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ABSTRACT
GPU’s SIMD architecture is a double-edged sword con-
fronting parallel tasks with control flow divergence. On
the one hand, it provides a high performance yet power-
efficient platform to accelerate applications via massive
parallelism; however, on the other hand, irregularities
induce inefficiencies due to the warp’s lockstep traver-
sal of all diverging execution paths. In this work, we
present a software (compiler) technique named Collab-
orative Context Collection (CCC ) that increases the
warp execution efficiency when faced with thread diver-
gence incurred either by different intra-warp task as-
signment or by intra-warp load imbalance. CCC col-
lects the relevant registers of divergent threads in a
warp-specific stack allocated in the fast shared mem-
ory, and restores them only when the perfect utiliza-
tion of warp lanes becomes feasible. We propose code
transformations to enable applicability of CCC to va-
riety of program segments with thread divergence. We
also introduce optimizations to reduce the cost of CCC
and to avoid device occupancy limitation or memory
divergence. We have developed a framework that au-
tomates application of CCC to CUDA generated inter-
mediate PTX code. We evaluated CCC on real-world
applications and multiple scenarios using synthetic pro-
grams. CCC improves the warp execution efficiency of
real-world benchmarks by up to 56% and achieves an
average speedup of 1.69x (maximum 3.08x).
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D.3.4 [Programming Languages]: Processors – Com-
pilers, Optimization, Code generation
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1. INTRODUCTION
Graphics Processing Units (GPUs) have become the

essential part of high-performance and power-efficient
parallel computing. Recent emergence of programming
APIs such as CUDA and OpenCL have played an im-
portant role in enabling general purpose parallel com-
puting using GPUs. A key to the success of such APIs is
the freedom they provide to define different execution
paths for the threads inside a SIMD group (warp or
wavefront); while the underlying architecture manages
the resulting complexities. To emphasize this aspect of
GPUs, they are also called SIMT (Single Instruction
Multiple Thread) microarchitecture devices. However,
the combination of this attribute with GPUs inherent
lack of fine-grained task parallelism support may result
in a significant performance loss.

All the threads inside a SIMD group (i.e., all the
warp lanes) execute one unique instruction at a time.
The presence of conditionals—such as due to if-else code
blocks—causes thread divergence because a conditional
may evaluate to true for some warp lanes and false for
other lanes. In this situation, the warp takes all the
divergent paths, while disabling non-relevant lanes in-
side every path. That is, the warp scheduler fetches
instructions for all the divergent paths while the execu-
tion stage is active only for a number of corresponding
threads. As a result, a portion of the available process-
ing power goes unutilized for the duration of divergence,
diminishing the SIMD execution benefits.

Microarchitectural and compiler solutions have been
suggested to remedy thread divergence. While most
microarchitectural methods are based on warp forma-
tion [1, 2, 3] or warp compaction [4, 5, 6], the com-
piler solutions rely on the warp lanes majority vote
to gain partial warp execution enhancement [7, 8, 9];
however, full warp utilization is usually out-of-reach.
The compiler based solutions require program-specific
and input-specific information about divergence behav-
ior to speculate on scheduling divergent code blocks and
lack systematic application procedure. Other software
approaches disrupt the GPU kernel autonomy by of-
floading data/task reordering onto CPU [10], implement
global locks with heavy contention for global queues [11],
or accept errors in the output by ignoring the task of
minorities [12]. The above limitations of software meth-
ods make them often inapplicable and unreliable.



In this paper, we propose Collaborative Context Col-
lection (CCC), a software (compiler) technique for GPUs
that enables efficient execution of warps in presence of
dissimilar intra-warp task assignment or intra-warp load
imbalance. Unlike previous solutions, CCC does not
rely on heuristics to increase warp utilization; instead,
it accumulates tasks to provide maximum warp execu-
tion efficiency. CCC utilizes the fast shared memory of
the Streaming Multiprocessor (SM) to collect threads’
context which includes the content of the thread-private
registers that are sufficient to describe the thread’s task
inside the divergent path. Context collection provides
all the warp lanes with homogeneous tasks and hence
allows efficient warp execution. CCC is primarily aimed
at removing divergence from repetitive GPU code blocks
(e.g., loops). Threads in a warp are provided with a
warp-specific stack in shared memory. In each iteration,
if there are insufficient contexts of the divergent path in
the stack to keep unemployed threads busy, warps col-
lect their context on the stack. Otherwise, each unem-
ployed thread grabs a context from the shared memory
and all the warp lanes execute the divergent branch.
This eliminates warp underutilization since the warp
lanes follow the all-or-none principle for taking the di-
vergent path. By collecting tasks at the warp granular-
ity, CCC avoids need for any syncing or fencing opera-
tions. CCC exploits fast CUDA intrinsics to implement
intra-warp binary reduction and prefix sum necessary
for collaborative context storing and restoring.

We further present transformations to extend the ap-
plicability of CCC to many common code patterns with
intra-warp load imbalance or dissimilar task assignment,
such as loops with varying or unknown trip-count and
recursive functions. We also provide optimizations for
CCC to increase performance in certain situations and
to eliminate or reduce the CCC possible side-effects such
as memory divergence or theoretical occupancy limita-
tion. Finally, we implemented CCC in a software frame-
work that allows annotating the repetitive patterns and
the divergent paths in CUDA C/C++ kernels. Anno-
tations are then replaced and transferred to the Nvidia
CUDA Compiler (NVCC) generated intermediate PTX
where CCC is applied to PTX code via our source-to-
source PTX compiler. Then, the framework feeds the
transformed code to the rest of the compilation chain.

This paper makes the following contributions:

– We propose CCC, a compiler technique for CUDA
programs that boosts the warp execution efficiency upon
divergence. CCC collects tasks at warp granularity and
remedies inefficiency due to intra-warp load imbalance
or dissimilar task assignment.

– To enhance the applicability of CCC, we present
transformations to make common code patterns acces-
sible to CCC and develop optimizations to increase the
CCC performance.

– We evaluate CCC for a variety of real-world and
synthetic GPU kernels. CCC achieves up to 56% warp
execution efficiency enhancement and an average speedup
of 1.69x (maximum 3.08x).

1 __global__ void CUDA_kernel_BFS( 
2  const int numV, const int curr, int* levels,
3  const int* v, const int* e, bool* done ) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x ) {
8 bool p = levels[ vIdx ] == curr; // Block A.
9 if( p )
10          process_nbrs( vIdx,
11          curr, levels, v, e, done ); // Block B.
12    } }

(a) The CUDA kernel for iterative BFS graph processing.
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(c) Visualization of warp execution.

Figure 1: BFS graph processing in CUDA [13] -
Each warp lane processes a set of vertices. Some
lanes may need to execute code block B while
code block A is non-divergent. Warp size is 8.

2. Collaborative Context Collection
In this section, we first explain thread divergence prob-

lem, then discuss our solution.

2.1 Thread Divergence Problem Overview
The SIMT microarchitecture in GPUs provides a par-

allel processing platform that groups fine-grained threads
into warps. A warp owns only one active Program
Counter (PC) at a given time, allowing the hardware
to schedule one instruction for execution by multiple
execution units (SM cores, in terms of CUDA) using
only one instruction fetch and decode. This design re-
duces the die size and power consumption while provid-
ing massive parallelism. However, warp lanes must run
in lockstep. Therefore, specifying different execution
paths for threads of a warp—also called warp lanes—
results in the traversal of all the divergent branches by
them. For a divergent branch, the processor masks off
inactive threads while holding their reconvergence PC
in a hardware divergence stack [14]. Until the warp’s
active PC reaches the reconvergence PC, masked off
threads stay inactive; thus some reserved execution units
are not utilized, causing warp execution inefficiency.

Figure 1 illustrates the above using BFS adapted from
[13]. Each thread is assigned processing of a num-
ber of vertices. If a vertex is updated in the previous



CUDA kernel invocation, the thread must update ver-
tex’s neighbors. This condition leads to thread diver-
gence as it can evaluate to true for some warp lanes and
to false for others. Threads that do not execute diver-
gent branch must wait for other threads in the warp to
finish processing block B as illustrated in Figure 1(c).

2.2 Boosting Warp Efficiency with CCC
To eliminate thread divergence due to imbalanced

load/task assignment to warp lanes, we propose Collab-
orative Context Collection (CCC). CCC increases the
warp execution efficiency for kernels containing repeti-
tive diverging tasks with independent iterations. This
pattern is common in GPU thread task assignment.
The BFS graph processing CUDA kernel shown in Fig-
ure 1(a) matches this model and Figure 1(b) depicts
the corresponding control flow graph (CFG). Later in
Section 3 we introduce transformations enabling a wide
variety of GPU algorithms to be expressed in this form.

In the above program model, threads inside the repet-
itive code block (the loop) iterate over divergent tasks.
The key idea of CCC is keep collecting tasks correspond-
ing to threads of a warp until there are tasks to keep all
threads busy. To establish a connection between the di-
vergent task and its required data, we define a context
as the minimum set of variables that can fully describe
the functionality of the task if the task is carried out by
another thread. For a GPU thread, these variables are
a subset of thread’s registers (that are thread-private).

In CCC, at every iteration, if there are insufficient di-
vergent tasks to keep all the warp lanes busy, then lanes
that are assigned such tasks collect their context in the
context stack. Context stack is a warp-specific shared
memory region for collecting unprocessed task contexts.
After stacking the contexts, the warp moves to the next
iteration without entering the divergent branch. Later,
if the aggregation of tasks that are stacked and the tasks
assigned to the warp lanes in the current iteration ex-
ceeds the warp size, lanes without a task can grab a
context from the shared memory, and the entire warp
executes the divergent branch. Thus, warp lanes exe-
cution discipline upon divergence is all-or-none which
avoids warp underutilization. Figure 2 demonstrates
the impact of CCC on the divergent CUDA program in
Figure 1 by visualizing the execution of a warp.

2.3 Applying CCC to CUDA kernels
Let us precisely define context. We refer to a thread’s

task context as a set of its designated registers that are:

1. defined prior to divergent task path as a function
of thread-specific special registers including %tid,
%laneid, and lane masks such as %lanemask_eq;
and

2. used inside the divergent task path.

Note that a context may contain special registers them-
selves when they are used directly inside the divergent
path. This definition enables CCC to distinguish the
minimal subset of thread’s registers that need to be col-
lected and retrieved at every iteration.

A0 A1

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

A2 A3 A4 A5 A6 A7

A8 A9 A10 A11 A12 A13 A14 A15

B8 B9 B6 B11 B12 B13 B3 B15

A16 A17 A18 A19 A20 A21 A22 A23

A24 A25 A26 A27 A28 A29 A30 A31

B22 B20 B26 B27 B18 B16 B0 B31

AC0 AC3 AC6

Context stack

AC0

AC0

AC0 AC16 AC18 AC20 AC22

T
im

e

Figure 2: Applying Collaborative Context Col-
lection to the program in Figure 1 eliminates
warp execution inefficiency. The figure visual-
izes the execution of only one warp.
1 __global__ void CUDA_kernel_BFS_CCC( 
2  const int numV, const int curr, int* levels,
3  const int* v, const int* e, bool* done ) {
4     volatile __shared__ int cxtStack[ CTA_WIDTH ] ;
5     int stackTop = 0; 
6     int wOffset = threadIdx.x & ( ~31 );
7     int lanemask_le = getLaneMaskLE_PTXWrapper();
8     for(
9     int vIdx = threadIdx.x + blockIdx.x * blockDi m.x;
10    vIdx < numV;
11    vIdx += gridDim.x * blockDim.x ) {
12       bool p = levels[ vIdx ] == curr; // Block A.
13       int jIdx = vIdx;
14       int pthBlt = __ballot( !p );
15       int reducedNTaken = __popc( pthBlt );
16       if( stackTop >= redNTaken ) { // All take path.
17          int wScan = __popc( pthBlt & lanemask_l e );
18          int pos = wOffset + stackTop – wScan;
19          if( !p ) jIdx = cxtStack[ pos ]; // Pop.
20          stackTop -= reducedNTaken;
21          process_nbrs( jIdx,
22          curr, levels, v, e, done ); // Block B.
23       } else { // None take path.
24          int wScan = __popc( ~pthBlt & lanemask_le ); 
25          int pos = wOffset + stackTop + wScan – 1 ;
26          if( p ) cxtStack[ pos ] = jIdx; // Push.
27          stackTop += warpSize – reducedNTaken; } } }

Figure 3: Applying CCC on the BFS CUDA
kernel in Figure 1(a).

Next we describe CCC’s application to the CUDA
BFS kernel. Figure 3 shows CUDA BFS kernel in Fig-
ure 1(a) after applying CCC. The first highlighted sec-
tion (lines 4-7 in Figure 3) is initialization of variables
and the stack for CCC. The context stack consists of
vIdx in Original CUDA code (Figure 1(a)) since it is the
only variable that depends on the thread index and is
used in the divergent region. CCC uses shared memory
—the fastest memory after thread-private registers—
for collecting contexts. The stack is marked volatile
to pass data between warp lanes without any need for
adding synchronization or fencing primitives. volatile
qualifier inhibits unsolicited optimization of references
and enforces sequential consistency between the threads
of a warp accessing the shared memory. Also, all the
threads initialize the context stack top to zero indicat-
ing no context has been collected yet.

The second highlighted region in Figure 3 (lines 14-
15) is executed in every iteration. Threads count the
total number of lanes for which the predicate for taking
divergent path is false. This is the total number of lanes
inside the warp that will be idle during the divergent



branch in the original program. If the result is less than
or equal to the number of stacked contexts, it means all
unemployed lanes can restore context, i.e., the warp can
take divergent path without underutilization (starting
from line 17). Otherwise, full warp utilization is not
possible by taking the divergent path; hence, threads
with task collect their context into the stack (starting
from line 24) and the warp moves to the next iteration
without executing the divergent branch. In the third
highlighted section (lines 17-20 in Figure 3) unemployed
threads calculate the stack index from which they pop
contexts. After popping, all the threads move down the
stack. Note that it is necessary to check the predicate
before popping the stack (line 19) since only those warp
threads that do not have any task to perform should
grab an existing context. Those that have a task simply
execute the task context they already hold. The fourth
highlighted section (lines 24-27) is the counterpart of
the third section for pushing contexts. Finally, there is
another section (not shown) for executing leftover task
contexts in the stack after finishing all the iterations
(such section is present in every program discussed).

For simplicity, the stack size (number of elements) for
each warp is made the same as the warp size, although
the number of stacked contexts will never exceed warp
size minus one because if it does, it means that in a
previous iteration all the warp threads could have been
utilized but were not. Note that CCC requires itera-
tions of the repetitive pattern to be independent of each
other so the reordering of iterations preserves program
semantics. Therefore, barriers and memory fences, as
long as they do not disrupt this feature, can be used
in the iterative code segment. Finally, if a register is
written inside the divergent path and the write oper-
ation can be expressed in form of a associative reduc-
tion function that has an atomic operation counterpart,
to apply CCC, the register needs to be transferred to
a shared memory buffer. Accesses to the register will
be replaced with accesses to the corresponding shared
memory buffer; especially the writes inside the diver-
gent path should be made atomically.

The key methods that make CCC feasible yet fast are
• counting the total number of warp lanes with the

false predicate–this is a form of intra-warp binary
reduction; and

• realizing the stack position to/from which a thread
needs to store/restore the context–this is a stream
compaction problem that we solve using inclusive
intra-warp binary prefix sum (scan).

We employed Harris and Garland’s methods [15] for
both intra-warp binary reduction and scan. Both meth-
ods utilize __popc() and __ballot() CUDA intrinsics
and translate into very few binary operations.

3. CCC TRANSFORMATIONS
A GPU kernel, in its original form, may not readily

expose the pattern of repeated divergent code block.
Therefore to widen the applicability of CCC, we use
enabling transformations for many common forms of
GPU kernel patterns.

3.1 Task Repetition with Grid-Stride Loops
1  __global__ void CUDA_kernel_BFS( 
2  const int numV, const int curr, int* levels,
3  const int* v, const int* e, bool* done ) {
4     int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
5     if( vIdx < numV ) {
6        bool p = levels[ vIdx ] == curr;
7        if( p )
8           process_nbrs( vIdx,
9           curr, levels, v, e, done ); } }

10 int main() { // Host side program.
11 . . . .
12 int gridD = ceil( numV / blockD );
13 gpuKernel <<< gridD, blockD >>> // Kernel launch.
14 ( numV, kernelIter, lev, v, e, done );
15 . . . . }

(a) Before transformation.

1  __global__ void CUDA_kernel_BFS_with_gridstride_loop( 
2  const int numV, const int curr, int* levels,
3  const int* v, const int* e, bool* done ) {
4     for(
5     int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6     vIdx < numV;
7     vIdx += gridDim.x * blockDim.x ) {
8        bool p = levels[ vIdx ] == curr;
9        if( p )
10          process_nbrs( vIdx,
11          curr, levels, v, e, done ); } }

12 int main() { // Host side program.
13 . . . .
14 int gridD = nSMs * maxThreadsPerSM / blockD;
15 gpuKernel <<< gridD, blockD >>> // Kernel launch.
16 ( numV, kernelIter, lev, v, e, done );
17 . . . . }

(b) After transformation.

Figure 4: A grid-stride loop applied to the BFS
CUDA kernel in to make it accessible by CCC –
assumed 100% maximum theoretical occupancy.

It is a well known software technique to launch the
GPU kernel with exactly enough threads so that all the
Streaming Multiprocessors are occupied. In this tech-
nique, threads inside the GPU kernel iterate over as-
signed tasks using a loop. The BFS CUDA code in
Figure 4(a) employs this technique to allow a thread
to iterate over multiple vertices. Figure 4 shows an ex-
ample of such transformation and required changes in
the host and the device code. Enabling task repetition
with grid-stride loops is similar to persistent threads
technique in [16] where enough residing GPU threads
are invoked inside the kernel. However, in a grid-stride
loop, the assignment of tasks to threads is predeter-
mined rather than being controlled by a shared queue.
A grid-stride loop can transform a kernel with diver-
gence into a form suitable for CCC.

3.2 Loops with Variable Trip-Count
A common load assignment pattern is to assign a

coarse-grained task to each GPU thread via a loop. The
loop trip-count determines the amount of fine-grained
tasks, i.e. the load volume, assigned to a thread. This
approach is specifically prevalent in GPU graph pro-
cessing (pioneered in [13]) where threads are assigned
to graph vertices and process all the vertex’s neighbors
using a loop. Figure 5(a) exhibits this assignment pat-



tern. Although this load assignment strategy provides
code readability, it can introduce heavy load imbalance
and warp execution inefficiency. In case of GPU graph
processing, since different vertices can have very differ-
ent number of neighbors, different threads have to iter-
ate different number of times over the loop. In power
law graphs the load imbalance can be very high.

1  __device__ void process_nbrs( 
2  const int vIdx, const int curr, int* levels, 
3  const int* v, const int* e, bool* done ) {
4     int eIdx = v[ Idx ];
5     int nNbrs = v[ vIdx + 1 ] – eIdx;
6     for( int nbrIdx = 0; nbrIdx < nNbrs; ++nbrIdx )
7        process_nbr( curr, eIdx + nbrIdx, 
8        levels, v, e, done); } 

(a) Before transformation.

1  __device__ void process_nbrs( 
2  const int vIdx, const int curr, int* levels, 
3  const int* v, const int* e, bool* done ) {
4     int eIdx = v[ Idx ];
5     int nNbrs = v[ vIdx + 1 ] – eIdx;
6     int UniCount = intra_warp_reduce_max( nNbrs );
7     for( int nbrIdx = 0; nbrIdx < UniCount; ++nbrIdx )
8        if( nbrIdx < nNbrs )
9           process_nbr( curr, eIdx + nbrIdx, 
10          levels, v, e, done); }

(b) After transformation.

Figure 5: An example demonstrating the trans-
formation of a CUDA device function (BFS pro-
cessing of a vertex’s neighbors) with variable
trip-count to a form accessible by CCC.

Loops with variable trip-count can be expressed in
form of a loop with uniform trip-count containing a di-
vergent path, and hence, benefit from CCC. Figure 5(b)
depicts this transformation applied to the BFS CUDA
device function of Figure 5(a). First, warp lanes re-
duce the largest trip-count using the butterfly shuffle
instruction (as in [17]), and select the resulting value as
the uniform trip-count. Then, the code block inside the
loop is wrapped by a condition check that verifies if the
iteration is less than the thread’s original trip-count.
Note that although two pieces of code in Figure 5 are
functionally equivalent, the transformation is required
to keep warp threads active during all the iterations.
Without the transformation, the threads that exit early
will reconverge after the loop, therefore they will not
have a chance to participate in the context collected by
other warp lanes in further iterations.

3.3 Recursive Device Functions
& Loops with Unknown Trip-Count

CUDA allows recursion on device functions enabling
intuitive ways to express algorithms like cuckoo hash-
ing [18] in Figure 6(a). In cuckoo hashing a key-value
pair is provided with multiple hash functions. On every
insertion attempt, the pair is inserted into the bucket
pointed to by one of the hash functions using an atomic
exchange. The return value of the atomic operation
yields bucket contents before insertion. If content holds
another key-value pair, the returned pair has to be re-
hashed with another hash function. The recursion on
insertion attempt stops when returned bucket is empty.

1  __device__ bool try_insert( 
2  ulonlong* pos, ulonglong& kvp ) {
3     kvp = atomicExch( pos, kvp );
4     return ( uint )( kvp >> 32 ); }

5  __device__ void insert_KVPair( ulonglong kvp,
6  uint loc, const uint tSize, ulonglong* table ) {
7     uint retKey = tryInsert( table + loc, kvp );
8     bool p = retKey != EMPTY_KEY;
9     if( p ) {
10       loc = find_next_location( retKey, loc, tSize );
11       insert_KVPair( kvp, loc, tSize, table ); } }

12 __global__ void generate_hash_table( 
13 const int nKVPairs, const uint tableSize, 
14 const ulonglong* kvpairs, ulonglong* table) {
15    for(
16    int eIdx = threadIdx.x + blockDim.x * blockIdx.x;
17    eIdx < nKVPairs;
18    eIdx += blockDim.x * gridDim.x ) {
19       ulonglong kvp = kvpairs[ eIdx ];
20       uint key = ( uint )( kvp >> 32 );
21       uint loc = hash_func( key, tableSize, 0 );
22       insert_KVP( kvp, loc, tableSize, table ); } }

(a) Before transformation.

1  __device__ void insert_KVPair_CCC( ulonglong kvp,
2  uint loc, const uint tSize, ulonglong* table ) {
3     uint retKey = tryInsert( table + loc, kvp );
4     bool p = retKey != EMPTY_KEY;
5     int redNtaken = intra_warp_binary_reduce( !p );
6     if( stackTop >= redNtaken ) {
7        pop( p, retKey, loc, kvp );
8        loc = find_next_location( retKey, loc, tSize );
9        insert_KVPair( kvp, loc, tSize, table );
10    } else {
11       push( p, retKey, loc, kvp ); } }

(b) After transformation. Operations and variables related
to context stack are shortened for brevity.

Figure 6: An example demonstrating the trans-
formation of a recursive CUDA device function
(cuckoo hashing on GPU [18]) by CCC.

While some threads may succeed in inserting their
key-value pair in the very first try, other threads in the
same warp might take the divergent path over and over
again causing overall warp underutilization. CCC can
be applied to recursive device functions to eliminate the
load imbalance. Figure 6(b) shows the resulting code
after applying CCC. Before taking the divergent path,
which contains the call to the recursive function, warp
lanes count the predicates (line 5), and take the diver-
gent path if all of them can be fully utilized. Otherwise,
threads that have to call the recursive function stack
their contexts, and the warp exits the function to grab
fresh key value pairs and repeat the procedure.

Similar to the previous transformation shown, warp
lanes discipline for calling the recursive function is all-
or-none and thus enabling maximum warp utilization.
Note that this solution focuses on single tail recursion
where the recursive function contains a single call to it-
self. Since single tail recursion can be expressed in form
of a loop for which the trip-count is not determined be-
fore entering the loop, the transformation for recursive
functions also naturally extends to loops with unknown
trip-count. Having multiple references to itself (multiple
recursion) and dynamic parallelism are task generation
problems that are beyond the scope of this work.



3.4 Nested and Multi-Path Context Collection
CCC can be applied in a nested manner to a diver-

gent path containing intra-warp divergence. A separate
stack collects the context of the parent divergent path
and another stack collects the child’s. For example, in
CUDA BFS kernel, while neighbors of a vertex are vis-
ited only when it is updated in the previous GPU kernel
invocation (Figure 1(a) line 9), variable trip-count for
the inner loop (Figure 5(a) line 6), due to irregularity of
the graph, creates load imbalance inside the divergent
path. Here, CCC collects the context for the outer and
the inner divergent paths independently, and executes
each path only when enough contexts of that path exist.

Now consider the example of Iterated Function Sys-
tems (IFS) inside CUDA kernels. Figure 7 presents a
device function in Fractal Flames GPU program [19] in
which each thread executes a random function varia-
tion. For such cases, multi-path CCC assign a separate
context stack to each task. Threads collect the contexts
for each divergent branch separately, and warp lanes ex-
ecute a path only if enough contexts of a certain task,
that can provide full warp efficiency, are available.

1  __device__ cuFloatComplex variation_gen( 
2  const float x, const float y, const uint var ) {
4     switch( var ) {
5     case 0: // Linear variation.
6     return make_cuFloatComplex( x, y );
7 case 1: // Sinusoidal variation.
8        return make_cuFloatComplex( sinf(x), sinf(y) );
9     . . . .
10    case 7: // Power variation.
11       float theta = atanf( x / y );
12       float len = sqrtf( x * x + y * y );
13       float sinTh = sinf( theta );
14       float mul = powf( len, sinTh );
15       float r = mul * cosf( theta );
16       float i = mul * sinf( theta );
17       return make_cuFloatComplex( r, i ); } }

Figure 7: Variation generation CUDA device
function in Fractal Flame [19] from Iterated
Function System (IFS) class.

4. CCC OPTIMIZATIONS
Next we discuss optimizations to improve CCC per-

formance in certain situations.

4.1 Context Compression: Reducing Context
Storage and Saving/Restoring Overhead

If in a context, a register value can be computed from
another register’s value with a computationally inex-
pensive operation(s), i.e. one can be expressed as a
trivial compute-only function of another, only one of
them needs to be collected during storing. For the
restoration, one register content is then derived from
the other one using the function. This optimization
reduces shared memory consumption and lowers stor-
ing/restoring overhead.

An example can be found in Figure 6 where the con-
text includes three variables: kpv, loc, and retKey.
Since retKey can be recomputed from kvp using only a
shift operation (Figure 6(a) line 4), the context is com-
pressed by saving one less variable. Excluded variable

1 __global__ void CUDA_kernel_SSSP( 
2  const int numV, int* bitMask, int* costs, int* Ua,
3  const int* v, const int* e, const int* eValues ) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x ) {
8        int container = bitMask[ vIdx >> 5 ];
9        bool p = ( container >> ( vIdx & 31 ) ) & 1;
10       if( p ) { \\ Divergent path.
11          int vCost = costs[ vIdx ];
12          visit_nbrs( vIdx, vCost, costs, Ua,
13          v, e, done, eValues ); } } }

(a) Without optimization.

1 __global__ void CUDA_kernel_SSSP( 
2  const int numV, int* bitMask, int* costs, int* Ua,
3  const int* v, const int* e, const int* eValues ) {
4 for(
5 int vIdx = threadIdx.x + blockIdx.x * blockDim.x;
6 vIdx < numV;
7 vIdx += gridDim.x * blockDim.x ) {
8        int container = bitMask[ vIdx >> 5 ];
9        bool p = ( container >> ( vIdx & 31 ) ) & 1;
10 int vCost;
11       if( p ) vCost = costs[ vIdx ];
12       if( p ) { \\ Divergent path.
13          visit_nbrs( vIdx, vCost, costs, Ua,
14          v, e, done, eValues ); } } } .

(b) With Optimization (before transformation).

Figure 8: SSSP graph processing CUDA kernel
from [13] containing a coalesced global memory
access to the costs buffer in the divergent path.
We preserve the coalescence in CCC by exclud-
ing the memory access from the divergent path.

(retKey) is reconstructed from context variable (kpv)
using this shift operation during the pop procedure.

4.2 Memory Divergence Avoidance
Applying CCC reorders the iterations of the loop. In

the original program, a group of iterations with con-
secutive indices get assigned to threads with consecu-
tive global indices; but employing CCC may disrupt
this assignment. This becomes an issue when there are
global/host memory reads and writes in the divergent
path that are in a direct relationship with the itera-
tion index. The original coalesced and cache-friendly
memory accesses may lose the notion of locality due to
context collection and retrieval. The introduction of
memory divergence can hurt the performance.

Figure 8(a) gives an example of such scenario: Single-
Source Shortest Path (SSSP) in a graph using CUDA [13].
In this example, threads are assigned to process vertices
iteratively. A vertex is processed only if its correspond-
ing bit in the bitMask buffer is set. In the divergent
path, accesses to the costs array have locality and are
coalesced. However, if we apply CCC to this kernel, as
we did in Figure 3, due to reordering of iterations, this
memory access will not be necessarily coalesced. That
is, nearby memory locations may be accessed at distant
iterations wasting memory bandwidth.

CCC can avoid memory divergence by taking the
memory access out of the diverging path to the non-
divergent block and stacking the memory content along-
side the context. In other words, excluding the co-



alesced memory access from the path and executing
it with the path predicate, as shown in Figure 8(b).
Therefore, CCC can be applied to the new divergent
path similar to Figure 3 while preserving coalesced ac-
cess pattern. The only difference is that now the context
includes the memory content (vCost) as well.

4.3 Prioritizing the Costliest Branches
When there are multiple divergent paths taken by

the warp lanes, context collection for all the branches
may limit the theoretical GPU occupancy. Sometimes
it might not even be possible to launch the kernel with a
context stack for each and every path, due to requested
capacity exceeding the limit. For example, applying
CCC to all or most of the divergent paths inside the
device function in Figure 7 is not possible or limits the
occupancy because of limited available shared memory.

To avoid restricting the occupancy due to excessive
use of shared memory, and at the same time, to avoid
intra-warp divergence as much as possible, we prioritize
the costliest branches, i.e. those branches for which con-
text collection provides the most benefits. The cost of
taking a divergent branch is proportional to the volume
of operations inside the branch plus how infrequently
it is visited by the warp lanes; later in Section 6.3 we
verify this argument. Therefore, CCC applies to the
longest branches with the least probability of traversal.
In case of the example in Figure 7, the path belong-
ing to latest variations are longer and more expensive;
hence, are more suitable candidates for CCC.

5. CCC IMPLEMENTATION
To implement CCC, we designed a framework based

on a combination of user-provided annotations iden-
tifying the paths for CCC application and an auto-
matic compilation chain intervention that transforms
the code. The user annotates the repetitive pattern
and the divergent path inside the CUDA C++ kernel.
Then, the framework operates alongside NVCC and ap-
plies CCC to the code automatically, as shown in Fig-
ure 9. Each transformation described in section 3 is
specified by a different annotation. For example, for
the code in Figure 1(a) a user needs to insert only #CCC
for const above the for loop and specify the divergent
code block by putting #CCC if above the if condition
evaluation line. The first part of the framework, An-
notated Source Modifier, marks these specific regions
to transfer them to the PTX level. The second part of
the compiler, PTX Source-to-source Compiler, applies
CCC and the optimizations described in Section 4.

5.1 Annotated Source Modifier
This part of the framework analyzes the code, iden-

tifies specific user-specified directives in CUDA C++
source code, and enables recognition of these patterns
inside the PTX code. The frameowrk replaces and also
inserts assembler statement asm with volatile key-
word to mark the repetitive section and the beginning
and the end of the divergent code path region. asm
statement allows arbitrary code to propagate into and
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Figure 9: CCC Framework operates alongside NVCC.

1  mov.u32      c, %ctaid.x;

2  mov.u32      b,  %tid.x;

3  min.s32      a,  b,  c;

4  add.s32      d,  c,  1;

5  mad.s32      e,  c,  a,  d;

6  mul.wide.s32 f,  e,  4;

7  setp.le.s32  p,  b,  15;

8  %p  bra      POST_PATH_LBL;

9 #CCC_if_marked_begin

10 add.s32      g,  e,  c;

11 sub.s32      h,  g,  f;

12 add.s32      i,  g,  2;

13 #CCC_if_marked_end

14 POST_PATH_LBL:

(a) PTX code.
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(b) Resulting graph.

Figure 10: A PTX sample code inside the repet-
itive section and the resulted graph from con-
necting definition and usage of virtual registers.

appear inside the PTX code, without even necessarily
being a valid PTX statement. In addition, volatile
keyword prevents optimization on specified assembly
statement and preserves the relative order of instruc-
tions before and after the statement. These two prop-
erties of asm volatile() enables marking PTX code
regions of interest from inside the CUDA C++ ker-
nel. As shown in Figure 9, the framework feeds the
marked CUDA kernel into NVCC front-end— which
is tightly bound to CICC (LLVM-based optimizer and
PTX generator)— to yield the PTX code.

5.2 PTX Source-to-source Compiler
The second part of the framework receives a PTX

source with distinct annotations that mark regions of
interest including the beginning and the end of the di-
vergent code block (similar to lines 9 and 13 in Fig-
ure 10(a)) and the immediate path after the repetitive
pattern. This part outputs the PTX code with CCC
and its optimizations applied, and sends the resulting
PTX code to the rest of the compilation chain. Ap-
plying our technique at the PTX level is advantageous
since the PTX code has a closer-to-machine assembly-
like form with a limited number of instructions and di-
rectives. This facilitates reasoning about the functional-
ity, throughput, inputs, and output of each instruction.

To apply CCC to the PTX code, It is necessary to
recognize the context variables corresponding to a di-
vergent path. To identify context registers, we generate
a data dependence graph in which every node represents
a PTX virtual register and every edge stands for the def-
use link that defines the destination node and uses the
source node. The BFS traversal starting from thread-
specific special registers induces sub-graphs of virtual



registers (directly and indirectly) affected by them. Fig-
ure 10(a) shows a sample PTX code and Figure 10(b)
presents its corresponding graph, in which the induced
sub-graph is highlighted. In addition, the framework
assigns every edge a boolean property for which a true
value specifies if the def-use link between two virtual
registers is established inside the divergent path. The
framework then identifies a virtual register as a context
if and only if, inside the sub-graph, its corresponding
node’s incoming edges are assigned false and at least
one of its outgoing edges is assigned true. In Figure 10,
registers e and f are recognized as the context.

The framework automates CCC optimizations using
this analysis as well. For context compression, the frame-
work examines a context register’s parents inside the
graph. If all the parent nodes are from the set of liter-
als, function parameters, or other context registers and
the instruction corresponding to the connecting edges is
high-throughput and compute-only, the context is com-
pressed. In Figure 10, virtual register f satisfies the
compression condition. To avoid memory divergence,
the index of the global memory read is examined to
have a reaching definition from tid.x and to fulfill the
coalescence. To prioritize the costliest branch, the in-
verse of the instruction throughput inside every branch
is aggregated and compared with other branches’.

After identification of context registers, the source-to-
source compiler declares appropriate resources such as
shared memory buffers and inserts CCC code segments.

6. EXPERIMENTAL EVALUATION
We first briefly describe the benchmarks, then evalu-

ate their performance with and without CCC. Lastly, we
analyze the sensitivity of CCC. Experiments were per-
formed on a Nvidia GeForce GTX 780 GPU equipped
with 12 Streaming Multiprocessor from Kepler microar-
chitecture. Up to 2048 threads can reside on each SM
while each SM contains 64K 32-bit registers. Up to 32
32-bit registers per thread and up to 24 bytes of shared
memory per thread can be requested without affecting
the occupancy. All GPU programs are compiled with
the highest optimization level flag (-O3) for Compute
Capability 3.5 on Ubuntu 14.04 64-bit with CUDA 7.0.

6.1 Benchmarks
We selected 8 real-world benchmarks from various do-

mains. These programs demonstrate substantial amount
of intra-warp divergence; hence, they can benefit from
CCC. Below we introduce these benchmarks.

BFS. Breadth-First Search is an iterative graph traver-
sal algorithm. CUDA implementation of BFS [13] as-
signs one thread to process a number of vertices and
their neighbors. We used LiveJournal [20], a social net-
work graph with approximately 4.8M vertices and 69M
edges, as the input graph. We used grid-stride loop,
loops with variable trip-count, and nested context col-
lection techniques for BFS.

DQG. Dynamical Quadrature Grids [21] program com-
putes the points in a quadrature grid. Becke kernel of
DQG is used in our experiment. One thread is assigned

to a point which then has to iterate over atoms two-by-
two. The number of atoms can vary from 2 to 80, which
creates a load imbalance between threads. We used a
grid-stride loop to enable CCC.

EMIES. Electromagnetic Integral Equation Solvers [22]
compute the electromagnetic field using Nonuniform Grid
Interpolation Method (NGIM). The potential field do-
main is divided into subdomains of different sizes. The
type of parallelization is “one-thread-per-observer”. As
a result, when comparing the domains, some threads in
the warp may satisfy the Near-Field criterion and calcu-
late the volume integral equation while others may not.
No transformation were required. Average number of
sources per box is set to 64 for the experiments.

FF. Fractal Flames [19] belongs to the Iterated Func-
tion Systems (IFS) class of algorithms and is based
on chaos game. It involves selecting and executing a
function randomly from the set of available non-linear
functions. Picking and executing different functions for
threads inside the warp causes task serialization. We
defined 10 function variations and rendered a 2D scene
with 10M random points. We used a grid-stride loop to
iterative over points and prioritized 3 costliest branches.
Since the context for all the divergent paths is 8 bytes
(4 bytes for x and 4 bytes for y), and also since the orig-
inal kernel does not consume shared memory, collecting
up to 3 branches does not affect the occupancy.

HASH. GPU Cuckoo hashing [18] constructs a hash
table given a set of key-value pairs. Each thread is as-
signed to carry out insertion of a set of key-value pairs
into the hash table. Threads perform insertions simulta-
neously via atomic exchange operation. Some threads
in the warp may need to retry insertion due to colli-
sion creating intra-warp load imbalance. We applied a
grid-stride loop to enable CCC and then used the trans-
formation for recursive functions. We also compressed
the initial context that reduced the context size from
16 to 12 bytes. In the experiments we used 100 M ran-
domly generated 8-byte-long key-value pairs, and the
table load factor is set to 0.9.

IEFA. Inverse Error Function Approximation [23] in-
volves selection and execution of one out of three possi-
ble functions depending on the input. Warp lanes that
are assigned to compute the inverse error function usu-
ally take different paths. This causes traversal and exe-
cution of all three functions by the warp. We prepared
the application for CCC with a grid-stride loop. For the
experiments, we approximated double-precision inverse
error function for 100M values.

RT. Ray Tracing [24] is a simple ray tracing CUDA
kernel in which threads are assigned to rays and they
verify if a ray hits the objects in the scene. A ray that
hits an object has to update the closest hit depth and
its own color. Threads inside the warp may or may not
hit an object. This creates load imbalance and warp
underutilization. We defined 8.8M rays (4K resolution)
and 80 sphere objects in the scene. We applied a grid-
stride loop to iterative over rays.
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Figure 12: Warp execution efficiency compari-
son between the kernels with and without CCC.
For BFS and SSSP the warp execution efficiency
is averaged across all the kernel launches.

SSSP. Single-Source Shortest Path finds the shortest
path to every vertex reachable from a single source
vertex using iterative CUDA kernels. We used Har-
ish et. al. [13] approach for the SSSP. A thread is as-
signed to process a set of vertices. Similar to BFS, the
pattern of SSSP load imbalance is nested. LiveJour-
nal [20] is our input graph. Applied transformations
are the same as BFS. We also applied memory diver-
gence avoidance optimization for SSSP.

6.2 CCC Performance Improvement
Overview of results. Figure 11 presents the speedups
obtained by applying CCC to the eight real-world pro-
grams. These speedups are measured exclusively for
CUDA kernels. On an arithmetic average, the set of
benchmarks experience speedup of 1.69x due to appli-
cation of CCC. We further profiled the warp execution
efficiency (predicated and non-predicated averaged) of
these benchmarks with and without CCC and plotted
the results in Figure 12. On average, applying CCC
increases the warp execution efficiency of benchmarks
from 43.7% to 89.8%. We also measured the overhead
introduced by CCC in terms of added shared memory
and register usage per thread and reported them in Ta-
ble 1. As mentioned earlier, for our GPU, up to 32
32-bit registers per thread and 24 bytes of shared mem-
ory per thread can be requested without affecting the
kernel occupancy. Now we examine the results in detail.

Detailed performance analysis of benchmarks.
CCC achieves the highest speedup of 3.08x for the FF
benchmark. For FF we collected the longest 3 diver-

Benchmark
32-bit Reg. Usage Shared Mem. Usage (B)

w.o. CCC with CCC w.o. CCC with CCC

BFS 15 26 0 8
DQG 25 31 8 24

EMIES 28 32 0 24
FF 21 29 0 24

HASH 22 28 0 12
IEFA 24 32 0 24
RT 21 27 0 24

SSSP 19 29 0 16

Table 1: The CCC overhead in terms of resource
usage (per thread). Underlined entry results
from spilling two excessive registers into local
memory (L1 cache) via -maxrregcount compiler
option. The maximum theoretical occupancy is
100% in all cases.

gent paths so as not to limit the occupancy by using
extra shared memory. Although there are 10 diver-
gent branches in the kernel, collecting the most expen-
sive 3 of them enhanced the warp execution efficiency
from 13% without CCC to 53% with CCC. This result
demonstrates the importance of branch prioritization
technique. Also note that the newest Nvidia GPU mi-
croarchitecture named Maxwell doubles the maximum
shared memory available to the thread-block. More
shared memory enables collecting more divergent path
contexts without affecting the occupancy. Therefore,
this allows higher speedup for benchmarks similar to
Fractal Flames where diverging paths are numerous.

CCC provides the next highest speedup of 2.72x
for IEFA benchmark. All three branches that can be
taken by the warp lanes are collected and traversed only
when full warp utilization is possible. Collecting all
branches boosts the warp execution efficiency of IEFA
from 41% to 97%. Similar to FF, IEFA experiences
warp divergence due to dissimilar intra-warp task as-
signment and contains relatively long compute-only di-
vergent task paths. These features make FF and IEFA
the most benefiting benchmarks from CCC.

The next benchmark for which CCC shows a rela-
tively high speedup is DQG with speedup of 1.63x.
The different load volume assignments to each GPU
thread in the original DQG results in the warp exe-
cution efficiency of 37% while CCC enhances to 93%.

The RT benchmark has the highest amount of warp
execution efficiency in the original kernel with 67%.
This is because warp lanes are assigned to contiguous
rays which are more likely to hit an object in the scene.
Nevertheless CCC provides speedup of 1.38x for RT
while increasing the warp efficiency to 96%.

Further, CCC increased the warp execution efficiency
of EMIES from 44% to 92% resulting in speedup of
1.34x. EMIES divergent paths are long, but also con-
taining global memory accesses. EMIES is the only
benchmark where applying CCC can limit the maxi-
mum theoretical occupancy to 75% by requesting 34
registers per thread. However, for this benchmark, we
pass the compiler option -maxrregcount 32 to enforce
the compiler to spill two registers into the local memory.
Since the kernel asks for 24 bytes of shared memory per



thread, 16 KB of shared memory in the SM is left for
L1 cache, which is just enough for spilled registers.

Finally, benchmarks HASH, BFS, and SSSP are pri-
marily memory-bound benchmarks; hence application
of CCC results in smaller, yet significant, performance
improvements. HASH benchmark relies heavily upon
8-byte-long atomic exchange operation on table entries.
Entries accessed by threads inside the warp reside in
distant memory segments. These accesses create non-
coalesced and cache-unfriendly global memory requests
which represent a major performance bottleneck for this
kernel. As a result, although the warp execution effi-
ciency increases from 25% to 96%, CCC provides smaller
speedup of 1.20x. The speedup of HASH without con-
text compression optimization is lower – nearly 1.17x.

Benchmarks BFS and SSSP are memory-bound. Both
suffer from a great deal of load imbalance; however,
the set of non-coalesced memory accesses to the con-
tent of neighboring vertices represents a major perfor-
mance bottleneck. Therefore, applying nested CCC to
BFS and SSSP provides smaller speedups of 1.13x and
1.09x respectively. The speedup in SSSP is the low-
est due to higher amount of memory accesses; SSSP
introduces additional memory accesses to the bit mask
and edge value buffers. Also without memory diver-
gence avoidance optimization, SSSP speedup is 1.06x.
Considering the irregularity of the input graph, original
BFS and SSSP kernels exhibit 58% and 64% warp ex-
ecution efficiency on average. Note that this is due to
early and late CUDA kernels in which most threads do
not take the divergent paths. Kernels for middle graph
algorithm iterations carry out most of the computation
and exhibit warp execution efficiency as low as 14%.
Finally, very regular graphs benefit only slightly from
CCC due to lack of imbalance. For example, original
BFS and SSSP with roadNet-CA [25] as a very regular
2D graph shows 83% and 85% warp execution efficiency
on average. CCC improves the warp efficiency of BFS
and SSSP kernels to 94% and 95% and gives 1.02x per-
formance improvement for both.

6.3 Sensitivity Analysis
Next, using synthetic programs, we study the sensi-

tivity of CCC to (a) varying amount of warp divergence
over warp threads and (b) varying execution lengths of
the divergent path. Original GPU kernel is a grid-stride
loop executed 230 times (aggregated over all CUDA ker-
nel launched threads). The context size is 4 bytes.

Varying intra-warp divergence. Figure 13 compares
the execution time and the warp execution efficiency of
the synthetic GPU kernel when executed normally and
when CCC applied. The loop contains a divergent path
with 20 FMAD instructions. We repeated the experi-
ments each time with different number of threads inside
the warp taking the divergent path (x axis). Increasing
this number also increases the amount of load that has
to be carried out by the CUDA kernel.

The left plot in Figure 13 shows that the original ker-
nel takes an approximately constant amount of time to
finish with different amount of intra-warp divergence
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Figure 13: CCC performance enhancement com-
pared to the original divergent kernel over differ-
ent amount of intra-warp divergence (and hence
workload imbalance). The divergent path con-
tains 20 FMAD operations.
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Figure 14: Sensitivity of CCC against different
execution path lengths plotted for two different
amounts of intra-warp divergence.

and workload imbalance. This is a natural behavior of
a SIMD device. But when CCC is applied, we see that
by increasing the workload, the execution time grows
linearly. It means CCC provides work efficiency. The
plot on the right in Figure 13 presents the warp exe-
cution efficiencies. We observe that although the warp
execution efficiency of the original kernel increases pro-
portionally to the amount of intra-warp divergent tasks,
the kernel with CCC always has a high warp efficiency
(%96.6 on average) regardless of the amount of intra-
warp divergence. In summary, both plots demonstrate
the effectiveness of CCC in form of its resistance against
various amounts of load imbalance.

Varying divergent path length. Figure 14 shows
the execution times for the original and CCC kernels
for different divergent path lengths. The left and right
plots demonstrate it for when 1

4 and 3
4 of the warp lanes

take the divergent path, respectively. In both plots, it is
clear that as the length of the divergent path increases,
the speedups approach to inverse of utilized threads in
the original codes, i.e. 4

1 and 4
3 respectively. It is evi-

dent that CCC shows more speedup where the divergent
path is longer. In addition, by comparing the two plots,
we realize that to cope with the overhead of CCC, either
the divergent path has to be long or the divergent ratio
should be high. In both plots, the speedup is less than



one only when the divergent path contains only one op-
eration and at the same time 24 threads inside every
warp take the path. In all other cases, CCC provides
speedup higher than one.

7. RELATED WORK ON DIVERGENCE
Next we discuss microarchitectural and software solu-

tions to address the SIMD thread divergence problem.

Microarchitectural Solutions. Although these tech-
niques cannot be exploited on available hardware, clever
solutions can guide future designs. Dynamic Warp For-
mation (DWF) [1] is the basis for many microarchi-
tectural solutions. DWF merges threads from differ-
ent warps but with the same PC to form new warps
with no thread divergence. To enhance DWF perfor-
mance, Meng et. al. propose Dynamic Warp Subdivi-
sion (DWS) [2] and Rhu et. al. [3] suggest SIMD lane
permutation (SLP). Furthermore, Narasiman et. el [26]
suggest Large Warp Microarchitecture (LWM) in which
fewer but wider warps can create sub-warps that match
SIMD width size when facing branch divergence.

Compaction techniques have also been proposed to
remedy the SIMD divergence problem. Fung et. al. [4]
offer Thread Block Compaction (TBC) to exploit con-
trol flow locality between threads of a block for di-
vergent paths. Unlike our solution CCC, TBC makes
the warps synchronize at divergent branches to pro-
vide homogeneous tasks for warp lanes. To avoid the
overhead of unnecessary compaction on non-diverging
branches or workloads, Rhu et. al. [5] propose CAPRI,
a compaction-adequacy predictor influenced by branch
predictors. Moreover, Vaidya et. al [6] attempted to
harvest dead execution cycles and position SIMD chan-
nels in order to group enabled channels together.

Other microarchitectural techniques focus on efficient
scheduling for thread divergence and are complemen-
tary to CCC. Kim and Batten [27] propose a fine-grained
hardware worklist that acts as a distributed queue to
provide load balance in data-driven computations. Dou-
bling stage resources in processing pipelines has also
been popular [28]. Rhu and Erez [29] examine a dual-
path execution model provided by two PC reconver-
gence stacks and two register scoreboards in order to
expose the warp scheduler to more parallelism when fac-
ing divergent execution paths. To extend this solution,
[30] replaces the reconvergence stack with two warp split
and warp reconvergence tables. Rogers et. al. [31] pro-
pose Divergence-Aware Warp Scheduling (DAWS) for a
cache-conscious warp scheduling upon divergence. Also,
[32] and [33] suggest reconvergence methods for GPU
kernels with unstructured and recursive control flow.

Software Solutions. Not requiring hardware modifi-
cations, software solutions for thread divergence are of
great importance; however, existing strategies introduce
limitations that restrict their usage. Branch and data
herding [12] eliminates branch divergence by guiding all
the threads in the SIMD group to take the path with the
majority vote. In return herding expects and accepts er-
rors in the output. Similarly, [7], [8], and [9] steer the
warp lanes to take one execution path. The problem

with such techniques is the lack of systematic reliability
and applicability. Unlike CCC, these approaches do not
take methodical measures to cope with the divergence
problem, do not guarantee utilizing all the warp lanes
by relying upon warp lanes majority voting, do not de-
vise task accumulation strategies, and need information
from the program and the input to schedule the traver-
sal of divergent paths. These issues prevent wide em-
ployment of these solutions. On the other hand, CCC
and its transformation and optimization techniques of-
fer methodical approaches to guarantee warp execution
enhancement in divergent GPU kernels and can be com-
pletely realized and implemented in compile time.

Zhang et. al. [10] try to eliminate thread divergence
via thread-data remapping. Unfortunately, this solu-
tion not only needs global memory accesses to real-
ize the redirected position of the appropriate data for
the warp lanes, it does not preserve GPU kernel au-
tonomy by involving the CPU. Bauer et. al. [34] sug-
gest an intra-CTA producer-consumer model based on
which warps can have unique tasks for their threads.
As opposed to CCC, this model does not support irreg-
ular data-dependent tasks; in other words, the quantity
of each task has to be known at compile-time. Tzeng
et.al. [11] propose a task management mechanism for
irregular parallel workloads based on task donation and
stealing. Nonetheless, this technique suffers from GPU
underutilization and heavy use of global queues and as-
sociated global locks. Merrill et al. [35] enhance the
warp execution efficiency of BFS graph traversal via ef-
ficient expansion of unequal adjacency lists. Our work
is different from [35] in two major ways. First, thread
divergence problem in [35] appears as a form of load
imbalance on the tasks while it is assumed all the tasks
will be carried out. However, CCC allows the existence
of conditionals on the tasks in addition to imbalance
loads. Second, CCC does not require additional storage
to collect the frontiers; instead, it defers processing of
tasks via stacking. Our work can also be viewed as a
form of in-place stream compaction and consumption.

The load imbalance and consequently thread diver-
gence caused by nested parallelism in GPUs have also
been the subject of recent work. Han et. al. [36] in-
troduce loop merging to reorder the code blocks in-
side a loop with varying trip-count and improve the
performance ; however, unlike CCC, the solution does
not guarantee full warp execution efficiency. Yang and
Zhou created CUDA-NP [37], a source-to-source com-
piler that transforms GPU codes with parallel sections
using the idea of master and slave threads. However,
fixed number of slave threads for a master thread can
hurt the performance in irregular workloads. In [38] Lee
et. al. also propose a framework supporting a number
of widely-used parallel patterns for efficient nested par-
allelism. [39] introduces warp-aware trace scheduling
for GPUs based on speculating loads and arithmetic
instructions upon divergence in order to exploit ILP.
Recently, Schaub et. al. [40] evaluated compiler tech-
niques that aim to mitigate divergence against larger
SIMD widths. [41] and [42] offer static code analyzers



helping GPU developers to optimize the code manually.
Also, [43] and [44] provide profile-guided approaches to
recognize and then optimize code regions exhibiting di-
vergence. These works complement our work.

8. CONCLUSION
We introduced a software technique named Collab-

orative Context Collection (CCC) that overcomes the
SIMD inefficiency of GPU kernels containing thread di-
vergence due to intra-warp load imbalance or dissimilar
task assignment. CCC collects the context of divergent
threads at the stacks inside the shared memory and
retrieves them such that a uniform task is performed
by all the warp lanes. CCC increases the warp exe-
cution efficiency of real-world applications containing
divergent execution paths by up to 56% and provides
average speedup of 1.69x (maximum 3.08x).
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