last node B. When
free is called on node C at line 17, the parallel thread simply marks
the node as deallocated in the mapping table instead of actually
call the function. This is because node C is in the non-speculative
state and it cannot be deallocated until the speculative computation
performed by this parallel thread is decided to be correct. After line
18, a local copy of node B is created because its pointer fields is
speculatively set to NULL. In the result-committing stage, the main
thread will actually deallocate the node C based on the mark in the
mapping table and the next pointer field (8 bytes) of node B is also
set to NULL due to the copy-out operation.

Figure 13. Deleting A Node From A Dynamic Data Structure.

2.6 Techniques And Their Benefits

Challenges Copy-on-write Heap Double
Scheme Prefix Pointers

Copying Operation Reduced - -
Overhead

Mapping Table Reduced Reduced -
Access Overhead
Misspeculation - Reduced -

Check Overhead
Address Translation Reduced Reduced -
Overhead (Copy-in)
Address Translation - - Reduced

Overhead (Copy-out)

Table 1. Techniques And Their Benefits.

In this section, we introduced three techniques to address the
overhead and address translation problems when speculatively par-
allelizing a program using dynamic data structures. The three tech-

niques were: copy-on-write, heap prefix, and double pointers. Ta-
ble 1 summarizes the benefits of these techniques.

3. Other Optimizations
3.1 Eliminating Unnecessary Checks

An access check precedes each write access that is performed to the
heap in speculative state. Although implementing access checks via
heap prefix can greatly reduce their overhead, the overhead of ac-
cess checks can be still significant due to the frequency with which
they are performed. Therefore, in this section, we develop addi-
tional compile-time optimizations for eliminating access checks.

3.1.1 Locally-created Heap Objects

When a node is created by a speculative thread, it will have a
valid speculative state address. Therefore, accesses performed to a
locally created node do not require access checks. The algorithm is
shown in Fig. 14 provides simple compile-time analysis to identify
accesses that are guaranteed to always access locally created nodes.
For each basic block, we first identify pointers that hold an address
returned from a malloc function call. Then we track propagation of
these pointers to other pointer variables and thus identify additional
accesses that do not require an access check. In the analysis, each
pointer assigned by malloc is placed into the GEN set. If a pointer
is assigned with a pointer that is not holding a local heap address,
it is placed in the KILL set. Then we compute the IN set for every
basic block in a control flow graph based on the equations shown
in this figure. Given the IN set of a basic block, it is easy to
determine whether or not to introduce an access check before a
pointer dereference.

Initialize IN (B0) = ∅;

OUT(B) ={IN(B) - KILL(B)} ∪ GEN(B);
IN(B) =

T

P∈pred(B) OUT(P );

where
GEN(B) = {p : ∃ p = malloc(...) in B }

∪ {p : p = q where q ∈IN(B) or GEN(B) };
KILL(B) = {p : p = r where r /∈

IN(B) and GEN(B) };

Figure 14. Locally Created Heap Objects.

3.1.2 Already-copied Heap Objects

Given a reference to a node, if we are certain that there is an
earlier write which caused the node to be copied, then we do not
need an access check for the reference. The analysis required for
this optimization is quite similar to the analysis described in the
preceding optimization. The difference is that the GEN set contains
pointers through which a write is performed to a node instead of
pointers assigned by malloc.

3.1.3 Read-Only Heap Access

If, following initialization, a node is only read throughout the ex-
ecution, then it is impossible for such a node to cause a misspec-
ulation. Therefore, access checks are not required for such nodes
at all. However, it is challenging to identify such nodes at compile
time due to pointer aliasing. Specifically, the same memory address
may be pointed to by two or more pointers at runtime. During com-
pile time, even if we identify that the access to a node through one
pointer is always a read, the node may still be modified through
another pointer at runtime.

Fortunately, there has been much research work on alias anal-
ysis. For any two pointers, the alias analysis responds with three
possible answers, ”yes”, ”maybe” and ”no”, indicating they do or
maybe or do not point to the same location. We can take advantage
of such analysis to conservatively identify read-only nodes. In par-
ticular, any two pointers with answer ”yes” or ”maybe” from alias



analysis, are considered as aliases. Next, we can perform the anal-
ysis shown in Fig, 15. For any access to a node through a pointer in
ReadOnlySet, we do not insert any access checks, because these
accesses must involve read-only nodes.

Initialize ReadOnlySet(S) = {all pointer variables};

for each pointer p {
if there is a write access to the address held in p {

ReadOnlySet(S) = ReadOnlySet(S) - {p};
}

}

Figure 15. Finding Read-Only Heap Object.

3.2 Optimizing Communication

In our original CorD model [35, 36], the communication between
the main thread and speculative threads was implemented through
expensive system calls such as read and write to pipes. Use of
pipes strictly prevents speculative threads from accessing the non-
speculative state memory, as values required by parallel threads are
passed through pipes. This mechanism works fine in [35] because
few values need to be communicated at runtime. However, the same
is not true in this work – many more values are communicated
to speculative threads even when copy-on-write is used. Thus,
overhead of using pipes to pass values is high.

In this paper, we relaxed the restriction of the state separation by
allowing a speculative thread to directly read the non-speculative
state memory. This results in highly efficient communication. We
also use busy-waiting algorithms to synchronize threads because
they achieve low wake-up latency and hence yield good perfor-
mance on a shared memory machine [23].

4. Experiments
4.1 Experimental Setup

To show the effectiveness of our techniques, we use 7 benchmarks
from the LLVM test suite and SPEC2000 that make intensive use
of heap based dynamic data structures. In Table 2 the first two
columns give the name and the description of each program. The
next column shows the type of dynamic data structure used and the
last column shows the original source of the program. The rest of
the programs in these benchmark suites were not used due to one
or more of the following reasons:

• they do not contain parallelizable loops;

• even though they contain parallelizable loops, no speculation is
required for parallelization; or

• they contain parallelizable loops but seldomly use dynamic data
structures, and thus can be efficiently parallelized using other
techniques [5, 34–36].

Similar to the previous works on speculative parallelization, we
parallelize loops for which the number of loop-carried dependen-
cies is below a threshold number.

Name Description Dynamic Data Original
Structure Source

BH Barns-Hut Alg. Tree Olden
MST Mininum Spanning Tree Tree, hash Olden
Power Power pricing Graph, hash Olden

Patricia Patricia trie Tree, hash Mibench
Treesort Tree sorting Tree Stanford

Hash Hash table List, hash Shootout
Mcf Vehicle scheduling List, graph Spec2000

Table 2. Dynamic Data Structures Benchmarks.

In our experiments, we first use Pin [15] instrumentation frame-
work to profile loops in these programs with a smaller input. Then

the runtime dependences are analyzed and regions that are good
candidates for speculative parallelization are identified. Next the
LLVM [20] compiler infrastructure is used to compile these pro-
grams together with the analysis result and our parallelization tem-
plate, so that the sequential version can be transformed into the par-
allel version. The parallelization template contains the implemen-
tation of our runtime system including thread creation, interaction,
mapping table, misspeculation check etc. During the transforma-
tion of the code, access checks are inserted preceding each heap
access. The profiling is performed for a small input and the exper-
imental data is collected by executing parallelized programs on a
large input. All our experiments were conducted under Fedora 4
OS running on a dual quad-core (i.e., 8 cores) Xeon machine with
16 GB memory. Each core runs at 3.0 GHz.

4.2 Performance

We first compare the execution time of a program between its se-
quential version and parallel version. In this experiment, all the
techniques and optimizations are used. We observed that running
these programs under the original CorD model [35] led to at least
2x slowdown of parallel versions over sequential versions regard-
less of the number of speculative threads. However, with our pro-
posed techniques, significant speedup is obtained. Fig. 16 shows
the execution speedup of these programs for varying number of
speculative threads created by the main thread.
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Figure 16. Performance On An 8-core Machine.

Our results show that for all programs except Patricia, the
speedup continues to increase as the number of speculative threads
is increased from 1 to 7. In particular, the highest speedup of Power
is 3.2, and that of other programs is between 1.56 and 2.5 when
7 speculative threads are used. In the case of Patricia, we found
that significant amount work has to be done sequentially by the
main thread. Also, every speculative thread needs to copy up to 1
MB memory during execution. When more threads are used, more
memory is copied. This can cause L2 cache pollution and hence
dramatically affect the performance. For Patricia best speedup of
1.74 is achieved when we use three speculative threads.

Since we have a total of 8 cores, when 8 speculative threads
are used in addition to the main thread, the speedup decreases.
Except for MST and BH, all programs actually have a slowdown.
The reason is due to the use of busy-wait synchronization. When
8 speculative threads and one main thread are run on an 8 core
machine, context switch is required. However, using busy-wait
constructs makes each thread to aggressively occupy a core. This
leads to even worse performance. It is worth noting that using pipe
will not have this problem as the main thread will be descheduled
by OS. According to our experiments, however, the use of pipe
causes the parallel execution to be much slower than the sequential
one regardless of the number of parallel threads.

We also observe that using one speculative thread is slower
than the sequential version. In the case of Treesort, even using two



threads cannot obtain any speedup. This behavior can be attributed
to the overhead introduced by our model that more than nullifies
the limited parallelism benefits.

We also measured the misspeculation rate of each execution.
The highest rate we observed is 10.2% for mcf when using 7
parallel threads. This benchmark also has a large sequential portion.
These two factors make the highest speedup of this program only
1.56. For other programs, the misspeculation rate is less than 1%.
Thus, misspeculations have little impact on the performance.

4.3 Overhead Analysis

4.3.1 Time Overhead

We classify the execution time into 4 categories: communication
(time spent on busy-waiting constructs), access checks, misspecu-
lation check followed by copy-out operations, and computation. For
speculative threads, we measured these times and averaged them
across the threads. The experiment was conducted for 2, 4, and 7
threads. The results are shown in Fig. 17.
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Figure 17. Time Breakdown: Spec. Threads.

From the figure, we can clearly see that regardless of the total
number of speculative threads, each thread, on an average, spent
from at least 50% (Treesort) to nearly 100% (MST) of the time on
the computation. For some benchmarks like Treesort and Patricia,
a significant amount of time is spent on access checks. The com-
munication time is very low for all benchmarks, i.e. these threads
do not spend much time on waiting for their work.
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Figure 18. Time Breakdown: Main Thread.

Fig. 18 shows the execution time breakdown for the main
thread, which is responsible for assigning work to speculative
threads, performing misspeculation checks followed by copy-out
operations, and executing the sequential part of the program. As

we can see, for all programs except for Patricia and Mcf, the com-
munication dominates the main thread’s execution, which means
the main thread is waiting for the results of speculative threads
most of the time. During the rest of the time, the main thread does
more work on misspeculation checks and copy-out operations for
Treesort and Power, and more work on sequential computation for
Patricia, Mcf, BH, MST and Hash. For the last 3 programs, the
sequential computation portion becomes larger as the number of
parallel threads increases from 2 to 7. This is because the total ex-
ecution time is reduced due to greater parallelism and hence the
sequential part becomes a greater fraction of the total execution
time.
4.3.2 Space overhead

While the parallel execution is faster, it requires more memory
space as each node has extra bytes for heap prefix and double point-
ers and each thread needs its own space. Therefore, we conducted
an experiment to measure the peak value of memory consumption
of the parallelized program for varying number of threads. Fig. 19
shows the results.
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Figure 19. Space Overhead.

As we can see, the memory consumed by the parallel version of
all programs is between 1.1x and 3.2x compared to the sequen-
tial version. Note that for most benchmarks except for Treesort
and Hash, the space overhead caused by heap prefix and double
pointers is at most 50% (when 7 threads are used) and often less
than 20%. This is because each node in these programs takes over
60 bytes with about 2 to 6 pointers. Other space overhead mostly
comes from the coping operations. Thanks to the copy-on-write
scheme, only a small number of nodes need to be copied and hence
the total overhead is not very large. For Treesort and Hash, how-
ever, the node size is only 12 bytes. Therefore, the double pointer
scheme and heap prefix cause significant space overhead, espe-
cially when more threads are used as shown in the figure.

4.4 Effectiveness of Optimizations

As unnecessary access checks can be eliminated by the proposed
analysis, we compared the number of static and dynamic access
checks with and without optimizations. Table 3 shows the number
of eliminated checks and the total number of checks without any
elimination. From this table, we first observe that a small number
of static access checks lead to millions of dynamic checks. This is
because access checks are inserted inside loops that have millions
of iterations. We can also see that, on an average, our optimiza-
tion eliminates 69.5% of static access checks which correspond to
71.5% of dynamic access checks. So without the optimization, each
thread may waste significant number instructions at runtime on per-
forming unnecessary checks.

4.5 Comparison with Transactional Memory

Transactional memory (TM) [1, 3, 11, 12, 24, 27, 29] has been
an active area of research. It is designed to enforce the atomicity
of shared memory accesses in parallel programs and cannot be



Program Checks Eliminated
Name Static Dynamic (Million)

BH 5/7 (71.4%) 0.55/0.67 (82.1%)
MST 7/11 (63.6%) 8.9/13.5 (65.9%)
Power 55/60 (91.6%) 9.5/10.8 (88.0%)
Patricia 53/66 (80.3%) 62.4/79.7 (78.3%)
Treesort 3/6 (50%) 72.7/143.2 (50.7%)
Hash 7/12 (58.3%) 312.8/463.3 (67.5%)
Mcf 20/28 (71.4%) 968.2/1418.9(68.2%)

Average 69.5% 71.5%

Table 3. Effectiveness Of Eliminating Access Checks.

directly used to parallelize sequential programs [22]. However,
since it has the capability of tracking dependences and detecting
dependence violations between two transactions, we conducted an
experiment to see the performance of using software based TM
(STM) in the speculative parallelzation work.

In this experiment, we manually transform the program such
that each task is put into a transaction and every access to the
potentially shared memory in a task is monitored by the TM sys-
tem. Similar to [22], we also add the explicit synchronizations into
transaction functions to enforce the in-order commit, This is im-
portant for maintaining the sequential program semantics. The TM
implementation we used is based on a state-of-art algorithm - Sun’s
Trasactional Locking 2 (TL2) [4]. Table 4 shows the speedup com-
parisons between our approach and STM-based solution when 2, 4
and 7 parallel threads are used respectively.

Programs 2 threads 4 threads 7 threads
Ours STM Ours STM Ours STM

BH 1.33 0.59 2.06 0.68 2.25 0.73
MST 1.63 0.84 2.34 0.94 2.61 1.02
Power 1.27 0.93 2.47 0.97 3.20 1.08
Patricia 1.50 0.43 1.63 0.52 1.40 0.47
Treesort 0.97 0.34 1.62 0.41 1.78 0.40
Hash 1.12 0.64 1.41 0.73 1.92 0.87
Mcf 1.15 0.54 1.30 0.58 1.56 0.61

Table 4. Speedup Comparisons.

From the table, we can see that using STM in speculative execu-
tion has slowdowns in most cases. Only for Power and MST, a slight
speedup can be achieved when 7 parallel threads are used. Our re-
sults are consistent with [22] which also shows that STM typically
nullifies the performance gains in compiler parallelized sequential
applications. There are several reasons for the performance loss.
First, STM needs special mechanisms to avoid or resolve dead-
lock and live-lock situations. Second, STM aims to achieve good
throughput and fairness. This requires STM to consider the priori-
ties of transactions [32]. Besides, STM internally uses locks to pre-
vent data races [4] and barriers to ensure strong atomicity [28, 30]
and in-order commit [22]. These special considerations are not nec-
essary for speculative parallelization. Instead, they result in high
runtime overhead for STM while providing a convenience for pro-
grammers writing parallel applications.

Note that Mehrara et al. [22] propose customized STM for spec-
ulative parallelization. Their work assumes dependent variables can
be identified at compile time and thus they use a set of special reg-
isters to track such variables. However, for the programs using dy-
namic data structures, cross-iteration dependences cannot be rec-
ognized statically. Therefore, their work is not applicable for the
class of programs we consider.

5. Related work
The TLS technique is useful in improving the performance of
sequential code. While there has been much research on TLS, it is
hardware based requiring redesigned architectures [7, 21, 31, 37]

or non-trivial modifications to the existing architectures such as
special buffers [10, 25, 26], versioning cache [9], or versioning
memory [8]. However, the hardware features are not present in
any commercial multicores and this makes software speculation
attractive as it can be used on existing machines.

Recently, software based TLS techniques have been proposed
[5, 14, 17–19, 35]. Although all of them can be implemented purely
in software, they use different schemes to handle speculative exe-
cution. The work proposed in [5, 14, 34–36] are all based upon
the realization of state separation. In particular, the result of spec-
ulative computations are stored in a separate space instead of the
non-speculative state. If misspeculation occurs, the result is simply
discarded. Otherwise, the result is merged into the non-speculative
state. State separation in [5, 14] is achieved by using different ad-
dress spaces (process-based) and hence entails larger copying over-
head compared to the scheme using the same address space (thread-
based) [35]. Although OS-assisted techniques using paging hard-
ware [2, 5, 14] can be used to implement copy-on-write at page
level, the false-sharing problem leads to excessive misspeculations.
To tackle this problem, the prior work [5] proposed to allocate each
potentially shared variable on a separate page. However, this ap-
proach is impractical for heap based dynamic data structures. The
reason is that such data structures may contain millions of nodes
and hence, it is impossible to allocate one memory page for every
node. Our other work on CorD [34–36] was also not practical for
programs using dynamic data structures. In this paper we developed
techniques that enable CorD to support dynamic data structures.

Kulkarni et al. proposed another speculative scheme [17–19]
that allows the non-speculative state to be overwritten by specu-
lative results. Once a misspeculation occurs, the original state can
be recovered by performing the reverse computation of the specula-
tive one. However, this scheme is only applicable for the programs
using work lists. Besides, users need to use special constructors,
mark all commute functions, which can be executed in any order,
and define the reverse computation of each commute function in
their programs. This places much burden on the users. In contrast,
our method is profiling based and the transformation is performed
by the compiler automatically.

Recently, Johnson et al. [13] and Du. et al. [6] presented differ-
ent compiler algorithms on decomposing a sequential instruction
stream into multiple speculative threads. In other words, they focus
on how to identify and construct parallel threads from a sequential
program, and hence their work is complimentary to our work.

6. Conclusion
For programs using heap based dynamic data structures, specula-
tive parallelization is challenging. This is because the size of the
dynamic data structure can be very large, moving heap data be-
tween non-speculative state and speculative state can be expensive,
and address translation of accesses to data structure fields is needed.
We proposed techniques and optimizations that effectively address
these challenges. Our experiments show maximum speedups from
1.56 to 3.2 on a real machine for a set of programs that make ex-
tensive use of heap based dynamic data structures.
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