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Since the I/O pins of a CPU are a significant source of energy consumption, work has been done on
developing encoding schemes for reducing switching activity on external buses. Modest reductions
in switching can be achieved for data and address buses using a number of general purpose encoding
schemes. However, by exploiting the characteristic of memory reference locality, switching activity
on the address bus can be reduced by as much as 66%. Till now no characteristic has been identified
that can be used to achieve similar reductions in switching activity on the data bus. We have
discovered a characteristic of values transmitted over the data bus according to which a small
number of distinct values, called frequent values, account for 32% of transmissions over the external
data bus. Exploiting this characteristic we have developed an encoding scheme that we call the FV
encoding scheme. To implement this scheme we have also developed a technique for dynamically
identifying the frequent values which compares quite favorably with an optimal offline algorithm.
Our experiments show that FV encoding of 32 frequent values yields an average reduction of 30%
(with on-chip data cache) and 49% (without on-chip data cache) in data bus switching activity for
SPEC95 and mediabench programs. Moreover the reduction in switching achieved by FV encoding is
2 to 4 times the reduction achieved by the bus-invert coding scheme and 1.5 to 3 times the reduction
achieved by the adaptive method. The overall energy savings on data bus we attained considering
the coder overhead is 29%.
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1. INTRODUCTION

In CMOS circuits most power is dissipated as dynamic power for charging and
discharging of internal node capacitances. Thus, researchers have investigated
techniques for minimizing the number of transitions inside the circuits. The
capacitances at I/O pins are orders of magnitude higher than internal capaci-
tances. Thus, the power dissipated at the I/O pins is even greater than that dis-
sipated at internal capacitances. Therefore, techniques for minimizing switch-
ing at external address and data buses, at the expense of a slight increase in
switching at internal capacitances, have been investigated for reducing power
consumption [Benini et al. 1997, 1999; Chang et al. 2000; Cheng and Pedram
2000; Komatsu et al. 2000; Kretzschmar et al. 2001; Ramprasad et al. 1999;
Musoll et al. 1997; Stan and Burleson 1995a; Su et al. 1994].

Many of the encoding schemes, such as the bus-invert coding [Stan and
Burleson 1995a], are general purpose and can be applied to both address and
data buses. General purpose techniques can only provide modest reductions in
switching activity. This is because the characteristics of values sent over data
and address buses vary and thus using the same technique for both types of
buses is not the most effective solution. To obtain greater reductions we must
identify special characteristics of the information transmitted over address and
data buses. Using such a specialized approach significant success has resulted
from research into minimizing switching at external address buses. In particu-
lar, the technique described in Musoll et al. [1997] is particularly effective as it
reduces the address bus activity by as much as 66% for some benchmarks. The
key to achieving such high reductions by this technique is its ability to exploit
memory reference locality. The memory regions being referenced by a program
are divided into working zones. Instead of transmitting a sequence of complete
addresses that exhibit locality, in this technique, the offset of current reference
with respect to the previous reference to the same working zone is sent over
the bus, along with an identifier of that zone. Since the offsets are quite small,
in comparison to complete addresses, one-hot encoding can be used to transmit
them and thus the number of switching transitions is greatly reduced.

The goal of this work was to develop a technique for data buses that is simi-
larly effective as the above technique is for address buses [Musoll et al. 1997].
The above technique is effective because it exploits the characteristic of data
reference locality. Till now an effective specialized approach for a CPU’s ex-
ternal data bus has been illusive. This is because no suitable characteristic
for values transmitted over a data bus has been found. Unlike memory refer-
ences that exhibit locality, the data values do not exhibit similar locality. In
fact the values transmitted over the data bus may vary widely across the range
of representable values. We have recently discovered a characteristic of data
values sent over a data bus that can be employed to develop an effective encod-
ing scheme. Recently we have shown that a small number of distinct values,
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Fig. 1. Data bus traffic due to 32 frequent values.

frequent values, occupy majority of the data locations in memory for a wide
range of application programs [Zhang et al. 2000; Yang and Gupta 2002]. Thus,
these values are transmitted very frequently over the data bus.

In Figure 1, we show the percentage of total data bus traffic that is the result
of transferring top 32 frequent values for SPEC95 and mediabench programs.
The statistics are obtained by measuring the switching activity on the data bus
connecting the CPU and the off-chip memory. Furthermore it is assumed that
there are on-chip instruction and data caches each of size 8K bytes. The data
transfered over the data bus is a mixture of instructions and program data. The
frequent values observed over the data bus are dynamically identified using our
proposed algorithm. On average, over 32% of values transmitted are frequent
values and this number reaches 68% for compress.

The remainder of the article is organized as follows: In Section 2, we present
the FV encoding scheme in detail. In Section 3, we describe how the frequent
values are identified by our scheme. In Section 4, we experimentally evaluate
the effectiveness of FV encoding in reducing switching activity. In Section 5,
we present the detailed design of the FV coder and the overall energy savings.
In Section 6, we discuss related work and experimentally compare our method
with existing techniques. Conclusions are given in Section 7.

2. FREQUENT VALUE ENCODING

Now we present the design of our encoder and decoder used to reduce the switch-
ing activity on the data bus. Our overall approach is as follows: The frequent
values are transmitted over the bus in encoded form while the nonfrequent val-
ues are transmitted in their original unencoded form. The set of frequent values
are kept in a table implemented as a content addressable memory (CAM) by
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Fig. 2. Encoding-decoding setup.

both the encoder and the decoder. This table is searched and if the value to be
transmitted is found in it, then the value is regarded as a frequent value which
is then transmitted in encoded form. In order to ensure that the decoder can
determine whether the transmitted value is in encoded form or not, additional
control signal must be sent from the encoder to the decoder in some situations.
As we describe later in this section, our method for maintaining frequent values
is such that the contents of the frequent value tables at both the encoder and the
decoder are always identical. In the remainder of the section, we first describe
our base encoding scheme in detail and then we describe some enhancements
to this base scheme.

2.1 The Base FV Encoding Scheme

Our method for encoding frequent values has the flavor of one-hot encoding with
one important difference. Our encoding scheme overcomes the major draw-
back of one-hot encoding in that it does not require 2n wires, where n is the
number of bits representing the value, to transfer the data. Instead, it achieves
low switching activity by using the same number of wires as the data bus width.
In our experiments we assume that this number is 32.

We are able to achieve the above goal as follows: The “hot” wire generated
from the encoder is not used to represent the true decimal value being trans-
fered but rather it indicates in which entry of the frequent value table in the
encoder or decoder the frequent value can be found. In other words, if the ith
entry in the frequent value table is found to contain the same value as the one
being transmitted, then the ith output wire is set to 1 and all the remaining
wires are set as 0. This is how a one-hot code is formed and sent over the data
bus, completing the coding process (see Figure 2(a)). When the decoder receives
the code from the bus, it reads out the value from the ith entry indicated by the
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Fig. 3. Occurrence of frequent values in sequence.

code. We will show later how our method for maintaining the contents of the
tables at the encoder and decoder ensures that the contents of the two tables
are identical and thus the value is correctly decoded. Under the above scheme,
if frequent values are transmitted back to back, then at most two bits switch
while all other bits remain zero. This is how FV encoding reduces switching
activity.

The nonfrequent values are transmitted in unencoded form. If a value to
be transmitted is a nonfrequent value it cannot be found in the encoder CAM.
Thus, the encoder does not attempt to generate a code. Instead, it simply passes
the original value onto the data bus. When the decoder receives the value and
finds more than one hot wires in it, it concludes that the transmitted value is
not encoded (see Figure 2(b)).

It is possible that a nonfrequent value being transmitted in unencoded form
contains a single high bit and all of its remaining bits are zeros. We ensure
that the decoder does not erroneously decode this value by sending a single
bit control signal from the encoder telling the decoder to skip decoding (see
Figure 2(c)). Our experimental results also include the switching overhead from
sending the control signal.

2.2 Enhancements of Base FV Encoding Scheme

2.2.1 XORing Values. The base encoding scheme reduces switching to at
most 2 bits if a frequent value being transmitted is also preceded by a frequent
value. While our base encoding scheme gives good performance when frequent
values are encountered back to back, a pattern of intervening frequent and
nonfrequent values is not favorable to our base scheme. In Figure 3, the per-
centage of traffic due to frequent values that are also preceded by frequent value
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Fig. 4. Reducing switching by XORing values.

transmissions is given. On an average, this number is 16%. From the data pre-
sented earlier in Figure 1, we know that on an average the frequent values
account for 32% of the overall traffic. Therefore, on an average 16% of trans-
mitted values are frequent values that are preceded by nonfrequent values.

We can also reduce switching between nonfrequent and frequent value trans-
missions using a decorrelator described in Musoll et al. [1997] and Benini et al.
[1999]. If we take the XOR of the current value to be transmitted (Coden) and
the previously transmitted value (Sendn−1), then this has the effect of flipping
only those wires of the bus that were low when Sendn−1 was sent and are high
in Coden. Therefore, if Coden corresponds to a frequent value, it contains only
one high bit and, therefore, no matter whether it is preceded by a frequent value
or a nonfrequent value (i.e., Sendn−1 is frequent or nonfrequent) the switching
activity is only 1 bit. In other words, transmission of a frequent value always
results in switching of one bit. The combination of FV encoding and XORing
current code with the previous value sent over the data bus is shown in Figure 4.

2.2.2 Equality Test. XORing the values can help reduce switching when
different codes are to be transmitted in sequence. However, it also brings unnec-
essary switching when the same code is transferred repeatedly. For example,
if a code with the ith bit hot was transferred n times continuously, the switch-
ing on bus will toggle n times at the ith wire. This increases switching since
transferring same code should not induce any switching while in our case it
does cause 1 switch, and eventually it can increase overall switching. Figure 5
shows how often this situation arises. It gives the percentage of traffic due to
transmission of a code that is immediately followed by the same code. On an
average, this situation accounts for 16% of the traffic. It is observed that this
characteristic is observed at low levels in all benchmarks. However, for a few
benchmarks (e.g., compress and turb3d), this situation is very common. As a re-
sult, for these benchmarks in particular, we should avoid the switching caused
due to repeated transmission of the same code.

The additional switching can be removed easily as shown in Figure 6. We
keep a register of the last value (Valuen−1) transferred and compare it with
the current value (Valuen). If the two values match, we send the code for the
last value (Coden−1) on the bus again. The receiving side, without knowing the
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Fig. 5. Transmission of identical code in sequence.

Fig. 6. Dealing with equal code transfer.

equality property of the current value, puts the code through the correlator.
Since the code is the same as the last code, the correlator, namely XOR, will
compute the result 0 as Coden. There are now two cases where Coden can be
0: one is when Sendn−1 is sent twice back to back as we just explained; and
the other is when Valuen is 0 and 0 is not a frequent value and therefore not
encoded. We can disambiguate the two cases by hardwiring an entry in the
encoder/decoder to 0 and thus making 0 a permanent frequent value which is
therefore always transmitted in encoded form. This leaves only one possibility
for Coden to be 0, which corresponds to the case when the same value is being
transfered again and therefore the decoder can simply output the last value
it produced. Note that, in this process, the sending side did not initiate the
activity of the encoder or the decorrelator and the receiving side used only the
correlator. Thus, the energy spent in the encoder and the decoder is also saved.

2.2.3 Hamming Distance Based Exclusion of Frequent Values. So far, in
our discussions we have considered all encountered values as candidates for

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 3, July 2004.



Frequent Value Encoding for Low Power Data Buses • 361

being frequent values. However, it should be noted that not all frequent values
are equally effective in reducing switching activity. The impact of encoding a
frequent value is proportional to the hamming distance between the unencoded
frequent value and the corresponding one-hot code assigned to it. The hamming
distance between a small unsigned value and a one-hot code is quite small.
Therefore, whether these small unsigned values are transmitted in unencoded
form or in a one-hot encoded form, the switching activity that will occur will
be very close. It is possible that by excluding such values from consideration
during frequent value identification, we may achieve better performance. First
their exclusion will allow entries in the frequent value table to be used by other
values which are not as frequent but have a greater hamming distance from
the one-hot code they are assigned. Second the encoding and decoding activity
will be reduced because the frequent value table need not be accessed for these
values at all.

2.3 An Example

Figure 7 illustrates how the FV encoding scheme and its enhancements are able
to reduce the switching activity. It compares the switching activity for a sample
sequence of values without encoding and with different levels of encoding. Here
we assume the initial value on the data bus is 0 which is followed by two
frequent values, one nonfrequent value, and finally two more frequent values
shown in the first column of the first table in Figure 7. All values are written in
hexadecimal format. If no encoding is carried out the number of bit transitions
for this sequence is 32. This number reduces to 9 when the frequent values
are encoded using the base FV encoding scheme. The reductions arise due to
transmission of one hot-codes as opposed to original values with large numbers
of high bits. The application of XOR reduces bit transitions by one bit during
transmission of second, third and fourth values. However, it also increases the
bit transitions for the last value from no bits to 1 bit transition. By performing
the equality test this additional bit transition can be avoided leading to the
final bit transition count of 5 bits.

3. IDENTIFYING FREQUENT VALUES

Having described our encoding scheme, let us now discuss how we fill and
update the encoder and decoder tables with data values. There are two ways
that we consider in this article:

(1) A fixed set of values known in advance to initialize both encoder and de-
coder can be used. The set of values can be obtained through ranking of the
frequency of values that appeared in a previous run of the program.

(2) A changing set of frequent values can be maintained as the program runs.
Thus, the contents of the frequent value tables adapt to changes in the
frequent values for different parts of execution.

Using fixed values to preset the encoder and decoder has the advantage
that the coders do not have to change the table contents dynamically thus
reducing the internal switching overhead. However, it requires that values
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Fig. 7. Illustrating reduction in switching transitions using FV encoding.

be known beforehand. Since different programs have different frequent val-
ues, a profiling run is needed to identify the frequent values. Our prior ex-
perience shows that frequent values are relatively insensitive to program in-
put and therefore they can be identified once using a single profiling run and
repeatedly used in all future executions [Zhang et al. 2000; Yang and Gupta
2002].

The second method, on the other hand, does not need a priori information
of data values and does not distinguish among different programs. With these
features, we pay the price of identifying the frequent values on the fly. The
changing frequent value scheme has the potential for giving better performance.
This is because a value with high frequency in one span of time may not occur
as frequently in another span of time during a program run.
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Fig. 8. Changing frequent value set vs. fixed frequent value set.

We conducted an experiment to determine whether the need for an adaptive
scheme exists. In this experiment we divided the execution of a program into
smaller time intervals and for each of these intervals we found the best 32
frequent values. We considered the commonality between this nearly ideal set
of values and the values used in our changing value scheme (described later
in this section) as well as the fixed set of frequent values. The plot in Figure 8
shows that the overlap between the changing set and ideal set is much greater
(around 20 or higher for most of the time) than the overlap between the fixed set
and the ideal set (slightly less than 10). This plot is for the su2cor benchmark
and represents a time period which corresponds to 25% of the program run over
which three million values were transmitted over the data bus. We favor the
dynamic encoding scheme but will also include experimental results for fixed
value scheme in the experimental section. Next, we will illustrate how we find
the frequent values dynamically.

3.1 LRU Replacement Policy

We use the LRU replacement policy for filling and updating both encoder and
the decoder frequent value tables. To gain time ordering information, we use a
reference bit and an n-bit timestamp for each value recorded in the coder. The
reference bit is set when the value appears at the input. At regular intervals,
the reference bit is shifted right into the high-order bit position of the n-bit
timestamp causing all bits in the timestamp also to be shifted right and the
lowest order bit in the timestamp being discarded. This operation is performed
for all entries in the two tables and at the same time all the reference bits are
reset. Thus, the timestamp keeps the history of value occurrences for the last
n time periods. The timestamp of 000 means this value did not appear during
the last three time intervals, timestamp 100 means it was just seen in the last
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Fig. 9. Example of frequent value identification.

interval, and the timestamp 000 with reference bit set means it is encountered
in the current time slot. When an entry is required and a value is to be evicted,
the entry that is selected is the one with the smallest timestamp and clear
reference bit. The new value is put in with a fresh reference bit and timestamp
(all 0’s) in this selected entry.

Figure 9 illustrates the above process using a sequence of data values. At
t8, the contents of the frequent value table along with reference bit and times-
tamp are shown in (a). Suppose at this time we need to update the timestamp,
(b) shows all the changes made to the timestamp and the reference bit. At
t9, a new value replaces the value −1 because it has the smallest timestamp
000 as shown in (c). New value also gets a fresh timestamp and a 1 as refer-
ence bit. At t10, another new value replaces the value 0xae2 because it has
the smallest timestamp and its reference bit is 0 as shown in (d). The val-
ues in the frequent value table, together with the timestamp, gives an idea on
what are the values most recently occurred and therefore might be seen again
soon.

3.2 Keeping Encoder and Decoder FV Tables Consistent

It is extremely important to keep the sender side encoder and the receiver side
decoder consistent all the time. We use the same replacement policy for both
to assure they contain the same values. In more detail, if there are multiple
entries that have the same timestamp, both the encoder and the decoder follow
the same rule for picking up a victim, say the first victim they encounter during
the search. By doing so, we guarantee both sides contain not only the same
values but also the same indices for every value. The basis for this to be true
is that they have the same timestamp value and reference bit. This is easily
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achieved by using the same time interval for updating the timestamp and the
reference bit.

4. EXPERIMENTAL EVALUATION OF SWITCHING ACTIVITY REDUCTION

We conducted experiments by executing the SPEC95INT, SPEC95FP, and a subset
of mediabench programs. The goals of these experiments were as follows:

—Measuring the reductions in switching activity on the external data bus due
to FV encoding and its enhancements;

—Measuring the degree of on-chip encoding and decoding activity for FV en-
coding and its enhancements;

—Measuring the impact of varying the number of frequent values and their
width on switching reduction;

—Accuracy of our frequent value replacement algorithm and its comparison
with a perfect online LRU replacement and optimal offline replacement
algorithms;

—The impact of absence of on-chip caches on switching activity reduction; and
—Comparison of our technique with bus-invert and adaptive encoding schemes.

4.1 Switching Activity Reduction

4.1.1 Effectiveness of FV Encoding and Its Enhancements. We tested the
impact of each component in our FV encoding scheme in reducing switching.
The purpose is to answer the question: do we need all the components and if
yes how much benefit does each one bring? To see this, we first considered the
following three configurations of a frequent value based encoding algorithm:

(1) FV Encoding Only. This is the base FV encoding algorithm.
(2) FV Encoding + XOR. This is the base FV encoding algorithm enhanced

with the decorrelator on sender side and correlator on receiver side.
(3) FV Encoding + XOR + Equal. This is the complete encoding algorithm

including the base FV encoding algorithm with the two enhancements of
XORing values and performing equality test.

The results are shown in Figure 10. On an average, the first configuration
that uses only the base FV encoding scheme provides nearly 13% reduction
in switching activity. The second configuration that uses the base FV encod-
ing scheme and the XORing of values, on an average, doubles the reduction
in switching activity to nearly 26%. This is consistent with our previous ob-
servations. Recall that, on an average, half of the frequent value occurrences
are preceded by frequent value occurrences while the other half are preceded
by nonfrequent values. The base FV encoding scheme reduces the switching
for the former category of frequent value occurrences while the XOR reduces
switching for the latter category of frequent value occurrences.

The complete encoding algorithm does outperform the above configurations.
On an average, it achieves 30% reduction in switching activity. Therefore, over-
all the equality test reduces switching by a small additional amount. However,
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Fig. 10. Effectiveness of FV encoding and its enhancements.

for some benchmarks, the equality test is crucial for obtaining good perfor-
mance. For the compress and turb3d benchmarks, the equality test provides
a significant increase in performance because sequence of equal values are
encountered very frequently. In fact, as we can see, the switching reduction ob-
tained using of the final configuration is more than twice that of the reduction
achieved using the second configuration. In fact, in both these cases using the
FV encoding scheme alone gives better performance that additional XORing of
values.

Next, we considered the impact of excluding frequent values based upon ham-
ming distance between the frequent values and their encoding. The following
three pairs of configurations of the encoding algorithm were considered:

(1) FV Encoding vs. FV Encoding + Exclusion. This is the comparison of the
base FV encoding scheme with and without exclusion of values 0 through
16 as candidates for frequent values (i.e., these values are never added to
the frequent value table).

(2) EV Encoding + XOR vs. FV Encoding + XOR + Exclusion. This is the base
FV encoding algorithm enhanced with XORing of values. The two versions
compared are ones with and without exclusion of values 0 through 16 from
the frequent value table.

(3) FV Encoding + XOR + Equal vs. FV Encoding + XOR + Equal + Exclusion.
This is the based FV encoding enhanced with both XORing of values and
equal test. The two versions compared are ones with and without exclusion
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Fig. 11. Impact of excluding values on switching reduction.

of values 1 through 16 from the frequent value table. Recall that the equal
test requires hardwiring the value 0 into the frequent value table. It is for
this reason only values 1 through 16 are excluded from the frequent value
table.

Figure 11 shows that the reduction in switching activity is slightly improved
for the first two algorithms. This is because some values that now reside in the
frequent value table more often replace small values with very few high bits.
However, the performance of the third algorithm is unchanged. That is, the
FV encoding algorithm enhanced with XORing and equal test performs equally
well with or without exclusion of values. In the remainder of this section, for
all experiments involving measurement of reductions in switching activity, we
use the FV encoding algorithm with XORing and equal test as the basis for
experimentation.

4.2 Encoding and Decoding Activity

The on-chip overhead of performing encoding and decoding is dominated by the
accesses to the frequent value table which involves associatively searching for
the values and in case a value is not found, the frequent value table is updated
using the LRU replacement policy. In this section we compare the performance
of various algorithms from the perspective of this on-chip overhead.

4.2.1 Equal Test and Hamming Distance Based Exclusion of Frequent
Values. Two of the six variations of encoding algorithms that we considered in
the preceding section, namely the base FV encoding scheme and FV encoding
with XORing, access the frequent value table for each value that is transmitted
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Fig. 12. Impact of excluding values on encoding/decoding operations.

over the bus. However, the remaining four algorithms which use the equal test
or exclusion of values or both avoid accesses to the frequent value table. This
is because in both of these cases the frequent value encoding and decoding
processes is bypassed. We measured the reduction in accesses to the frequent
value table that these four algorithms achieve over the other two algorithms.
The results of this study are presented in Figure 12. Two of the FV encoding
algorithms, the 4th and the 5th in Figure 11, introduce the same encoder access
reduction since they both filter out values 0 through 16. We plot the algorithm
with XORing to represent both of them in Figure 12. As we can see, these reduc-
tions are substantial. The exclusion of values significantly reduces the accesses
performed by base FV encoding and FV encoding with XORing. The reduction
in accesses due to the equal test is generally less than that achieved by the ex-
clusion of values 0 through 16 for these algorithms. However, for the compress
and turb3d benchmarks the equal test reduces the accesses to the frequent
value table dramatically.

From the perspective of reducing switching activity on the data bus, the two
algorithms that perform equally well are one which uses all of our techniques
(i.e., FV Encoding, XORing, equal test, and excluding values 1 through 16 from
frequent value table) and the one that uses all techniques except that of ex-
cluding values. However, as expected, the former algorithm performs, on an
average, slightly fewer accesses to the frequent value table than the latter al-
gorithm. Therefore we can conclude that the algorithm which uses all of the
techniques, that is, FV encoding, XORing, equal test, and exclusion of values
performs the best overall.

4.2.2 Using Fixed Set of Frequent Values. As mentioned earlier, an alterna-
tive to dynamically identifying frequent values is to identify them first during
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Fig. 13. Changing frequent values versus fixed frequent values.

a profiling run and then use these fixed values during all future program runs.
This fixed frequent value set approach avoids spending of energy on updating
the frequent value table. We compared the reduction in switching that can be
obtained using fixed frequent values with that obtained using the dynamic al-
gorithm described in this paper. The results are presented in Figure 13. As we
can see, the reductions using dynamically detected frequent values is signifi-
cantly greater. On average, using enhanced changing FV encoding scheme we
obtain 30% reduction in switching activity while a fixed FV encoding the re-
duction is only 18%. Moreover, for several of the benchmarks, including su2cor,
hydro2d, fpppp and wave5, the difference is dramatic. Therefore this approach
to reducing on-chip overhead is not very attractive.

4.3 Varying the Number and Width of Frequent Values

4.3.1 Varying Number of Frequent Values. We also investigated the effect
of the encoder and decoder size on performance by varying the number of fre-
quent values allowed. Our encoding algorithm can be applied to the entire data
bus width if the maximum reduction in switching is desired. It can also be ap-
plied to a subset of bus wires when minimum hardware expense is demanded.
Minor changes are needed when only a subset of bus wires are encoded. For
example, assume that only the first 8 bus wires are involved in encoding. Both
the encoder and the decoder have only 8 entries. A full value is taken into the
encoder and if it is encoded successfully, a code is sent out with respect to those
8 wires. The rest of the wires always carry a zero for encoded values. If the
value is not encoded, the original value is sent along the bus and the coders
update their content accordingly. The receiver side can resolve both cases in
the same way as before without confusion.
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Fig. 14. Varying number of frequent values.

We varied the number of entries in the coders as 8, 16 and 32. The results are
given in Figure 14. In some benchmarks, including tomcatv, su2cor and wave5,
it can be clearly seen that reductions in switching activity increase significantly
with an increase in allowable number of frequent values. In other benchmarks
the vast majority of reductions can be achieved simply be using 8 frequent
values. The average reduction increases from 23% for 8 values to 30% for 32
values.

4.3.2 Byte Level Encoding. So far, we have discussed encoding and decod-
ing schemes based on word level frequent values. In many multimedia bench-
marks, where data is operated in unit of bytes, frequent byte values may be
more abundant than frequent word values. We can easily adapt our scheme to
handle frequent byte values so that it is friendly to multimedia benchmarks as
well. To do this, we simply encode each byte in the 32 bits independently. The
32 entries in the frequent value table can be distributed among the four byte
positions, that is, 8 frequent byte values are maintained corresponding to each
byte position. In other words, the original word level encoder and decoder are
broken into 4-byte level encoder and decoder, each with its own decorrelator
and correlator.

The performance of frequent byte encoding as compared to frequent value
encoding depends upon program characteristics. For example, if more frequent
bytes are found than frequent words, byte level encoding may out perform word
level encoding. On the other hand if the benchmark contains mostly frequent
words, byte level encoding will hurt performance. This is because now the fre-
quent word would be split into four frequent bytes each of which will require
one high bit during its transfer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 3, July 2004.



Frequent Value Encoding for Low Power Data Buses • 371

Fig. 15. Byte level frequent value encoding.

The results in Figure 15 shows the gain and the loss of using byte level
encoding. For a program like fpppp, which has a high level of frequent bytes,
the performance is dramatically improved using byte level encoding—instead of
5% increase in switching we now observe a 24% reduction in switching. On the
other hand, for a benchmark like compress for which the word value encoding
performs very well, byte level encoding does not perform as well as word level
encoding. On average, a little improvement of 3% was obtained using byte level
encoding.

4.4 Accuracy of Frequent Value Identification

4.4.1 Approximate LRU versus Perfect LRU Replacement. The identifica-
tion of frequent values is based upon an approximate LRU policy which uses a
timestamp. The size of the timestamp can be varied to achieve different levels of
LRU replacement accuracy. Intuitively larger timestamps should provide a bet-
ter estimation of the least frequently used information and thus perform well
during replacement. We performed an experiment in which we compared the
encoding rates when using a one bit timestamp (i.e., approximate LRU) with
the encoding rates obtained when using an unlimited sized timestamp (i.e.,
perfect LRU). The results of this experiment shown in Figure 16 disproved our
intuition as it shows that a timestamp as small as one bit can perform as well
as an unlimited timestamp.

The reason behind the above result is as follows: The data transfered on
the data bus between CPU and memory is due to transfer of cache lines that
contain multiple words. Although these words flow through the encoder and
decoder one by one, since they arrive at the bus in close succession, there is
little or no difference in their timestamp values. Therefore, even the perfect
LRU replacement policy cannot differentiate between these values. Picking any
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Fig. 16. Comparison with perfect LRU.

one of them may not actually yield a best result. Our result shown in Figure 16
proves that a coarse timestamping method is sufficient in practice.

4.4.2 Approximate LRU versus Optimal Replacement. We also conducted
another experiment to see how close does approximate LRU come to optimal re-
placement. We implemented an optimal replacement policy in which we replace
the entry that will not be used for the longest period of time in the future. The
optimal policy will yield best switching reduction because it will guarantee the
highest hit rate in the encoder. To implement this scheme we ran each program
twice. We collected the value trace during the first run and used it in the second
run to carry out optimal replacement. Every time we need to perform replace-
ment, we go into the value trace to find the frequent value in the table that
appears furthest in the future in the value trace. This is a slow process since
the value traces we collected were extremely long. Therefore, we conducted this
experiment only for a subset of the benchmarks (11 out of 22). The results pre-
sented in Figure 17 show that on an average the switching reduction by our
LRU implementation with one bit timestamp is exceeded by the optimal policy
by around 11% which is quite reasonable. This is because the optimal policy
that we compare with is an offline policy and therefore no online policy will be
able to perform nearly as well.

4.5 Performance Without On-Chip Cache

In all of the experiments described so far we assumed that there was an 8K byte
on-chip instruction and an 8K byte on-chip data cache. We also repeated our
experiments without on-chip caches. The architecture is sketched in Figure 18.
This is because in many embedded and DSP processors from AT&T Micro-
electronics, Motorola, Zilog and Texas Instruments there is no on-chip cache.
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Fig. 17. Comparison with optimal replacement policy.

Fig. 18. Architecture models with and without on-chip caches.

The results in Figure 19 show that in the absence of an on-chip cache the re-
ductions in switching activity are even greater. The average reduction for 32
values increases from 30% to 49%. The performance improvement is brought
by the data locality within cache lines, which was caught by instruction/data
caches and is now being exploited by our encoder and decoder.

5. HARDWARE DESIGN AND ENERGY-DELAY MEASUREMENT

So far, we have measured the effectiveness of FV encoding in terms of switching
activity reduction. In this section we develop a detailed hardware design of the
encoder to estimate the energy savings and delay introduced due to encoding.
We develop a circuit level implementation of an FV encoder with equality test.
The decoder has a symmetric structure as the encoder. For simplicity, we will
double the energy and delay spent by the encoder to account for total overhead
due to FV encoding. Our measurements give an upper bound on the coding
energy and delay since the actual decoding process is simpler than the encoding
(FV CAM indexing vs. lookup).
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Fig. 19. FV encoding performance with on-chip cache versus without on-chip cache.

Fig. 20. Encoder components.

5.1 Encoder Design

The overall design of the encoder consists of three main components shown
in Figure 20: the comparator to implement the equality test (note that value
elimination based FV encoding can also be implemented similarly since it also
involves a comparator as its first step); timestamp management unit; and the
CAM update unit. Next we present the detailed designs of these units.

5.1.1 The Comparator. The comparator is used to compare the current
data value and the last data value. Its advantages have been demonstrated in
Section 2.2. The comparator is used on every data value. On a success, all the
rest of the FV encoder is bypassed and the value is sent directly to the bus.
Thus, when total energy is calculated, the comparator energy is charged every
time but the rest of the encoder energy is charged only on comparison failures.
The circuit for the comparator is shown in Figure 21. Here the Di stands for the
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Fig. 21. Circuit for the comparator. Di stands for the ith bit of the current data value. LDi stands
for the ith bit of the last data value.

ith bit of the current data value and the LDi stands for the ith bit of the last
data value which is supplied from the last value register shown in Figure 20.

5.1.2 Timestamp Management Unit. The next component in Figure 20 is
the timestamp management unit which includes a two-bit shift register file
and a priority selection logic. The first bit in a two-bit register serves as the
reference bit and the second serves as the timestamp. At regular intervals, both
bits are shifted right as described in Section 3.1. When a miss occurs during a
FV CAM lookup, an entry with the smallest two-bit register value is selected.
Implementation of this selection turned out to be the most difficult part in the
entire FV encoder since finding the smallest value may involve sorting logic. To
avoid expensive sorting operations, we observed that for the two-bit registers,
there must be an entry containing “00” if the shifting is done once every 16 (or
fewer) values that are passed. If there are multiple “00”s, picking out one is
enough. Therefore, we define the shift interval as 16, and design the selection
logic to find one register that contains “00”. We designed the priority selector
such that the first “00” from the bottom is selected from a group of four two-bit
registers (see Figure 22). Having a larger group size causes instability in the
circuits. Thus, for a 32-entry CAM, eight priority selectors are necessary at
the first level. The second level needs two (see Figure 23). The 32 NOR gates
attached to each register are to identify value “00”s (true if ti is 1). The outi
signals determine which ti ’s are selected after the first level of priority logic.
Thus, there is only one outi that is 1 for every group of four ti ’s. After the second
level of selection, the Seli determines which group is selected for each group
of four outi ’s. Finally, the lo and hi signal indicate if there is an entry selected
out of the lower and upper 16 entries respectively. If any entry, say the 29th
entry, should be selected, then out29 and Sel7 are both high. If at the same time
another entry, say the 1st entry, also contains “00”, priority should be given to
the bottom entry. In this case, the lo signal is also high, but entry 29 should not
be selected. The combination of the outputs are used in the CAM update logic
which is explained next.
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Fig. 22. Single priority selector circuits.

Fig. 23. Timestamp registers and priority selectors circuits.

5.1.3 CAM Update Unit. The CAM update logic, shown in Figure 24, is
used only on CAM misses. On a miss, a victim entry needs to be selected for
replacement. The victim is identified using combinations of the outputs from
the priority selection logic. Continuing with the example discussed above, if the
29th and the 1st entry both contain “00” and are selected by both upper and
lower group, the input to the 29th CAM entry should be

out29 AND Sel29 AND NOT (lo)

to give priority to selected lower entry which is the 1st entry in this case. This
combination is applied to every entry in the upper half of the CAM with different
indices. For the lower half of the CAM entry, the NOT (hi) is not necessary since
by default they are given higher priority over the upper half of the CAM.

5.1.4 CAM Cell. The most important component of the FV encoder is the
FV CAM. In order to generate energy and delay information as accurately as
possible, we created an actual layout of a CAM. Figure 25 is the CAM cell circuit

ACM Transactions on Design Automation of Electronic Systems, Vol. 9, No. 3, July 2004.



Frequent Value Encoding for Low Power Data Buses • 377

Fig. 24. CAM update circuit.

Fig. 25. CAM cell circuit.

that is composed of a conventional six-transistor SRAM cell and dynamic XOR
comparators. We used a separate search line Cbit from the Bit to decrease
the search line capacitance and thus the search time. All the Match lines are
precharged high. On a CAM line miss, the Match line is pulled down low gen-
erating a logic “0”. On a CAM line hit, the Match line stays high generating a
logic “1”. As a result, a CAM miss is determined if all the Match lines are low
(see Figure 24). A CAM hit results in a single Match line that is high with all
the rest lines at low, or a natural “one-hot” code.

Figure 26 shows the layout of the CAM cell obtained from the Cadence cir-
cuit layout tools [Cadence Corporation]. The technology we used was TSMC
0.18, the most advanced modern CMOS technology available to universities
through the MOSIS program [The Mosis Service]. Our ten-transistor CAM cell
has dimension of 5.3 µm × 5.6 µm. Thus, the entire 32 × 32 FV CAM occu-
pies 30.39 × 10−9 m2. The energy and delay information is obtained by using
Cadence’s Spectra to simulate the net list of the extracted circuits. The results
will be presented later.

5.1.5 XOR Egress. Lastly, the XOR gates take the inputs from last bus
transaction (LDi) and the encoding result of the current value. The current
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Fig. 26. CAM cell layout.

Fig. 27. XOR egress.

result is either the original data value or the output of the FV CAM. For frequent
values, the result should be the “one-hot code” generated from the FV CAM
(Ci ’s). Otherwise, it should be the original data value (Di ’s). A multiplexer is
necessary to choose between the two cases as shown in Figure 27.

5.2 Energy and Delay Results

We used SPICE tool to measure the accurate energy and delay expenditure of
the FV encoder logic using 0.18 µ technology (CAM was modeled in Cadence).
Since it is infeasible to run benchmarks value traces through SPICE and
Cadence tools, we decided to measure energy for each component of the FV
encoder and sum up the total energy according to rich statistics collected from
benchmark simulations. Table I lists the energy and delay results for each com-
ponent we discussed earlier.

For components on the main path of encoding, our designs are optimized for
speed so that each value can be encoded in a timely fashion. Those components
include the comparator, the FV CAM and the xor egress. Other components
such as registers are designed using standard implementations. The total de-
lay of the encoding process is less than the sum of the delays listed in the table
since many activities can be done in parallel. For example, filling in the last
value register can be carried while the value is being compared and encoded.
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Table I. Energy and Delay Results for Each Component in FV Encoder

Component Energy (pJ ) Delay (ns)

comparator 1.277 0.1
registers 0.07 per bit toggle 0.5
priority selection 1.1 0.4
CAM 13.6 per lookup/3.02 per update 0.6/0.8
xor egress 0.24 0.1

Filling the last bus transaction register can be carried with the CAM updating
if there is a miss. Thus, there are two major paths in the encoding process. The
first one is value encoding path which takes 0.8 ns (0.1 + 0.6 + 0.1). The second
one is the CAM update path on a CAM lookup failure. This path takes 1.5 ns
calculated from max(CAM lookup result known, priority selection for victim) +
CAM update delay = max(0.1 + 0.6, 0.4) + 0.8 = 1.5 ns. Therefore, the critical
path is the 1.5 ns updating path. Take a fast system bus such as the 533-MHz
bus used in Intel Xeon processor as an example, the FV encoding time for a sin-
gle value is fast enough to be finished within one bus cycle which is 1.8 ns. The
immediate next value can be encoded while the current value is transmitted on
the bus, forming a perfect pipelined encoding. Thus, when an entire cache line
arrives at the system bus controller the only performance overhead imposed
on the transmission is the encoding delay to the first value. We experimented
with the impact of the encoding delay on overall performance assuming mem-
ory latency of 100 cycles and that every cache line sent over the bus incurs
four additional CPU cycles (2 for encoding and 2 for decoding) assuming two
CPU cycles amount to one bus cycle. The average slowdown is 1.0% (maximum
is 2.6%) for all the benchmarks tested. This is quite modest considering the
amount of bus energy we can save which is shown next.

To obtain the overall energy consumed by FV encoding for each benchmark,
we used the following equations:

Etotal = 2 × EFV encoder; (1)
EFV encoder = Ecomparator × no. of values (2)

+ E1−bit reg toggle × (comp. input toggle counts + bus toggle counts) (3)
+ (ECAM + Epriority sel + E1−bit reg toggle + Exor egress)

× no. of values accessed CAM (4)
− ECAM update × no. of values hit in CAM (5)

As mentioned before, the total energy is measured by doubling the FV en-
coder energy (line 1). Line 2 says that the comparator energy is charged on
every value. Line 3 computes the total energy due to storing last value and
last bus transaction in registers. Here, energy is charged only when bits are
toggled. The fourth line is the energy for values that are not filtered by the
comparator and thus flow through the rest of the encoder. The last line says the
CAM update energy should not be charged on CAM hits. Using the equations,
we calculated the energy spent by the coders.

The results of energy computations are shown in the second column of
Table II. The third and fourth column are the total energy spent by the data
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Table II. Energy Results for All Benchmarks

En-/De-coder Bus Energy (mJ ) Energy savings
Benchmarks Energy (mJ) Before After (%)

099.go 0.72 32.27 23.32 25.51
124.m88ksim 0.34 15.42 10.18 31.79
126.gcc 0.02 0.70 0.49 26.89
129.compress 0.02 1.26 0.24 79.69
130.li 0.19 8.08 5.40 30.91
132.ijpeg 0.01 0.71 0.52 24.34
134.perl 0.10 4.90 3.33 29.84
101.tomcatv 0.62 28.32 20.61 25.02
102.swim 0.07 3.81 3.48 6.81
103.su2cor 0.45 22.50 9.60 55.32
104.hydro2d 0.37 17.89 10.55 38.93
107.mgrid 0.40 25.40 21.27 14.71
110.applu 0.31 20.18 15.52 21.55
125.turb3d 0.03 1.19 0.88 22.81
141.apsi 0.11 5.49 4.45 16.91
145.fpppp 0.66 30.93 31.58 −4.24
146.wave5 0.06 3.07 2.06 30.98
adpcmdec 0.00 0.06 0.04 32.91
adpcmenc 0.00 0.04 0.03 20.63
g721enc 0.56 25.61 16.76 32.37
unepic 0.03 1.03 0.63 35.84

Average 28.55

bus before and after FV encoding. We used a typical off-chip bus capacitance
of 30 pF, such as the Quad Band Memory technology provided by Kentron
Technologies [Kentron Technologies], and assumed the bus voltage is 3.3 V.
It should be noted that the proposed FV encoding scheme is suitable for the
off-chip bus only since the capacitance of the on-chip buses are significantly
smaller so that power savings may not be achieved. The last column of Table II
gives the energy savings in percentages. The results clearly show the FV en-
coder and decoder energy is a negligible factor comparing with the bus energy.
The switching activity is the dominant factor in bus energy as the saving per-
centages are consistent with the switching reductions we showed earlier in the
paper. On average, we achieved 28.55% of the energy savings on data buses.
We also tested the results for different bus capacitances. If a 10 pF bus was
considered, we can still save 24.5% of energy on average. For a 60 pF bus, our
saving is 29.6% on average. Therefore, our FV encoding is a very effective way
of reducing energy consumption on data buses.

6. RELATED WORK

There has been a significant amount of research done on reducing address bus
switching, based on the sequentiality of program counters [Benini et al. 1997;
Cheng and Pedram 2000; Su et al. 1994] and regularity of memory accesses
[Musoll et al. 1997]. The work that applies to data buses falls in two categories:
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(a) general purpose techniques that apply to both data and address buses; and
(b) techniques specifically developed for data buses. Now we compare our tech-
nique with techniques in each of these categories.

6.1 Comparison with the General Purpose Bus-Invert Coding Scheme

A well-known general technique for reducing switching is the bus-invert cod-
ing scheme [Stan and Burleson 1995b]. In this scheme, the Hamming distance
between the present bus value and the next value is computed. If this is greater
than half the number of total bits, then the data value is transmitted in inverted
form. An additional bit, the invert signal, is also sent to indicate how the data
is to be interpreted at the other end. We implemented this technique to com-
pare its performance with enhanced FV encoding for data buses. The results
in Figure 28 shows that on an average bus-invert scheme reduces switching by
13.4% and 9.6% in presence and absence of on-chip cache respectively. In con-
trast the enhanced FV encoding with 32 changing values reduces switching by
30.5% and 49.8% in presence and absence of on-chip cache respectively. Thus,
the enhanced FV encoding scheme provides 2 to 4 times greater reduction in
switching than bus-invert coding method.

6.2 Comparison with Other Data Bus Encoding Techniques

Some of the work in this category [Ramprasad et al. 1999; Benini et al. 1999]
starts from statistical properties of the data streams and compute codes such
that value pairs with higher probability of occurrence lead to fewer switching
transitions. In Ramprasad et al. [1999], the authors introduce a generic encoder-
decoder architecture model and provide a few sample solutions in each module
of the generic model. In Benini et al. [1999], the authors introduce two heuris-
tic approximations to the theoretical algorithm whose performance is less than
satisfactory. Both papers first emphasize algorithms with prior knowledge of
statistics on input data streams and then they both provide adaptive methods
to remove this constraint. However, either the adaptive method requires expen-
sive hardware or it does not perform well. Figure 29 compares our enhanced FV
encoding with 32 dynamically changing set of values with the adaptive method
in Benini et al. [1999]. As we can see, on an average, the reduction in switching
achieved using FV encoding is 1.5 to 3 times of that achieved using the adaptive
method (9.45% vs. 30.5% with on chip cache and 20.5% vs. 49.8% without on
chip cache).

Thus, the above experiments show that our FV encoding scheme is quite
effective in comparison with other proposed techniques for use in CPU data
buses.

7. CONCLUSIONS

In this article, we have demonstrated that by exploiting the characteristic of fre-
quently transmitted values, we can design the FV encoding scheme that reduces
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Fig. 28. Bus-invert versus enhanced FV encoding.

the switching activity on an external data bus substantially. The reductions
are even greater for processors without on-chip caches. Furthermore, we have
demonstrated that the frequent values at any point during execution can be
effectively identified using a simple hardwaremechanism. Our online frequent
value identification algorithm compares quite favorably with an offline optimal
algorithm. By allowing the set of frequent values to change during execution we
obtain reductions in switching and energy that are substantially greater than
reductions achieved by a scheme that uses fixed set of frequent values for the
entire execution. Finally we have demonstrated that FV encoding outperforms
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Fig. 29. FV versus adaptive encoding.

both bus-invert coding [Stan and Burleson 1995a] and the adaptive scheme of
Benini et al. [1999].
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