
Profile Guided Selection of ARM and Thumb
Instructions

Arvind Krishnaswamy
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

arvind@cs.arizona.edu

Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

gupta@cs.arizona.edu

ABSTRACT
The ARM processor core is a leading processor design for the em-
bedded domain. In the embedded domain, both memory and energy
are important concerns. For this reason the 32 bit ARM processor
also supports the 16 bit Thumb instruction set. For a given program,
typically the Thumb code is smaller than the ARM code. Therefore
by using Thumb code the I-cache activity, and hence the energy
consumed by the I-cache, can be reduced. However, the limitations
of the Thumb instruction set, in comparison to the ARM instruc-
tion set, can often lead to generation of poorer quality code. Thus,
while Thumb code may be smaller than ARM code, it may perform
poorly and thus may not lead to overall energy savings.

We present a comparative evaluation of ARM and Thumb code
to establish the above claims and present analysis of Thumb in-
struction set restrictions that lead to the loss of performance. We
propose profile guided algorithms for generating mixed ARM and
Thumb code for application programs so that the resulting code
gives significant code size reductions without loss in performance.
Our experiments show that this approach is successful and in fact
in some cases the mixed code outperforms both ARM and Thumb
code.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Architectures;
D.3.4 [Programming Languages]: Processors—compilers

General Terms
Algorithms, Measurement, Performance

Keywords
16/32 bit instructions, code size and speed, low power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02, June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

1. INTRODUCTION
In the embedded domain, applications must often execute under

constraints of limited memory and they must also be energy effi-
cient. One avenue of reducing the memory needs of an application
program is through the use of code compression techniques. The
ARM family of processors provides a unique opportunity for code
size reduction. In addition to supporting the 32 bit ARM instruc-
tion set, these processors also support a 16 bit Thumb instruction
set. By using the Thumb instruction set it is possible to obtain sig-
nificant reductions in code size in comparison to the corresponding
ARM code. Our experiments show that often these reductions are
in the neighborhood of 30%. The MIPS-16[8] embedded processor
also supports this dual instruction set feature.

As a result of the reduction in code size, the instruction cache en-
ergy expended in Thumb mode is also significantly lower in com-
parison to the ARM code. In our experiments a savings of up to
19% in instruction cache energy was observed. The instruction
cache energy is significant percentage of total energy expended in
embedded processors. In fact in a recent study it was shown that
for a system consisting of a 4 issue CPU with a memory hierarchy
consisting of separate L1 and L2 instruction and data caches, and a
low power disk, the L1 instruction cache energy was 22% of total
energy expended by the system [3]. The L1 instruction cache used
in this study was a 2-way associative 32Kb cache which had a line
size of 16 words. In contrast the ARM processor is a single issue
processor with a 32-way instruction cache. Therefore the energy
expended by the instruction cache is an even greater percentage of
total energy expended.

While the use of Thumb instructions generally gives smaller code
size and lower instruction cache energy, there are certain problems
with using the Thumb mode. In many cases the reductions in code
size are obtained at the expense of a significant increase in the num-
ber of instructions executed by the program. In our experiments
this increase ranged from 9% to 41%. In fact in case of one of the
benchmarks, the increase in dynamic instruction count was so high
that instead of obtaining reductions in cache energy used, we ob-
served an increase in the total amount of energy expended by the
instruction cache.

From the above discussion it is clear that approaches are needed
to generate mixed ARM and Thumb code that simultaneously pro-
vides compact code size, low energy, and good performance. We
present a profile guided approach for generating mixed code which
maximizes the use of Thumb code, in order to obtain small code
size, without causing appreciable loss in performance. For those
functions in which significant amounts of execution time is spent,
if the Thumb code runs slower than the ARM code, we choose to
either use ARM code or generate a mixture of ARM and Thumb

code. The remainder of the program is compiled into Thumb code.
We present a number of different heuristics, each having a different
cost associated with them, to identify functions that should be com-
piled into ARM code and compare their performance. We demon-
strate that in general these approaches are quite effective in simul-
taneously reducing code size and achieving good performance. The
reduction in I-cache activity also reduces the energy consumed by
the I-cache. Reducing cache energy is important because for the
ARM processor the cache energy can account for around 40% of
total energy consumed by the processor.

The main contributions of this paper are:

• We carry out a comparative evaluation of ARM and Thumb
code for a set of applications taken from the Mediabench
suite. We show that typically ARM code runs faster than
Thumb code but the Thumb code is of smaller size and it
therefore also provides better I-cache behavior.

• The main causes of the loss in performance when running the
Thumb code, in comparison to the ARM code, are identified
by comparing the code generated for the above applications.
The differences in the codes are traced back to the difference
in the ARM and Thumb instruction sets.

• Profile guided algorithms for generating mixed code to achieve
both compact code size and good performance are presented.
We show that this approach is successful. The algorithms
presented differ in the cost of identifying the code segments
that must be compiled into ARM code. All remaining code
is compiled into Thumb code.

The remainder of the paper is organized as follows. In section 2
a brief overview of the ARM processor architecture is given. Sec-
tion 3 presents a comparative evaluation of ARM and Thumb code.
In sections 4 and 5 we present two approaches for profile guided
generation of mixed ARM and Thumb code along with their eval-
uation. Conclusions are given in section 6.

2. ARCHITECTURE OVERVIEW

2.1 Processor Pipeline
ARM processor core is often used as a macrocell is building ap-

plication specific system chips. At the same time a number of stan-
dard CPU chips based upon the ARM core are also available [2]
(e.g., ARM810, StrongARM SA-110 [4], XScale [5]). While the
pipelines used by each of these CPU chips varies, they all perform
in order execution. Our work is based upon the StrongARM SA-
110 pipeline which consists of five stages: (i) instruction fetch; (ii)
instruction decode and register read; branch target calculation and
execution; (iii) Shift and ALU operation, including data transfer
memory address calculation; (iv) data cache access; and (v) result
write-back to register file.

2.2 Thumb Implementation
The Thumb instruction set is easily incorporated into an ARM

processor with a few simple changes. The basic instruction execu-
tion core of the pipeline remains the same because it is designed to
only execute ARM instructions. A Thumb instruction decompres-
sor is added to the instruction decode stage. The decompressor is
designed to translate a Thumb instruction into an equivalent ARM
instruction. The addition of the decompressor in series with the
instruction decoder does not increase the cycle time as the ARM
decoder is quite simple and does little work during the decode cy-
cle.

32 bit word from fetch stage

ARM Instruction
Decoder

MUX

MUX

Decompressor
Thumb

Select
Half−word

Figure 1: Thumb Implementation.

2.3 ARM vs. Thumb Instruction Sets
Some of the important differences between the two instruction

sets are as follows. Most Thumb instructions cannot be predicated
while ARM supports full predication. Most Thumb instructions
use a 2-address format (destination register is the same as one of
the sources) while ARM supports 3-address format for manipulat-
ing 32 bit data. Visible registers in Thumb mode are r0 through
r7; only some instructions, mainly MOVE and ADD instructions,
can directly address registers r8 through r15. In ARM mode all
sixteen registers from r0 through r15 are visible.

2.4 The Branch and Exchange Instruction
This instruction can be used to switch between ARM and Thumb

modes. The current mode in which the processor is executing is in-
dicated by the T bit which is bit 5 of the CPSR (Current Program
Status Register). This bit is appropriately changed when the proces-
sor mode is switched. Let us assume that the processor is in ARM
mode. The BX Rm instruction provides the ability for the proces-
sor to switch to executing Thumb instructions as follows. When
executing ARM instructions, the execution of BX Rm instruction
can be used to begin executing Thumb instructions. BX Rm has
the following semantics. If bit Rm[0] is 1, the processor switches
to execute Thumb instructions. It begins executing at the address
in Rm aligned to a half-word boundary by clearing the bottom bit.
If bit Rm[0] is 0 then the processor continues to execute ARM
instructions, that is, BX simply behaves as a branch instruction in
this case. Similarly the BX instruction can be used to switch from
Thumb mode to ARM mode.

3. ARM CODE VS. THUMB CODE
We started out by carrying out a study which compared the char-

acteristics, both code size and performance, of ARM only and Thumb
only versions of application programs. The purpose of this study
was to first experimentally establish our claim that typically Thumb
code is smaller in size while ARM code executes faster. We also
wanted to gain insights into the reasons for the above behavior and
how mixed code may be generated to achieve both small code size
and good performance. Before we describe the results of this study,
we describe the experimental set up used in this work.

3.1 Experimental Setup

Processor simulator
We started out with a port of Simplescalar [1] to ARM available
from the University of Michigan. This version simulates the five
stage pipeline described in the preceding section which is the In-
tel’s SA-1 StrongARM pipeline [4] found in for example the SA-
110. The I-Cache configuration for this processor are: 16Kb cache
size, 32b line size, and 32-way associativity, and miss penalty of
64 cycles (a miss requires going off-chip). The timing of the model
has been validated against a Rebel NetWinder Developer worksta-
tion [10].

We have extended the above simulator in two important ways
for this research. First we modified Simplescalar to use the sys-
tem call conventions followed by the Newlib C library instead
of glibc which it currently uses. We made this modification be-
cause Newlib has been developed for use by embedded systems
[6]. Second we incorporated the implementation of Thumb instruc-
tion set into Simplescalar. The original version of the simulator was
built to only execute ARM code. The mechanism for switching be-
tween Thumb and ARM modes was implemented. The instruction
fetch mechanism also had to be modified to appropriately deal with
fetches of Thumb instructions. The semantics of the BX instruction
was implemented to switch processor modes.

Optimizing compiler
The compiler we used in this work is the gcc compiler which was
built to create a version that supports generation of mixed ARM
and Thumb code. Specifically we use the
xscale-elf-gcc compiler version 2.9-xscale. Each mod-
ule in the application can be compiled into either Thumb code or
ARM code. The transitions between the modes at function bound-
aries are also taken care of by the compiler. From the above per-
spective, the libraries are treated as a single module, that is, either
they are compiled into ARM code or completely into Thumb code.
All programs were compiled at -O2 level of optimization. We did
not use -O3 because at that level of optimization function inlining
and loop unrolling is enabled. Clearly since the code size is an im-
portant concern for embedded systems, we did not want to enable
function inlining and loop unrolling.

Representative benchmarks
The benchmarks we have used in this work are taken from the Me-
diabench [7] suite as they are representative of a class of applica-
tions important for the embedded domain. The following programs
are used in this work:

Adaptive differential pulse code modification audio
coding: adpcm - rawcaudio and rawdaudio.

Voice compression coder based on G.711, G.721, and
G.723 standards: g721 - decode and encode.

A lossy image compression decoder:
jpeg - cjpeg and djpeg.

OpenGL graphics clone: using Mipmap quadrilateral
texture mapping: mesa - mipmap, osdemo, & texgen.

A public key encryption scheme:
pegwit - gen, encrypt, and decrypt.

3.2 Performance Data
The comparison of code sizes and execution times of the ARM

and Thumb versions of the programs are made in Tables 1 and 2 re-
spectively. The size of the Thumb code is always smaller by around
30%. However, the execution times of the Thumb code exceed that

of the ARM code in all benchmarks except pegwit. The execu-
tion time of the Thumb code exceeds that of ARM code by a small
amount in some cases (e.g., around 5% for g721) while in other
cases the Thumb execution time exceeds that of ARM execution
time by a much higher amount (e.g., up to 30% for adpcm).

Two factors impact the relative execution times of ARM and
Thumb codes: instruction cache behavior which is usually better
for the Thumb code; and the instruction counts which are better
(i.e., lower) for the ARM code. The data in Table 3 shows two
things. First, the I-cache misses for the Thumb code are signifi-
cantly lower than I-cache misses encountered by the ARM code.
Second, even though the Thumb code executes greater number of
instructions, the number of I-cache accesses made by the Thumb
code are lower because typically each cache access fetches two
useful Thumb instructions. The only exception is adpcm for which
Thumb code performs around 20% more I-cache accesses than the
ARM code. Since the I-cache behavior of the Thumb code is su-
perior to that of ARM code, in all cases except adpcm, we also
observed net savings in I-cache energy as shown in Table 4. These
energies were computed using the cache energy models available
through the cacti tool [12, 9].

The data in Table 5 compares the number of instructions exe-
cuted by the Thumb and ARM codes. As we can see, the number
of instructions executed by Thumb code are significantly higher.
The increase ranges from around 9% to around 41%. This substan-
tial increase in the number of instructions executed by the Thumb
code more than offsets the improved I-cache behavior of the Thumb
code. Therefore the net result is higher cycle counts for the Thumb
code in comparison to the ARM code. More importantly we can
conclude that while Thumb code is smaller and typically expends
lesser amount of I-cache energy, these improvements are at the
cost of net performance loss as the corresponding ARM code gives
lower cycle counts.

4. COARSE GRAINED GENERATION
OF MIXED CODE

The basic approach that we take for generating mixed code con-
sists of two steps. First we find the frequently executed functions
once using profiling (e.g., using gprof). These are functions which
take up more than 5% of total execution time. Second we use
heuristics for choosing between ARM and Thumb codes for these
frequently executed functions. For all other functions, we generate
Thumb code. The above approach is based upon the observation
that we should use Thumb mode whenever possible. Functions for
which the use of Thumb code results in significantly lower overall
performance must be compiled into ARM code. Since each func-
tion is either compiled entirely into Thumb code or entirely into
ARM code, we refer to this approach as the coarse grained ap-
proach.

4.1 Heuristics
In order to decide between the use of ARM code and Thumb

code for a frequently executed function, we essentially compare
the characteristics of the ARM and Thumb code for that function.
Based upon the expected performance of the two versions of the
functions (ARM and Thumb) and their relative code sizes we make
the final decision. We considered four different methods for mak-
ing these decisions. The reasons for considering these different
methods is the variation in their costs.

Table 1: Code Size Comparison.

Benchmark ARM Thumb Thumb
ARM

adpcm.rawcaudio 34096 23664 .6940
adpcm.rawdaudio 34080 23652 .6940

g721.encode 40552 28456 .7017
g721.decode 40576 28448 .7011
jpeg.cjpeg 106088 72344 .6819
jpeg.djpeg 121628 83908 .6898
mesa.mipmap 535352 387132 .7231
mesa.osdemo 564632 406344 .7196
mesa.texgen 533284 385824 .6833
pegwit.gen 72320 49304 .6817

pegwit.encrypt 72320 49304 .6817
pegwit.decrypt 72320 49304 .6817

Table 2: Cycle Count Comparison.

Benchmark ARM Thumb Thumb
ARM

adpcm.rawcaudio 2071274 2566574 1.2391
adpcm.rawdaudio 6942616 9055648 1.3043
g721.encode 361119677 381726744 1.0571
g721.decode 354906683 372925996 1.0571
jpeg.cjpeg 20614675 21685533 1.0519
jpeg.djpeg 5802652 7153019 1.2327
mesa.mipmap 2653507400 3175706544 1.1967
mesa.osdemo 251196387 288795297 1.1496
mesa.texgen 3762798283 4047500837 1.0757
pegwit.gen 63909156 63710588 0.9968

pegwit.encrypt 84410014 84294656 0.9986
pegwit.decrypt 64980516 63055496 0.9704

Table 3: Instruction Cache Behavior Comparison.

Benchmarks Cache Misses Cache Accesses
ARM Thumb ARM Thumb Thumb

ARM

adpcm.rawcaudio 210 173 2085582 2487321 1.1926
adpcm.rawdaudio 209 161 7142252 8656657 1.2120

g721.encode 372 282 388292504 356402511 0.9179
g721.decode 366 284 383378854 347620045 0.9067
jpeg.cjpeg 1626 1049 21607218 18529610 0.8575
jpeg.djpeg 1436 1049 5838698 4783569 0.8192
mesa.mipmap 78698 2573 2846469261 2678714821 0.9410
mesa.osdemo 124121 60889 253706375 234808518 0.9255
mesa.texgen 3649717 204271 3951507585 3610368903 0.9137
pegwit.gen 842 597 18478306 15804550 0.8553

pegwit.encrypt 1032 729 39739724 32341975 0.8138
pegwit.decrypt 947 671 18819087 16087933 0.8549

Table 4: Instruction Cache Energy (Joules).

Benchmark ARM Thumb Thumb
ARM

adpcm.rawcaudio 0.18995 0.22654 1.1925
adpcm.rawdaudio 0.65047 0.78838 1.2120

g721.encode 36.1547 32.2162 0.8910
g721.decode 35.7717 31.4428 0.8789
jpeg.cjpeg 1.96793 1.68759 0.8575
jpeg.djpeg 0.53186 0.43551 0.8188
mesa.mipmap 259.208 243.952 0.9411
mesa.osdemo 23.1165 21.3897 0.9252
mesa.texgen 360.199 328.817 0.9128
pegwit.gen 1.68291 1.43938 0.8552
pegwit.enc 3.61917 2.94528 0.8138
pegwit.dec 1.71395 1.46519 0.8548

Table 5: Instruction Count Comparison.

Benchmark ARM Thumb Thumb
ARM

adpcm.rawcaudio 1930162 2551796 1.3220
adpcm.rawdaudio 6380437 9024731 1.4144
g721.encode 297717704 350277214 1.1283
g721.decode 293620043 343674187 1.1334
jpeg.cjpeg 17969381 20183770 1.1232
jpeg.djpeg 4854534 6485051 1.3358
mesa.mipmap 2169393328 2748271643 1.2668
mesa.osdemo 192999016 240092504 1.2440
mesa.texgen 2918265376 3470919050 1.1893
pegwit.gen 15758948 17233370 1.0935

pegwit.encrypt 33906995 36880766 1.0877
pegwit.decrypt 16045351 17529285 1.0935

Heuristic I
This method is the most precise. The ARM and Thumb versions of
the program are executed on the simulator and the cycle counts for
each relevant function are measured. If, for a given function, the
cycle count for the Thumb version is lower than the ARM version,
then we choose to use the Thumb version for that function; other-
wise we use the ARM version. The advantage of using cycle counts
is that it takes into account not only the number of instructions exe-
cuted by the two code versions, but also the cache behaviors of the
two code versions.

While the above approach is quite precise because it uses the
cycle counts to determine which of the two versions is superior,
ARM or the Thumb, it is also expensive since the executions of the
ARM and Thumb versions of the code must be simulated to obtain
the cycle counts. In fact this is the most expensive method that we
propose.

Heuristic II
In this method, instead of using cycle counts for functions, we sim-
ply use instruction counts. In other words we use Thumb code for a
function if that gives a lower instruction count than the correspond-
ing ARM version; otherwise we use the ARM version. The instruc-
tion counts are less precise because they do not account for I-cache
behavior. Recall that Thumb code usually experiences fewer cache
misses.

While this second approach is less precise, it is also less expen-
sive. We no longer need to simulate the executions of ARM and
Thumb versions of a program. Instead we need to simply collect
profiles in form of basic block counts by executing the ARM and
Thumb versions of the code.

Heuristic III
This heuristic simply uses the relative sizes of ARM and Thumb
code to decide upon which version to use. Note that if the ARM
version were perfectly compressed during generation of the Thumb
version, then we can expect the size of the Thumb version to be half
the size of the ARM version as the instruction size is halved when
we go from 32 bit to 16 bit instructions. However, as we know
from the data presented earlier, the Thumb code is typically only
30% smaller than the ARM code. Less compression implies that
Thumb code contains extra instructions which may be executed
at runtime. Therefore we set a threshold value T such that if the
Thumb code for a function is more than T% smaller than the corre-
sponding ARM code, then we use the Thumb code; otherwise we
use the ARM code for the function.

While this approach requires generation of ARM and Thumb
versions of the code for each function, it does not require their exe-
cution. Therefore this method is very inexpensive. Of course this is
the most approximate method among the three heuristics we have
presented so far.

Heuristic IV
In this final method we use a combination of instruction counts and
relative code sizes to make the decisions. In particular we use the
Thumb code if one of the following conditions hold: (a) the Thumb
instruction count is lower than the ARM instruction count; or (b)
the Thumb instruction count is higher by no more than T1% and
the Thumb code size is smaller by at least T2%.

The idea behind this heuristic is that if the Thumb instruction
count for a function is slightly higher than the ARM instruction
count, it still may be fine to use Thumb code if it is sufficiently
smaller than the ARM code as the smaller size may lead to fewer

instruction cache accesses and misses for the Thumb code. There-
fore the net effect may be that the cycle count of Thumb code may
not be higher than the cycle count for the ARM code.

The cost of this method is no more than heuristic II as we only
need the code sizes of the ARM and Thumb versions and basic
block counts collected through profiling.

4.2 Implementation
In our implementation, the above heuristics were applied at mod-

ule level and not at individual function level. That is, all functions
in a module are either compiled into Thumb code or all are com-
piled into ARM mode. This approach works well because if closely
related functions are compiled into different modes, optimizations
across function boundaries are disabled and their is a loss in perfor-
mance as a result. From the above perspective, the libraries used by
a program are treated as a single module, that is, either we link the
program with a version of the libraries that are completely com-
piled to Thumb code or to a version that is completely compiled
into ARM code.

4.3 Results
The results of our experiments are shown in Tables 6-8. As we

can see for the results, the Mixed code size is significantly smaller
than the ARM code size. In fact the Mixed code size is only slightly
bigger than the Thumb code size. We also observe that the Mixed
code gives instruction cache energy savings over the ARM code.
Moreover the energy savings are comparable to those obtained over
Thumb code (in some cases they are bit higher and others lower and
for some they are unchanged). Finally the cycle count of the Mixed
code is very close to the cycle count of the ARM code. In fact in
some cases it is even slightly smaller.

In summary we can say that the size of the Mixed code is close
to that of Thumb code and its performance is close to that of ARM
code. Therefore this profile guided approach gives best of both
worlds – smaller code size and good performance.

Now let us compare the results of heuristic I with that of the other
three heuristics (II, III, and IV) which are less expensive but not as
precise as heuristic I. For heuristic III we set the threshold T to
35% and for heuristic IV we set the thresholds T1 to 3% and T2 to
40%. For all heuristics, when we encountered a module with func-
tions that needed to be compiled differently we chose to compile
the whole module as ARM code rather than splitting the module
and compiling them differently. In addition to making the heuris-
tics more general and not specializing them for these cases, it also
enables better performance in some cases as the compiler now has
the opportunity to carry out interprocedural optimizations of static
functions in the same module. It is also possible that the perfor-
mance decreases due to a large number of functions in a module
are compiled in ARM rather than Thumb worsening the cache per-
formance.

By comparing the results we see identical results for all heuris-
tics for adpcm, mesa, g721 and pegwit.gen. Although the
results are the same, identical decisions were made only for ad-
pcm and mesa.

In the other two cases the module splitting caveat described above
caused the change in the decisions made by the heuristics result-
ing in identical results. For the other cases we notice that as ex-
pected heuristic II is either as good as heuristic I or slightly worse.
Using heuristic III we get better performance than heuristic II for
jpeg.cjpeg. This is because certain functions which were com-
piled as Thumb using heuristic II have been compiled as ARM us-
ing heuristic III. The lower I-cache performance and larger code

Table 6: Code Size Comparison.

Benchmark Thumb
ARM

Mixed
ARM

I II III IV

adpcm.rawcaudio 0.694 0.695 0.695 0.695 0.695
adpcm.rawdaudio 0.694 0.695 0.695 0.695 0.695

g721.encode 0.701 0.719 0.719 0.719 0.719
g721.decode 0.701 0.719 0.719 0.719 0.719
jpeg.cjpeg 0.681 0.715 0.696 0.730 0.696
jpeg.djpeg 0.689 0.711 0.711 0.700 0.711
mesa.mipmap 0.723 0.772 0.772 0.772 0.772
mesa.osdemo 0.719 0.766 0.766 0.766 0.766
mesa.texgen 0.723 0.771 0.771 0.771 0.771
pegwit.gen 0.681 0.715 0.715 0.715 0.715

pegwit.encrypt 0.681 0.822 0.822 0.715 0.681
pegwit.decrypt 0.681 0.822 0.822 0.715 0.681

Table 7: Instruction Cache Energy Comparison.

Benchmark Thumb
ARM

Mixed
ARM

I II III IV

adpcm.rawcaudio 1.926 0.999 0.999 0.999 0.999
adpcm.rawdaudio 1.212 0.999 0.999 0.999 0.999

g721.encode 0.920 0.992 0.992 0.992 0.992
g721.decode 0.907 0.983 0.983 0.983 0.983
jpeg.cjpeg 0.858 0.903 0.856 0.923 0.856
jpeg.djpeg 0.819 0.866 0.866 0.815 0.866
mesa.mipmap 0.941 0.986 0.986 0.986 0.986
mesa.osdemo 0.926 0.980 0.980 0.980 0.980
mesa.texgen 0.914 0.982 0.982 0.982 0.982
pegwit.gen 0.855 1.130 1.130 1.130 1.130

pegwit.encrypt 0.814 1.283 1.283 1.283 0.814
pegwit.decrypt 0.855 1.325 1.325 1.325 0.855

Table 8: Cycle Count Comparison.

Benchmark Thumb
ARM

Mixed
ARM

I II III IV

adpcm.rawcaudio 1.239 0.999 0.999 0.999 0.999
adpcm.rawdaudio 1.304 0.999 0.999 0.999 0.999

g721.encode 1.057 1.033 1.033 1.033 1.033
g721.decode 1.057 1.039 1.039 1.039 1.039
jpeg.cjpeg 1.051 1.024 1.047 1.033 1.047
jpeg.djpeg 1.232 1.145 1.145 1.234 1.145
mesa.mipmap 1.196 1.017 1.017 1.017 1.017
mesa.osdemo 1.149 1.015 1.015 1.015 1.015
mesa.texgen 1.075 1.004 1.004 1.004 1.004
pegwit.gen 0.996 0.988 0.988 0.988 0.988

pegwit.encrypt 0.998 1.193 1.193 1.193 0.998
pegwit.decrypt 0.970 1.088 1.088 1.088 0.970

size corroborate this behavior. The inverse of this situation occurs
in jpeg.djpeg.

The results for heuristic IV are quite close to heuristic I and
surprisingly better in the case of pegwit.encrypt and peg-
wit.decrypt. The cycle counts for these two benchmarks are
the best when the whole module is compiled as Thumb. Heuristics
I - III choose to compile certain functions as ARM and this re-
sults in poorer performance. This is again attributed to the module
splitting caveat mentioned above. Heuristic IV, on the other hand,
chooses to compile all modules in pegwit.encrypt and peg-
wit.decrypt as Thumb. Therefore in summary, as expected,
heuristic I and IV perform better than heuristics II and III. How-
ever, although we expected that heuristic I would always perform
better than heuristic IV, in the case of pegwit.encrypt and
pegwit.decrypt heuristic IV gives the best performance. In
any case, we can conclude that this coarse grained profile guided
approach is quite effective in generating mixed code.

5. FINE GRAINED GENERATION
OF MIXED CODE

In the preceding approach each function was either compiled
completely into ARM code or completely into Thumb code. The
next question we wanted to answer was whether a finer grained ap-
proach, in which a single function can consist of a mixture of ARM
and Thumb instructions, would result in better overall results. To
develop a method for making decisions at finer grained level, we
begin by analyzing the ARM and Thumb codes generated for the
benchmarks in the preceding section.

5.1 Analysis of Instruction Counts
We know that for some functions the Thumb version executes far

greater number of instructions. We examined the dynamic instruc-
tion counts of major categories of instructions to see how each of
the categories are impacted by the use of Thumb instructions. The
additional instructions executed in Thumb mode were distributed
among four broad types: Branches, ALU operations, register to
register MOVES, and Load/Store instructions. The changes in the
dynamic instruction counts are shown in Table. 9 where a positive
value represents an increase and a negative value a decrease. The
percentage changes were computed as follows:

ThumbCountTypeX − ARMcountTypeX

TotalARMCount
.

There is an increase in branch instructions because Thumb does
not support predication while ARM does. The large increase in
ALU instructions is due to a number of reasons. For example the
difficulty of supplying large immediate operands in Thumb mode
result in extra instructions. The load/store instruction increase be-
cause there are fewer registers directly available to ALU instruc-
tions in Thumb mode and these are assigned to variables for shorter
periods of time.

Surprisingly we found that the number of MOVE instructions is
often lower for the Thumb code. However, upon closer examina-
tion we found that this is actually not the case. When shift op-
erations are needed, the Thumb code generates explicit shift in-
structions which were counted as ALU instructions. However, in
ARM mode, MOVE instructions support a shift amount field which
caused shift instructions to be generated as MOVE instructions.

Next we looked for patterns of equivalent instruction sequences
in Thumb and ARM versions of a function that clearly account for
significant changes in dynamic instruction counts. Our approach
for generating mixed code for a given function is based upon these
patterns. Next we describe our approach.

Table 9: Extra Instructions Executed in Thumb Mode.

Benchmark Branch ALU MOVES Ld/St Total

adpcm.rawcaudio 21.08% -0.08% 9.06% 2.87% 32.93%
adpcm.rawdaudio 20.78% 14.84% 11.60% -5.78% 41.44%

g721.encode 5.36% 17.39% -6.07% 0.96% 17.64%

g721.decode 4.90% 16.20% -4.56% 0.50% 17.04%
jpeg.cjpeg 5.53% 9.76% 5.37% -8.34% 12.32%
jpeg.djpeg 1.02% 20.88% 9.62% 1.02% 32.54%

mesa.mipmap 7.57% 24.03% -15.30% 10.38% 26.68%
mesa.osdemo 7.53% 21.77% -13.93% 9.01% 24.38%
mesa.texgen 11.87% 19.66% -16.89% 4.29% 18.93%

pegwit.gen 3.83% 33.62% -24.43% -3.67% 9.35%
pegwit.encrypt 3.39% 30.07% -19.78% -2.35% 11.33%
pegwit.decrypt 3.81% 33.42% -24.27% -3.71% 9.25%

5.2 Our Approach
Now knowing that the increase in overall Thumb instruction count

is due to several of the above instruction types, we set out to find
frequently occurring patterns in Thumb code that account for sig-
nificant amounts of increase in the overall Thumb instruction counts.
The identification of these patterns forms the basis of our fine grained
approach for generating mixed code. Before we describe these pat-
terns in detail, we present our overall approach for exploiting these
patterns in generating mixed code for a given function.

We begin with the coarse grained mixed code generated by Heuris-
tic IV described in the preceding section. Each function that is
compiled into ARM is a candidate for fine grained mixed code
generation. To generate code for the function, we first generate
the Thumb code for the entire function. Then we identify patterns
of Thumb instructions that are better executed using ARM instruc-
tions. We replace these patterns with equivalent ARM code. At the
transition points we introduce a BX instruction. At entry point of
the ARM sequence a BX instruction switches the processor from
Thumb mode to ARM mode and the reverse happens at the exit of
the ARM sequence.

Thumb
.code 16 ; Thumb instructions follow
...
<pattern>
...

ARM+Thumb
.code 16 ; Thumb instructions follow
...
.align 2 ; making bx word aligned
bx r15 ; switch to ARM as r15[0] not set
nop ; ensure ARM code is word aligned
.code 32 ; ARM code follows
<ARM code> ; pattern
orr r15, r15, #1 ; set r15[0]
bx r15 ; switch to Thumb as r15[0] is set
.code 16 ; Thumb instructions follow
...

Note that in the fine grained approach the module splitting caveat
is no longer relevant. We begin with Thumb code for the entire
program and selectively replace patterns of Thumb code by ARM
code in selected functions.

5.3 Patterns
Some specific patterns that we found by comparing Thumb and

ARM codes generated for the benchmarks used are described next.

These patterns more specifically point to causes of increased in-
struction counts for Thumb code. We categorize these patterns ac-
cording to the type of instructions whose counts they impact the
most.

ALU Instructions
There are a couple of different patterns that we found to occur fre-
quently in our benchmarks that resulted in an increase in the num-
ber of ALU instructions executed in Thumb mode.

The first pattern arises due to a lack of an ability to specify neg-
ative offsets in Thumb mode requires extra ALU instructions to be
used. The example shown below, which is taken from versions of
the ARM and Thumb codes of a function in adpcm coder, illus-
trates this point. The constant negative offset specified as part of the
str store instruction in ARM code is placed into register r1 using
the mov and neg instructions in the Thumb mode. The address
computation of rbase + r1 is also carried out by a separate in-
struction in the Thumb mode. Therefore one ARM instruction is
replaced by 4 Thumb instructions.

ARM
str rs, [rbase - offset]

Thumb
mov r1, offset
neg r1
add r1, rbase
str rs, [r1,#0]

Another commonly occurring pattern is as follows. In ARM
code shifts can be done as part of ALU operations while they have
to be done explicitly using a separate shift instruction in Thumb.
This pattern is illustrated by the example that follows.

ARM
sub r5, r3, lsl #2

Thumb
lsl r4, r3, #2
sub r5, r4

Branch Instructions
Again there are a couple of frequently occurring patterns that be-
long to this category. The first reason for more branches in Thumb
code is that unlike ARM mode full predication is not supported
in Thumb mode. The example below illustrates this using a code
fragment taken from function emit eobrun from cjpeg. The

ldmeqia is a predicated load multiple in ARM code. Note that
the last register is the pc (program counter) as this code fragment
actually implements a return from a function. In Thumb mode ex-
plicit branching has been introduced. The pop instruction performs
multiple load into registers.

ARM
cmp r3, #0
ldmeqia sp!, {r4, r5, r6, r7, pc}
Thumb
f352: cmp r3, #0
f354: bne f358 <emit eobrun+0x10>
f356: b f4a2 <emit eobrun+0x156>
...
f4a2: pop {r4, r5, r6, r7, pc}

Another pattern that shows use of more branches in Thumb code
is as follows. In the ARM mode, we can return from a function
by simply moving the contents of the link register to the program
counter as shown below. In contrast, in the Thumb mode the BX
instruction may be used. When this is the case, we cannot sim-
ply execute BX using the link register because it is a high register.
Hence the typical sequence shown below, which requires additional
instructions, is used.

ARM
mov pc, lr

Thumb
mov lowreg, LR
bl <call via lowreg>
...
<call via lowreg>:
bx lowreg
nop

MOVE Instructions
Some extra move instructions are introduced in Thumb mode dur-
ing the saving and restoring of registers at function boundaries. Be-
cause the high registers (r8 through r15) can be accessed only by
mov, cmp and add instructions in Thumb mode, saving of regis-
ters by the callee has to involve the moving of high registers to low
registers before they can be saved. The following code fragment
taken from function rgb gray convert illustrates this point.

ARM
stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11,lr}
Thumb
push {r4, r5, r6, r7, lr}
mov r7, r11
mov r6, r10
mov r5, r9
mov r4, r8
push {r4, r5, r6, r7}

Since higher order registers are not accessible directly by many
instructions in the Thumb mode, extra moves are required to first
move the data from a higher order to a lower order register. We
illustrate this pattern through an example which shows how the base
index for loads when using based indexing addressing for loads is
affected. In the Thumb mode, the base is saved in one of the higher
order registers. Each time a load is needed the contents are moved
to a lower register and the ldr instruction is executed using this
low register.

ARM
ldr reg, [reg, #offset]
Thumb
mov lowreg, highreg
ldr reg, [lowreg, #offset]

5.4 Results
We applied the above fine grained approach to the benchmarks

and compared its performance with that of coarse grained heuris-
tic IV. Our implementation at this point incorporates two most fre-
quently found patterns: the pattern involving additional branches in
Thumb code due to lack of full predication and the pattern involv-
ing extra move instructions at function boundaries for saving and
restoring high order registers.

The results of the experiments are shown in Table 10. For bench-
marks g721 and jpeg we observe that the code size is reduced by
using fine grained approach over heuristic IV because greater por-
tions of the program are compiled into Thumb code by the fine
grained approach. As a result the I-cache energy consumption is
also reduced. However, instead of seeing lower cycle counts, we
see a small increase. This is because the patterns of Thumb code
being replaced by ARM code are small and therefore the savings
achieved by using ARM instructions are often more than offset by
two additional BX instructions that must be introduced.

Table 10: Fine Grained vs. Heuristic IV.

Benchmark Fine−Grained
HeuristicIV

Code Cycle I-Cache
Size Counts Energy

adpcm.rawcaudio 1.0033 1.4812 1.4421
adpcm.rawdaudio 1.0033 1.6882 1.6189

g721.encode 0.9788 1.0588 0.9424
g721.decode 0.9779 1.0516 0.9383
jpeg.cjpeg 0.9895 1.0084 0.9958
jpeg.djpeg 0.9805 1.0773 0.9419
mesa.mipmap 1 1 1
mesa.osdemo 1 1 1
mesa.texgen 1 1 1
pegwit.gen 0.9613 1.0095 0.7526

pegwit.encrypt 1.0081 1.0189 1.0140
pegwit.decrypt 1.0081 1.0049 0.9940

For the adpcm benchmark the fine grained approach performs
rather poorly. This is because in this benchmarks the patterns being
considered occurred very frequently and in fact after replacing the
patterns of Thumb code by equivalent ARM code surrounded by
BX instructions actiually increase the code size, cycle counts, and
I-cache energy.

There is no change observed for the mesa benchmark because in
this case heuristic IV decided to compile all application functions
into Thumb code as most the time is spend in library code. Since
the application functions do not account for a significant portion
of the execution time, pattern replacement is not applied to these
functions.

The behavior of pegwit.gen is along the same lines as g721
and jpeg. However, the same is not true for
pegwit.encrypt and pegwit.decrypt. For these two pro-
grams heuristic IV chooses to compile all as application code into

Thumb due to the module splitting caveat. But for fine grained we
can replace patterns without carrying out module splitting and with-
out effecting interprocedural optimization. So inspite of heuristic
IV choosing to generate all Thumb code, we take those functions
which were not compiled into ARM because of module splitting
and do fine grained pattern replacement in them. The result of
pattern replacement is a very slight increase in code size and cy-
cle count for both encrypt and decrypt. For decrypt the
I-cache energy is slightly reduced while for encrypt it is slightly
increased..

In summary we can say that surprisingly the application of fine
grained pattern replacement does not yield additional improvements
over coarse grained strategy. While smaller code size and lower
cache energy can be achieved, the cycle counts are increased. This
is because the cost of using two BX instructions per pattern is too
high and therefore the expected improvements from using ARM
code instead of Thumb code are wiped out. In fact very often the
patterns we replace belong to frequently executed loops. The BX
instructions introduced by the fine grained approach are also there-
fore introduced inside these loops. To avoid this problem one ap-
proach could be to translate larger code segments into ARM code
so that the BX instructions appear outside loops. However, this ap-
proach cannot be effectively applied as a postpass because typically
it requires significant changes to the program’s register allocation.
In contrast the coarse grained approach would place the BX instruc-
tions at function boundaries which may be executed much less fre-
quently. Therefore the coarse grained approach is much more ef-
fective.

6. CONCLUSIONS
Our comparison of ARM and Thumb executables shows that

ARM code gives better performance at the cost of larger code size
and higher I-cache energy, while Thumb code results in smaller
code size and lower I-cache energy at the cost of lower perfor-
mance. Our approach for generating mixed ARM and Thumb code
simultaneously delivers high performance, small code size and low
I-cache energy.

We presented coarse grained heuristics with varying costs to make
the decisions between using ARM and Thumb code at the module
level. We also presented a fine grained method which has the ability
of generating mixed ARM and Thumb code for a single function.
Our results show that using the coarse grained heuristics presented
it is indeed possible to simultaneously achieve good performance,
small code size, and low instruction cache energy. Surprisingly in
some cases the mixed code performs even better than ARM version
of the program. The fine grained heuristic does not give any signif-
icant additional improvement because the cost of switching mode
using BX instruction is too high.

7. ACKNOWLEDGEMENTS
This work is supported by DARPA award F29601-00-1-0183 and

National Science Foundation grants CCR-0208756, CCR-0105535,
CCR-0096122, and EIA-9806525 to the University of Arizona.

8. REFERENCES

[1] D. Burger and T.M. Austin, “The Simplescalar Tool Set,
Version 2.0,” Computer Architecture News, pages 13–25, June
1997.

[2] S. Furber, “ARM system Architecture,” Publisher: Addison
Wesley Longman, 1996.

[3] S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N.
Vijaykrishnan, and M. Kandemir, “Using Complete Machine
Simulation for Software Power Estimation: The SoftWatt
Approach,” The Eight International Symposium on High
Performance Computer Architecture (HPCA-8), Feb. 2002.

[4] Intel Corporation, “SA-110 Microprocessor Technical
Reference Manual,”
ftp://download.intel.com/design/strong/applnots/
27819401.pdf.

[5] Intel Corporation, “The Intel XScale Microarchitecture
Technical Summary,”
ftp://download.intel.com/design/intelxscale/
XScaleDatasheet4.pdf.

[6] J. Johnston, Maintainer, Newlib -
http://sources.redhat.com/newlib/.

[7] C. Lee, M. Potkonjak, and W.H. Mangione-Smith,
“Mediabench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” IEEE/ACM
International Symposium on Microarchitecture (MICRO),
Research Triangle Park, North Carolina, December 1997.

[8] MIPS Technologies, “MIPS32 Architecture for Programmers
Volume IV-a: The MIPS16 Application Specific Extension to
the MIPS32 Architecture,” March 2001.

[9] G. Reinman and N. Jouppi, “An Integrated Cache Timing and
Power Model,” Technique Report, Western Research Lab.,
1999.

[10] rebel.com, Netwinder Family,
http://www.rebel.com/netwinder.

[11] D. Seal, Editor, “ARM Architecture Reference Manual,”
Second Addition, Addison-Wesley.

[12] S. Wilton and N.Jouppi, “An Enhanced Access and Cycle
Time Model for On-Chip Caches,” Technique Report, Western
Research Lab., May 93.

