
Exploiting a Computation Reuse Cache to

Reduce Energy in Network Processors

Bengu Li1, Ganesh Venkatesh2, Brad Calder2, and Rajiv Gupta1

University of Arizona, CS Dept., Tucson, AZ 857371

University of California, San Diego, CSE Dept., La Jolla, CA 920932

Abstract. High end routers are targeted at providing worst case through-
put guarantees over latency. Caches on the other hand are meant to help
latency not throughput in a traditional processor, and provide no addi-
tional throughput for a balanced network processor design. This is why
most high end routers do not use caches for their data plane algorithms.
In this paper we examine how to use a cache for a balanced high band-
width network processor. We focus on using a cache not as a latency
saving mechanism, but as an energy saving device. We propose using a
Computation Reuse Cache that caches the answer to a query for data-
plane algorithms, where the tags are the inputs to the query and the block
the result of the query. This allows the data-plane algorithm to perform
a complete query in one cache access if there is a hit. This creates slack
by reducing the number of instructions executed. We then exploit this
slack by fetch-gating the data-plane algorithm while matching the worst
case throughput guarantees of the rest of the network processor. We
evaluate the computation reuse cache for network data-plane algorithms
IP-lookup, Packet Classification and NAT protocol.

1 Introduction

Network processors are designed to achieve high throughput. With the tremen-
dous increase in line-speed, the amount of throughput required by network pro-
cessors is increasing significantly. For example, OC-192 (10 Gig/Sec) requires a
packet to be completed every 52 nanoseconds and OC-768 (40 Gig/Sec) has a
packet completed every 13 nanoseconds.

In these network processors most of the packet processing algorithms are
based on some utility data structures. The existence of these utility data struc-
tures is ubiquitous. These data structures involved in routing tasks are stored
on-chip in large SRAMs for high end routers with latencies in the range of 30
cycles. Thus, much of the time spent during packet processing tasks is taken up
by reading (and sometimes writing) of utility data structures in this SRAM. The
three examples we focus on in this paper are IP-lookup, Packet Classification,
and NAT protocol. In IP-lookup, a routing table is used to do longest prefix
matching lookup [10, 24]. In packet classification, a classification table is used to
record the flow status [13, 12]. In NAT protocol, maps are maintained so that



source IP addresses, TCP ports, destination IP addresses and TCP ports are
used to retrieve a translated source port [11].

In this paper we propose using a Computation Reuse Cache that caches
the answer to a query for these data-plane algorithms, where the tags are the
inputs to the query and the cache block the result of the query. This allows
the data-plane algorithm to perform a complete query in one cache access if
there is a hit. The computation reuse cache cannot increase the throughput of
a balanced network processor. It is instead used to save energy. A hit in the
computation reuse cache creates slack by reducing the number of instructions
executed for the processing of a packet. This allows the processor to exploit this
slack through fetch-gating for the data-plane algorithm while still matching the
worst case throughput guarantees of the rest of the network processor. The use
of the computation reuse cache is controlled by the data plane algorithm through
a programmable interface consisting of specific instructions to lookup and use
the cache. Therefore, how it is used (what the tag and data represent) can be
different from one data plane algorithm to the next.

In Section 3 we describe why a traditional cache will not help a balanced
network processor design. Section 4 examines how much value locality and tem-
poral data locality exists in the fields of packet headers across packet streams
in the network traffic for the three data-plane algorithms examined. Section 5
describes the design and use of our computation reuse cache, and Section 6 de-
scribes how to use it in combination with fetch gating to save energy. Section 7
provides performance results for our approach and we conclude in Section 8.

2 Related Work

We first briefly summarize related work on temporal locality and caching in
network processors, reuse caching, and fetch gating.

2.1 Locality and Caching in Network Processors

Memik et al. [20] examine the use of a traditional cache for a set of networking
applications on a StrongARM 110 processor. They found that most of the cache
misses came from a small number of instructions. To address this, they use a
filter for their data cache to remove the memory accesses with low locality. Li et
al. [16] investigate a range of memory architectures that can be used for a wide
range of packet classification caches. They study the impact of factors like cache
associativity, cache size, replacement policy and the complexity of hash functions
on the overall system performance. Both of these studies use a traditional cache,
which cannot be used to increase the throughput of data plane algorithms for a
balanced network processor. This is why our focus is on saving energy by using a
computation reuse cache to create slack in the data-plane algorithm’s schedule.

Chiueh et al. [6] use a combined hardware/software approach to construct a
cache for high performance IP routing in general-purpose CPU based routers.
The destination host address is mapped to a virtual address space and used to
lookup a destination route in the Host Address Cache (HAC). A part of the



normal L1 data cache is reserved for use as the HAC. We would classify this
approach as being similar to our computation reuse cache in that a hit in the
cache skips the full IP lookup. In case of a lookup miss, a 3-level routing table
lookup algorithm is consulted for the final routing decision. Their focus is on
using the HAC to provide throughput for their network processor design, and not
for energy savings. The contribution of our work is to define the general notion of
using a programmable computation reuse cache for data plane algorithms and
to use it to save energy in a balanced network processor while still providing
worst-case throughput guarantees.

2.2 Instruction Reuse

Sodini and Sohi observe that many instructions or groups of instructions have
the same input and generate the same output when dynamically executed. They
exploit this phenomenon by buffering the computation result of the previous
execution of instruction dependency chains. They use the same result for future
dynamic instances of the same dependency chains if the input to these chains
are the same. In this way, the execution of many groups of instructions can
be avoided and the early outcome can allow dependent instructions to proceed
sooner. They use a hardware mechanism called the Reuse Buffer (RB) to store
the previous computation results. The program counter is used as an index to
search the RB for cached chains. Our computation reuse cache is motivated by
the reuse buffer, but it differs in that it is programmable and used to cache
computations at much larger levels (methods) than just dependency chains.

Ding and Li [9] present a pure compiler memoization technique to exploit
value locality. They detect code segments that are executed repeatedly, which
generate a small number of different values. The code segment is replaced by
a table recording the previous computation results for later lookup if the same
values are seen. Performance improvement and energy consumption reduction
are achieved. Their work is related to ours because we are also using a computa-
tion reuse mechanism to reduce energy consumption. Their approach is a purely
software technique. In contrast, we provide a programmable hardware technique
specific for data-plane algorithms in order to save energy while providing worst-
case throughput guarantees.

2.3 Clock and Fetch Gating

Luo et al. [18] use a clock gating technique to reduce power consumption in
multi-core network processors. They observe that when the incoming traffic rate
is low, most processing elements on the network processor are nearly idle and yet
still consume dynamic power. When the number of idle threads increase, they
start to gate off the clock network of a processing unit. When the pressure from
the incoming buffer rises, they stop clock gating. Since the activation takes time,
they need extra buffer space to avoid packet loss. They also developed strategies
to terminate and reschedule threads during activation and deactivation. This
work is related to ours because we both aim at gating some part of the network



processor to reduce energy. We both use the queue occupancy information in
gating decisions. Their approach is complementary to ours and can be used in
tandem. Their focus is on applying fetch gating when the traffic rate is low,
whereas we focus on applying fetch gating when we can find and exploit value
locality, and this includes when the traffic rate is high.

Manne et al. [19] observe that due to branch mispredictions wrong path in-
structions cause a large amount of unnecessary work in wide-issue super-scalar
processors. They develop a hardware mechanism called pipeline gating to control
rampant speculation in the pipeline. They use a confidence estimator to assess
the quality of each branch prediction. In case of low confidence, they gate the
pipeline by stalling instruction fetch. Baniasadi and Moshovos [2] extend this
approach to throttle the execution of instruction flow in wide-issue super-scalar
processors to achieve energy reduction. They use instruction flow information
such as rate of instructions passing through stages to determine whether to
stall stages. When the rate is sufficiently high and there is enough instruction
level parallelism, they may stall fetch because introducing extra instructions
would not significantly improve performance. Karkhanis et al. [15] also propose
a mechanism called Just-In-Time instruction delivery to save energy. They ob-
serve that performance-driven design philosophy causes useful instructions to be
fetched earlier than needed and stall in the pipeline for many cycles or they wait
in the issue queue. Also when a branch misprediction occurs, all those early-
issued instruction along mispredicted branch are flushed. This wastes energy.
Their suggested mechanism monitors and dynamically adjusts the maximum
number of in-flight instructions in the processor according to processor perfor-
mance. When a maximum number is reached, the instruction fetching is gated.
Buyuktosunoglu et al. [5] collect issue queue statistics to resize the issue queue
dynamically to improve issue queue energy and performance on a super-scalar
processor. The statistics are derived from counters that keep track of the active
state of each queue entry on a cycle-by-cycle basis. They divide the issue queue
into separate chunks and may turn off/on certain block based on statistics. The
above prior works are related to our work since they all gate/throttle the execu-
tion of instruction flow to achieve the goal of energy reduction. For our approach,
we build upon these techniques to gate fetch for our data-plane micro-engines.

3 Why a Traditional Cache Does Not Help the

Throughput of a Balanced Network Processor

High end routers are targeted at providing worst-case throughput guarantees
over latency. A network processor that is a balanced design cannot have the
throughput of its data-plane algorithms (e.g., ip-lookup, classification, etc) in-
creased by adding a traditional cache. By traditional cache, we mean a cache
that uses a standard memory address as its index and tag, and then a N-bytes
of consecutive memory is stored in the cache block starting at the block address.
A traditional cache being used for a data-plane algorithm would be indexed by
a standard load memory address to access an arbitrary level of the data-plane’s
algorithm’s data structure. By balanced design we mean a network processor



design where the memory latency is already completely hidden for the desired
worst case throughput [22] and each of the components of the network processor
are designed for the same worst case throughput guarantees. Balanced network
processors are designed with enough overlapped execution (threads) that the la-
tency to perform each memory lookup in the data-plane algorithm is completely
hidden. In such a design, traditional caches cannot help increase throughput,
since they just attack latency.

4 Value Locality in Network Processing

By value locality we refer to the phenomenon that when a stream of packets is
examined, certain fields of the packet headers have the same values occurring in
them repeatedly. The occurrence of value locality in the fields of packet headers
are a direct result of the behavior of high level network protocols and network
applications. For example, in a file transfer protocol, bursts of packets are gen-
erated between a specific pair of hosts within a short amount of time. Thus, the
source and destination address fields exhibit value locality. The values in packet
headers often directly determine which portions of the data-plane algorithm’s
data structure a network processing application will access. Therefore value lo-
cality in packet header fields gives rise to temporal locality in accesses to data
in these data structures. In this section we examine how value locality in packet
header fields result in temporal locality in accesses to data structures used in
the three network processing tasks examined in this paper.

IP Routing Table Lookup. We first examine the longest prefix matching
routing lookup application. The routing table is a set of entries each containing
a destination network address, a network mask, and an output port identifier.
Given a destination IP address, routing lookup uses the network mask of an
entry to select the most significant bits from the destination address. If the result
matches the destination network address of the entry, the output port identifier
in the entry is a potential lookup result. Among such matches, the entry with
the longest mask is the final lookup result [10]. In some implementations, the
routing table is often organized as a trie, either multi-bit Patricia trie [24] or
reduced radix tree [10]. Each lookup generates a sequence of accesses to the trie
entries from the top of the trie down to the external nodes of the trie. Most
important of all, the entries of the trie that are accessed are actually determined
by the value of the destination IP address field of the packets. As shown by
our study as well as work of other researchers [7, 21], the destination IP address
field shows high value locality. The routing lookup generates many sequences
of memory accesses to the same trie entries over a fairly long interval of time
and thus exhibiting temporal locality. We can exploit this temporal locality by
putting the recently accessed trie entries with the routing lookup result in a
computation reuse cache. Therefore other accesses in the near future, with the
same destination, can then be avoided by checking this cache first.

Packet Classification Table Lookup. Packet classification is an essential
part of network processing applications. Many applications require packet clas-



sification to classify packets into different flows based upon multiple fields from
packet headers [13, 12] (e.g., DiffServ uses a 5-tuple lookup consisting of IP source
and destination addresses, the TCP source and destination ports, and the proto-
col field for classification). A classification table is used to record different flows
which must be kept up to date. The entries accessed are actually determined by
the above mentioned 5-tuple. Since once a flow is established, large number of
packets in the flow are typically sent in a burst, the combination of this 5-tuple
of fields demonstrates high value locality. The same classification table entry is
accessed many times. We can exploit this behavior by caching the flow identi-
fication found so that closely following accesses to the same classification table
entry can be avoided. Factors that affect packet classification are studied in [4,
16].

NAT Portmapping Table Lookup. The Network Address Translation (NAT)
protocol [11] can multiplex traffic from an internal network and present it to the
Internet as if it was coming from a single computer having only one IP address in
order to overcome the shortage of IP addresses, address security needs, or to ease
and increase the flexibility of network administration. The NAT gateway uses a
port mapping table that relates the client’s real local IP address and its source
port plus the translated source port number to a destination address and port.
When a packet from an internal network is being sent out, the NAT gateway
looks up the port mapping table and modifies the source address of the packet to
the unique local network IP address and replaces the source port with translated
source port. When a reply from the remote machine arrives, the port mapping
table is used to reverse the procedure. The four fields in the internal network
packet header, including the source address, source port, destination address and
destination port, which defines a TCP/IP connection, determine which entry in
the port mapping table is accessed. Since once a TCP/IP connection is estab-
lished, bursts of packets in the connection will be sent out, these four fields have
high value locality. As a result, the same entry in the port mapping table will
be accessed very frequently and demonstrate temporal locality. We can exploit
this behavior by caching the recently accessed entries in the port mapping table
to avoid the lookups.

Table 1 summarizes the behavior of the applications discussed. Next we
present results measuring the degree of value locality in these applications. For
this study we use traces of IP packets taken from Auckland-II Trace Archive [1].
Characteristics of these traces, including the total number of packets and dis-
tinct destination addresses, are given in Table 2. We selected packet traces from
the trace archive that had a large number of distinct destinations with respect
to the number of packets in the trace.

We measured the value locality in terms of the percentage of the packets
which have a frequently occurring combination of values for the relevant n-
tuple of header fields where n is the number of relevant header fields for a
given application. According to Table 1, IP Routing examines a 1-tuple, Packet

Classification examines a 5-tuple, and NAT Protocol examines a 4-tuple of fields.
To measure this locality we divided the packet stream into intervals of 16K of



Application Data Structure Packet Header Field Description

IP Routing Routing IP Destination Address Dest. address field is used to lookup
Table next hop info. in the routing table.

Packet Classification Classification IP Source Address The 5-tuple is used to lookup the
Table TCP Source Port classification table and identify

IP Destination Address the flow the packet belongs to.
TCP Destination Port
Protocol Number

NAT Protocol (In) Port Mapping IP Destination Address The destination address and port fields
Table TCP Destination Port are used to lookup for the internal

destination address and port inside
the subnet for incoming traffic.

NAT Protocol (Out) Port Mapping IP Source Address The source address and port fields are
Table TCP Source Port used to lookup for a translated source

port for outgoing traffic.

Table 1. Application Properties

Packet Source Num. of Num. of Distinct
Stream Packets Destinations

1 19991129-134258-0 17045569 8920
2 20000112-111915-0 17934563 14033
3 20000117-095016-0 18433128 11746
4 20000126-205741-0 18823943 9012

Table 2. Packet Stream Characteristics

consecutive packets. We determined the top 16, 32, 64, and 128 values for the
above n-tuples for each interval by examining the packets in each interval.

Figure 1 plots the percentage of packets that match the top 16, 32, 64 and
128 n-tuples over time for the packet stream trace 1 in Table 2. We omit the
graphs for the other packet stream traces as they are similar. For this trace, even
though there was 8920 unique destination addresses, in the 16K intervals shown,
capturing the top 128 n-tuples accounted for 60% to 100% of the packets. This
shows that within 16K intervals a significant amount of value reuse occurs for
the applications examined. In addition, we also examined varying the interval
size from 1K to 1024K packets, and the results were roughly the same. Therefore,
the degree of value locality in these packet streams is quite significant.

We now consider the unique recurrence distance between a pair of packets
with the same n-tuple value. This is calculated as the number of packets between
two distinct occurrences of two packets with the same top n-tuple value. This
notion is similar to the working set size of a cache and more accurately reflects
the value locality. Table 3 shows the average number of packets between unique
recurrences for the n-tuple values that are in the top 16, 32, 64 and 128 reoc-
curring tuples over 16K packet intervals. Results are shown for all four packet
stream traces from Table 2. The results show that the most frequently occurring
n-tuples, Top 16, have a smaller reuse distance than the Top 128 n-tuples.

The reuse distance and frequency of value locality results tell us that a cache
of a small size is enough to catch a reasonable amount of value locality.

5 Computation Reuse Cache

In this section we present our computation reuse cache design for network proces-
sors. The cache design we propose has two distinct features. First, the cache can
be used across several applications. This goal is achieved by making the cache
programmable (i.e. the composition of the tag and data parts can be changed
from one application to next). Second, this cache is designed to eliminate redun-
dant computation associated with the network processing data-plane algorithm.



0

20

40

60

80

100

0 60 120 180 240 300

Time

P
er

ce
n

ta
g

e

Top 16 Top 32

Top 64 Top 128

 
(a) IP Routing: Destination Field

0

20

40

60

80

100

0 60 120 180 240 300

Time

P
er

ce
n

ta
g

e

Top 16 Top 32

Top 64 Top 128

 
(b) Packet Classification: 5-Tuple

0

20

40

60

80

100

0 60 120 180 240 300
Time

P
er

ce
n

ta
g

e

Top 16 Top 32
Top 64 Top 128

 
(c) NAT Protocol (in) : 2-Tuple

0

20

40

60

80

100

0 60 120 180 240 300
Time

P
er

ce
n

ta
g

e

Top 16 Top 32
Top 64 Top 128

 
(d) NAT Protocol (Out) : 2-Tuple

Fig. 1. Average Percentage of Packets with n-tuple Values from the Top 16/32/64/128
Frequently Observed n-tuple Values in 16K Packet Intervals.

Because of the repeated occurrence of the same packet header fields, the data-
plane algorithm often performs redundant computation. The computation reuse
cache remembers previously performed computations so that later redundant
data-plane algorithm queries can be avoided.

It is important to note that the caching we perform corresponds to a coarse-
grained computation made up of many instructions. Our approach is similar
in idea to the dynamic instruction reuse techniques by Sodani and Sohi [23].
They focused on identifying arbitrary dependency changes of instructions in high
performance processors that are performing redundant calculations. If these can
be discovered, then the whole computation can be avoided. In our paper we
exploit this concept with a programmable computation reuse cache. Our level of
reuse focuses on reusing complete set of function calls (the data-plane algorithm
query), instead of arbitrary dependency chains as examined by Sodani and Sohi.
Our computation reuse cache is set up specifically for each data-plane algorithm
to exploit reuse in its calculations. We focus on using this to streamline the
processing of packets in order to save energy.

For redundancy elimination, a cache line is designed to contain the input
(tag) and output (data) of the computation. The input is the relevant fields
(n-tuple) in packet headers, working as the tags of the cache line, and the cache
line data is the computation result. The cache is configurable by the application.
Each data-plane algorithm is broken into three stages – preprocessing, data-plane
processing, and post-processing, and a packet goes through these three stages
when being processed by the data-plane algorithm. In the preprocessing stage of
a packet, when portions of the packet are read in, we form a tag from the relevant



Stream Top 16 Top 32 Top 64 Top 128

1 6.65 8.23 9.49 10.03
2 12.43 14.57 17.08 19.97
3 5.14 6.09 7.01 7.56
4 6.34 7.28 8.11 8.49

(a) Routing Lookup: 1-tuple

Stream Top 16 Top 32 Top 64 Top 128

1 9.12 11.69 14.56 17.02
2 16.39 20.72 26.92 31.43
3 8.41 10.36 12.53 14.71
4 9.31 11.07 12.88 14.70

(b) NAT (out) : 2-Tuple

Stream Top 16 Top 32 Top 64 Top 128

1 17.68 21.11 24.41 27.29
2 10.22 12.71 15.70 18.39
3 12.80 15.64 18.37 20.90
4 10.08 12.03 13.91 15.82

(b) NAT (in) : 2-Tuple

Stream Top 16 Top 32 Top 64 Top 128

1 20.19 24.02 28.09 31.90
2 20.35 25.88 32.32 36.70
3 15.24 18. 50 21.84 24.69
4 12.57 14.78 16.84 19.20

(c) Packet Classification: 5-Tuple

Table 3. Average Unique Reuse Distance.

fields. Before the preprocessing stage ends, a lookup in the cache with the n-tuple
for the packet is triggered. If a cache hit occurs, the hardware automatically
changes the control flow to the post-processing stage for that packet’s processing
thread and avoids the whole execution of data-plane processing phase. During
this post-processing, the computation result is copied from the cache block to
registers. In case of a cache miss, the processing continues normally and when
the starting point of post-processing phase is reached, the hardware updates
the cache with the computation result. The cache is developed in such a way
that the worst case throughput of the processing phase is not increased. This is
implemented with software assistance and dedicated hardware.

A special register called the jump target register (JTR) is added in the micro-
engine controller for each thread (hardware context). JTR remembers the start-
ing point of the postprocessing phase of the algorithm so that in case of a cache
hit, the control can be directly transfered to this point. In case of cache miss, at
this instruction address the computation and its result are sent to the cache for
updating the cache line. This register is set during the initialization part of the
data-plane algorithm.

The cache is configurable in both the input and output of the processing
phase. When initializing the data-plane algorithm at boot time, the configuration
of the cache is specified. Masks in the cache are set up so that appropriate header
fields can be extracted from the packet for use as the index into the cache. The
starting point of postprocessing stage is put into JTR.

When a packet is preprocessed, the data to perform data-plane algorithm
comes from the packet header. This same data is used to form the cache index
and tag. Therefore, the memory read instructions in the preprocessing phase are
marked so that as they read the relevant packet header fields, those values are
also sent to the computation reuse cache. Multiple memory read instructions may
need to be marked depending upon the number of fields in the n-tuple which
acts as the input to the data-plane algorithm. The cache is setup to receive
for each thread the input n-tuple, and the arrival of the last value triggers the
computation reuse cache lookup.



When performing the computation reuse cache lookup, the n-tuple is hashed
into a cache set index, and then the n-tuple is compared to all of the tags in
the set. Note, the tag is itself a n-tuple. If there is a hit for the n-tuple, the
result data is copied into registers for the postprocessing phase and control is
transfered to the instruction in the JTR register. In case of a cache miss, the
cache tag is updated with the n-tuple, and the cache block is updated with the
result data that becomes available after the processing phase of the data-plane
algorithm.

The results in this paper assume that there is a separate computation reuse
cache for each data-plane algorithm examined.

6 Using Fetch Gating

In this section, we describe our approach for performing fetch gating while using
the computation reuse cache. Fetch gating is a form of pipeline gating proposed
by Manne et. al. [19]. Pipeline gating was proposed to stop fetching and executing
instructions down wrong (branch mispredicted) paths of execution in order to
save energy. We use the same concept here to stall fetch, resulting in energy
savings, for the data-plane algorithm when the calculations can be reused due
to the computation reuse cache hits. This is possible since the overall network
processor is balanced, and if the data-plane algorithm can reuse and jump ahead
in its computations this creates slack in the data-plane algorithm’s schedule. It
can therefore gate execution while the rest of the network processor continues
to process the packets for the overall designed throughput.

Figure 2 gives a simplified high level view of a network processor using the
computation reuse cache for a data-plane algorithm. In our design we assume
that the data-plane algorithm has two queues connecting it to the other parts of
the processor so that it can be scaled independently of other stages. The input
queue to the data plane algorithm initiates the fetch gating logic. Each time
there is a change in the queue length, the hardware decides whether to perform
fetch gating or keep the processor in normal state. The fetch gating algorithm
currently uses two levels. One corresponds to the standard operation when no
fetch gating is performed, and the other corresponds to the fetch gated power
saving mode. During the latter mode, no fetching or execution will be performed
by the fetch gated data-plane algorithm micro-engine.

The underlying principle of our approach is to perform fetch gating based
upon the occupancy of the input queue shown in Figure 2. In a balanced network
processor design, the occupancy of the input queue should be low. If this is the
case, and we are getting a reasonable number of computation reuse cache hits, we
can save energy by applying fetch gating to the micro-engine. This can continue
up to a point. Once the input queue becomes occupied enough, fetch gating
is turned off in order to still provide worst-case throughput guarantees and to
prevent packets from being dropped.

In Figure 2, we assume that the number of packets in the input queue is ni.
The fetch gating algorithm checks whether the input queue size, ni, is smaller
than an worst case throughput input queue size threshold. If the input queue



in_max

n_i

out_max

n_o

l

Network Router

throughput = one packet

per t cycles

F−G Logic

Packet Processing

Input Queue Output Queue

Fig. 2. Network Router with Fetch Gating (F-G) logic

to the data-plane algorithm micro-engine has enough empty slots to guarantee
worst case throughput for its implementation, then the micro-engine is allowed
to be in fetch-gated, else the algorithm performs normal fetch.

7 Experimental Evaluation

We use the Nepsim [17] simulator in our experiments. Nepsim is a cycle-accurate
simulator of the Intel IXP1200 network processor. We modified Nepsim to rep-
resent a balanced network processor with higher throughputs and extended it
with our computation reuse cache and our fetch gating algorithm. For our results
we model a 30 cycle on-chip SRAM latency to store the data structure for the
data-plane algorithm being examined.

In our evaluation, we use four benchmarks which are modified from Intel’s
Workbench suite or developed by ourselves and migrated to run on the Nepsim
simulator. They are IP-Lookup, Packet Classification, and NAT Protocol (in
and out). The properties of the application are summarized in Table 4. These
applications have the code size of 200 to 300 instructions, shown in the first
column. We also show the worst-case packet processing time (latency) that was
observed across the four traces in the second column. For IP-Lookup this is
646 cycles and for packet classification it is 1160 cycles. This processing time is
considered as the time period between when a packet enters into the processing
stage and when it leaves the processing stage (i.e., not counting the time that
the data-plane algorithm is spinning and waiting for the packet to arrive). It also
does not include the cycles spent receiving and transmitting the packet. We also
show the average-case packet processing time in the third column – the average
is computed over the four traces. The last column shows the number of SRAM
references needed in the worst case for the algorithm.

7.1 Cache Behavior

Table 5 shows the hit rate when using a 64 entry direct mapped computation
reuse cache when the four different packet streams from Table 2 are used as input.
The cache hits vary between 52% and 89%. These results are also consistent with
the results of our packet value locality study.



Applications Code Size Proc. Time (Worst) Proc. Time (Average) #SRAM Refs

ip-lookup 291 646 435 5
classification 254 1160 1010 13

nat-in 205 754 603 6
nat-out 205 757 597 6

Table 4. Application Properties

Applications Packet Stream Trace
1 2 3 4

ip-lookup 68.43% 70.18% 88.89% 85.79%
classification 60.03% 84.97% 77.42% 77.42%

nat-in 74.70% 67.87% 84.45% 82.57%
nat-out 52.52% 82.78% 71.68% 71.68%

Table 5. Computation Reuse Cache Hit Rate

Applications ME % Total Time Time Cycles ME Energy
Energy No Cache Reduction Gated Reduction

ip-lookup 33.47% 435 18.62% 22.45% 16.61%
classification 29.66% 1010 47.23% 30.78% 18.89%
nat-in 27.71% 603 51.58% 45.82% 37.69%
nat-out 29.38% 597 41.37% 42.64% 28.43%

Table 6. Program Behavior with Computation Reuse Cache

7.2 Fetch Gating and Energy Savings

Table 6 shows the effect of cache hits on the data-plane algorithm. These results
were obtained by running trace 1 from Table 2 through each of the algorithms.
The first column, ME Energy, gives the energy used by the micro-engine on
which the data-plane algorithm is being run as a percentage of total energy of
the network processor. The second and third columns show the average packet
processing latency (cycles) in the absence of cache and the percentage reduction
in this time when the cache is used. The primary benefit of a computation
reuse cache hit is the reduction in instructions executed in order to perform the
packet processing. For IP-Lookup, we observe close to 19% reduction while for
classification we achieve roughly 47% reduction in processing time. The results
tell us that the computation reuse cache can provide significant reductions in
instructions executed and this creates significant slack.

The last two columns in Table 6 show the results of applying our fetch gating
algorithm in the prior section. The energy is recorded using the models provided
in the Nepsim [17] simulator augmented to take into consideration the cache
and our network processor changes. The fourth column shows the percentage of
cycles the algorithm was fetch gated. The last column shows the percentage of
energy savings when using the fetch gating when compared to the energy used for
just that micro-engine shown in column one. For these results, we only examine
one data-plane algorithm at a time, and the computation reuse cache is 64-entry
and directed mapped. The results show that for IP-Lookup we spend 22% of
the cycles fetch gated for the data-plane algorithm micro-engine and achieve an
energy savings of nearly 17%. This results in an overall network processor energy
savings of 6%. Across all applications, the computation reuse cache allows 22%



to 46% of packet processing to be performed in fetch gated mode which produces
17% to 38% in energy savings for the micro-engines. Note, that slack is generated
by reducing the amount of computation needed for a packet when there is a hit
in the computation reuse cache, and then energy savings comes from using fetch
gating to exploit this slack.

8 Conclusions

High end network processors are built with a balanced processor design, where
using a traditional cache for the data-plane algorithm will not increase through-
put. These processors are built such that there is sufficient threading (packet
parallelism) to hide each data-plane algorithm SRAM lookup latency, so a tra-
ditional cache cannot increase throughput.

In this paper we presented a computation reuse cache, where a hit hides the
full data-plane algorithm processing of the packet, not just one SRAM lookup
as in a traditional cache. This is accomplished by having a cache block contain
the input as the tag and output as the data of the data-plane algorithm compu-
tation. Therefore a complete query performed by the data-plane algorithm takes
one cache access if there is a hit. Slack is therefore generated by reducing the
number of instructions executed when there is a hit. This reduction in number
of instructions allows us to exploit the slack to save energy through fetch gating
for the data-plane algorithm micro-engine while still matching the worst case
throughput guarantees of the rest of the processor. Overall, the computation
reuse cache allowed 22% to 46% of the execution time to be performed in fetch
gated mode with 17% to 38% reduction in data-plane algorithm energy across
the different algorithms examined.

Acknowledgments

We would like to thank the anonymous reviewers for providing useful comments
on this paper, and early feedback from Nathan Tuck on this topic. This work
was funded in part by NSF grant CNS-0509546, and grants from Microsoft and
Intel Corporation to the University of California, San Diego and NSF grant
CCF-0208756, and grants from Intel Corp., IBM Corp., and Microsoft to the
University of Arizona.

References

1. Auckland-II Trace Archive, http://pma.nlanr.net/Traces/long/auck2.html
2. A. Baniasadi and A. Moshovos, “Instruction Flow-based Front-end Throttling

for Power-Aware High-Performance Processors,” International Symposium on Low
Power Electronics and Design, August 2001.

3. P. Brink, M. Casterlino, D. Meng, C. Rawal, and H. Tadepalli, “Network Processing
Performance Metrics for IA- and IXP-based Systems,” Intel Technology Journal, Vol.
7, No 4, Nov. 2003.

4. N. Brownlee and M. Murray, “Streams, Flows and Torrents,” Passive and Active
Measurement Workshop, April 2001.



5. A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and D. Albonesi,
“An Adaptive Issue Queue for Reduced Power at High Performance,” International
Workshop on Power-Aware Computer Systems, November 2000.

6. T. Chiueh and P. Pradhan, “High Performance IP Routing Table Lookup Using
CPU Caching,” IEEE Conference on Computer Communications, April 1999.

7. K. Claffy, “Internet Traffic Characterization,” Ph.D. thesis, Univ. of California, San
Diego, 1994.

8. M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding Tables
for Fast Routing Lookups,” ACM Conference of the Special Interest Group on Data
Communication, September 1997.

9. Y. Ding and Z. Li, “A Compiler Scheme for Reusing Intermediate Computation
Results,” International Symposium on Code Generation and Optimization, March
2004.

10. W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on Longest Matching Pre-
fixes,” IEEE/ACM Transactions on Networking, Vol. 4, No. 1, pages 86-97, Feb.
1996.

11. K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” RFC
1631, May 1994.

12. P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” ACM Con-
ference of the Special Interest Group on Data Communication, September 1999.

13. P. Gupta and N. McKeown, “Algorithms for Packet Classification,” IEEE Network,
Vol. 15, No. 2, pages 24-32, Sept. 2001.

14. E. Johnson and A. Kunze, IXP2400/2800 Programming, Intel Press, 2003.
15. T. Karkhanis, J.E. Smith, and P. Bose, “Saving Energy with Just In Time In-

struction Delivery,” International Symposium on Low Power Electronics and Design,
August 2002.

16. K. Li, F. Chang, D. Berger, and W. Feng, “Architectures for Packet Classification
Caching,” The 11th IEEE International Conference on Networks, Sept./Oct. 2003.

17. Y. Luo, J. Yang, L. Bhuyan, and L. Zhao, “NePSim: A Network Processor Sim-
ulator with Power Evaluation Framework,” IEEE Micro Special Issue on Network
Processors for Future High-End Systems and Applications, Sept./Oct. 2004.

18. Y. Luo, J. Yu, J. Yang, and L. Bhuyan, “Low Power Network Processor Design
Using Clock Gating,” 42nd Annual Design Automation Conference, June 2005.

19. S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating: Speculation Control for
Energy Reduction,” International Symposium on Computer Architecture, June 1998.

20. G. Memik and W.H. Mangione-Smith, “Improving Power Efficiency of Multi-Core
Network Processors Through Data Filtering,” International Conference on Compil-
ers, Architecture and Synthesis for Embedded Systems, Oct. 2002.

21. C. Partridge, “Locality and Route Caches”, NSF Workshop
on Internet Statistics Measurement and Analysis, Feb. 1996.
(http://www.caida.org/ISMA/Positions/partridge.html).

22. T. Sherwood, G. Varghese, and B. Calder, “A Pipelined Memory Architecture
for High Throughput Network Processors,” International Symposium on Computer
Architecture, June 2003.

23. A. Sodani and G.S. Sohi, “Dynamic Instruction Reuse,” International Symposium
on Computer Architecture, pages 194-205, June 1997.

24. W. Szpankowski, “Patricia Tries Again Revisited”, Journal of the ACM, Vol. 37,
No. 4, pages 691-711, October 1990.


