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Abstract

Dynamic slicing algorithms can greatly reduce the de-
bugging effort by focusing the attention of the user on a rel-
evant subset of program statements. Recently algorithms for
forward computation of dynamic slices have been
proposed which maintain dynamic slices of all variables as
the program executes. An advantage of this approach is that
when a request for a slice is made, it is already available.
The main disadvantage of using such an algorithm for slic-
ing realistic programs is that the space and time required
to maintain a large set of dynamic slices corresponding to
all program variables can be very high. In this paper we
analyze the characteristics of dynamic slices and identify
properties that enable space efficient representation of a set
of dynamic slices. We show that by using reduced ordered
binary decision diagrams (roBDDs) to represent a set of
dynamic slices, the space and time requirements of main-
taining dynamic slices are greatly reduced. In fact not only
can the latest dynamic slices of all variables be easily
maintained, but rather all dynamic slices of all variables
throughout a program’s execution can be maintained. Our
experiments show that our roBDD based algorithm for for-
ward computation of dynamic slices can maintain 107-217
million dynamic slices arising during long program runs us-
ing only 28-392 megabytes of storage. In addition, the per-
formance of the roBDD based forward computation method
compares favorably with the performance of the LP back-
ward computation algorithm.

1. Introduction

The concept of program slicing was first introduced by
Mark Weiser [17]. He introduced program slicing as a de-
bugging aid and gave the first static slicing algorithm. Since
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then a great deal of research has been conducted on both al-
gorithms and tools for intraprocedural and interprocedural
static slicing [15, 7]. It is widely recognized that for pro-
grams that make extensive use of pointers, the highly con-
servative nature of data dependency analysis leads to highly
imprecise and considerably larger slices [7, 18, 13]. For
program debugging, where the objective of slicing is to re-
duce the debugging effort by focusing the attention of the
user on the relevant subset of program statements, conser-
vatively computed large slices are clearly undesirable. To
address this problem Korel and Laski proposed the idea of
dynamic slicing [8]. It has been shown that precise dy-
namic slices can be considerably smaller than static slices
[16, 7, 18]. Dynamic slicing has also been used in other
applications including software testing [5], software main-
tenance [3], and measuring module cohesion [6].

Two types of algorithms for computing dynamic slices
have been proposed: backward computation methods [8, 1,
18]; and forward computation methods [3, 9]. In backward
computation methods the program dependences that are ex-
ercised during a program execution are captured and saved
in form of a dynamic dependence graph. Dynamic slices
are constructed upon user’s requests by backward traversal
of the dynamic dependence graph. One of the strengths of
this approach is that it allows computation of all dynamic
slices of all variables for the entire execution. A problem
with this method is its space and time costs. The dynamic
dependence graph grows in size as a program executes caus-
ing a typical machine to run out of memory and the time
spent on building the dependence graph is also large. To
address this problem we presented the LP algorithm in [18]
which keeps the execution trace on disk and constructs the
relevant part of the dynamic dependence graph in memory
on demand in response to slicing queries.

In forward computation methods [3, 9] dynamic slices
of all program variables are maintained as the program exe-
cutes. Advantages of this approach are that when a request
for a slice is made, it is already available and since slices
are explicitly maintained, there is no need to construct the



dynamic dependence graph. One of the limitations of this
approach is that only the latest dynamic slices for all vari-
ables are maintained. This is because, if we maintain all
dynamic slices of all variables for the entire execution, the
space requirements increase dramatically. The time cost of
updating dynamic slices as program executes is also quite
significant as, for large programs, set operations need to be
performed on large sets of statements. As far as we know,
no experimental data has been published for forward com-
putation algorithm.

In this paper we develop an effective algorithm for
forward computation of dynamic slices, experimentally
evaluate the cost of the developed algorithm, and compare
its performance with the most practical backward com-
putation algorithm (i.e., the LP algorithm [18]). The key
contributions of our work are as follows:

Identifying statistical characteristics of dynamic slices.
By executing several benchmark programs, we collected
large numbers of dynamic slices and studied these slices
to identify characteristics of these slices that could be
exploited for reducing the space needed to store the slices.
We identified three distinct characteristics: same dynamic
slices tend to reappear from time to time during execution,
different slices tend to share statements, and clusters of
statements located near each other in the program often
appear in a slice.

Space and time efficient forward computation algorithm.
We develop a forward computation algorithm that re-
duces the space and time costs by exploiting the three
characteristics of dynamic slices mentioned above. First
the reappearance of slices is exploited by eliminating
duplicates and simply saving a set of distinct slices. Second
the sharing and clustering properties are exploited by
representing the sets corresponding to dynamic slices using
reduced ordered BDDs (roBDDs). The resulting algorithm
is not only space efficient, it is also time efficient because
set operations can be performed efficiently using their
roBDD representations.

Maintaining all dynamic slices for an execution. We show
that due to their high space requirements existing forward
computation algorithms can only maintain latest dynamic
slices for all variables in memory. However, the dramatic
improvement in space efficiency achieved by our algorithm
makes it possible to maintain all dynamic slices for all vari-
ables for the entire program execution with a modest in-
crease in space requirements. However, an additional exten-
sion is required. The indices that relate different execution
instances of statements with their corresponding dynamic
slices need to be compressed to limit space needs. This goal
is achieved using the SEQUITUR algorithm [14].

Comparison of backward computation and forward compu-
tation algorithms. In addition to providing an experimental
evaluation of our forward computation algorithm, we
also compare its performance with the most practical
backward computation algorithm., i.e. the LP dynamic
slicing algorithm [18]. The LP algorithm was also carefully
designed to be space and time efficient. Our evaluation
shows that while LP algorithm is more suitable when only
a few slicing computations are performed, our new forward
computation algorithm is more desirable when a larger
number of dynamic slicing operations are to be performed.

The remainder of the paper is organized as follows. In
section 2, we briefly describe the existing forward compu-
tation algorithm and highlight its costs. In section 3 we de-
scribe the three characteristics of dynamic slices. In section
4 we develop our algorithm which exploits the three char-
acteristics identified in section 3. Experimental evaluation
is presented in section 5. We conclude with a summary of
our contributions in section 6.

2 Forward Computation of Dynamic Slices
Given a program execution, the dynamic slice of a vari-

able � at the execution point of
���

, which denotes the �����
execution instance of statement

�
, is the set of statements
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Figure 1. An example program.

Consider the program shown in Fig. 1. Assume the
execution follows the path � ����������� ��� ������������������������� � �����"!$# for



some program input. The answer to the query 	�� ��� !�� �
(i.e., dynamic slice of variable � at execution point that
immediately follows the first execution of statement 15)
is
� ���"��� ��� ��� ���"��� ������������� � !�� . In this set statements� ���"��� ����� ���"�"��� and

� ��� ���"����� were added due to data and
control dependences respectively.

Let us now briefly discuss the manner in which dynamic
slices are computed by a forward computation algorithm.
We use the following notation in the discussion. Given
a statement

�
, �	��
 � � # and ���� � � # denote the dynamic sets

of variables that are defined and used by statement
�

while� � � � # denotes the set of predicate statements on which
�

is
statically control dependent. Each statement

�
is assigned

a timestamp � ��� ��� � # to remember when it was last exe-
cuted. The latest execution instance number of statement�

is denoted by ��� � � � # . Finally �� ��� � � � # � � # denotes the dy-
namic slice for the � ��� execution instance of statement

�
and� ��
 �� ��� � � � # denotes the dynamic slice for the latest defini-

tion of � .

As mentioned earlier, a forward computation algorithm
continuously computes dynamic slices as statements are ex-
ecuted. Although all slices are computed, only the latest
slices are saved. After execution of � ��� instance of state-
ment

�
, the dynamic slice �� ��� � � � # � ��# is computed to include

the following: statements that belong to latest dynamic
slices of variables used by

�
(i.e., in ���� � � # ); statements

that belong to the dynamic slice of predicate on which
� �

is control dependent; and the statement
�

itself. If statement�
defines variable � (i.e., �����	��
 � � # )), the latest dynamic

slice for variable � is
� ��
 �� ��� � � ��#�� �� ��� � � � # � � # . While a

statement may be statically control dependent upon multi-
ple predicates, for the above slice computation we need to
identify the predicate instance on which

���
is dynamically

control dependent. The dynamic control dependence corre-
sponds to the executed predicate in

� � � � # with the highest
timestamp. Below the updating of dynamic slicing informa-
tion following execution of statement

�
is summarized.

Algorithm 1 Updating Slicing Information
Procedure Update( ! )

1: "$#%!'&)( = *$!�+ ;
2: ,�!'-.(0/ !21 = ,�!'-.(�"3,546-87 ++;
3: for (each use 9 in :;"<(�/ !21 ) do
4: "$#%!'&)( = "$#%!'&)(>=@?0(BA "<#C!�&3(�/ 9D1 ;
5: end for
6: ?�&3? = the statement " in E;FG/ !'1 which has the maximum
,�!'-.(0/ "31 value;

7: "$#%!'&)( = "$#%!'&)(H=."$#%!'&)(�/ ?�&3?I1�/ #J($!K/ ?�&L?I1M1 ;
8: "$#%!'&)(�/ !21N/ #J($!K/ !21O1 = "$#%!'&)( ;
9: #J($!K/ !'1 ++;

10: for (each definition ? in F�(BAP/ !21 ) do
11: ?0(BA "$#%!'&)(�/ ?I1 = "$#%!'&3( ;
12: end for

Forward computation of dynamic slices for example in
Fig. 1 is shown in Table 1. In the execution step of �"�Q� ,
which is �R�S
 �UT'V �LW �L��X , � is defined,

� V �LW �L�Y� are the
variables that are used. We can tell from the table that at
this point,

� ��
 �� ��� � � V�#;� � ���"��� ��� � ��� �0� , � ��
 �� ��� � � W�#Z�� ������� ��� ���L[���� ����� ��� , and
� ��
 �� ��� ��� ��#@� � ��� . Although

statement 10 is statically control dependent upon 4 and 12,
since � ��� �������$#\�^] � � ��� � � � #_� � , this instance of
10 is control dependent upon ��� . Therefore �� ��� � � ��#`�
�� ��� � � ���$# � ��#Q� � �I
 �� ��� � � V�#$a � ��
 �� ��� � � W�#)a � ��
 �� ��� � � � #$a
�� ��� � � � � # � ��#6a � �"���b� � ���"��� ��� ��� � �L[��"�"������� ���"��� .

Table 1. Forward computation of slices.
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Even though the forward computation algorithm is

straightforward, its implementation must be carefully de-
signed because the space costs of maintaining dynamic
slices as sets of statements and the time cost of performing
multiple set operations following execution of each state-
ment can be very high. Because a real program may contain
hundreds of thousands or even millions of statements, using
a bit vector representation for sets of statements (i.e., slices)
is not space efficient. If we implement sets as an ordered list
of statement numbers, then the space used by a set will be
proportional to the number of elements in the set. Unioning
two sets of size � and

�
will take �GT'�G� � X time. Next we

estimate the space and time costs for maintaining dynamic
slices.

Let � ��� , � ����� and � ������� respectively denote the num-
ber of variables used, number of statements executed, and
number of statically distinct statements that are executed at
least once during a program run. The number of dynamic
slices computed over the course of the program run is equal
to � ����� and during each computation a small number of set
union operations are performed. Since the maximum size
of each set (dynamic slice) is equal to � ������� , the worst
case time complexity of forward computation algorithm is
�GTL� ��������� ������� X . If all dynamic slices for all variables
for entire execution are saved, the space complexity of the
algorithm is a �GT3� ��������� ������� X as the number of slices
that need to be saved can be as high as � ����� . However,
if only latest dynamic slices for all variables are kept, the
space complexity reduces to �GTL� �����\� ������� X .

To guage the above complexities of some real ap-
plication programs we considered the following pro-



grams: 008.espresso from the Specint92 suite, and
130.li, 134.perl, 099.go and 147.vortex from
the Specint95 suite. The sizes of these programs in
terms of number of statements are given in column Size of
Table 2. The program runs on which the complexities are
studied involved execution of 107 to 217 million statements.
The average values for � ����� , � ������� , and � ��� for these pro-
gram runs are 151 million, 34 thousand, and 72 thousand.
Therefore it is apparent that the cost of forward computa-
tion of dynamic slices is very high. As we go from main-
taining latest slices to all slices for all variables, the number
of slices increases by four orders of magnitude (from tens
of thousands to well over 100 million). Therefore, not sur-
prisingly, we found that if we attempted to maintain all dy-
namic slices, our machine ran out of memory even for small
program runs.

Table 2. Cost of forward computation.

Program Lines of � ��� � ������� � ���	�
C Code (millions)

008.espresso 14,850 43535 22470 165.1
130.li 7,741 156102 10399 126.6
134.perl 27,044 7040 21767 217.5
099.go 29,629 91574 50371 139.5
147.vortex 67,213 65285 69249 107.5

Average 29,295 72707 34851 151.2

3 Characteristics of Dynamic Slices

In order to gain insight into possible means by which
large number of slices could be compactly represented, we
analyzed dynamic slices collected for several benchmarks
runs and identified the following three characteristics.

Reappearing slices. The number of distinct slices does
not increase steadily with the length of an execution run.
The rate at which number of distinct slices increases be-
comes slower as the execution goes longer. This is due
to the reappearing nature of dynamic slices. As execu-
tion goes longer, the likelihood that a newly computed dy-
namic slice has been seen before increases. Fig. 2 plots
the number of distinct slices seen and the number of state-
ments executed. As we can see, initially the number of
distinct slices increases rapidly, but later the increase oc-
curs at much slower pace. We also observed that when
the set of slices that correspond to different execution in-
stances of a given statement are considered, a small number
of distinct slices are found to appear repeatedly. Note that
while we have studied reappearing slices in individual pro-
gram runs, in [4] researchers report observing similar phe-
nomenon across different runs of a program.

Overlapping. Slices corresponding to different vari-
ables may not be identical, but they often have many state-
ments in common. Table 3 tells us the average percentage
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Figure 2. The number of distinct slices.

of slices in which a statement appears when slices at all exe-
cution points (All Points) and slices at latest execution point
(Latest Point) are considered. As the data shows on an av-
erage a statement appears in 33.3% and 39.6% of all slices
at all execution points and current execution point respec-
tively. The reason for repeated occurrences of same state-
ments in different slices is due to sharing of data and control
dependences by different statements.

Table 3. Average statement appearance rate.

Program All Points Latest Point

008.espresso 26.5% 41.8%
130.li 33.2% 52.6%

134.perl 30.4% 35.0%
099.go 43.0% 16.2%

147.vortex 33.6% 52.6%

Average 33.3% 39.6%

Clustering. If a statement is in a slice, other statements
in the program that are in proximity of this statement are
likely to also be in the slice. In fact, statements belonging
to a slice appear in scattered clusters across the program.
Fig. 3 demonstrates this phenomenon. We computed a sin-
gle slice at regular intervals during program execution for
benchmark 130.li and plotted them as follows. The x-
axis represents the statements in the program in the order
they appear in the program. The y-axis corresponds to exe-
cution time. At a sampling point the statements in the com-
puted slice are plotted in the graph. As we can see, each
slice appears as a set of scattered clusters along the V axis.

4 Efficient Forward Computation

Using the characteristics identified in the preceding sec-
tion, we develop an algorithm for forward computation that
is both space and time efficient. We assume that all dy-
namic slices are to be saved so that it is possible to respond
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Figure 3. Spatial distribution of statements in
a slice.

to slicing requests for all variables at all execution points.
Of course our algorithm can be easily adapted to maintain
latest dynamic slices of all variables. We develop our al-
gorithm in two steps. First we show how the reappearing
slices can be exploited to reduce the amount of informa-
tion being saved. Second we show how the characteristics
of overlapping and clustering are exploited to generate a
compact representation of slices by using reduced ordered
BDDs.
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Figure 4. Eliminating duplicates.

4.1 Exploiting Reappearing Slices

Let us begin with a simple representation of the slicing
information that we need to maintain. It consists of an exe-
cution trace which simply gives the sequence of statements

executed during program execution. Corresponding to each
entry in the trace, the dynamic slice for execution of the
statement the entry represents is also saved. This represen-
tation is shown in Fig. 4(a). Since identical sets of state-
ments appear multiple times, we first save space by elimi-
nating the duplicates. An array of distinct slices is created
and for each entry of the execution trace the index of the
distinct slices array where the corresponding slice is stored
is remembered. This step results in a representation of the
form shown in Fig. 4(b). In this way we have exploited the
characteristic of reappearing slices.
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Figure 5. Compressing indices.

While we have reduced the space taken by dynamic
slices by eliminating duplicates, the indices still occupy a
great deal of space. To reduce this space requirement we
reorganize the indices such that the indices for dynamic
slices corresponding to multiple execution instances of each
distinct statement are grouped together (see Fig. 4(c)). As
mentioned in the preceding section, we have observed that
when the set of slices that correspond to different execution
instances of a given statement are considered, a small num-
ber of distinct slices are found to appear repeatedly. This
property leads to presence of patterns in the sequence of
indices for a given statement. These patterns can be ex-
ploited to achieve compression of an index sequence. To
carry out such compression we make use of the SEQUITUR
algorithm [14]. SEQUITUR is an online algorithm that de-
tects patterns in a string and factors them out by producing
a context-free grammar and it does so in linear time.

We illustrate the application of SEQUITUR through an
example shown in Fig. 5. For the example program of



Fig. 1, we present an execution trace that is shown first in
Fig. 5. As we see statement 13 appears multiple times in
the execution trace. By examining the code in Fig. 1 it is
easy to determine that statement 13 can have at most five
distinct dynamic slices no matter how many times it is exe-
cuted. Three of these slices are actually encountered during
the given run. The composition of these three slices and
the order in which they occur during executions of state-
ment 13 are shown next in Fig. 5. When we look at the
sequence of indices for statement 13 we notice that the pat-
tern ��������������������� occurs multiple times. The SE-
QUITUR takes advantage of this pattern and produces the
grammar shown in Fig. 5. A DAG representation for the
grammar is also shown. The greater the degree of repeating
patterns in the string, the greater is the amount of compres-
sion achieved by SEQUITUR.

4.2 Exploiting Overlapping and Clustering

In the preceding section we have already shown how to
compress the indices and eliminate duplicated slices. Our
next step is to show how the distinct dynamic slices can
be compressed based upon the overlapping and clustering
characteristics. The key issue here is to represent sets of
statements (i.e., dynamic slices) in a compact form while al-
lowing efficient implementation of set operations. It is well
known that reduced ordered BDDs can compactly represent
large sets and efficiently implement set operations [11, 12].
In this section we show that the characteristics of dynamic
slices can be exploited to effectively make use of roBDDs.

We begin by describing how ordered BDDs are used to
represent sets and how they are reduced. Given 	 , the total
order on a set of variables ��
 ��������� ��� , an ordered BDD is a
directed acyclic graph that satisfies the following properties:

 There are exactly two nodes without outgoing edges,
which are labeled by the constants � and � respectively.
They are called sinks.

 Each non-sink node is labeled by a variable ��� , and
has two outgoing edges, which are called the 1-edge
and the 0-edge. The 1-edges are drawn as solid arrows
while 0-edges are drawn as dashed arrows.

 The order in which the variables appear on a path in
the graph is consistent with the variable order 	 .

Let us assume that we are given a universal set which
contains integers 0 through 15. We show how any set drawn
from this universal set can be represented using an ordered
BDD. Since each element of the set can be uniquely rep-
resented using four bits, we represent it using an ordered
BDD with four variables, corresponding to the four bits,
with ��� � ��� � �D�$� ��
 as the variable order. The ordered BDD
representing the set

� ������� ��� ��� � �L[����"����� � ��� �U� is shown in

Fig. 6(a). This is how we determine where an element from
the universal set belongs to the set represented by the or-
dered BDD. Given the value 4 (i.e., 0100) we follow the
path corresponding to edge sequence 0100 to see if 4 is
present in the set. The sink of this path is the node labeled 1
which is considered to indicate that 4 is part of the set. On
the other hand for value 5 (i.e., 0110) when we follow the
path 0110 we reach the sink node labeled with 0 indicating
that 5 does not belong to the set.
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Figure 6. Reduced ordered BDD for a set.

An ordered BDD can be converted to a more compact
reduced ordered BDD (roBDD) using two simple rules: the
Elimination Rule and the Merging Rule. According to the
elimination rule, if both edges of a node � point to the same
successor  (i.e., the value of the variable corresponding to
the current level in the BDD does not effect path selection),
then the node � is eliminated by redirecting all incoming
edges of � to its successor  . According to the merging rule
if two nodes � � and � � are isomorphic, we can remove the
redundancy by merging the two nodes and redirecting the
incoming edges of these nodes to the merged node. The
rules are applied repeatedly till a point is reached when no
more rules can be applied. The resulting BDD is called a
reduced ordered BDD or roBDD. For the example ordered
BDD of Fig. 6(a), node � can be removed using the elimina-
tion rule and nodes � and

�
can be merged using the merging

rule. The final roBDD is shown in Fig. 6(b).
Since we are interested in maintaining multiple dynamic

slices, i.e. multiple sets of statements, we will need to
construct multiple roBDDs. However, these roBDDs can
also share nodes and thus we obtain a multiple rooted
roBDD where each root corresponds to a distinct slice.
The example in Fig. 7 illustrates how roBDDs of two
sets
� ���"��� ��� ��� ���3[��"�"���"��� ���"��� and

� ����� � ��� ��� �������L[��������
are represented. As we can see, the two roBDDs share
nodes. If two dynamic slices are identical, they share the
same root in the graph. Thus, roBDDs can also exploit the
reappearing slices characteristic of dynamic slices.

Let us now see how the clustering characteristic of dy-
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Figure 7. roBDDs for two sets.

namic slices can be used to increase the likelihood of op-
portunities arising for applying the above reduction rules.
If we use statement numbers (i.e., numbers assigned based
upon the order in which statements appear in the program)
to identify the statements, then presence of a single clus-
ter will enable applications of the elimination rule and the
presence of multiple clusters will create isomorphic nodes
enabling the application of the merging rule. The overlap-
ping characteristic further facilitates sharing of nodes across
different slices. Thus, we can see that the presence of clus-
tering and overlapping characteristics make the roBDD a
perfect choice for representing dynamic slices.

Table 4 shows average number of statements in dynamic
slices computed during runs of programs characterized in
Table 2. It also shows the average number of nodes in the
corresponding roBDDs for these slices. As we can see, the
number of nodes in the roBDDs is significantly fewer than
the number of statements in the slices. Thus, this data indi-
cates that roBDDs are more compact than a representation
that maintains explicitly the elements in each set.

Table 4. Average slice size vs. roBDD size

Program Slice Size roBDD Size
(statements) (nodes)

008.espresso 5947 1990
130.li 3450 1431

134.perl 6616 2716
099.go 21650 6219

147.vortex 23287 7527

Set operations can be performed efficiently using roB-
DDs. Most importantly, equivalence test can be performed
in �GT �IX time [11]. Other binary operations (e.g., union)
on two sets whose roBDD representations contain � and

�

nodes can be performed in time �GT���� � X [11]. Elements
of a given set can also be efficiently enumerated. The com-
plexity of this operation is �GT3� �b� X where � ��� is the size of
the set [11].

5 Experimental Results

5.1 Implementation

For our experimentation we used the Trimaran system
[21] that takes a C program as its input and produces a
lower level intermediate representation (IR). This interme-
diate representation is used as the basis for slicing by our
implementations of the algorithms. In other words, when
slicing is performed, we compute the slices in terms of a set
of statements from this IR. We use the BuDDy [10] BDD
package and an implementation of SEQUITUR to carry out
our experiments. The optimized algorithms we studied in
our experiments are listed below. We do not consider unop-
timized implementation of forward computation algorithm
because it runs out of memory even for small program runs.
We support two versions of the forward computation algo-
rithms for situations where latest and all slices are saved.

Non-BDD exploits reappearing slices by eliminating du-
plicates and uses SEQUITUR to compress indices.
Sets are implemented using ordered lists. Therefore
the union operation can be performed in time propor-
tional to the total number of elements in the two sets
combined. To speedup the equivalence test for sets we
use hashing.

roBDD exploits all three characteristics of dynamic slices
and thus uses reduced ordered BDDs as well as SE-
QUITUR. It is important to understand that when re-
duction rules are applied, the storage that is freed is not
garbage collected immediately. Rather garbage collec-
tion is performed when the number of nodes allocated
exceeds a preset threshold. This approach greatly lim-
its the overhead of garbage collection at the cost of
using some extra memory.

LP is the backward computation algorithm that was intro-
duced in [18]. We compare its performance with the
above roBDD algorithm.

oFP is the fastest known backward computation algorithm
introduced in [19]. We also compare its performance
with the above roBDD algorithm.

To achieve a fair comparison among the various dynamic
slicing algorithms, we have taken great care in implement-
ing them. The dynamic slicing algorithms that are imple-
mented share code whenever possible and use the same ba-
sic libraries.



The programs and the characteristics of program runs
used in experimentation were given earlier in Table 2 – in
these runs the number of statements executed range from
107 to 217 million. The system used in our experiments is
a 2.0 GHz Pentium 4 linux workstation with 1.0 GB RAM
and 1.0 GB of swap space.

5.2 Memory Requirements: roBDD and
Non-BDD

Table 5 shows the memory consumed by the forward dy-
namic slicing algorithms to store distinct slices when only
the latest slices are saved. As we can see, the memory re-
quirement of the roBDD algorithm is 1.36 to 10.8 times
less than that of the Non-BDD algorithm. We also per-
formed the same experiment for the case when all slices are
saved. In this situation the Non-BDD algorithm ran out of
memory in all program runs being considered. However,
we were able to estimate the amount of memory needed
by Non-BDD – this estimation was made by traversing the
BDD which is free of duplicates. As we can see, the space
requirements of Non-BDD range from 1.753 GB to 199.7
GB. In contrast the space from the data in Table 6, space re-
quirements of the roBDD algorithm range between 28 MB
and 392 MB. Thus we can see that while the use of roB-
DDs allows us to keep all slices in memory, the same can-
not be achieved using a Non-BDD algorithm which only
eliminates duplicates.

Table 5. Non-BDD vs. roBDD: latest slices.

Program Space Required Non-BDD
Non-BDD roBDD roBDD

(MB) (MB)

008.espresso 60.0 44.1 1.36
130.li 41.9 28.0 1.50
134.perl 71.7 48.7 1.47
099.go 150.6 100.0 1.51
147.vortex 1084.4 100.0 10.8

Table 6. Non-BDD vs. roBDD: all slices.

Program Space Required
Non-BDD roBDD Non-BDD

Estimate (MB) roBDD
(MB)

008.espresso 5667.8 44.1 128.44
130.li 1753.0 28.0 62.51
134.perl 5192.7 48.7 106.69
099.go 116788.7 255.8 456.54
147.vortex 199713.9 392.8 508.42

Note that the data for roBDD in Tables 5 and 6 appears

to show that for the first three programs the memory used by
the roBDD does not appear to increase as we go from sav-
ing latest slices to all slices. Actually this is not the case.
The roBDD for latest slices is much smaller but the nodes
freed when older slices of variables are discarded were not
garbage collected because the total number of nodes cre-
ated did not reach the threshold at which garbage collection
kicks in.

In addition to the memory needed to store distinct slices,
memory is needed also to store indices. Recall that these in-
dices are compressed through the use of SEQUITUR. Mem-
ory needed to store the indices before and after compres-
sion is given in Table 7. The compression achieved by SE-
QUITUR is quite substantial though it varies widely across
the benchmarks (compression factor ranges from 3.62 to
131.59).

Table 7. SEQUITUR compression.

Program Space Required Before
Before After After
(MB) (MB)

008.espresso 660.3 29.9 22.08
130.li 506.5 25.4 19.90
134.perl 868.2 6.6 131.59
099.go 557.9 115.2 4.84
147.vortex 430.2 118.7 3.62

Finally we give the total memory needs of the roBDD
algorithm when latest slices and all slices are used. The
total is computed by summing the memory used to store
the roBDD and the compressed indices. The results in Ta-
ble 8 show that the memory usage of the roBDD algorithm
increases by factors ranging from 1.14 to 5.11 when we go
from saving latest slices to saving all slices. Recall from the
discussion of data in Table 2 in section 2 that the number of
all slices is roughly four orders of magnitude greater than
the number of latest slices for these program runs as they
involve execution of large number of statements (107 to 217
million). Thus while the number of slices being saved in-
crease by a factor of ��� � , the memory needs of the algo-
rithm increase only by a factor of 1.14 to 5.11. In other
words, roBDDs are highly effective in exploiting the clus-
tering and overlapping characteristics of dynamic slices.

5.3 Execution Times: roBDD and Non-BDD

Table 9 presents the execution times of the roBDD al-
gorithm when all slices are saved. The time is divided into
time spent on maintaining the roBDD and time spent on
maintaining the indices using SEQUITUR. As we can see
neither activity is dominant – sometimes maintaining the
roBDD takes more time while in other cases maintaining
the indices takes more time.



Table 8. roBDD: latest vs. all slices.

Program Space Required All Slices
Latest All Latest Slices
(MB) (MB)

008.espresso 44.1 74.0 1.68
130.li 28.0 53.4 1.90
134.perl 48.7 55.3 1.14
099.go 100.0 371.0 3.71
147.vortex 100.0 511.5 5.11

Table 9. roBDD: all slices.

Program roBDD SEQUITUR Total
(min.) (min.)

008.espresso 99.7 79.1 178.8
130.li 57.3 66.6 123.8
134.perl 180.8 132.8 313.6
099.go 100.5 81.2 181.7
147.vortex 175.5 109.2 284.6

We also compare the execution times of the Non-BDD
and roBDD algorithms in Table 10. Because the Non-BDD
algorithm runs out of memory when all slices are computed
even for short program runs, we only ran this experiment
when latest slices are maintained. Moreover because the
Non-BDD algorithm is very slow, we ran this experiment
for short program runs in which 15 to 30 million statements
were executed. The speedup column in Table 10 shows that
the speedup factor achieved by the roBDD algorithm over
the Non-BDD algorithm ranges from 33 to 99. Thus it is
clear that roBDD is also time efficient.

Table 10. Non-BDD vs. roBDD: latest slices.

Program � ����� Non-BDD roBDD Speedup
(millions) (min.) (min.)

008.espresso 21.4 487.82 7.74 63
130.li 17.5 544.06 7.26 75
134.perl 30.6 803.81 24.55 33
099.go 20.9 742.30 10.29 72
147.vortex 15.3 990.10 9.98 99

5.4 roBDD vs. LP & oFP Algorithms

Finally we compare the performance of the roBDD algo-
rithm with the performance of the LP algorithm which was
found to be an effective backward computation algorithm
in [18] and oFP which is the fastest known dynamic slicing
algorithm proposed in [19].

Dynamic slicing is memory intensive no matter whether
we use forward computation or backward computation. The
LP algorithm solved the memory problem by keeping exe-
cution traces on disk and then keeping the relevant portion

of the dynamic dependence graph in memory which is built
on demand from the execution trace in response to slic-
ing requests. The oFP algorithm developed optimizations
through which a number of dependence instances are al-
lowed to share a single representative edge thereby dramati-
cally reducing the size of the dynamic dependence graph. In
contrast, the roBDD algorithm solved the memory problem
by using a very compact representation of dynamic slices.
While the LP and oFP algorithms must compute the slice
when a slicing request is made, the roBDD algorithm pre-
computes all the slices and thus has to merely access the re-
quired slice. The roBDD algorithm responds to individual
slicing requests much faster than LP and slightly faster than
oFP. However, the preprocessing time for roBDD is higher
than the preprocessing times of the LP and oFP algorithms.
These results are demonstrated by the data plotted in Fig. 8.
The cumulative time for computing up to 25 slices is plot-
ted for all the benchmarks. In comparing the algorithms we
used them to compute the exact same dynamic slices in the
exact same order. In these graphs the times corresponding to
0 slices represent the preprocessing times of the algorithms.
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Figure 8. Execution Times: LP, oFP, & roBDD.

Finally, one of the advantage of using backward compu-
tation algorithms is that they provide the dynamic depen-
dence graph which may contain valuable information. In
contrast, the forward computation algorithm only provides
the set of statements in the slice. This drawback can be over-
come by saving a small amount of dynamic control flow and
data dependence information from which, if needed, the en-
tire dynamic dependence graph can be recovered. Since the
recovery is time consuming, the slicing requests are quickly
satisfied from the roBDD while the requests for the dynamic



dependence graph can be satisfied using the additional in-
formation saved. Table 11 shows the percentage of control
flow edges and data dependence edges that must be remem-
bered to recover the full dynamic dependence graph as well
as the space taken to store this information. The main idea
of the recovery method is that given partial knowledge of
the control flow path followed, the complete control flow
path can be inferred. From the full control flow path many
(not all) of the dynamic data dependences can be recovered.
The ones that cannot be recovered must be remembered.
The details of this recovery method can be found in [20].

Table 11. Dynamic Dependence Graph.

Program Control Data Dep. Size
Edges Edges (MB)

008.espresso 28% 7% 38
130.li 34% 4% 81
134.perl 26% 4% 13
099.go 22% 7% 43
147.vortex 21% 6% 26

6 Conclusions

In this paper we have shown that while forward com-
putation of dynamic slices has some attractive features, a
straightforward implementation of these algorithms as pro-
posed in [3, 9] has very high space and time costs. We have
developed a forward computation algorithm that uses roB-
DDs and SEQUITUR to drastically reduce the space and
time costs of forward computations. We have shown that
the Non-BDD algorithm that uses SEQUITUR but not roB-
DDs runs out of memory even for short program runs if all
slices are kept. In contrast, when roBDDs are used, we are
able to store 107-217 million dynamic slices arising during
long program runs using only 28-392 MB of storage. In ad-
dition, the performance of the roBDD based forward com-
putation method compares favorably with the performance
of the LP and oFP backward computation algorithms. The
one drawback of forward computation methods, the lack of
dynamic dependence graph, can be overcome at a reason-
able additional cost.
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