
ExPert: Dynamic Analysis Based Fault Location via Execution Perturbations

Neelam Gupta and Rajiv Gupta

University of Arizona
Dept. of Computer Science

Tucson, AZ 85721
{ngupta,gupta}@cs.arizona.edu

Abstract

We are designing dynamic analysis techniques to iden-
tify executed program statements where a fault lies, i.e. the
fault candidate set. To narrow the set of statements in the
fault candidate set, automated dynamic analyses are being
developed which consider not only a failed run of a program
but also execution perturbations of the failed run. The goal
of this work is to focus the users attention on a small subset
of statements in the fault candidate set1.

1. Introduction

Programming being a primarily human activity, errors
creep into software inspite of the advances made in the ar-
eas of programming languages and software development
processes. Typically a programmer becomes aware of the
existence of bugs in a program when he/she observes that a
program output deviates from the expected output. A stan-
dard debugging process consists of setting breakpoints, re-
executing the program with the error-inducing input, and
examining the program state (e.g., variable values, call
stack, etc.) to understand the cause of incorrect output be-
ing generated. During this process, the programmer must
decide what part of the execution to explore to isolate the
bug. This process of exploration is often tedious and time
consuming.

Fault location has proved to be a very difficult problem
and while variety of approaches are being explored by re-
searchers, when used individually, these approaches have
met with limited success. We believe that the reason for
this limited success is that the types of faults and types of
dynamic indicators that point to the location of these faults

1This research was funded by NSF grant CNS-0614707 under the CSR
Program.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

may vary widely. Moreover, to locate faults with any degree
of precision is complicated by additional factors. First it
may be necessary to consider multiple dynamic indicators.
Second multiple indicators may not be discernible from a
single program run. In absence of results from a large num-
ber of runs being available, to uncover additional runs of
relevance, we may need to carry out a targeted search for
such runs via execution perturbations of the original failed
run. Design of execution perturbation strategies will play a
critical role in determining their usefulness.

In this paper we describe automated dynamic analyses
that focus the software developer’s on a small subset of
statements such that the root cause of a failed run can be
found in these statements. The smaller the subset the more
likely it is that the user will locate the cause of failure
quickly. Therefore we have developed highly aggressive
dynamic techniques to uncover evidence that can be used
to prune the set of executed statements and produce a rel-
evant subset of statements for the programmer to examine.
The novelty of our research lies in the types of evidence that
are considered and the highly aggressive means that will be
employed to uncover them.

Types of Evidence. We begin by identifying conserva-
tively large set of statements in the failed run such that the
faulty code is definitely captured in this fault candidate set
– in fact this set can be trivially constructed by including
all statements that were executed during the failed program
run. Next we prune the fault candidate set first using neg-
ative evidence and then using positive evidence. Negative
evidence is uncovered in form of a value, and the statement
execution instance that produced the value, such that the
value is known to be directly or indirectly related to the fail-
ure. Starting from such a value, and traversing the dynamic
dependence graph appropriately, a subset of executed state-
ments potentially involved in the failure are found. Differ-
ent sources of negative evidence produce different approxi-
mations of the potentially fault candidate set. By intersect-

ing these different approximations a smaller fault candidate
set can be found. Positive evidence is uncovered in form of
a value, and the statement execution instance that produced
the value, such that we are very highly certain that the value
is correct. Therefore the statement instances that produce
such values can be further pruned from the fault candidate
set.

Execution Perturbations. Simply identifying potential
sources of negative and positive evidence is not enough.
We require automated dynamic techniques for uncovering
this evidence during a failed run. We describe an aggressive
strategy for uncovering evidence that is based on the idea of
execution perturbations – state at a selected execution point
is carefully perturbed during the failed run, the effect of this
perturbation on the failed run is observed, and through this
observation important evidence is uncovered. This is a pow-
erful approach for exploring what if scenarios, i.e. we can
observe how the program would have behaved if a some of
the program state would have been different.

2. Negative Evidence: Coarse-Grained Prun-
ing of Fault Candidate Set

(d) Intersection of

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(a) Backward Slice
of Erroneous Value

(b) Forward Slice of
Failure−Inducing Input

(c) Bidirectional Slice
of Critical Predicate Preceding Three Slices

Figure 1. Types of Negative Evidence and
Corresponding Dynamic Slices.

The most intuitive form of negative evidence that is im-
mediately available to the programmer from a failed run is
an erroneous output produced by the program – if the pro-
gram crashes, the values used in the operation that caused
the crash can be treated as erroneous values. By computing
the backward dynamic slice of the erroneous value (which
includes all executed statements that directly or indirectly
influence the computation of the an erroneous value through
a chain of dynamic data and/or control dependences) a fault
candidate set can be identified. The backward dynamic slice
of an erroneous value has been used as the basis of auto-
mated debugging for a long time [3]. Our work has identi-
fied two other forms of negative evidence. Although these
two new forms are less intuitive, they can offer great as-
sistance in fault location. First let us consider the concept
of the failure-inducing input difference. Given a failed run,
the failure-inducing input difference is the minimal part of

the input which if changed causes the program to run suc-
cessfully. In other words, the failure-inducing input dif-
ference plays a role in triggering the program failure and
hence its forward dynamic slice (which includes executed
statements that are directly or indirectly influenced by the
failure-inducing input difference via a chain of data and/or
control dependences) can also be considered as a fault can-
didate set [1]. Finally let us consider the notion of a critical
predicate which is an execution instance of a conditional
branch predicate in the failed run such that if the direction in
which the branch goes is forced to switch, the program ex-
ecution produces the correct output [8]. Switching the out-
come of the conditional branch predicate can cause correct
output to be produced under two situations: an error in the
statements that influence the predicate outcome is undone
by switching the outcome; or by switching the outcome we
avoid execution of a statement which may be causing a pro-
gram crash in the failed run. Thus, it makes sense to com-
pute a bidirectional dynamic slice of the critical predicate
which includes executed statements belonging to both the
backward and forward dynamic slices of the critical predi-
cate. The three types of slices based upon the three kinds
of negative evidence are shown conceptually in Figure 1.
Finally, the fourth and smallest fault candidate set shown in
Figure 1 is computed by intersecting the fault candidate sets
produced by the three different kinds of negative evidence.
It should be noted that while set of all executed statements
from the failed run form a fault candidate set, each of the
dynamic slices shown in Figure 1 represent a pruning of
this conservatively large fault candidate set.

We examined a set of reported bugs in real programs
shown in Table 1 for the above types of negative evidence
from which backward slice (BwS), forward slice (FwS), and
bidirectional slice (BiS) is computed. Success in finding a
particular type of evidence is shown by marking the entry
with

√
while failing to find evidence is indicated by ×. As

we can see, it is important to look for different types of evi-
dence because each type of evidence may not be uncovered
in every case. For example, the failed runs of faulty versions
of grep do not produce any output and hence backward
slices could not be computed for them. For some failed runs
of flex bidirectional slices could not be computed because
correct output could not be produced by simply switching
the outcome of a single branch predicate as the bug was
more complex than what could be handled by switching the
outcome of a single branch predicate.

In the remainder of this section we further expand upon
the above ideas. We explain the challenges of uncovering
the above forms of negative evidence and discuss the dif-
ferent forms of execution perturbations that are needed to
effectively uncover the evidence.

2

Table 1. Uncovering Negative Evidence for some Faulty Versions.
Program Bug Description Source ↑ BwS FwS ↓ ↑ BiS ↓
flex 2.5.31 (a) some variable is not defined with option -l, http://soureforge.net

√ √ √
which fails the compilation of xfree86
(b) string ”]]” is not allowed in user’s code http://soureforge.net

√ √ ×
(c) the generated code contains extra #endif http://soureforge.net

√ √ ×
grep 2.5 using -i -o together produces wrong output http://savannah.gnu.org × √ √

grep 2.5.1 (a) using -F -w together produces wrong output http://savannah.gnu.org × √ √
(b) using -o -n together produces wrong output http://comments.gmane.org/ × √

gmane.comp.gnu.grep.bugs/
(c) ”echo dor̂e — grep dor̂e” finds no match http://comments.gmane.org/ × √ √

gmane.comp.gnu.grep.bugs/

make 3.80 (a) Backslashes in dependency names are not removed http://savannah.gnu.org
√ √ √

(b) Fail to recognize the updated file status while http://savannah.gnu.org
√ √ √

there are multiple target in the pattern rule

gzip-1.2.4 1024 byte long filename overflows into global variable AccMon [13]
√ √ √

ncompress-4.2.4 1024 byte long filename corrupts stack return address AccMon [13]
√ √ √

polymorph-0.4.0 2048 byte long filename corrupts stack return address AccMon [13]
√ √ √

tar-1.13.25 wrong loop bounds lead to heap object overflow AccMon [13]
√ √ √

bc-1.06 misuse of bounds variable corrupts heap objects AccMon [13]
√ √ √

tidy-34132 memory corruption problem AccMon [13]
√ √ √

2.1. Backward Slicing of Erroneous Value

A backward dynamic slice of a variable at a point in
the execution includes all those executed statements which
effect the value of the variable at that point. Dynamic slices
identify a subset of executed statements that is expected to
contain faulty code. The smaller the subset the better it is.
Given an erroneous value, dynamic slicing identifies the
subset of executed program statements that influenced the
computation of the erroneous value.

Full slicing. Statements that directly or indirectly
influence the computation of faulty output value through
chains of dynamic data and/or control dependences are
included in full slices [3]. This is the most commonly used
form of slicing and our work [9] has shown that it can
often, but not always, capture faults in branch predicates
as control dependences are also considered. Results of our
studies reported in [10] show that the number of executed
statements can range from 2.46 to 56.08 times the number
of statements in a full slice.

Relevant slicing. While relevant slices also consider
data and control dependences, in addition, they include
statements such that omission of execution of those state-
ments could have led to the computation of the faulty
value [2]. Consider the following code fragment: X =
..; if P then X = .. endif ; Print(X). If fault is present
in P which causes the predicate to evaluate to false instead
of true, wrong value of X is output and more importantly
the predicate P is missed by the full slice. Recognizing that

omission of the execution of nested definition of X could
be the cause of the error, P is identified as a relevant predi-
cate which is also added to the dynamic slice. Our work has
shown that if faults are present in predicates, they can quite
often be missed by the full slices [9].

Identification of relevant predicates is a challenge as dy-
namic information collected only involves statements that
were executed, not the statements whose execution was
missed. It has been proposed that relevant predicates may
be conservatively overestimated using static analysis [2];
however, overly conservative fault candidate sets are less
useful to the programmer. We have addressed the chal-
lenge of identifying relevant predicates using a novel form
of execution perturbation [6]. Essentially for a given con-
ditional branch predicate, if the outcome takes us along the
side of the branch that is definition-free wrt variable X , we
would like to know if other side is not definition-free wrt
X . We can dynamically determine this by intercepting the
program at the appropriate instance of branch predicate and
forcing the the program execution along the alternate side –
if the other side is found not to be definition-free, the predi-
cate is added to the relevant slice. This approach accurately
finds relevant predicates and thus produces dynamic slices
that capture the faulty code but are not unnecessarily large.
Forcing the execution along an alternate path may result in
a program crash. In this case either we can conservatively
consider the predicate as relevant or we can suppress the
execution of statements that cause a crash or use operands
whose computation was suppressed to avoid a crash.

3

2.2. Forward Slice of Failure-Inducing Input

Zeller introduced the term delta debugging [11] for the
process of determining the causes for program behavior by
looking at the differences (the deltas) between the old and
new configurations of the programs. Hildebrandt and Zeller
[12] then applied the delta debugging approach to simplify
and isolate the failure-inducing input difference. The basic
idea of delta debugging is as follows. Given two program
runs rs and rf corresponding to the inputs Is and If re-
spectively, such that the program fails in run rf and com-
pletes execution successfully in run rs, the delta debugging
algorithm can be used to systematically produce a pair of
inputs I ′s and I ′f with minimal difference such that program
fails for I ′f and executes successfully for I ′s. The difference
between these two inputs isolates the failure-inducing dif-
ference part of the input. These inputs are critical inputs
whose values play a critical role in distinguishing a success
run from a failing run. As already mentioned, we can use
the minimal failure-inducing input difference for computing
the forward dynamic slice. The data in Table 1 already in-
dicates that this approach is effective. To further illustrate
why this is the case we consider the following example.

We applied the above approach to a well known buffer
overflow problem in gzip-1.0.7. Figure 2 illustrates the
details of the problem. On the left hand side of Figure 2, we
show the relevant code segment for the problem. The prob-
lem happens in the strcpy statement at line 844. Vari-
able ifname is a global array defined at line 198. The size
of the array is defined as 1024. Before the strcpy state-
ment at line 844, there is no check on the length of string
iname. If the length of string iname is longer than 1024,
then buffer overflows and the program crashes.

The memory layout of gzip program is shown on the
right side of Figure 2. We can see from the figure that there
is a global pointer env located in an address space above
array ifname. The difference between env and ifname
is 3604 bytes. If the length of string iname is larger than
3604, the value of env will be changed due to buffer over-
flow. When we look at function do exit at line 1341, be-
fore the program quits, it tries to free the memory pointed
to by env. If the value of env is an illegal memory address
due to buffer overflow, it causes a segmentation fault at line
1344.

To test the gzip program, we picked two inputs: the first
input is a file name ’aaaaa’, which is a successful in-
put, and the second input is a file name ’a <repeated
3610 times>’, which is failure input because the length
is larger than 3604. After applying sddmin algorithm on
them, we have two new inputs: the new successful input
is a file name ’a <repeated 3604 times>’ and the
new failed input is a file name ’a <repeated 3605
times>’. The failure-inducing input difference between

Figure 2. gzip Buffer Overflow.

them is the last character ’a’ in the new failed input.
We used slicing to compute the forward slice of the

failure-inducing input difference in the failed input and the
backward slice of env at line 1344. The size of the for-
ward slice is 4 which includes the for statement at line 40
in strcpy.c. This is exactly the place where the buffer
overflow occurred. Our slicing implementations run on the
binary code level and thus are able to check the memory
space of a program and even check the code in the library.

The execution perturbation that is carried out for this
technique is simply in the program input. An important
issue that we need to explore is the selection of input
pairs (one failing and one succeeding) from which to iden-
tify failure-inducing input difference. Different initial in-
put pairs may isolate different failure-inducing input differ-
ences. In particular, if the program contains multiple faulty
statements it may be desirable to consider a larger number
of input pairs. We will develop algorithms that rank the
statements belonging to failure-inducing forward slices of
multiple influencing inputs to measure their likelihood for
being faulty. Another critical issue related to identification
of minimal failure-inducing input difference arises in pres-
ence of multiple errors in the program. When execution
perturbations are performed the program execution may en-
counter another error and crash before reaching the pro-
gram point at which an error was encountered in the original
failed run. We will explore the use of suppressing crashes
to ameliorate this problem.

2.3. Bidirectional Slice of Critical Predicate

Given an erroneous run of the program, the objective of
this method is to perform execution perturbation that ex-
plicitly forces the control flow of the program along alter-
nate branches of the predicates evaluated in the run so as

4

to identify critical predicates in the faulty run. The basic
idea of this approach is inspired from the following obser-
vation. Given an input on which the execution of a program
fails, a common approach to debugging is to run the pro-
gram on this input again, interrupt the execution at certain
points to make changes to the program state, and then see
the impact of changes on continued execution. If we can
discover the changes to program state that cause the pro-
gram to terminate correctly, we obtain a good idea of the
error that otherwise was causing the program to fail. How-
ever, automating the search of state changes is prohibitively
expensive and difficult to realize because the search space
of potential state changes is extremely large (e.g., even pos-
sible changes for the value of a single variable are enormous
if the type of the variable is integer or float). On the other
hand changing the outcomes of predicate instances greatly
reduces the state search space since a branch predicate has
only two possible outcomes, true or false. Therefore we
note that through forced switching of the outcomes of some
predicate instances at runtime, it may be possible to cause
the program to produce correct results.

 970 base = …
 . . .

 2565 base[…] = ...
 . . .

 2667 for (i = 0; i <= lastdfa; ++i)
 2668 {

 . . .
 2673 int offset = base[i+1];

 . . .
 2677 chk[offset] = EOB_POSITION;

 . . .
 2681 chk[offset - 1] = ACTION_POSITION;

 . . .
 2683 }
 2684
 2685 for (i = 0; i <= tblend; ++i)
 2686 {

 . . .
 2690 else if (chk[i] == ACTION_POSITION)

 printf(“%7d, %5d,”, 0 , …);
 . . .

 2696 else /* verify, transition */
 printf(“%7d, %5d,” , chk[i], …);

 . . .
 2699 }

Figure 3. Example from Siemens suite.

We illustrate our idea with the faulty version of the flex
(a fast lexical analyzer generator) program shown in Fig-
ure 3 which is taken from the Seimens suite [14]. The
Siemens suite provides the associated test suites and faulty
version for each program. The program in Figure 3 is de-
rived from flex − 2.4.7 and augmented by the provider
of the program with a bug that is circled in the figure:
base[i + 1] should actually be base[i]. We took the first
provided input which produced an erroneous output. We
observed that the output is different from the expected out-
put for the 538th character, a ’1’ is produced as output due
to the execution of printf in the else part (line 2696) of

the else if statement at line 2690 instead of a ’0’ that
should be output by execution of the printf in the then
part of the else if statement. Under the correct execution
at line 2673 offset would have been assigned the value of
base[0] which is 1. The variable chk[0] at line 2681 would
have been assigned ACTION POSITION causing the pred-
icate at line 2690 to evaluate to true for loop iteration corre-
sponding to i = 0. Due to the error at line 2673, an incorrect
value of offset(= 3) causes ch[0] to have an incorrect stale
value (= 1) which causes the predicate at line 2690 to in-
correctly evaluate to its false outcome. Using our proposed
method we looked for a predicate instance whose switching
corrected the output. We found the appropriate instance of
the else if predicate instance through this search. Once
this predicate instance was found we could easily determine
by following backwards the data dependences that the in-
correct value of ch[0] was a stale value and it did not come
from most recent execution of for loop at line 2667. Thus,
now it was clear that the error was in the statement at line
2673 which sets the offset value. The above example also
illustrates that it is important to alter the outcome of selected
predicate instances as opposed to all execution instances of
a given predicate. This is because the fault need not be in
the predicate but elsewhere and thus all evaluations of the
predicate need not be incorrect. In the flex example we
showed above, by enforcing the outcome of a predicate we
avoided searching for potential modifications of values for
chk[], offset, or base[] which are integer variables and
thus can take many different values.

The execution perturbation needed for locating critical
predicates is similar to the one needed for the recovery of
relevant predicates. So far we only discussed switching of
a single predicate instance outcome. In general, more com-
plex and interesting situations can exist for which more so-
phisticated changes in control flow are required. For ex-
ample, the complexity of the fault may cause multiple in-
stances of multiple distinct predicates to evaluate incor-
rectly. Thus in such a situation it will be necessary to alter
several predicate outcomes during execution. Next, the pro-
gram may contain multiple distinct faults and even though
in the failing run a single fault is encountered, after switch-
ing a predicate outcome, additional faults may be encoun-
tered. Finally we will address issues of efficient imple-
mentation of multiple program executions required for this
technique. We will explore tradeoffs between repeated full
executions of the program to explore the search space and
partial re-executions based upon an ability to rollback the
execution to the desired point, forcing a change in a predi-
cate’s outcome, and continuing execution. We will develop
an algorithm for automatically and dynamically selecting
between these two options.

5

3. Positive Evidence: Fine-Grained Pruning

Next we describe a strategy for fine-grained pruning of
the fault candidate set. For the purpose of this discussion let
us assume that the fault candidate set is the backward dy-
namic slice. We observe that some of the statements used in
computing the incorrect value may also have been involved
in computing correct values (e.g., a value produced by a
statement in the dynamic slice of the incorrect value may
also have been used in computing a correct output value
produced by the program prior to producing the incorrect
value). Based upon further analysis of the program we may
be able to determine that some of these statements are there-
fore very highly likely to be correct and thus they can be
removed from the fault candidate set [7].

Z = Z−2

value
incorrect

correct
value

correct
value

Y = ..0 9

X = .. 201

2 Z = Y+1 10

X = X+1 213

if X > Y T4

X = X+1 225 20X = X−1 11

6 0T = Z%2 1220T = Z%3

10 11Write Z

Write T 09

Write X 228

F

error

Z = Y+2

T

7
1311 20Z = Z+1

dynamic

Y = ..0 9

X = .. 201

2 Z = Y+1 10

X = X+1 213

if X > Y T4

X = X+1 225

6 0T = Z%2

10 11Write Z

Write T 09

Write X 228

7
11Z = Z+1

?

?

data
dynamic

dependences

dependences
control

(a) Program Execution. (b) Dynamic Dep. Graph.

Figure 4. Pruning a dynamic slice.

Figure 4(a) shows an execution of program that follows
the path corresponding to the true evaluation of the predi-
cate at node 4. The value shown to the right of each state-
ment is the value computed by the statement during execu-
tion. The dynamic dependence graph of this execution is
shown in Figure 4(b) – the solid edges are data dependence
edges while dotted edges are control dependence edges.
The nodes in the dynamic slice of the incorrect output value
produced by statement 10 include {0, 1, 2, 3, 4, 7, 10}. Now
let us see how the correct outputs produced by statements 8
and 9 are used to mark the nodes in the backward full dy-
namic slice of the incorrect output as being correct or po-
tentially faulty.

From the correct output value of X written by statement
8 we infer that the values produced by statements 1, 3 and
5 are also correct. The reasoning on which this inference

is based is as follows. The statements 3 and 5 represent
one-to-one mappings between the used operand values
and generated result values of X . Therefore any change
in the values produced by 1, 3 or 5 will cause the value
output at statement 8 to change. However, the value output
at statement 8 is known to be correct. Thus, we mark
statements 1, 3 and 5 with

√
indicating that they produce

correct values. We further conclude that the true evaluation
of predicate X > Y is also correct. This is because if
X > Y would have evaluated to false, it would have
produced a different output value for X at statement 8.
Given the above observations, the pruned dynamic slice of
incorrect value output at statement 10 will never include
statements 1, 3, 4 and 5.

While in this paper we have briefly described our key
ideas, more detailed experimental studies can be found in
[5, 4, 7, 6].

References

[1] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty
Code Using Failure-Inducing Chops,” ASE, 2005.

[2] T. Gyimothy, A. Beszedes, I. Forgacs, “An Efficient Relevant
Slicing Method for Debugging”, ESEC/FSE, 1999.

[3] B. Korel and J. Laski, “Dynamic Program Slicing,” IPL, 29:3,
1988.

[4] X. Zhang, N. Gupta, and R. Gupta, “Locating Faulty Code By
Multiple Points Slicing,” SP&E journal, to appear.

[5] X. Zhang, N. Gupta, and R. Gupta, “A Study of Effectiveness
of Dynamic Slicing in Locating Real Faults,” Empirical Soft-
ware Engineering journal, to appear.

[6] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards Lo-
cating Execution Omission errors,” submitted PLDI 2007.

[7] X. Zhang, N. Gupta, and R. Gupta, “Pruning Dynamic Slices
With Confidence,” PLDI, 2006.

[8] X. Zhang, R. Gupta, and N. Gupta, “Locating Faults Through
Automated Predicate Switching,” ICSE, 2006.

[9] X. Zhang, H. He, N. Gupta, and R. Gupta “Experimental Eval-
uation of Using Dynamic Slices for Fault Location”, AADE-
BUG, 2005.

[10] X. Zhang and R. Gupta, “Cost Effective Dynamic Program
Slicing,” PLDI, 2004.

[11] A. Zeller, “Yesterday, My Program Worked. Today, It Does
Not. Why?,” ESEC/FSE, 1999.

[12] A. Zeller and R. Hildebrandt, “Simplifying and Isolating
Failure-Inducing Input,” IEEE TSE, 28:2, Feb. 2002.

[13] P. Zhou et al., “Accmon: Automatically Detecting Memory-
related Bugs via Program Counter-based Invariants,” MICRO,
2004.

[14] http://www.cse.unl.edu/∼galileo/sir

6

