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12AbstratAdvanes in program pro�ling tehniques have led to advanes in ompiler optimiza-tion tehniques, and vie versa. This dissertation makes ontributions in the areasof program pro�ling as well as pro�le guided optimizations. More spei�ally, it de-signs and evaluates a new ompressed representation for pro�le data suh that pro�leguided optimizations an bene�t from it. A type-based value pro�ling tehnique isalso developed suh that new data ompression tehniques an be designed to exploitvalue redundany present in program data.A timestamped whole program path (TWPP+) representation is proposed toompress program traes whih ontain both ontrol ow and memory address infor-mation. Instead of onsidering a trae as a stream of symbols, TWPP+ divides aomplete trae into a ontrol ow trae part and a memory dependene trae part;eah part is then reorganized to allow fast retrieval of information during data owanalyses. Exeution pro�les an thus be integrated to help a broad range of ompileranalyses and optimizations. Three di�erent appliations are shown to demonstratethe strength of this new representation.A type-based value pro�ling framework is developed to help identify redundany indata values and thus design new data ompression tehniques for improving memorybehavior. Two types of redundanies are identi�ed in representations of small valuesand pointer addresses respetively. Both software and hardware approahes are pro-posed and evaluated to exploit these opportunities. The software approah throughdata ompression transformations greatly redues the memory footprint and speedsup the program exeutions with the help of six speially designed data ompressioninstrutions. The hardware approah employs ompression to enable partial aheline prefething resulting in onsistent improvements in the program's exeution timeand redution in memory traÆ.
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Chapter 1IntrodutionTraditionally ompile-time optimization algorithms are applied only in situationswhere it is known that the optimization is de�nitely appliable and will generatebene�ial results. However, suh a onservative approah fails to exploit many valu-able optimization opportunities. A pro�le-guided optimizer uses the information ofa program's past exeutions in two ways to aggressively optimize the program. Firstthe pro�les an be used to identify new optimization opportunities that are frequentlyobserved during program exeution but are not deteted by stati analyses. Seondthe pro�les an be used to arry out sophistiated ost-bene�t analysis to apply trans-formations that improve the performane of one part of the program at the expenseof a performane loss in another part of the program.
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Figure 1.1. Overview of pro�le-guided ompilation.Figure 1.1 summarizes the steps of a typial pro�le-guided ompilation. Beforeperforming any optimization, an instrumented version of the program is generated.



14The instrumented program is exeuted on one or more sets of representative inputsand the pro�les for these exeutions are olleted. With the help of pro�les, an op-timizing ompiler reompiles the program and generates the optimized objet ode.The optimized objet ode is then used in all future exeutions with real inputs. Typ-ially, simple representative sets of inputs are used in olleting pro�les and pro�lingexeutions are muh shorter than real exeutions. During the exeution, the amountof pro�le data that is generated from a pro�ling exeution is signi�antly less thanthat from a real exeution.1.1 Program pro�ling and pro�le guided optimizationsThere is a lose interation between the researh in program pro�ling and the researhin the development of new pro�le guided optimization tehniques. Advanes in onearea help reate advanes in the other, and vie versa.On the one hand, one researh trend in pro�ling is to ollet more kinds of detailedand aurate pro�ling information from whih more optimization opportunities an bedisovered. Powerful optimization algorithms an then be developed to exploit theseopportunities. On the other hand, with the rapid advanes in omputer arhitetureand system designs, many kinds of optimization opportunities are known to exist inmany programs. However, pro�ling tehniques are needed to ollet information thatan guide the design of ost-bene�t analyses to e�etively exploit these opportunities.Let us onsider the situations where pro�ling researh has greatly inuened opti-mization researh. Simple pro�les were olleted in earlier days and they worked wellin �nding more optimization opportunities than stati analyses. For example nodepro�les onsisting of exeution frequenies of basi bloks in a ontrol ow graphwere olleted. Compilers ould be direted to optimize most frequently exeutedregions so that for a given �xed amount of ompilation time, the improvement inprogram performane ould be maximized. Slightly more ompliated edge pro�les,



15whih ount the exeution frequenies of eah edge in a ontrol ow graph, an beused to enable more omplex optimizations (e.g., Young et al. [62℄ proposed the useof edge pro�les for interproedural branh alignment). More omplex path pro�les[4℄, whih onsist of exeution frequenies of ayli sequenes of basi bloks arealso olleted. Gupta et al. [22, 24, 23℄ used path pro�les to enhane traditionaloptimization tehniques as well as develop new ones.Now let us onsider some situations in whih optimization researh has drivenresearh into new pro�ling tehniques. Programs and arhitetures are inreasing inomplexity and reating new hallenges for developing optimizing ompilers. Dynam-ially alloated data objets are frequently used and they often lead to poor aheperformane. A better data layout sheme ould greatly redue the number of ahemisses and improve the overall performane. However, to assist the design of di�erentmemory layout optimizations, new types of pro�ling tehniques are needed. Calderet al. [13℄ suggested to ollet a temporal relation graph (TRG) whih summarizesthe usage relationship between di�erent objets. New memory alloation poliy anthen be designed to alloate aÆliated objets lose to eah other. Reent researh re-veals that dynami optimizations, whih optimize the program during the exeution,have many advantages. However, given the restrited runtime onstraints, there isdemand for new pro�ling tehniques whih are heap and yet suÆiently aurate. Tosupport optimization in a dynami optimization environment, Arnold [2℄ proposed aounter-based sampling tehnique that an perform e�etive runtime pro�ling.1.2 Overview of the researhThis dissertation further illustrates the lose interation between researh in pro�lingtehniques and pro�le-guided optimization opportunities. It designs and evaluatesompressed representation for pro�ling data allowing pro�le-guided optimizations tobene�t from this advane in program pro�ling. The newly developed representation



16is demonstrated to help in the design of new optimization algorithms. A type-basedvalue pro�ling tehnique is also developed suh that new data ompression tehniquesan be designed to exploit value redundany present in program data.1.2.1 Representation of pro�ling dataTraditional ompiler optimizations perform data ow analyses based on program on-trol ow graphs. A reent advane in pro�ling proposed olletion of the whole pro-gram path (WPP) pro�les [32℄ whih is a ompressed form of the program's ontrolow trae. Although WPP ontains omplete and aurate dynami ontrol owinformation, it an be up to several gigabytes in unompressed form and hundredsof megabytes in ompressed form. Information retrieval is very slow using WPP.As a result, it is diÆult for ompiler optimizations to take advantage of this newadvane in program pro�ling. Moreover, data dependene information is needed forinferring ertain data ow fats. In this dissertation, a new representation TWPP+is proposed to address these problems. Given a omplete program trae that ontainsontrol ow trae and address trae, TWPP+ expliitly separates the ontrol owand memory dependene information from eah other. Eah type of information isorganized in a way that assists later ompiler analyses and optimizations. Figure 1.2ompares this new representation with the whole program path (WPP) tehnique.While the WPP representation tries to ahieve the highest possible ompression ra-tio, the new representation puts more emphasis on aessibility, that is, the easeuse of the information. Besides, the WPP representation does not onsider dynamimemory dependene information whih is also very important for some analyses andoptimizations.
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Figure 1.2. Comparison with whole program path.1.2.2 Pro�ling for value redundany detetionOver the last deade, while the proessor speed has been improved 55% eah year, thememory speed has been improved only 7% eah year [43℄. As a result, the memorysystem has beome a major bottlenek in improving system performane. The situ-ation is worsened by the fat that mahine word size has inreased from 8 bits to 64bits. Reent researh [64, 61℄ has found that there is a signi�ant level of redundanyin dynami value representation. Figure 1.3 shows that for a 32-bit mahine, and fora spetrum of benhmark programs, on an average 59% of all aessed 32-bit valuesan be e�etively represented by half of their original size, that is, using 16 bits.
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18straints restrit the runtime appliation of traditional ompression tehniques. Inthis dissertation, a new type-based pro�ling tehnique is developed to assist in thedesign of new dynami data ompression tehniques. The potential of the new om-pression is further exploited through both software and hardware tehniques.1.3 OrganizationThe rest of this dissertation is organized as follows. Bakground researh on programpro�les and pro�le-guided optimizations is presented in Chapter 2. A timestampedwhole program path (TWPP+) representation for ompressing program pro�les is de-veloped and evaluated in Chapters 3, 4 and 5. Chapter 3 disusses how to ompressontrol ow traes into TWPP. Chapter 4 enhanes TWPP to inlude ompressedmemory dependene pro�les. Three appliations are disussed in Chapter 5 to illus-trate the use of information ontained in a TWPP+ representation.A type-based pro�ling tehnique for �nding value representation redundany isproposed in Chapter 6. Using the data olleted from pro�ling, both software andhardware data ompression tehniques are developed to exploit the opportunities inremoving value representation redundany. The software approah based upon dataompression transformations, is disussed in Chapter 7. The hardware approah thatemploys ompression to enable partial ahe line prefething, is disussed in Chapter8. Conlusions and future researh are disussed in Chapter 9.
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Chapter 2BakgroundIn this hapter, an overview of program pro�ling and pro�le-guided optimization isgiven. Setion 2.1 reviews the types of program pro�les and the ommonly used teh-niques to ollet program pro�les. In setion 2.2 di�erent pro�le-guided optimizationtehniques using these pro�les are briey reviewed.2.1 Program pro�lesProgram pro�les provide summary information on past program exeutions. In pra-tie, di�erent types of pro�les are olleted at di�erent levels of granularity and usedto guide di�erent program optimizations.2.1.1 Type of pro�lesThree types of pro�les are usually used in pratie: ontrol ow pro�les, value pro�lesand address pro�les.Control ow pro�les. Programs are usually represented by their ontrol ow graphs(CFGs) during ompiler analyses and optimizations. A ontrol ow trae (CFT) re-members, in their exeution order, all visited basi bloks in the CFG. By examininga CFT we an ompute the exeution frequeny of any given program subpath. Asexpeted CFTs an be extremely large in size and a number of approximations ofCFT have been proposed and used to diretly measure the exeution frequenies ofseleted program subpaths. These pro�les di�er in the degree of approximation in-volved and the osts for olleting them. The proposed approximations of ontrolow pro�les inlude the following:



20- Node pro�les provide the exeution frequenies of the basi bloks in the ontrolow graph. Suh pro�les are adequate for some optimizations.- Edge pro�les provide the exeution frequenies of eah edge in the ontrol owgraph. The overhead for olleting edge pro�les is omparable to node pro�les.However, edge pro�les are superior to node pro�les beause edge pro�les an-not always be omputed from node pro�les while node pro�les an always beomputed from edge pro�les. Edges pro�les are widely used.- Two-edge pro�les [36℄ provide the exeution frequenies of eah pair of onse-utive edges in the ontrol ow graph. Edge pro�les an always be omputedfrom two-edge pro�les but the reverse is not true. Two-edge pro�les derive theirinreased power from their ability to apture the orrelation between the exe-utions of onseutive onditional branhes and they are used in a probabilistidata ow analysis framework [36℄ for omputing frequenies of data ow fats.- Path pro�les [4℄ provide the exeution frequenies of subpaths in the ontrolow graph that are ayli and intraproedural. Sine a path is ayli, it doesnot inlude a loop bak edge and sine it is intraproedural, it terminates ifan entry or an exit node of a proedure is reahed. Path pro�les are morepreise than two-edge pro�les for ayli omponents of a ontrol ow graphbeause they apture orrelation aross multiple onditional branhes withinan ayli graph. However, two-edge pro�les an apture orrelation among apair of onditional branhes along a yli and interproedural paths while pathpro�les annot do so.Sine all of above pro�les are approximations of original traes, some researhhas been done to evaluate how they di�er from eah other. Ball et al. [5℄ gave analgorithm to estimate the lower and upper bounds of path frequenies from edgepro�les. Their results show that if a large perentage of a program's total ows are



21de�nite, the estimated path frequenies from edge pro�les an still identify hot paths.Otherwise more powerful path pro�les should be used to identify hot paths.Approximations are used in above pro�les beause the omplete trae is large andit was believed to be too expensive to ollet and use. This problem was addressed byLarus in [32℄. He proposed to ollet and ompress the omplete ontrol ow graphtrae using the Sequitur [40℄ algorithm. The ompression result, identi�ed as thewhole program path, is a ontext free grammar that generates a single string whih isthe original ontrol ow trae for the program. The redundany in the original traeomes from frequently exeuted subpaths and it is removed by reating and reusingprodution rules.Value pro�les. Value pro�les identify the spei� values enountered as operandsof an instrution and the frequenies with whih these values are enountered. Theexample in Figure 2.1 illustrates the form of these pro�les.
Code:

…...

I1: load R3, 0(R4)

I2: R2       R3 & 0xff

(instruction, register) Profiles (value,freq)

(I1,R2) (0,1000)

(I2,R3) (0,100),(0x8900,200),…,(0x2900,100)

(I1,R3) (0xb8d003400,10) ...

... ...

Value profile:

Figure 2.1. Value pro�les.Sine the number of instrutions in a program is large, and eah operand of aninstrution may potentially hold a very large number of values, olletion of ompletevalue pro�les is not pratial. Therefore to redue the size of the pro�le data and theexeution time overhead of pro�ling, the following two steps are taken.First only the most frequently appearing N values are olleted for a given operand.Calder et al.[11℄ have proposed maintaining a top-n-value table (TNV) for a registerbeing written by an instrution. Eah TNV table entry ontains a pair of values:



22the value and the frequeny with whih that value is enountered. A least frequentlyused (LFU) replaement poliy is used to hoose an entry for replaement when thetable is full. If we exlusively use the LFU poliy for updating the TNV, the valuesthat are enountered later in the exeution may not be able to reside in the tableeven if they are frequently enountered. This is beause they may be repeatedlyreplaed. To avoid this situation, at regular intervals the bottom half of the tableis leared. By learing part of the table, free entries are reated that an be usedby values enountered later in the program. Both the number of entries in the tableand learing interval are arefully tuned to get good results. Colleting only the topN values not only redues the pro�ling overhead, but also makes onvergene to asteady state faster.The seond omplimentary approah in reduing pro�ling overhead is to olletvalue pro�les for only interesting instrutions. Watterson and Debray [58℄ use a ost-bene�t model to identify interesting instrutions. The ost is that to test whether aregister has a speial value; the bene�t is the diret and indiret instrution savingsthat an be ahieved by optimizing the program with this information. Control owpro�les are olleted �rst to arry out ost-bene�t analysis and to identify andidatesfor value pro�les.Address pro�les. Address pro�les an be olleted in the form of a stream ofmemory addresses that are referened by a program. These pro�les are usually usedto apply data layout and plaement transformations for improving the performaneof the memory hierarhy. Depending upon the optimization, the address traes anbe olleted at di�erent levels of granularity. At the �nest level of granularity, eahmemory address an be traed. Coarser level traes reord referenes to individualobjets rather than individual addresses.A omplete address trae of a program run an be extremely large. In order toompress the size of the address trae, Chilimbi [15℄ has proposed using the Sequitur



23algorithm to generate a ompressed whole program stream (WPS) representation ofthe address trae in muh the same way as Sequitur is used to ompress a program'sontrol trae. To guide the appliation of data layout and plaement transformations,the WPS representation is analyzed to identify hot address streams. These streamsrepresent subsequenes of addresses that are enountered very frequently during theprogram run.
Declarations:

int flag;

int *pa,*pb,*pc,*pd;

int buf[2000];

…

int xa,xb,xc,xd;

Sample code:

for(i=0;i<2000;i++) {

    swtich (flag) {

    case 1:

        xa = *pa;  … ; break;

    case 2:

        xb = *pb;  … ; break;

    case 3:

        xc = *pc;  … ; break;

    case 4:

        xd = *pd;  … ; break;

    }

    ….

    pa = buf[i]

    ….

}

Relationship Profiles(frequency)

(A(xa),A(pa)) 500

(A(xb),A(pb)) 20

(A(xc),A(pc)) 2

(A(xd),A(pd)) 10

….  ….

(A(pa),A(buf)) 2000

Address profile:

Figure 2.2. Address pro�les.While the above approah �rst ollets omplete address pro�les and then pro-esses them to identify information useful in guiding data layout and plaement trans-formations, another approah is to diretly identify the useful information. Calderet al. [13℄ have proposed an algorithm based upon suh an approah. The infor-mation that they ollet is represented by a graph named the temporal relationshipgraph (TRG). The nodes in this graph are data items of interest. Weighted links areestablished between pairs of nodes. If referenes to a pair of data items are sepa-rated by fewer than a threshold number (say N) of other data referenes, then theweight assoiated with the link between the two items is inremented. To maintainthe weights of all the links, an N-entry queue is maintained whih reords the latest



24N data items that are referened by the program. The weights on the links at the endof the program run an be used by the ompiler to identify data items that shouldbe plaed lose to eah other for ahieving good ahe behavior. Figure 2.2 shows anexample of the information olleted using this approah.2.1.2 Colleting pro�lesPrograms have to be exeuted in order to ollet the program pro�les. Three ap-proahes are ommonly used in pratie for olleting pro�les.Instrumentation of the original program with new ode to generate the pro�ledata is the most widely used method. The introdued instrumentation ode dependsupon the types of pro�les being olleted. There are two possible ways to insertthe instrumentation ode. One way is to instrument at soure or intermediate odelevel by modifying ompilers [54, 55℄. The instrumented soure programs are thenompiled normally to generate the exeutable ode. The other way is to use a binarylevel instrumentation tool [19, 51℄ and insert the ode diretly into the exeutableode. While high level instrumentation an trae semanti information more easily,lower level instrumentation is sometimes easier to use and exible.The instrumented program is slower than the original version. While usually, theoverhead of instrumented ode is linear in the length of the exeution, tehniques havebeen proposed to redue its overhead. Sarkar [48℄ proposed a tehnique to redue theoverhead in olleting ontrol ow pro�les. A ounter is introdued for eah ontroldependene region in the program; sine they are far fewer than the basi bloks, thepro�ling overhead is redued. Ball et al. [4℄ presented an algorithm to redue thenumber of pro�ling points during the olletion of path pro�les.Hardware pro�ling ollets exeution pro�les with hardware support. Most mod-ern proessors [37, 26, 27℄ provide some hardware mehanisms for ounting varioustypes of dynami information, suh as ahe misses, memory oherene operations,



25branh mispreditions, and issued and ommitted instrutions. MIPS R10000 [37℄provides two 32-bit ounters whih an be used by the user to monitor 30 di�erentevents. Similarly, the event monitoring mehanism in the Intel Pentium 4 and Xeonproessors [27℄ provides the exibility to use 18 performane ounters and to selet45 di�erent events to be monitored. Hardware pro�ling is easy to use and inurs theleast overhead. However, the ounter based hardware pro�ling approahes lak theexibility to monitor new events.Simulation is another widely used approah in olleting and studying programpro�les. It is espeially important if we are studying the software and hardware in-terations or if the target arhiteture does not exist. For example, Simplesalar [10℄,FAST [41℄ and RSIM [42℄ are yle level arhitetural simulators; they provide waysto speify the features of simulated arhitetures. The advantage of this approah isthat we an run the same program many times with di�erent hardware on�gurationsand study software and hardware interations. The disadvantage is that it is veryslow.2.2 Pro�le guided optimizationsDi�erent types of pro�les are used to expose di�erent optimization opportunities andassist in the development of di�erent optimization tehniques. These opportunitiesbeome available beause of the dynami inequality harateristis, e.g. some pathsare exeuted more frequently than others, some variables are nearly onstant, somedata objets are referened together, et. A more preise ost-bene�t model ouldbe set up to evaluate this inequality and optimization transformations ould thusbe developed to generate more eÆient ode. This setion reviews the optimizationtehniques proposed in the literature.



262.2.1 Pro�le guided ontrol ow related optimizationsControl ow pro�les are most widely used in optimization. Tehniques are designedthrough ode speialization, a tehnique that reates both optimized and unoptimizedopies of statements and appropriate opy of the statement is exeuted dependingupon the onditions that hold. Di�erent ode speialization algorithms are atego-rized primarily into two lasses of transformations that are used to arry out oderepliation and enable speialization of onditionally optimizable ode: ode motionof di�erent types and ontrol ow restruturing with varying sope.The basi form of ode motion, namely safe ode motion, in addition to honoringthe program's data dependenes, guarantees that for every exeution of a statementduring the exeution of the optimized ode, there exists a orresponding exeutionof the statement during the exeution of the unoptimized ode. As a onsequene, itmust be the ase that if an exeption ours during the exeution of optimized ode,it would have also ourred during the original exeution. Hardware support presentin modern proessors suh as IA-64 [21℄ allows relaxation of the above onstraint.In partiular, speulative ode motion allows the ompiler to introdue exeutionsof a statement in the optimized ode that are not present in the unoptimized ode.Prediated ode motion [21℄ reates more opportunities by moving ode out of ontrolstrutures but still under orret prediates.Control ow restruturing reates unoptimized and optimized opies of the state-ment and plaes them along the inoming edges. The primary ost in restruturing isthe growth of ode size. Control ow restruturing an be performed at di�erent on-trol ow granularities and sopes. Inreasing the sope of restruturing also inreasesthe growth of ode size. Funtion inlining is one way to ahieve interproeduralontrol ow restruturing. To limit ode growth while performing interproeduraloptimizations a ouple of alternative tehniques have been proposed: partial inliningof frequently exeuted paths through a proedure [25℄ and reating proedures with



27multiple entries and multiple exits [6℄.Existing transformations are enhaned and new transformations are developedto take advantage of pro�les. They are used to develop a more preise ost-bene�tmodel and estimate whether the bene�t ahieved from a partiular transformationoutweighs the ost that it introdued. For example, partial redundany elimination(PRE) is traditionally performed using safe ode motion [29℄. The use of speulationwas �rst proposed in [24, 23℄. A ontrol ow restruturing approah was proposed in[52℄. A ombination of all above transformations to ahieve greater bene�ts at lowerost is disussed in [7℄.2.2.2 Pro�le guided value optimizationsValue pro�les an be used to identify almost invariant variables for onstant fold-ing, strength redution, ode speialization, adaptive exeution and guiding dynamiompilation.Muth, Watterson and Debray [39℄ introdued a value pro�le based ode speial-ization tehnique whih has in three steps. First, using basi blok pro�les, programpoints and registers are identi�ed where speialization might be pro�table. Seondvalue and expression pro�les are obtained for these program points. Third, theseolleted pro�les are used to arry out speialization for those program points thatare deemed pro�table.Dynami optimization [3℄ and adaptive exeution [28℄ generate speialized odeeither from srath or from a statially generated template. Value pro�les an helpto identify the semi-invariant variables statially and redue greatly the optimizationost at runtime.Calder and Feller et al. [12℄ disussed di�erent omputer arhiteture omponentsthat an bene�t from value pro�les. Hardware value preditors [34℄, for example,an bene�t in several ways from value pro�les. By lassifying instrutions into pre-



28ditable, not preditable, or hard to predit, one an determine whih instrutionsto statially predit or not to predit. Value pro�ling an even be used to lassifyinstrutions indiating whih type of preditor would better predit the instrution ina hybrid preditor. This inreases the predition auray and dereases the onitsor aliasing in a predition table.2.2.3 Pro�le guided memory optimizationsOver the past deade, while the proessor speed have risen by 55% eah year, thememory speeds have only improved by 7% eah year. As a result, the memory beomesa major bottlenek in performane improvement and so has drawn a lot of attention.The tehniques proposed to optimize memory performane span a wide range ofategories.� Objet plaement. This type of tehnique determines a better plaementsheme of data objets to improve ahe behavior. Memory forwarding pro-posed by Luk and Mowry [35℄ attahed one bit to eah word in the memory.An objet an be migrated dynamially aording to its runtime behavior. Afterits migration, the memory address where it previously resided saves an indiretpointer to the new address. The additional bit is set to indiate that the ob-jet has moved. Other approahes try to plae an objet in a desired plaes.Cmallo [17℄ for example enhaned the system memory alloator by one moreparameter used as its parent pointer. Whenever possible, the new objet isplaed into the same ahe blok as the existing objet. The address pro�lesan be used to identify objets that are aessed ontemporaneously.� Objet layout. This type of tehnique determines a layout of �elds within alarge data objet to improve ahe loality. A data struture is often de�nedby the programmer to support ode readability. The ompiler simply uses amemory layout for the �elds whih mirror the order they are delared. However,
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(a) Unoptimized (b) OptimizedFigure 2.3. A mallo example.this order may not be onsistent with the order that inurs fewer ahe misses.Truong et al. [56℄ evaluated an approah to reorder the �elds and showed that anode that spans several ahe bloks an take advantage of ahe line prefethingand redue ahe pollution, thus improving ahe performane.� Hybrid sheme. This type of tehnique ombines the objet plaement andlayout approahes to further improve the performane. In [16℄, objet splittingtehnique was proposed to split an objet into two parts: the hot primary partand the old seondary part. Hot �elds are aessed diretly while the old onesare aessed through a pointer stored in the hot part. Loality is improved byreduing the data objet size and bene�ts most memory aesses for hot �elds.



30
Chapter 3Compressing the ontrol flow traeA ontrol ow trae is a sequene of basi blok instanes in their exeution order.Node, edge or path pro�les an be viewed as lossy ompressed representations of theontrol ow trae. Until reently, it was believed that a omplete ontrol ow trae istoo expensive to ollet and use. However, Larus [32℄ reently demonstrated that it isfeasible to e�etively ollet a whole program path (WPP), whih is the ompressedform of a omplete ontrol ow trae. By using the Sequitur [40℄ algorithm, Larusshowed that a ontrol ow trae whih is typially very large (100's of MBytes), anbe ompressed (10's of MBytes) and saved for future analysis.While the ompression algorithm proposed by Larus is highly e�etive, the om-pression is aompanied with a loss in ease of aessibility to information. For ex-ample, path traes pertaining to a partiular funtion annot generally be obtainedwithout examining the entire ompressed WPP representation. This is a seriousdrawbak beause typially an appliation using the WPP an be expeted to makea series of requests for pro�le data for individual funtions, that is, eah request asksonly for a small subset of the overall information ontained in a WPP. Repeated ex-tration operations to satisfy these requests are likely to result in high analysis timeosts. Therefore it is important to design a representation from whih path traes ofindividual funtions an be rapidly aessed.The above loss of aessibility is a natural onsequene of of treating the entireontrol ow trae as a single data stream during ompression. As a result the in-formation orresponding to a given funtion is sattered throughout the ompressedtrae and an in general be loated only by examining the entire ompressed trae.In order to solve this problem a new ompression approah is proposed in this



31dissertation whih aims at simultaneously reduing the size of the ontrol ow traeand providing easy aess to subsets of information within the ompressed trae. Theapproah organizes the information ontained in a omplete trae as follows. Theontrol ow trae is �rst broken into path traes orresponding to individual funtionalls, and all of the path traes for a given funtion are stored together as a blok.Therefore information regarding a spei� funtion an be readily aessed. In orderto ensure that the omplete ontrol ow an be reonstruted from individual pathtraes, a dynami all graph whih links the path traes together is also maintained.The detailed ompression algorithm for ontrol ow traes is presented in this hapter.The rest of this hapter is organized as follows. Setion 3.1 introdues the newtimestamped whole program path (TWPP) representation. The algorithm steps aregiven to onvert a ontrol ow trae into the �nal representation. Setion 3.2 presentsthe experimental results, omparing the ompression ratio as well as the aess timeusing di�erent ompression algorithms. Setion 3.3 summarizes the hapter.3.1 TWPP: Timestamped whole program pathAs mentioned earlier, a whole program path (WPP) is the ompressed form of aontrol ow trae from a program exeution. Consider the program and a sampleontrol ow trae shown in Figure 3.1. The trae shows that the loop in main iterates5 times and in eah iteration the funtion f is alled. The loop in funtion f iterates 3times for eah all. Looking at the WPP for a small program we observe two things:WPPs for real appliations an be expeted to be quite large (e.g., 100's of MBytes)and in its urrent linear form WPP is diÆult to use (e.g., in order to extrat traeinformation for a subpath in main or funtion f, we must examine the entire WPP).Next we present a step by step transformation of the above WPP to ahieve twogoals: ompation of the WPP to redue memory requirements and organization ofthe WPP information for faster aess to path traes of individual funtions.
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Figure 3.1. An unompated ontrol ow trae.Partitioning WPP into path traes. We partition the WPP into path traesorresponding to individual funtion alls and all of the path traes for a given fun-tion are stored together as a blok. Therefore information regarding a spei� funtionan be readily aessed. In order to ensure that the omplete WPP an be reon-struted from individual path traes, a dynami all graph (DCG) whih links thepath traes together is also maintained. Figure 3.2 shows this representation of theWPP for our example program. Clearly from this representation the WPP form ofFigure 3.1 an be easily onstruted. More importantly one an rapidly searh forourrenes of a given path (intraproedural or interproedural). The path traesof interest are loated and then examined for desired information. To searh for anourrene of a path in main we need to only examine one-sixth of the total trae inFigure 3.2.
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Figure 3.2. WPP organized using the DCG.
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Figure 3.3. WPP after redundant path trae removal.



34Eliminating redundant path traes. The WPP an be greatly redued in sizeby eliminating dupliate path traes generated by di�erent alls to the same funtion.In Figure 3.2, orresponding to the 5 alls to funtion f, there are only two unique pathtraes. Therefore the WPP representation an be transformed to eliminate redundantpath traes as shown in Figure 3.3. This tehnique is very e�etive beause althoughmany funtions are alled numerous times, they tend to follow one of a small subsetof paths through the funtion body. For example, in a WPP olleted from exeutingg we found that funtion rtx equal p was alled 355189 times but it generatedonly 35 unique path traes.Creating ditionaries of dynami basi bloks. Another tehnique that we em-ploy replaes a sequene of stati basi blok ids that orrespond to a dynami basiblok by a single id. A dynami basi blok (DBB) belonging to a path trae is asequene of stati basi bloks that is always entered from the �rst blok and exitedfrom the last blok in the path trae. Sine DBBs an often appear inside loops, theyare often repeated many times in a path trae. Thus, replaing them by a single idan signi�antly redue the size of the WPP.Eah path trae is proessed as follows: a ditionary of DBBs is reated by on-struting a dynami ontrol ow graph and �nding hains of stati bloks representingDBBs in it. Eah DBB is assigned the blok id of the �rst stati blok in it and a-ordingly the path trae is modi�ed by deleting all but the �rst id in eah ourreneof a DBB. One all ompated path traes and ditionaries are obtained, dupliatepath traes and ditionaries are also eliminated. In this transformed form, eah nodein the dynami all graph has an assoiated tuple (t; d) where t is a path trae andd is a ditionary. Figure 3.4 shows the hains of stati basi bloks that form dy-nami basi bloks for the three path traes in Figure 3.3. After reating ditionariesand ompating path traes, we are left with one path trae and two ditionaries forfuntion f as shown in Figure 3.5.
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Figure 3.4. DBBs and dynami ontrol ow graphs.
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36Timestamped WPP representation. In the WPP representation desribed sofar, the exeution trae of a given funtion invoation is represented by a sequene ofbasi bloks visited during its exeution. While suh a path trae representation isadequate for identifying hot paths through a program, it is not the most appropriatefor performing data ow analysis. Sine pro�le-limited data ow analysis is arriedout from the perspetive of basi bloks, it is more appropriate to organize the traesfrom the perspetive of dynami basi bloks. Next we desribe the timestampedWPP (TWPP) representation whih ahieves this goal.The exeution of the funtion an be viewed from the perspetive of time steps,where eah time step orresponds to the exeution of a dynami basi blok. There-fore a path trae for a funtion all in a WPP representation an be viewed as amapping between time steps, or timestamps, and dynami basi bloks. In ontrast,the TWPPs represent a mapping between dynami basi bloks and an ordered setsof timestamps. Let T , B, and P(T ) denote the set of timestamps, set of dynamibasi bloks, and the power set of timestamps assoiated with the path trae of agiven funtion all f . A path trae in WPP and TWPP forms is represented by thefollowing mappings: WPPPathTraef : T ! BTWPPPathTraef : B ! P(T )Consider the WPP of Figure 3.5. The WPP trae 1:2:2:2:2:2:6 orresponds to thefollowing T ! B mapping: f1 ! 2, 2 ! 2, 3 ! 2, 4 ! 2, 5 ! 2, 6 ! 2, 7 ! 6g.When transformed to TWPP form it is represented by the following B ! P(T )mapping: f1 ! f1g, 2 ! f2; 3; 4; 5; 6g, 6 ! f7gg. The omplete unompatedTWPP for this example is shown in Figure 3.6.Compating TWPP path traes. The path traes in TWPP form an be fur-ther ompated beause often a subsequene of timestamp values orresponding a
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Figure 3.6. TWPP form.dynami basi blok forms an arithmeti series. This situation arises partiularlywhen the same path within a loop body is traversed repeatedly during di�erent loopiterations. The subsequenes that form arithmeti series are ompated yielding asequene of entries whih are of the following form: l (singleton), l : h (l:l+1:l+2:::h,i.e., series with step 1), or l : h : s (l:l + s:l + 2s:::h, i.e., series with step s). Aswe an see, depending upon its form, an entry is represented using one, two or threepositive integer values. We store the timestamps orresponding to a blok merely as asequene of integers. For orret interpretation of the information we need to enodethe boundaries that separate the variable length entries. This information is enodedin the signs (+ or -) of the values and therefore it does not require any inrease inthe size of the path trae. In partiular, the last number in a eah entry is storedas a negative number. By using the sign to enode the end of an entry we limit thelargest timestamp value that is available to us sine we an no longer use unsignedintegers. However, our experiene with the benhmarks onsidered shows that thetimestamp value does not overow beause individual path traes are muh smallerthan the omplete WPP.Notie that the sequene of timestamps assigned to dynami basi blok 2 inFigure 3.6 form an arithmeti series sine blok 2 is exeuted repeatedly during su-
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Figure 3.7. Compated TWPP.essive loop iterations. Therefore the TWPP an be ompated into: f1 ! f�1g,2! f2 : �6g, 6! f�7gg. Notie that the last number in eah sequene is a negativenumber. The omplete ompated form of TWPP for our running example is shownin Figure 3.7.It is also possible to inrease the ompressibility of timestamps assoiated withbasi bloks using a simple tehnique. Consider a situation in whih di�erent pathsthrough a loop body of a funtion ontain di�erent numbers of nodes. For example,in Figure 3.8, there are three paths from A to F: paths ACDF and ACEF ontainthree nodes while ABF ontains 2 nodes. Even though nodes A and F are exeutedalong eah of these paths, their timestamps are irregular due to the di�erent numberof nodes along the paths. However, if all paths ontained the same number of nodes,then no matter whih path is taken during eah loop iteration, the nodes A and Fwould have had perfetly ompressible series of timestamps. To address this problemwe assoiated weights to edges where the weights are used to generate timestamps.In partiular, the weight of an edge represents the amount by whih the timestampis inremented when the edge is traversed. By assigning weights to edges suh thatsum of weights of edges along eah of the paths through the loop is the same, we an
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Trace:
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B 6:-17,-24

C 2:-9,13:-20
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D 3:-23
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 = 2)
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Figure 3.8. Balaning example.guarantee that nodes that are visited along eah path have ompressible timestamps.In our example the edge BF is assigned the weight 2 while all the other edges are as-signed the weight of 1 in order to balane the paths. The result is that the timestampsfor nodes A and F an now be ompressed and the size of TWPP representation ofnodes A and F is further redued.Compating the DCG. The dynami all graphs resulting from exeutions oflarge appliation programs an also be quite large. Therefore in addition to om-pating the path traes, we also ompress the DCG. For this purpose we onsideredthe popular ditionary based approahes proposed by Ziv and Lempel [65, 66℄. Inpartiular, we used Welh's variation of Ziv and Lempel's adaptive ditionary basedtehnique whih is also referred to as the LZW algorithm [60℄.



403.2 Implementation and experimentsThe TWPP algorithm has been implemented and evaluated to ompat whole pro-gram paths for several benhmark programs from the SPECint95 suite [50℄. Theoriginal WPPs used in the experiments were generated using the Trimaran ompilerinfrastruture [55℄. A WPP onsists of two parts: the dynami all graph (DCG)and the individual traes for funtion alls (whih are olletively referred to as theWPP traes). The sizes of WPPs used in the experiments are shown in Table 3.1.The experiments are aimed at studying the e�etiveness of our ompation tehniquesin reduing memory requirements and the e�etiveness of organization of the WPPinformation for faster aess.Program DCG WPP Total(MB) traes (MB) size (MB)099.go 6.0 170.0 176.0126.g 34.7 489.5 524.2130.li 6.6 78.3 84.9132.ijpeg 1.7 266.9 268.6134.perl 3.4 41.5 44.9Table 3.1. Sample input traes used in the experiments.WPP trae after Compated OWPP /Program Redundany Ditionary TWPP trae CTWPPremoval - MB reation - MB - MB099.go 27.0 (x6.30) 17.1 (x1.58) 17.6 (x0.97) 9.7126.g 86.5 (x5.66) 50.8 (x1.70) 32.9 (x1.54) 14.9130.li 8.5 (x9.21) 5.3 (x1.60) 1.1 (x4.81) 71.2132.ijpeg 28.1 (x9.50) 20.8 (x1.35) 5.7 (x3.65) 46.8134.perl 7.2 (x5.76) 1.7 (x4.24) 0.02 (x85.0) 2075Table 3.2. WPP trae ompation due to various transformations.



41Program Compated Compated TWPP (MB) Total CompationDCG (MB) Traes Ditionaries (MB) fator099.go 6.6 17.6 2.3 26.5 7126.g 13.8 32.9 4.9 51.6 10130.li 5.3 1.1 0.04 6.4 13132.ijpeg 1.0 5.7 0.6 7.3 37134.perl 0.7 0.02 0.02 0.7 64Table 3.3. Overall ompation fator.Compation study. Table 3.2 shows the sizes of the WPP traes in their variousforms. As we an see, the three ompating transformations, removal of redundantpath traes, reation of DBB ditionaries, and transformation to ompated TWPPform are all very e�etive in reduing the WPP trae size. The ratio of the sizes oforiginal WPP traes (OWPP) and ompated TWPP traes (CTWPP) gives us theompression fator whih varies from 9.7 to 2075 for our sample traes. The sizes ofthe WPP traes after eah of the three transformations as well as the ompressionfators orresponding to eah of the transformations are also shown separately inparenthesis in Table 3.2. The results show that eah of the transformations is animportant soure of ompation.A large fator of size redution omes from removing redundant path traes (5.66- 9.50). The reason for this large redution beomes lear when the data in Figure 5.1is examined. This �gure gives the perentage of total funtion alls (plotted alongY-axis) that an be attributed to funtions with at most N unique path traes (N isplotted along the X-axis). For 130.li, 132.ijpeg, and 134.perl programs 57-80%of all funtion alls are attributable to funtions with at most 5 unique path traes.For 126.g and 099.go over 50% of funtion alls are attributable to funtions withat most 25 and 50 unique traes respetively. Given that the number of funtion allsmade during the runs of these benhmarks were in hundreds of thousands, we an seethat the degree of redundany in path traes is very high.
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Figure 3.9. Trae redundany.The reation of ditionaries results in ompation of WPP traes by fators rang-ing from 1.35 to 4.24. The onversion into ompated TWPP form results in furtherredutions. For four out of �ve benhmarks, ompated TWPP traes provide re-dutions in the sizes of WPP traes by fators ranging from 1.54 to 85. The onlyase in whih ompated TWPP trae is slightly larger is the 099.go program wherethe ompated TWPP trae was 3% larger than the ompated WPP trae prior toits onversion to TWPP form. These results are very enouraging beause not onlyis the TWPP representation suitable for pro�le-limited data ow analysis, it is alsoompat.The ompated sizes at di�erent algorithm steps are plotted in Figure 3.10 whihgives a visual omparison. The step to eliminate redundant path traes is very ef-fetive and the step to onvert to TWPP representation also ontributes a lot to theompression.The breakdown of di�erent omponents of a WPP and the overall ompationfators for the omplete WPP (DCG + WPP trae) are given in the Table 3.3. Forthe sample WPPs used in these experiments the overall WPP ompation fatorranges from 7 to 64.
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Figure 3.10. Compated size at eah TWPP step.Aess time study. To study the impat of redutions in the WPP size on thespeed with whih the path traes an be aessed, an experiment was ondutedwhih measured the time it took to extrat the path traes orresponding to a singlefuntion from the omplete WPP. The expeted speedups result from two soures.First due to the ompation of the WPP we have to read through a smaller �le.Seond the ontents of the �le are organized to allow faster aess. Followed by thedynami all graph, the path traes (inluding ditionaries) of the most frequentlyalled funtion are stored �rst and that of least frequently alled funtion are storedlast. By remembering the position of information for eah funtion in the �le, andstoring it as a header in the ompated TWPP �le, the path traes for individualfuntions are rapidly aessed.Table 3.4 shows the times taken to extrat a funtion's trae in the following se-narios: extration from unompated �le (olumn U); and extration from ompated�le (olumn C). Both the average and maximum times for U and C are given. Onaverage the aess times are redued by over 3 orders of magnitude.Larus's Sequitur based ompression algorithm. For omparison Larus's om-pression algorithm whih is based upon Sequitur [40℄ was also implemented. This



44Program U (ms) C (ms) Speedupavg. max avg. max C/U(avg.)099.go 5033 8383 8 1438 629126.g 22879 29672 6 528 3813132.ijpeg 7615 11447 6 258 1269130.li 2390 3263 2 124 1195134.perl 1303 1873 0.2 3 434Table 3.4. Extration times for a single funtion.algorithm produes the ompressed WPP representation whih is in the form of agrammar that generates a single string - the original trae. The Sequitur generatedgrammar representation was ompared with the TWPPs generated in two ways: theirsizes and the aess times to individual funtion traes.The results of this omparison are shown in Table 3.5. On average, the totalsize of the grammar produed by Sequitur is smaller than the orresponding sizeof the ompated TWPP by a fator of 3.92. Now onsider the time it takes toextrat the trae orresponding to a single funtion from the omplete ompatedtrae. The extration of a funtion's trae from the Sequitur generated grammaressentially requires two steps: reading in the grammar and then proessing it togenerate a subgrammar orresponding to the funtions trae. The total time takenfor extration, and the times for eah of the steps, are shown in Table 3.5. Thesenumbers represent averages over all funtions present in the respetive programs.These times range from 10's to 1000's of milliseonds. In ontrast, the TWPP isso organized that we an loate and extrat the trae in a few (< 10) milliseonds.The aess times for Sequitur grammars are greater than aess times of TWPPsby fators ranging from 89 to 553. In summary, although TWPPs are larger in sizeby an average fator of 3.92, they provide aess times that are lower by an averagefator of 309. These experiments show that the two representations embody designdeisions with di�erent spae time trade-o�s.



45Program Compated size Extration timeSequitur TWPP Sequitur (ms) TWPP(MB) (MB) read+proess=total (ms)099.go 8.4 26.5 622 + 1315 = 1937 8126.g 11.2 51.6 898 + 2423 = 3321 6132.ijpeg 0.7 6.4 544 + 1650 = 2194 6130.li 7.8 7.3 47 + 132 = 179 2134.perl 0.4 0.7 29 + 30 = 59 0.2Table 3.5. Compated trae sizes and extration times.Apart from the di�erent size and aess time harateristis, the two represen-tations also impat on the design of analysis algorithms that will use them. WhileLarus's tehniques is suitable for analysis of hot paths (i.e., olletion of data owfats that hold along frequently exeuted paths), TWPP representation is suitablefor olleting hot data ow fats (data ow fats that hold frequently at various pro-gram points). One of the advantages of our approah is that TWPPs are in the formrequired for pro�le-limited analysis. In ontrast the ompressed WPPs produedby Sequitur require some amount of preproessing before they an be used by anappliation.3.3 ConlusionA new timestamped whole program path representation is proposed in this hapterto ompress the omplete ontrol ow trae. Without ompromising aessibility, itahieves e�etive size ompation. The organization of the trae information basedupon the dynami all graph and timestamped dynami basi bloks is partiularlyappropriate for performing fast aesses to path traes of a given funtion. It ompatsthe original traes by fators ranging from 7 to 64 and at the same time speedups ofover 3 orders of magnitude were observed in responses to queries requesting all of thetrae information of a given funtion.
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Chapter 4Compressing the memory dependenetraeIn the preeding hapter, a new timestamped whole program path (TWPP) repre-sentation was proposed to ompress a omplete ontrol ow trae. Compared to theoriginal WPP whih is ompressed by Sequitur, TWPP is more suitable for data owanalysis. However, ontrol ow information alone is not suÆient for inferring ertaindynami data ow fats. If the data ow fat is related to dynamially alloated datastrutures or depends on the dynami memory aesses then ontrol ow informationalone is insuÆient. For example, Figure 4.1(a) shows the ontrol ow graph of asmall program in whih the results from a simple funtion and a omplex funtionare assigned to address \p" and \q" respetively. If \p" and \q" almost always pointto the same address, it would be bene�ial to transform the ode to Figure 4.1(b)in whih the omplex funtion is alled only when the result will not be overwrittenlater. However, if \p" and \q" rarely point to the same address, this transformationshould not be applied sine the overhead introdued due to the additional omparisonwould outweigh the bene�ts.

*p  = Fcomplex(..) ;

*q  = Fsimple();

B1
if ( p != q)

      *p  = Fcomplex(..);

*q  = Fsimple();

B1

Figure 4.1. Importane of data ow information.The preise dynami data ow onsists of two types of ows: those aessedthrough registers and those aessed through memory loations. The ompiler will



47translate a high level variable aess into one of these two types. Sine most instru-tions have two or three operands, the size of a preise dynami data ow traing wouldbe about two to three times the exeution length. Lukily, the data ows throughregisters are easy to determine, sine registers are always aessed through their ex-pliit names and therefore the data ow through registers an be reonstruted easilyfrom its ontrol ow. Only the data ows through memory loations are impliit,sine the loation is deided by the runtime value of the soure address register ofa load or the value of the destination address register of a store. Thus, to preiselytrae the dynami data ow, memory addresses in the memory aess instrutions,i.e. the values in the above disussed registers, are traed and saved into a �le.Usually memory address traes are muh bigger than ontrol ow traes. It isharder to ompress a memory address trae than it is to ompress a ontrol owtrae. One reason is that the number of aessed memory addresses is larger than thetotal number of basi bloks that a program an have. Most ompression algorithms,inluding Sequitur, are less e�etive in handling a stream of text over a huge alphabetand thus do not ahieve very good ompression ratios in ompressing a memoryaddress trae. Moreover, a basi blok id is usually represented by a half-word (16bits or less), while a memory address is represented by a whole word (32 bits).This hapter will enhane the timestamped representation from the preedinghapter to ompress memory address traes with the aim of providing data depen-dene information during data ow analysis. The rest of this hapter is organizedas follows. Setion 4.1 disusses the ompression steps in onstruting the enhanedtimestamped whole program path (TWPP+). The implementation and experimentalresults are shown in setion 4.2. Setion 4.3 disusses the related work. Setion 4.4onludes the hapter.



484.1 TWPP+: TWPP with memory dependene edgesGiven a whole program trae in whih the basi blok ids as well as memory addressesaessed within eah basi blok are represented in their exeution order, the enhanedTWPP representation �rst separates the ontrol ow trae and the memory addresstrae. The ontrol ow trae is represented by the TWPP representation introduedin the preeding hapter. The memory address trae is handled as desribed in thefollowing steps.Eliminating expliit memory addresses. As disussed above, the purpose of in-luding the memory address trae in a whole program path pro�le is to reonstrutthe preise and omplete data ows for a given exeution. In suh a senario, theabsolute addresses themselves are not important { only the load/store dependenesinstead. Thus the �rst step is to eliminate the expliit addresses and remember onlydynami data ows.
a = …

b = …
*p = …

*q = …

… = a

… = b

B1

B4

B2 B3

B1 W(a) B2 W(b)         B4 R(a) R(b)

B1 W(a) B3 W(b)W(a) B4 R(a) R(b)

B1 W(a) B3 W(a)W(c) B4 R(a) R(b)

(a) Sample CFG
(b) Combined control flow and

memory address traceFigure 4.2. An example of a memory dependene trae.A data ow through a memory loation exists from an instane of a store instru-tion to an instane of a load instrution, denoted by a memory dependene edge fromthe store instane to the load instane. To preisely remember a dynami data ow



49edge, both the load and store instrution ids as well as their instane ounts needto be remembered. For example, in Figure 4.2, B3 was exeuted twie during whihit wrote to loations for \b,a" and \a," respetively. If we want to set up the dataow dependene for the load of \b" at the end, we need to indiate that it gets thevalue from the �rst exeution instane of basi blok B3 and it is the �rst memoryaess instrution in this basi blok. Similarly, a funtion instane ount needs tobe remembered as the funtion might be exeuted several times. Thus, a dynamimemory dependene edge is preisely de�ned by[< (F0; FC0); (B0; BC0); S0 >;< (F1; FC1); (B1; BC1); S1 >℄where F; FC;B;BC; S denote respetively the funtion id, the all instane ount ofthe funtion, the basi blok id, the instane ount of the basi blok, the sequeneindex of the memory aess inside a basi blok.
B1 W(a) B2 W(b)         B4 R(a) R(b)

B1 W(a) B3 W(b)W(a) B4 R(a) R(b)

B1 W(a) B3 W(a)W(c) B4 R(a) R(b)

(a) Combined control flow and

      memory address trace

[<(F,1),(B4,1),1>,<(F,1),(B1,1),1>]

[<(F,1),(B4,1),2>,<(F,1),(B2,1),1>]

[<(F,1),(B4,2),1>,<(F,1),(B3,1),2>]

[<(F,1),(B4,2),2>,<(F,1),(B3,1),1>]

[<(F,1),(B4,3),1>,<(F,1),(B3,2),1>]

[<(F,1),(B4,3),2>,<(F,1),(B3,1),1>]

(b) After eliminating explicit

     memory addressesFigure 4.3. Eliminating expliit addresses.For the sample trae shown in Figure 4.2, after eliminating the expliit addresses,it an be represented by expliit memory dependene edges shown in Figure 4.3(b).Identifying the appropriate set to represent. As it was disussed, the dataows that pass through registers need not traed beause they ould be reonstrutedfrom the program's ontrol ow trae. Similarly, a data ow, even if it passes througha memory loation, ould be safely disarded if it an be reonstruted from the pro-gram's ontrol ow. Sine all data ows are represented as memory dependene edges



50after the �rst step, an edge ould be disarded if the orresponding data ow has thisproperty. For example, in Figure 4.2, B2 writes to \b" and the seond aess of B4reads \b". If B2 is exeuted before B4, there must be a data dependene betweenthem. This edge < F; 1; B4; 1; 2 >;< F; 1; B2; 1; 1 > an be onstruted from theontrol ow. On the other hand, the edge < F; 1; B4; 3; 2 >;< F; 1; B3; 1; 1 > annotbe eliminated beause the �rst store instrution of B3 may or may not write to theaddress \b". This edge annot be reovered from the ontrol ow. Thus, a mem-ory dependene edge an be removed only if both its load instrution and its storeinstrution aess only one memory address and this address is statially deidable.
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[<A6,1,3>,<A3,1,1>]

dictionary

dependence edges

Figure 4.4. Creating memory aess ditionary.Another type of redundany exists in the representation of eah data dependeneedge. Eah edge onsists of two instrution instanes (see Figure 4.3) and eah in-stane is deided by 5 items: the funtion id, the basi blok id of the funtion, theinstrution index of the basi blok, the funtion instane ount and the basi blokinstane ount. The �rst three items are statially deidable and thus ould be om-bined. We globally number all load and store instrutions and eah instrution isassigned a unique id. Now, an edge an be represented by[< G0; FC0; BC0 >;< G1; FC1; BC1 >℄where G represents the global unique memory aess point, i.e. a load or store



51instrution point. There is a global mapping from eah global unique id to a triplethat onsists of the funtion id, the basi blok id and the instrution index in thebasi blok. This mapping is identi�ed as memory aess point ditionary and isstored aside for future referene.Figure 4.4 shows the result after removing ontrol ow deidable edges and reat-ing the memory aess point ditionary.
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order to get a store instance

[<A5,1,1>,<A1,1,1>,1]

[<A5,1,2>,<A4,1,1>,1]

[<A5,1,3>,<A3,1,2>,1]

[<A6,1,2>,<A3,1,1>,1]

[<A6,1,3>,<A3,1,1>,2]

Figure 4.5. Representation for timestamped memory dependene edges.Timestamped memory dependene edges representation. In the TWPP rep-resentation, a funtion level path is onverted to a sequene of timestamps at whih itis exeuted. Similarly, the sequene of dependene edges are regrouped aording totheir global unique ids. There are three reasons why it is organized in this way ratherthan grouping them aording to individual funtion alls. First, data dependeneedges are not diretly onneted with the ontrol ow. Distint instanes of the samestati load instrution might be dependent upon di�erent store instrution instaneswithin the funtion or even from other funtions. Seond, eah funtion has many allinstanes. Unlike funtional level ontrol ow traes, it is less likely that the edge se-



52quenes from two all instanes are exatly the same. Grouping edges at the funtionlevel will not lead to the disovery of muh redundany. Third, memory dependeneedges show signi�ant repetition at the same memory aess point. Organizing edgesaording to memory aess points an inrease ompression opportunities.After grouping, the relative order of the edges is lost. Although it is possible torebuild the order by employing the ontrol ow trae, it is generally too expensive.Usually, the order between two edges is of interest if they share the same load orstore instrution. If they share the same load instrution, they are grouped in thesame blok, and the relative order is determined by their funtion instane and basiblok instane ounts. If they share the same store instrution, their relative orderould be easily determined if they are from di�erent instanes. However, in orderto distinguish those that share the same store instane, we remember one additionalnumber i for eah edge whih indiates this load instane is the i-th load from thatstore instane.The result after grouping for the previous example is shown in Figure 4.5(a). Theresult after adding the extra sequene number is shown in Figure 4.5(b). Three edgesat the �fth aess point are organized as size sets of grammars.
A5:

G_F_(1,1,1) , G_B_(1,2,3), G_WA_(A1,A4,A3) ,

G_WF_(1,1,1) G_WB_(1,1,2) G_SN_(1,1,1)

A6:

G_F_(1,1), G_B_(2,3), G_WA_(A3,A3),

G_WF_(1,1), G_WB_(1,1), G_SN_(1,2)

A1  <F,B1,1>

A2  <F,B2,1>

A3  <F,B3,1>

A4  <F,B3,2>

A5  <F,B4,1>

A6  <F,B4,2>

Figure 4.6. Compressing eah subsequene using Sequitur.



53Compressing the data ow sequene. After organizing the memory dependeneedges aording to their unique load instrution ids, all edges at the same point ouldbe ompated using the Sequitur algorithm. As an be seen from Figure 4.5(b), theedges in eah group share a signi�ant similarity with eah item individually. Forthis reason, the edges form 7 individual subsequenes and get ompressed separately.Moreover, the �rst subsequene is removed as all edges in the same group share thesame global id. The last 6 subsequenes are ompressed and the results are shown inFigure 4.6.4.2 Implementation and experimentsThe TWPP+ algorithm has been implemented and evaluated to ompress programtraes for the programs from the SPECint95 benhmark suite [50℄ used in the pre-eding hapter. The original traes used in the experiments were generated using theTrimaran ompiler infrastruture [55℄.4.2.1 Compression results using TWPP+The ombined trae with both the ontrol ow and memory address traes is usuallymuh bigger than the ontrol ow trae itself. Table 4.1 shows the ontrol ow partand memory address part of the original trae. For 126.g and 132.ijpeg, the rawdata is trunated at the upper limit of a �le in our system, whih is 2 gigabytes.Program Total ontrol Total data Total traetrae size (MB) trae size (MB) size(MB)099.go 176.0 555.9 731.9126.g 164.4 687.1 851.1130.li 84.9 295.7 380.6132.ijpeg 130.0 838.0 968.0134.perl 44.9 158.0 202.9Table 4.1. Memory trae harateristis.



54From the table, the length of the memory address trae is about four times biggerthan that of the ontrol ow trae. As disussed above, there are two reasons. First, aword (32 bits) is used to represent a memory address while a half word (16 bits) is usedto represent a basi blok id. There is a fator of 2 for this reason. Seond, manybasi bloks ontain multiple memory aesses and thus eah basi blok instanemaps to several reorded memory addresses.The �rst onduted experiment was aimed at evaluating the e�et of eliminatingthe expliit memory addresses and onverting the trae to memory dependene edges.Sine an edge is reorded at every load instrution but not a store instrution point,the e�et of this onversion is determined by the perentage distribution of loadand store instrutions. Table 4.2 shows the stati distribution of load and storeinstrutions, and the dynami distribution of load and store instanes for di�erentbenhmarks.The results indiate that 63.2% of all memory aess instanes will generatememory dependene edges at runtime. However, we know that eah edge is indi-ated by two memory aess points, so that without any ompression, there are2*63.2%=126.4% memory aess points stored in the edge representation. Comparedto the original memory address trae, the onversion introdues about 26% moreaess points.Program Stati Dynamiload inst. store inst. load % load inst. store inst. load %099.go 11719 6682 63.7 % 100.5 M 38.5 M 72.3 %126.g 34474 19649 63.7 % 108.2 M 63.5 M 63.0 %130.li 1564 1396 52.8 % 45.1 M 28.8 M 61.0 %132.ijpeg 3704 2840 56.6 % 141.8 M 67.9 M 67.6 %134.perl 3548 2862 55.4 % 20.5 M 19.0 M 51.9 %Average 58.4 % 63.2 %Table 4.2. Distribution of load and store aesses.The seond step of the proposed ompression algorithm removes the unneessary



55memory dependene edges and ompat the edge representation. Edge ompationis done for every edge and an edge is paked into 6 items from its original 10 items,whih means there is a 40% redution. The ditionary generated is usually very small.For di�erent benhmarks, their ditionary sizes are shown in Figure 4.3.Program Memory aess pointditionary size (KB)099.go 110.4126.g 324.7130.li 17.8132.ijpeg 39.3134.perl 38.5Table 4.3. Ditionary size for memory aess points.Data was olleted to estimate the perentage of edges that are removed and theatual perentage of edges removed from the sample traes. Table 4.4 summarizes theload (store) instrutions with single and multiple soure (destination) addresses. Anedge, whih onsists of a load instane and a store instane, is removed only when itsstore instrution an only write to one address and its load instrution an only loadfrom that address. Thus, the probability that we will drop a memory dependeneedge is the produt of the probability of a load is a single soure load instrution andthe probability of a store is a single destination store instrution. From the table, theestimation is that on average 24% of total data dependene edges would be removed.Table 4.5 gives the atual perentage of edges removed from the sample traes.The total instanes of load and stores in eah ategory were olleted and the atualedges removed from the sample traes. Dynamially, if a load instrution from thesingle soure address ategory loads a value from an address whih was written bya store instrution from the single destination address ategory, the orrespondingedge is skipped. The results from the table show that about 17.7% of total memorydependene edges are removed. After removing these edges, about 53.3% of dynami



56Load Store Estimation ofProgram multiple single multiple single removedaddress address address address edges099.go 9048 2671 4434 2248 7.7 %126.g 20406 14068 9495 10154 21.1%130.li 1008 556 859 537 13.7%132.ijpeg 1181 2523 836 2004 48.1%134.perl 1617 1931 1256 1606 30.5%Average 24.2%Table 4.4. Distribution of stati load and store points.memory aess points need to be traed. Sine eah edge has two points, now we needto trae about the same number of aess points as that in the raw trae (2�53:3% =106:6%).Program Load Store % of edges % of dynamimultiple sr. single sr. multiple dest. single dest. removed points to traeinstanes(MB) instanes(MB) instanes(MB) instanes(MB) % (%)099.go 92.6 7.9 33.4 5.1 7.7 % 66.7 %126.g 91.1 17.1 54.4 9.1 13.4 % 54.6 %130.li 36.9 8.2 25.6 3.2 16.4 % 51.0 %132.ijpeg 111.8 30.0 41.6 26.3 17.0 % 56.1 %134.perl 13.2 7.3 13.7 5.3 34.0 % 34.4 %Average 17.7 % 53.3 %Table 4.5. Dynami behavior and removed edges.After having the edges grouped at eah load instrution point, the resulting sub-sequenes are ompated. The results are shown in Table 4.6 with a omparison tothe sheme that applies the Sequitur algorithm diretly to the entire trae ombinedwith ontrol ow and memory address information. For 126.g and 132.ijpeg, boththe unompressed trae and the result ontain only part of the ontrol ow traedisussed in the preeding hapter.



57Program Unompressed Sequitur TWPP+size (MB) size(MB) size(MB)099.go 731.9 195.2 317.6 + 26.5 = 344.1126.g 851.1 114.0 146.1 + 13.8 = 159.9130.li 380.6 35.9 24.4 + 6.4 = 30.8132.ijpeg 968.0 45.8 55.2 + 6.0 = 61.2134.perl 202.9 53.3 1.2 + 0.7 = 1.9Table 4.6. Compression results using Sequitur and TWPP+.4.2.2 Average san lengthThe purpose of onverting a memory address trae into a new TWPP+ representationis to help the onstrution of preise data ow information. Sine the load and storeinstanes of a memory dependene edge are usually separated from eah other, wehave to san the two di�erent representations in order to set up an edge. The nextexperiment evaluates the average length to be sanned in order to reover a memorydependene edge from di�erent representations.Given a load instane, the store instane of its dependene edge is found in theraw trae by bakward traversal of the trae. In the worst ase, the san length an beas high as the length of the trae. The results in Figure 4.7 show the average lengthover all edges of all load points. In WPP representation, whih is ompressed bySequitur algorithm, the worst-ase san length is up to the length of the ompressedrepresentation. In the WPP representation, the intermediate non-terminal symbolsare merely grammar symbols and thus they annot help in information retrieval. Inmany ases, the whole representation needs to be sanned to �nd the dependene.However, the results in Figure 4.7 is the best ase estimation whih means we needto just san the ompressed items between the load instane and store instane ofthe edge. In the new TWPP+ representation, the memory dependene edges areexpliitly annotated to eah load instrution. One the load instane is found, weould �nd the store instane of the edge from searhing all edges annotated to this



58load. Sine the edges are organized as several grammars, we ount the length of thesegrammars and the results in Figure 4.7 show the average and maximal length that issanned in the TWPP+ representation.Program Raw Trae WPP TWPP+Average Maximum099.go 12.2 M 3.3 M 33.4 K 2.1 M126.g 23.8 M 3.2 M 6.1 K 1.4 M130.li 10.0 M 0.9 M 22.7 K 4.2 M132.ijpeg 13.5 M 0.6 M 28.1 K 2.4 M134.perl 7.8 M 2.0 M 0.5 K 0.7 MTable 4.7. Average items sanned before �nding a memory dependene edge.From the table, we �nd it is orders of magnitude faster to �nd a data dependeneedge using the TWPP+ representation than that using the WPP representation.4.3 Related workChilimbi [15℄ proposed using the Sequitur [40℄ algorithm to ompress memory ad-dress traes diretly. The lossy ompressed result, identi�ed as whole program stream(WPS) is used to �nd hot subsequenes of data objet aesses and to use these sub-sequenes to improve memory referene loality. WPS is not a suitable representationfor memory dependene analysis beause of the following reasons. First, the addressabstration is used before ompression. The abstrated data referene trae onsistsof units of larger granularity, e.g. objet ids instead of �eld ids. Thus the preisememory dependene information at word level is lost. Seond, the algorithm iteratesseveral times and infrequently used memory addresses are disarded after eah itera-tion. As a result, the preise memory dependene information is lost even at the largegranularity. In ontrast, the TWPP+ representation puts more emphasis on analysisand keeps the preise memory dependene information. Moreover, as disussed, ex-



59pliit memory addresses are disarded as the goal of TWPP+ is not to improve thedata loality.4.4 ConlusionTo assist in data ow analysis with preise data and ontrol ow information for agiven exeution, a omplete whole program path with both ontrol ow pro�les andmemory addresses is olleted. However, it is observed that the expliit memoryaddresses are not neessary for many appliations. Following the same design philos-ophy as the one used in designing TWPP, a new representation was proposed in thishapter to reorganize the memory address trae into a sequene of memory depen-dene edges annotated on eah load instrution point. While providing more preiseinformation during data ow analysis, the new representation ahieves ompressionresults omparable to that using Sequitur diretly on the ombined trae. Moreover,the estimated speed to determine a memory dependene edge from the TWPP+representation is orders of magnitude faster than that from the WPP representation.
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Chapter 5Appliations of TWPP+The preeding two hapters introdued the new timestamped whole program path(TWPP+) representation to ompress a omplete program trae whih ontains bothdata ow and memory dependene information. The new representation has theadvantage of helping the program analyses and optimizations in several ways. Thishapter introdues three di�erent types of appliations using TWPP+.In the TWPP representation, all the exeution information related to a spei�program entity is organized together. For example, eah basi blok groups its fun-tion level exeution information as a sequene of timestamps; a load instrution groupsall of its memory dependene edges and ompresses them together. In suh a represen-tation, summary information with respet to di�erent entities an be easily olleted.By ounting the number of items annotated to eah entity, simple frequeny informa-tion ould be olleted and used to �nd hot program regions. Setion 5.1 disusses amore omplex appliation whih uses TWPP+ to deide the perentage distributionof redundant load and store instrutions.Although the exeution information about di�erent program entities has beenseparated, TWPP keeps the global timestamps so that the original exeution orderould be reonstruted easily. This order is espeially helpful in �nding whether agiven data ow fat holds at a given program point and with what frequeny. Setion5.2 disusses how to ollet suh information in a demand-driven fashion.The omplete ontrol ow and memory dependene information ould also beused in other appliations. In setion 5.3, TWPP is used in implementing di�erentdynami sliing algorithms with trade o� between ost of omputing slies and theirauray.



615.1 Exploring LOAD/STORE redundanyIn modern arhitetures, memory aesses have a long lateny and thus a signi�antamount of researh has been arried out to redue the number of load and storeinstrutions. However, before a load or store instrution an be removed, it must beidenti�ed as being redundant. This setion will show how to assist in this type ofoptimization with memory dependene edges reorded in TWPP.5.1.1 Identifying a redundant LOAD/STORE instrutionA load instrution of the form \LD R1, off(R2)" loads the value from the memoryaddress (R2+o�) into register R1. A store instrution of the form \ST R1, off(R2)"stores the value from register R1 into the memory address (R2+o�).Redundant LOAD and STORE instrutions are de�ned as follows. A load instru-tion instane l whih loads from a memory address m is identi�ed as a redundantload if it satis�es the following onditions.� There is another load instrution instane l0 whih is exeuted before l, and l0loads from the same memory address m. l and l0 ould be the instanes of thesame instrution or two di�erent instrutions.� There is no store instrution instane s between l0 and l suh that s writes tothe memory address m.A store instrution instane s whih writes to a memory address m is identi�edas a redundant store if it satis�es the following onditions.� There is another store instrution instane s0 whih is exeuted after s, and s0stores to the same memory address m. s and s0 ould be the instanes of thesame instrution or two di�erent instrutions.



62� There is no load instrution instane l between s and s0 suh that l loads fromthe memory address m.For example, in Figure 5.1, the load instane L is redundant sine load instane L2gets the value from the same address and the address is not overwritten in between.The store instane S is redundant sine there is no load that gets its value before itis overwritten.
LD R1, 0(R2)

LD R4, 0(R2)

   … no store to 0(R2) …

L’:

L:

ST R1, 0(R2)

ST R4, 0(R2)

   … no load from 0(R2) …

S:

S’:

(a) redundant LOAD instance L (b) redundant STORE instance SFigure 5.1. Redundant LOAD/STORE instrutions.Without program pro�les, a ompiler ould remove a redundant load (or store)instrution only when it is ensured that all of its instanes are redundant. However,in many ases, the memory addresses of di�erent load and store instrutions arestatially determined as potentially aliased but dynamially never overlap. Even withthe most advaned aliasing analysis, many fully redundant load and store instrutionsannot be identi�ed as redundant and be removed. In addition, it is desirable toexploit those instrutions eah of whih has many of its instanes as redundant. Theseopportunities ould be disovered with the help of memory dependene edges stored inthe TWPP+ representation. Next, we study the potential redundant load and storeinstanes and their distribution. As an ideal study, the following two assumptionsare made.� There are unlimited number of registers to hold values loaded from the memory.



63� Given a memory address, if its latest opy has been loaded to a register, thatregister an always be identi�ed.5.1.2 Identifying redundant loads from TWPP+Sine there are no expliit memory addresses in a TWPP+ representation, load re-dundany is not identi�ed by omparing di�erent load addresses, but instead it isdeteted through expliit memory dependene edges.Handle the disarded memory dependene edges. A TWPP+ representationdisards those edges that an be reonstruted from the ontrol ow trae. From thepreeding hapter, we know these edges are about 18% of total edges. The disardededges share one ommon property, i.e. the load and store instanes of these edgesare instanes of load and store instrutions eah an load from or store to only onestatially known address.There are three possible ways to handle these disarded edges. First, we onsideronly the reorded edges and their orresponding instrutions. Beause of the propertydisussed above { single memory address that is statially known, the load and storeinstrutions involved in disarded edges are relatively easy ases to handle. Thus wean skip proessing them. Seond, if we an integrate them into the TWPP+ repre-sentation, as we show in the preeding hapter, it inreases about 18% unompressededges. Third, we an reover them from a ontrol ow graph traversal. However,beause we are only interested in reovering these disarded edges, the ontrol owgraph is signi�antly simpli�ed.Here, we give the algorithm to reover these edges before �nding load and storeredundany. First, instrutions are seleted from the set of all load and store instru-tions. Eah seleted instrution an load from or store to only one memory addressand the address is statially deidable. Seond, the ontrol ow graph of a funtionis simpli�ed by removing all basi bloks if they do not ontain any seleted instru-



64tions or any funtion alls. A funtion is disarded if after the above simpli�ation,it ontains nothing. The above proess is applied iteratively until the ontrol owgraph does not hange any more. Third, the dynami all graph, as well as a fun-tion's ontrol ow graph, are traversed bakwards. During the traversal, a memorydependene edge is set up between a load instane and its immediate preeding storeinstane whih aesses the same memory address.Identify redundant loads. As desribed in the preeding hapter, there is a mem-ory dependene edge for eah load instane and the edge is of the form [< G1; F I1; BI1 >;< G2; F I2; BI2 >; SS℄ where G,FI,BI denote the global id, funtion instane id andbasi blok instane id and SS denotes this load is the SS-th load of the store value.The onditions to identify a redundant load an now be restated as follows.A load instane l denoted by an edge [< G1; F I1; BI1 >;< G2; F I2; BI2 >; SS1℄is redundant if there is another load l0 denoted by another edge [< G3; F I3; BI3 >;<G4; F I4; BI4 >; SS2℄ and� l and l0 load the value from the same memory address and there is no storeinstrution in between that writes to this memory address. This means they getthe value from the same store instane, i.e. < G2; F I2; BI2 >=< G4; F I4; BI4 >.� l is exeuted before l0. This means < G1; F I1; BI1 > has a smaller timestampthan < G3; F I3; BI3 >, i.e. SS1 < SS2.For example, in Figure 5.2(a), the store instrution S1 has been exeuted 3 times.For its seond instane, there are two load instrutions L1 and L2 and the seondinstane of eah load instrution gets the value from it. If the seond instane of L1is exeuted after that of L2, then it is redundant, otherwise the seond instane of L2is redundant.We know that memory dependene edges are organized at individual load pointsand stored in separated bloks, shown in Figure 5.2(b). Aording to the onditions
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store R1, 0(R2)

{ inst1, inst2, inst3}

load R3, 0(R4)

load R5, 0(R6)

{ ..., inst2, …}

{ ..., inst2, …}

S1:

L1:

L2:

(a)  redundant load instance

[<X1>, < G1, 1, 1>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 2, 1>,S3]

[<X4>, < G2, 1, 1>,S1]

[<X5>, < G1, 1, 1>,S2]

[<X6>, < G1, 2, 1>,S2]

[<X7>, < G1, 2, 2>,S1]

[<X8>, < G2, 1, 1>,S2]

…………….

[<X1>, < G1, 1, 1>,S1]

[<X5>, < G1, 1, 1>,S2]

[<X2>, < G1, 2, 1>,S1]

[<X6>, < G1, 2, 1>,S2]

[<X3>, < G1, 2, 1>,S3]

[<X7>, < G1, 2, 2>,S1]

[<X8>, < G2, 1, 1>,S1]

[<X4>, < G2, 1, 1>,S2]

(b)  TWPP+ representation
(c)  regroup according to their

store instances

L1:

L2:

Figure 5.2. Determining a redundant load.disussed above, we an identify redundant loads from TWPP+ representation asfollows. The �rst step is to reover the dependene edges disarded from the TWPP+and group them as a blok. The seond step is ombine all edges and regroup themaording to their store instanes. For the same store instane, edges are sortedaording to their load timestamps. Finally, we mark all loads exept the �rst loadin eah group as redundant load instanes and summarize the information (Figure5.2()).5.1.3 Identifying redundant stores from TWPP+We an identify redundant stores from TWPP+ similarly. Aording to the onditionsthat identify a redundant store, there is no load instane whih gets a value from aredundant store instane. Thus if an instane is involved in any edge, it is notredundant. Otherwise it is redundant.For example, in Figure 5.3(a), the store instrution S1 has been exeuted 3 times,both the �rst and the third instanes have their dependent load instrution instanes.There is no load instrution whih gets the value from its seond instane. The seondinstane is a redundant store instane. If the store is writing to an output stream, itis never marked as being redundant.



66Identifying redundant stores from the TWPP+ representation is similar to iden-tifying redundant loads. First, disarded edges are reovered. Seond, all edges aregrouped and sorted. From the sorted list, all skipped instane number of a storeinstrution denotes a redundant instane, shown in Figure 5.3(). 1

(a)  redundant store instance (b)  TWPP+ representation
(c)  regroup according to their

store instances

store R1, 0(R2)

{ inst1, inst2, inst3}

S1:

[<X1>, < G1, 1, 1>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 5, 1>,S1]

[<X4>, < G2, 1, 1>,S1]

[<X5>, < G1, 1, 2>,S1]

[<X6>, < G1, 1, 3>,S1]

[<X7>, < G1, 9, 2>,S1]

[<X8>, < G2, 1, 9>,S1]

…………….

[<X1>, < G1, 1, 1>,S1]

[<X5>, < G1, 1, 2>,S1]

[<X6>, < G1, 1, 3>,S1]

[<X2>, < G1, 2, 1>,S1]

[<X3>, < G1, 5, 1>,S1]

[<X7>, < G1, 9, 2>,S1]

[<X4>, < G2, 1, 1>,S1]

[<X8>, < G2, 1, 9>,S1]

7 redundant

stores

2 redundant

stores

3 redundant

stores

Figure 5.3. Determining all redundant stores from TWPP+.5.1.4 Experimental resultsRedundant load and store instrutions for SPECint95 benhmark programs are evalu-ated using the algorithm desribed above. Eah load and store instrution is uniquelynumbered and individually analyzed.First we study the distribution of redundant LOAD instanes. It is to �nd for eahgiven instrution, the perentage of its instanes that are redundant. For example,if 90 out of 100 instanes for a load instrution are redundant, it is ategorized as a90% redundant instrution. The �rst bar in Figure 5.4 shows the distribution of loadinstrutions for di�erent programs.Although an instrution has a high perentage of redundany, it might have onlya small number of instanes and thus not be very important. We weighted all instru-1To assist analysis, the highest instane number of eah store instrution is reorded duringpro�ling.
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Figure 5.4. Ideal LOAD redundany
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69tions by summarizing all instanes in eah ategory and the results are shown by theseond bar in Figure 5.4.From the �gure, most load instrutions fall in to three ategories: \0%", \90-100%" or \100%". If a load belongs to the \0%" ategory, there is no opportunityto optimize it; however, it is good to separate them from the rest beause we do nothave to invest any ompile time on further analyzing them. If a load belongs to the\90-100%" or \100%" ategory, it is worthy of further analysis sine good bene�tsare expeted from optimizing it.The experimental results for STORE redundany (Figure 5.5) show that moststore instrutions are not redundant at all. There are not many opportunities foroptimizing store instrutions.5.2 Frequeny of data ow fatsAlthough TWPP+ reorganizes the omplete program trae, it keeps the timestampinformation suh that the original exeution order ould be reonstruted. The exatexeution order is very important in determining if some data ow fats hold and theirfrequenies at some points during the exeution. During pro�le guided ompile-timeoptimization and dynami optimization of programs, one example ould be a querywhih looks like: How often does a data ow fat hold at a program point during theexeution aptured by the WPP?. This query is useful for identifying hot data owfats, i.e., data ow fats that hold very often during the exeution. Another usefulquery is: Does a data ow fat hold at a given program point during the exeutionaptured by the WPP?. This query is useful during debugging of programs inludingduring dynami slie omputation whih is disussed in the next setion.In this setion, a pro�le-limited data ow analysis approah is introdued to olletinformation about data ow fats with respet to a given whole program path (WPP).The analysis presented in this setion an be used to answer the above types of queries.



70For this analysis, there is no need to aess the entire TWPP but only a subsetof information orresponding to the funtion under onsideration. In partiular, atimestamp annotated dynami ontrol ow graph is used for the given path traewhih is desribed below.5.2.1 Timestamp annotated dynami CFGThis representation onsists of the dynami ontrol ow graph in whih DBBs areannotated with timestamp vetors. This representation is quite adequate for data owanalysis beause we an trae the WPP using the timestamp vetors assoiated withthe dynami basi bloks and limit the exploration of only those ontrol subpaths thatappear as part of the WPP during data ow analysis. The following harateristismake this proposed representation partiularly attrative for pro�le-limited data owanalysis.First it allows eÆient bakward and forward traversal of the path trae startingfrom any arbitrary point in the path trae. A timestamp and program point pair(t; n) together speify a partiular point in the path trae. The preeding point is(t� 1; m) where m is the predeessor of n in the dynami ontrol ow graph labeledwith timestamp t�1. Similarly the sueeding point is (t+1; s) where s is a suessorof n in the dynami ontrol ow graph whih is labeled with timestamp t+ 1.Seond it allows eÆient simultaneous traversals of multiple subpaths in the pathtrae. A vetor of timestamps at a program point (~T ; n) an be used to representmultiple traversal points. Eah element in the vetor an be inremented or dere-mented and resulting timestamps an be mathed with timestamps of predeessorsand suessors to ontinue simultaneous traversal along multiple subpaths. Com-pation of timestamps diretly attributes to the eÆieny of traversals. For exampleonsider a series of timestamps represented by (2:20:2) in our representation. A sim-ple inrement/derement resulting in (3:21:2)/(1:19:2) orresponds to simultaneous



71forward/bakward traversal along 10 subpaths in the path trae.An indiator of the relative osts of pro�le-limited analysis and traditional statianalysis are the umulative sizes of stati and dynami ow graphs (see Table 5.1).We ompared the total number of nodes (N) and edges (E) in the stati and dynamiow graphs. For a given funtion multiple dynami ow graphs an result beause ofmultiple unique traes assoiated with it. The nodes and edges in all of these graphswere ounted in omputing the umulative size of the dynami ow graphs. From theresults in Table 5.1 we an see that the number of nodes and edges in the dynamigraphs are typially muh smaller than those in the stati graphs. However, theost of pro�le-limited analysis is also dependent upon the size of timestamp vetorassoiated with eah node. Average size of the timestamp vetor is shown in thelast olumn of Table 5.1 (the value in parenthesis is the size of the vetor beforeompation - the results show that timestamp vetor is signi�antly redued in sizeusing our ompation tehnique). In summary, the data in Table 5.1 indiates thatwhile, as expeted, pro�le-limited analysis is more expensive than stati analysis, ithas a reasonable ost.Program Stati FG Dynami FGN E P N P E avg. j~T j126.g 66571 104379 8838 20012 14.0 (33.1)132.ijpeg 5718 8105 754 1213 18.1 (109.7)099.go 10823 16236 4739 16591 11.9 (15.7)130.li 2701 3536 265 289 51.2 (410.3)134.perl 13117 19539 501 674 3.9 (616.8)Table 5.1. Sizes of stati and dynami ow graphs.5.2.2 Demand-driven analysisA traditional data ow analysis framework reated (GEN) and removed (KILL) dataow fats at eah basi blok. The transfer funtion is used to propagate the data



72ow fats through a basi blok and ompute the data ow solutions. Generally,onservative solutions are omputed at the meet or split points as well as for loopswhose solutions are omputed iteratively. Details about data ow analysis an befound in [38℄.It is natural to formulate pro�le-limited analysis in a demand-driven fashion [20,46℄. This is beause the appliations of pro�le-limited analysis request informationinrementally. For example, during debugging a user typially makes a request forthe dynami slie orresponding to only one variable at a �xed program point (i.e., weonly need to ompute subset of data ow information for subset of program points).Similarly during pro�le-guided or dynami ode optimization, subset of pro�le-limiteddata ow information may be requested by the optimizer for subset of program pointsin hot regions of the program [8℄.Queries for pro�le-limited data owA pro�le-limited data ow query is of the form < T ; n >d, where n is a node, T isa subset of timestamps for n in the path trae, i.e., T � T (n), and d is the dataow fat of interest. This query represents a request for determining whether ornot d holds true prior to n's exeutions orresponding to timestamp values in T .Therefore the query < T (n); n >d determines the data ow solution orrespondingto all exeutions of n in a given path trae. The solution to this query allows us todetermine if d always holds true, never holds true, and holds true sometimes for thegiven path trae. In fat solving suh queries allows us to determine the frequenywith whih d holds true with respet to the given path trae [45, 7, 22, 24, 23℄.Query propagationLet us onsider pro�le-limited demand-driven bakward propagation of queries forGEN-KILL problems beause they arise both during ode optimization and debug-



73ging. For simpliity, the analysis of only intraproedural paths is onsidered. How-ever, in analyzing these paths the e�ets of any funtion alls that a path trae mayontain will be taken into aount. The tehnique presented an be easily extended tohandle interproedural paths by analyzing path traes of multiple funtions in onertand propagating queries along interproedural paths [20℄.The demand-driven propagation begins at a point n when the query < T ; n >d israised. For GEN-KILL problems it is appropriate to propagate a timestamp vetor, ~T ,whih ontains one slot for every timestamp, or more preisely, for every entry in theompated TWPP path trae. The propagation should be viewed as simultaneous(or parallel) searh for data ow solutions orresponding to eah timestamp in T .Eah slot in ~T is initialized to the timestamp value(s) to whih it orresponds. Thepropagation of this ~T begins at n.It must be ensured that query propagation is onsistent with the path trae underonsideration. As disussed earlier in this setion, this goal is easily aomplishedusing the timestamp annotated dynami ontrol ow graph representation. It is pos-sible to orretly manipulate the timestamp vetor during propagation suh that thetimestamps in the vetor are propagated only to the appropriate predeessors. Whena node that answers the query (true or false) with respet to a partiular times-tamp is enountered, the propagation on behalf of that timestamp eases. Otherwiseequivalent queries are generated and propagated along the path trae.The query < ~T ; n > represents the searh for dynami GEN-KILL points orre-sponding to timestamps of n for whih slots were reated in ~T . For arrying out thepropagation �rst dynami GEN-KILL sets (i.e, sets w.r.t. to a given TWPP) for adata ow fat d (whih are denoted as DGENdn and DKILLdn) must be omputed.Although n is a dynami basi blok, to simplify the presentation it is assumed thatn ontains a single statement. If node n ontains a all to funtion f , then thetraes for alls made by the n's instanes orresponding to T (n) are examined. Theset GENdf (T (n)) (KILLdf (T (n))) ontains the subset of timestamps from T (n) for



74whih all to funtion f generates (kills) d. If node n simply ontains a statement, thedynami sets are omputed from the stati GEN and KILL sets for node n denotedbelow as SGENn and SKILLn.DGENdn = 8<: GENdf (T (n)) if n alls fT (n) elseif d 2 SGENn� otherwiseDKILLdn = 8<: KILLdf (T (n)) if n alls fT (n) elseif d 2 SKILLn� otherwiseNow let us onsider query propagation. The timestamp values in ~T are eahderemented by 1 during every step of bakward propagation. Only those result-ing timestamp values whih are present in T (m), where m is a predeessor node,are propagated to m. At m the query for a timestamp may be resolved as true (ift 2 DGENdm) or as false (if t 2 DKILLdm). If it is not resolved, then the aboveproess is repeated starting with the derementing of the timestamp and propagationontinues. It should be noted that only a subset of slots may be relevant for a givenpredeessor node; thus the other slots will ontain a null value denoted by ?. Theabove rules are stated preisely below and are further illustrated by example appli-ations disussed in the subsequent setions.Propagation of < ~T ; n >Notation: ~T =T 0 is a timestamp vetor st(~T =T 0)i = if (~T )i 2 T 0 then (~T )i else ?.Slots in ~T resolved as true are slots in vetorsSm2pred(n)(~T �~1) = DGENdm whih do not ontain ?.Slots in ~T resolved as false are slots in vetorsSm2pred(n)(~T �~1) = DKILLdm whih do not ontain ?.Queries propagated for unresolved slots in ~TSm2pred(n) < (~T �~1) = (T (m)�DGENdm �DKILLdm); m >



755.3 Dynami program sliing with TWPPProgram sliing is a useful tool in program analysis, understanding and debugging.Given a program point P of a program S and a variable V, a stati slie omputesthe set of statements whose exeution ould possibly a�et the value of V in someexeutions. Given an exeution history, a program point P of a program S and avariable V, a dynami slie omputes the set of statements whose exeution a�et thevalue of V in this exeution history. For example, in Figure 5.6, we havestati slie(Z; (14)) = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16g;dynami slie(Z; (14); trae) = f2; 3; 4; 6; 7; 8; 9; 11; 13; 14; 15; 16g:There are two kinds of dependenes: data dependenes and ontrol dependenes. Forexample, in Figure 5.6, variable V is ontrol dependent on statements 6,8 and datadependent on the rest.Stati bakward program sliing was �rst proposed by Weiser as a debuggingaid [59℄. The more preise dynami sliing was proposed by Korel and Laski [30℄.Most reently Agrawal and Horgan [1℄ developed three dynami sliing algorithmswhih trade-o� preision in the omputed slie with the time it takes to ompute theslie. Eah of these algorithms onstruts a di�erent speialized program dependenegraph (PDG) to apture the dependenes exerised in a given exeution. A bakwardtraversal over the graph is used to ompute the dynami slie as a transitive losureover data and ontrol dependenes. Eah of the above dynami sliing algorithms anbe implemented using one ommon representation, the timestamped dynami ontrolow graph, and thus the onstrution of speialized graphs suggested in [1℄ is avoided.5.3.1 Preise dynami sliing with TWPP+Three algorithms with di�erent auray and osts are presented in [1℄ to alulatedynami slies. The implementation of the preise algorithm with TWPP+ is dis-



76ussed below. The impreise algorithms 1 and 2, whih ompromise the auray forspeed, will be disussed later.
Sample Program :

(1)  P[0] = 2;

(2)  P[1] = 4;

(3)  N = input();

(4)  I = 1;

(5)  J = 0;

(6)  while (I <= N ) {

(7)        X = input();

(8)        if  (X>=0)

(9) Y = P[X];

            else

(10) Y = f2(X);

(11)          Z = f3(Y);

(12)          output(Z);

(13)          J = 1;

(14)          I = I + 1;

            }

(15) Z = Z + J;

(16) breakpoint, request slice for Z

Input:

(N=3, X= {0,-1,1} )

Trace:

1.2.3.4.5.6.7.9.10.11.12.13.14

               6.8.9.10.11.12.13.14

               6.7.9.10.11.12.13.14

               6.15.16

Timestamps :

(1) 1

(2) 2

(3) 3

(4) 4

(5) 5

(6) 6:30:8

(7) 7:23:8

(8) 8:24:8

(9) 9,25

(10) 17

(11) 10:26:8

(12) 11:27:8

(13) 12:28:8

(14) 13:29:8

(15) 31

(16) 32Figure 5.6. Dynami sliing example.Preise algorithm: This method dupliates the exeuted node and its dependeneedges during the exeution so that it an distinguish between the instanes of a givenstatement. The expanded PDG graph is traversed to �nd the preise dynami slie.The bakward analysis uses timestamps to �nd dependenes and when a dependene isfound only a single timestamp is added to the newly generated queries. In other wordswe identify the preise instane of the assignment (for data dependene) and prediate(for ontrol dependene) whih is the soure of the dependene and generate queriesonly for the orresponding instanes of variables that are read by the assignment orprediate. In our example, note that although statements 10 and 5 are exeuted,they are not inluded in the slie beause the value of Z at 15 depends only upon thevalues of Y and J omputed by statements 9 and 13.The implementation of algorithm 3 using TWPP+ is shown in Figure 5.7. Ittraverses the TWPP+ representation bakwards and inludes both ontrol and data



77
Dynami Sliing Algorithm:(01) Q = f< TS0; S0 >Xg;(02) WHILE ( Q != NULL)(03) item = dequeue (Q);(04) IF ( item is \< TS1; S1 >" )(05) IF ( S1 is a ontrol statement )(06) insert (S1; TS1) to Dslie;(07) FOR eah variable Z in S1(08) insert < TS1; S1 >Z into Q;(09) ELSE(10) FOR eah preeding statement S2 of S1(11) insert < TS1 � 1; S2 > into Q;(12) IF ( item is \< TS1; S1 >Y " )(13) IF ( S1 is a ontrol statement )(14) insert (S1; TS1) to Dslie;(15) FOR eah variable Z in S1(16) insert < TS1; S1 >Z into Q;(17) IF ( S1 writes to Y )(18) insert (S1; TS1) to Dslie;(19) FOR eah RHS variable Z of S1(20) IF ( data dependene edge list ontains Z with TS1)(21) edge := (:::; < G2; I2 >)(22) insert < G2; I2 > into Q;(23) ELSE(24) FOR eah preeding statement S2 of S1(25) insert < TS1 � 1; S2 > into Q;(26) IF ( S1 writes to some other variable )(27) FOR eah preeding statement S2 of S1(28) insert < TS1 � 1; S2 >Y into Q;(29) IF ( item is \< G1; I1 >" )(30) �nd the timestamp TS2 for instane I1 at global load point G1(31) �nd the statement S2 for global load point G1(32) insert (S2; TS) to Dslie;(33) FOR eah RHS variable Z of S2(34) insert < TS2; S2 >Z into Q;Figure 5.7. Preise dynami sliing algorithm with TWPP+.



78dependent statements into the dynami slie. Control dependent statements are in-luded from the bakwards traversal of the ontrol ow trae. However, there are twokinds of data dependent statements. If the load instane has a memory dependeneedge, the algorithm follows this edge diretly to its de�nition point and inlude thede�nition instane into the dynami slie. Otherwise, it traverses along the ontrolow graph with the timestamp until the de�nition point is found.The main data struture in this algorithm is a global queue whih holds the itemsneeded to be heked for further dependene. The queue ould ontain a mixed ofthree types of nodes and the algorithm is to handle them aordingly.� < TS; S >X. It means the algorithm needs to �nd both the data and ontroldependent edges for a aess point of variable X. If S is a ontrol blok, thestatement is found whih the aess of variable is ontrol dependent on. If Swrites to X, the de�nition of X is found, the algorithm an then start to resolvethe dependene of its RHS variables. If S writes to a memory loation otherthan X, the algorithm will skip this statement and go bakwards further.� < TS; S >. It means the data dependeny has been resolved. The algorithmjust need to go bakwards and �nd the ontrol dependeny.� < G; I >. It denotes that a reorded data dependene edge has been found and< G; I > is the de�nition point of this edge. The instrution should be inludedinto the slied and data and ontrol dependene should go further from thatpoint.The detailed propagation of queries for this algorithms is shown in Figure 5.8.The queries of the form < T ; n >V where T is the timestamp vetor, n is the nodeat whih the query is to be evaluated, and V is the variable whose de�nition is to befound. Therefore, a request for a slie on Z at line 16 is translated into the query< [32℄; 16 >Z . The updated slie after the proessing of a query is given in the



79orresponding entry of the seond olumn and the type of dependene (ontrol ordata) that aused the addition of a statement to the slie is also indiated.Approah 3: Sliing request: < [32℄; 14 >ZQuery Slie Dependene< [32℄; 16 >Z f16g< [31℄; 15 >Z< [31℄; 15 >J f15,16g data< [30℄; 6 >Z< [30℄; 15 >J< [30℄; 6 >I< [30℄; 6 >N f6,15,16g ontrol< [29℄; 14 >Z< [29℄; 14 >J< [29℄; 14 >I< [29℄; 14 >N f6,14,15,16g data< [28℄; 13 >Z< [28℄; 13 >I< [28℄; 13 >N f6,13,14,15,16g data< [27℄; 12 >Z< [27℄; 12 >I< [27℄; 12 >N f6,13,14,15,16g data< [26℄; 11 >Y< [26℄; 11 >I< [26℄; 11 >N f6,11,13,14,15,16g data< [25℄; 9 >X< [25℄; 9 >I< [25℄; 9 >N< [25℄; 9 >P [1℄ f6,9,11,13,14,15,16g data< [25℄; 9 >X< [25℄; 9 >I< [25℄; 9 >N f2,6,9,11,13,14,15,16g memory< [24℄; 8 >X< [24℄; 8 >I< [24℄; 8 >N f2,6,8,9,11,13,14,15,16g ontrol� � � � � �< [5℄; 5 >I< [5℄; 5 >N f2,4,6,7,8,9,11,13,14,15,16g data< [4℄; 4 >N f2,3,4,6,7,8,9,11,13,14,15,16g dataFigure 5.8. Implementing A&H's dynami sliing algorithm 3.The worst ase time omplexity of the implementation using TWPP is the sameas that of Agrawal and Horgan's algorithm. The primary ost of both algorithmsomes from proessing the ontrol ow trae. The new algorithm must examine theentire trae to ompute the TWPP path trae representation while their algorithmmust examine the trae to onstrut a dynami dependene graph. The main di�er-ene between the two approahes is as follows. Agrawal et al. ompute all dynamidependenes �rst and onstrut a graph using whih any dynami slie request anbe proessed using a simple traversal. In ontrast TWPP+ based approah om-putes relevant dependenes for sliing requests upon demand (like Weiser's algorithm[59℄). Sine the same dependenes may be relevant to di�erent sliing requests, theirreomputation must be avoided by ahing the omputed dependenes. In otherwords TWPP+ based approah builds the dynami dependene graph inrementallyas sliing requests are proessed.



80
Approah 1:Sliing request: < �; 16 >ZQuery Slie Dependene< �; 16 >Z f16g< �; 15 >Z< �; 15 >J f15,16g data< �; 6 >Z< �; 6 >J< �; 6 >I< �; 6 >N f6,15,16g ontrol< �; 5 >Z< �; 5 >I< �; 5 >N< �; 14 >Z< �; 14 >J< �; 14 >I< �; 14 >N f5,6,13,14,16g data< �; 4 >Z< �; 4 >N< �; 13 >Z< �; 13 >I< �; 13 >N f4,5,6,13,14,15,16g data< �; 3 >Z< �; 12 >Z< �; 12 >I< �; 12 >N f3,4,5,6,13,14,15,16g data< �; 2 >Z< �; 11 >Y< �; 11 >I< �; 11 >N f3,4,5,6,11,13,14,15,16g data< �; 1 >Z< �; 10 >X< �; 10 >I< �; 10 >N< �; 9 >P [0℄;P [1℄< �; 9 >X< �; 9 >I< �; 9 >N f3,4,5,6,9,10,11,13,14,15,16g data< �; 10 >X< �; 10 >I< �; 10 >N< �; 9 >X< �; 9 >I< �; 9 >N f1,2,3,4,5,6,9,10,11,13,14,15,16g memory< �; 8 >X< �; 8 >I< �; 8 >N f1,2,3,4,5,6,8,9,10,11,13,14,15,16g data,ontrol< �; 5 >I< �; 5 >N f1,2,3,4,5,6,7,8,9,10,11,13,14,15,16g data< �; 4 >I< �; 4 >N f1,2,3,4,5,6,7,8,9,10,11,13,14,15,16g solved queriesApproah 2: Sliing request: < [32℄; 16 >ZQuery Slie Dependene< [32℄; 16 >Z f16g< [31℄; 15 >Z< [31℄; 15 >J f15,16g data< [30℄; 6 >Z< [30℄; 6 >J< [6 : 30 : 8℄; 6 >I< [6 : 30 : 8℄; 6 >N f6,15,16g ontrol< [29℄; 14 >Z< [29℄; 14 >J< [5℄; 5 >I< [13 : 29 : 8℄; 14 >I< [5℄; 5 >N< [13 : 29 : 8℄; 14 >N f6,14,15,16g data< [28℄; 13 >Z< [12 : 28 : 8℄; 13 >I< [4℄; 4 >N< [12 : 28 : 8℄; 13 >N f4,6,13,14,15,16g data< [27℄; 12 >Z< [11 : 27 : 8℄; 12 >I< [11 : 27 : 8℄; 12 >N f3,4,6,13,14,15,16g data< [10 : 26 : 8℄; 11 >Y< [10 : 26 : 8℄; 11 >I< [10 : 26 : 8℄; 11 >N f3,4,6,11,13,14,15,16g data< [9; 25℄; 9 >P [0℄;P [1℄< [9; 25℄; 9 >X< [17℄; 10 >X< [9; 25℄; 9 >I< [17℄; 10 >I< [9; 25℄; 9 >N< [17℄; 10 >N f3,4,6,9,10,11,13,14,15,16g data< [9; 25℄; 9 >X< [17℄; 10 >X< [9; 25℄; 9 >I< [17℄; 10 >I< [9; 25℄; 9 >N< [17℄; 10 >N f1,2,3,4,6,9,10,11,13,14,15,16g memory< [8 : 24 : 8℄; 8 >X< [8 : 24 : 8℄; 8 >I< [8 : 24 : 8℄; 8 >N f1,2,3,4,6,8,9,10,11,13,14,15,16g data,ontrol< [7 : 23 : 8℄; 7 >I< [7 : 23 : 8℄; 7 >N f1,2,3,4,6,7,8,9,8,10,13,14,15,16g data< [6 : 30 : 8℄; 6 >I< [6 : 30 : 8℄; 6 >N f1,2,3,4,6,7,8,9,8,10,13,14,15,16g solved queriesFigure 5.9. Implementing A&H's impreise dynami sliing algorithms.5.3.2 Approximate dynami sliing with TWPP+In this subsetion, we use TWPP+ representation to implement the approximatealgorithms proposed in [1℄, identi�ed as approah 1 and 2.Impreise algorithm 1: This method marks all exeuted nodes in the PDG duringthe exeution. The bakward traversal to identify the statements in the dynami slieis allowed to visit only the marked nodes. These marked nodes are essentially thenodes with non-empty timestamp sets in our TWPP representation. Therefore in ourimplementation the bakward traversal of a query through the timestamp annotatedCFG is allowed to traverse only nodes that have a non-empty timestamp set. Whena dependene is identi�ed under suh a traversal, the statement at whih the depen-dene originates is added to the dynami slie. In our example, all statements areexeuted. Therefore the dynami slie is the same as a stati slie, whih ontains allnodes exept node 12.Impreise algorithm 2: This method marks all exeuted edges in the PDG duringthe exeution. The bakward traversal to identify the statements in the dynami slie



81is allowed to only traverse marked edges. The bakward analysis uses timestamps to�nd dependenes an arry out a similar traversal by ensuring that an edge fromnode n to node m is traversed only if the query at node m ontains timestamp tand the timestamp t� 1 is assoiated with node n. To �nd the memory dependene,all edges kept at a load instrution point are traversed bak to inlude new nodesinto the slie. Moreover sine this algorithm does not distinguish between di�erenttimestamps orresponding to a node, when a dependene is found, and new queries aregenerated at a node, all timestamps of that node are inluded in the newly generatedquery for further propagation. In the example, we will be able to get the dynamislie whih inludes all nodes exept node 5 and 12.5.4 ConlusionAs demonstrated by the three appliations disussed in this hapter, the timestampedwhole program path representation an be used in a wide range of areas. It is orga-nized at di�erent level suh that di�erent appliations an �nd the required informa-tion more onveniently.TWPP+ an be used to study the overall behavior of a program exeution. Byregrouping and sorting the memory dependene edges, redundant load and store in-stanes are identi�ed. A signi�ant perentage of load instrutions are highly redun-dant and ould be further optimized to improve performane. With the timestamps,the exat exeution order is maintained in the TWPP+ suh that it is muh faster toidentify the frequeny of some data ow fats at some program points with respetto the given whole program path. The TWPP+ representation an also be used asdebug tool to reate dynami slies at any program exeution point. Di�erent sli-ing algorithms are simulated using this representation with di�erent ost and slieauray tradeo�.
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Chapter 6Profiling dynamially alloated dataobjetsIn the preeding hapters, a new representation was developed to ompress both on-trol ow and memory address pro�les. It enables the appliation of whole programpath in pro�le guided optimizations by speeding up the information retrieval at theanalysis stage. On the other hand, with the rapid advanes in both omputer arhi-teture and programming pratie, new types of pro�les are needed to explore newoptimization opportunities and develop new types of optimization tehniques. In thefollowing three hapters, a new pro�ling framework is developed to disover runtimeompression opportunities. Both software and hardware tehniques are developed toexploit these opportunities.Over the last deade, the memory and CPU performane gap has beome a majorperformane bottlenek in modern omputer arhitetures. Cahe has been proposedas an e�etive omponent to bridge this gap. Sine ahe is usually muh smallerthan the main memory and the user spae, it is very important to make good use ofthe ahe memory in order to ahieve good performane. Traditional approahes toimprove ahe performane suh as doubling the size, inreasing the assoiativity fromhardware, or rearranging data objets or data �elds within objets by ompilers, donot hange the data density in the ahe. However, as we will see, a large perentageof the bits stored in both the ahe and the main memory are redundant. By removingthese redundant bits, more data items an be kept in a ahe of given size and alleviatethe memory bottlenek by reduing the number of ahe misses.The user spae is divided into three areas: stak, globals and heap. The datastrutures alloated in di�erent areas show di�erent ahe and memory aessing



83behavior. Those alloated in stak usually have muh better performane than therest. Data layout optimizations an be used to optimize the behavior of global andheap data aesses. Those alloated in the global data spae, even if they have badperformane, an be optimized well by existing ompilers. However, those alloated inthe heap have bad ahe behavior and they are hard to optimize at ompile time sinethey are alloated dynamially. The fous of this researh is mainly on the dynamidata strutures. In partiular, new data ompression tehniques are designed toompress dynamially alloated data strutures.Before the design of a dynami and e�etive data ompression tehnique, we needto pro�le programs and ollet information that would guide us in the developmentof new ompression tehniques. In this hapter, suh a framework is presented forpro�ling dynamially alloated data objets. The framework allows us to analyzethe value harateristis and lifetime of the dynamially alloated objets. Morespei�ally, the framework allows us to arry out and answer the following questions.� What data strutures should be ompressed?� How should they be ompressed?� When should they be ompressed?The subsequent hapters present detailed software and hardware shemes respe-tively to remove redundany in dynamially alloated heap data objets. While thesoftware tehnique uses data ompression transformations for redundany removal,the hardware tehnique removes redundany through a novel data ahe design.The rest of this hapter is organized as follows. The type based pro�ling tehniqueis introdued in setion 6.1. The experimental framework is presented in setion 6.2.Results of studies aimed at answering the three questions listed above are presentedin setions 6.3, 6.4 and 6.5 respetively. Setion 6.6 onludes the hapter.



846.1 Type based pro�lingUsually, a program ontains a large number of objets of a given type and there are anumber of �elds within the given type. For example, all the nodes of a linked list areof the same struture with several �elds: a pointer �eld to link the nodes together andsome other data �elds. Often there exists a signi�ant degree of value similarity arossthe same �elds from di�erent nodes. Spae requirements ould be redued by takingadvantage of this similarity. However, a ompression strategy that treats uniformlyall �elds in a type is too oarse and would miss many opportunities in pratie. A newtype-based pro�ling tehnique whih ollets the following information is proposed tosolve this problem.� The lifetime of eah objet and the total number of load and store aesses tothis objet are found through pro�ling. This information identi�es the overallbehavior of eah dynamially alloated objet.� The value harateristis for eah �eld of eah type in the program are deter-mined. This information is organized as the value range summary of all �eldinstanes. Value harateristi information an be olleted at di�erent granu-larity and it is possible to keep an additional list of most frequently use N valuesand their aess frequenies.To ollet the above information, a straightforward approah is a omplete instru-mentation of all aess points inluding the reation point at mallo(), the deletionpoint at free() and all load and store aesses. Although it is easy to trae at the highlevel the type information of objets through mallo() and free() funtion all points,a high level variable aess an be translated to either a register aess and a memoryaess. Sine we are only interested in memory aesses, instrumentation at a highlevel is thus insuÆient. One possible approah is to trae the load and store aessesby modifying the ode generation part of the ompiler but it is too expensive. To



85minimize e�ort in modifying the ompiler, a type-based pro�ling framework is pro-posed in this hapter with a ombined approah of using high level instrumentationand lower level simulation.6.2 Experimental framework
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.c files .spd files my SUIF

pass
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.spd files
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.c files

SUIF

gcc
object code

resultsFigure 6.1. Type based pro�ling framework.Figure 6.1 shows the framework whih ombines the use of SUIF 1.0 ompiler[54℄ and Simplesalar simulator [10℄. The original C programs are �rst onverted toSUIF intermediate representations (IRs) by s. A new pass is written to instrumentthese IRs and high level type of information is inserted into the instrumented ode.The results of the new pass are still IRs and they are onverted bak to C programsby s2 (a onversion tool in SUIF). Then the instrumented version of C programsare ompiled by g provided in Simplesalar and the MIPS-like exeutable ode isgenerated. The Simplesalar simulator, whih has been modi�ed to proess high leveltype information, is used to simulate the exeution and ollet pro�les.At the high level, the new SUIF pass instruments two kinds of program pointsand generates a type list for later referene.� At eahmemory alloation point, a dummy instrution \asm(\lw $0, T($26)")"is inserted before the funtion all mallo. Here the parameter \T" indiatesthe type index of the return memory address and two registers $0 and $26 are



86expliitly used. $0 is a onstant zero register and $26 is an operating systemreserved register.� At eah type asting point, two dummy instrutions \asm(\lw $0, T1($26)")"and \asm(\lw $0, T2($26)")" are inserted to indiate the types before and afterasting.� A type list reords all types delared in the program. The mapping from eaho�set to its orresponding �eld is kept for eah type. Given an o�set for a type,it is possible to �nd its orresponding �eld and the type of the �eld.The register \$26" is safe to use beause as an operating system reserved register,the objet ode generated from a ompiler suh as g does not use this register.Sine the objet ode is to be simulated rather than exeuted on a real mahine,the simulator an ath these dummy instrutions, nullify their e�ets exept forextrating the type information they arry from the high level instrumentation. As aresult, these dummy instrutions have no e�et on the program exeution exept theslots they take from the instrution ahe. Beause it is the lower level simulator thattraes memory aesses, the high level ode is inserted only at the mallo and typeasting points. The number of these points is signi�antly smaller than the numberof memory aesses. In this way the program's behavior is minimally a�eted by theinstrumentation.At the lower level, the simulator is modi�ed to instrument one kind of programpoint and maintain two pro�ling data strutures.� Memory aess point. Eah memory aess point, either a load or a storeinstrution, is traed but only the aesses to the interesting heap objets arefurther proessed.� A B+ tree. The simulator maintains a B+ tree to keep all nodes dynamiallyalloated from system mallo. When a new memory hunk is alloated, a new



87reord that ontains the starting address, the size, and the result type of thememory hunk is inserted into this B+ tree. The starting address is gotten fromthe result of the all to mallo. The size and type information is obtained fromthe high level dummy instrutions.� Field level ompressibility list for eah type. The simulator maintains alist for eah type. The �eld level ompressibility information is maintained inthis list to summarize the value properties for all instanes.Sine nearly all data items are aessed at word level, an assumption is made toonsider only the aesses at word size level from now on. Although there are aessesto feth double preision oating point values, double word-sized values, or subwordlevel values, the overall perentage of suh aesses is usually very small. It is alsopossible to approximate eah double-word aess by two onseutive word aessesand eah subword aess by one word-sized aess plus a subsequent bit extration.One a memory aess is traed by the simulator at runtime, a series of heks areperformed as follows. First, the simulator searhes the B+ tree and �nds the reordontaining the address. Seond, the o�set is omputed from the node's starting ad-dress. With simple alulation from the information in the type list, this memoryaddress is mapped to a �eld and the orresponding �eld type information is deter-mined. For example, suppose we are heking a memory address \0x10000108" andthere is a node whih indiates an array type with starting address \0x10000000".Furthermore, eah item is 0x100 bytes long and is of the following type.strut list node fint value;strut list node *prev,strut list node *next;� � � ;g *t;



88The �eld being aessed is then mapped to the third �eld of the seond item inthe array. Finally, the value itself is heked to evaluate its ompressibility and the�eld ompressibility list is updated aordingly.Next, let us disuss the experiments and their results in answering the what, whenand how questions of data ompression using this framework.6.3 Seleting objet types to ompressA program may ontain multiple data types, eah exhibiting di�erent aess patternsand di�erent ompressibility. The data types that an optimizing ompiler shouldompress are those, by transforming whih, positive impat on performane is ex-peted. The �elds in a data type should also be onsidered separately with the aimof maximizing bene�t. Sine di�erent ompression shemes might group �elds dif-ferently, and thus a�et the overall ompressibility, this setion will disuss how toseparate and pik out di�erent data strutures for ompression. The ompression ofdi�erent �elds is left to subsequent setions.As desribed, the olleted pro�les provide the information about the number ofobjets for eah type and the information about the value ranges for all �elds of agiven type. Potential spae savings an thus be alulated from this information.Experiments have been done to identify the appropriate data types to ompress inSPEC95int benhmark suite. Most programs from this benhmark suite have at leastone of the following properties.� There are a set of similar types and a generi type. The generi type is used tobuild up the data struture but eah node is of a spei� type. Objet instanesare aessed by type asting to a spei� type. Programs 130.li and 126.g,whih themselves are ompilers, exhibit this property. These programs buildup a syntax tree for eah funtion and eah node in the tree ould be of a spei�type (e.g., for an expression, a FOR statement, or an IF statement, et).



89� The program �rst alloates a large hunk and starting address of the node is re-alulated (aligned) to a speial address. Beause of impliit address arithmeti,the ompiler has diÆulty in remapping the �elds and their o�sets. Program124.m88ksim exhibits this property.The above identi�ed properties blok further proessing of SPEC95int benhmarksand we onlude that they are not good for automati ompression transformations.The programs from Olden benhmark suites were further studied. Olden is apointer intensive benhmark suite (Table 6.1). Although the types of a programare divided into several groups, eah group has only one type. The lear type iso-lation provides good opportunities for ompiler-based ompression. The main datastrutures that were onsidered for ompression are given in Table 6.1.Program Appliation Main data struturebh Barnes & Hut N-body fore omputation al-gorithm Heterogeneous treebisort Bitoni Sorting Binary Treehealth Columbian health are simulation Doubly- linked listsmst Minimum spanning tree of a graph Heterogeneous treeperimeter Perimeter of regions in images Quad-treetreeadd Reursive sum of values in a balaned B-tree Binary treetsp Traveling salesman problem Balaned binary treevoronoi Computes the voronoi diagram of a set ofpoints Balaned binary treeTable 6.1. Olden Benhmark Summary.6.4 Choosing the ompression shemeA major hallenge in the design of a ompression sheme is to balane the dynamiompression osts and the bene�ts of ompression. A dynami ompression shemeshould be simple and fast for most if not all of the aesses. If applying traditionalompression tehniques (e.g., a ditionary based approah or Hu�man oding), there



90are at least two memory aesses: one to feth the enoded data and the other to feththe deoded data. As the ahe and memory aesses are already the bottlenek andthe major fous of applying ompression dynamially is to redue the total numberof these aesses, these tehniques are not appealing for dynami ompression. Thenew ompression sheme that would be suitable to have in a dynami environmentshould get all information about a value in one aess for most if not all of the dataaesses. Of ourse, subsequent omputation to extrat the deoded value might beinevitable. A logial omparison of the traditional and new ompression shemes isshown in Figure 6.2.
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Figure 6.2. Aess sequenes with di�erent ompression shemes.To design a ompression sheme that an get all information from one memoryaess, no ompliated enoding sheme should be used but rather we should disarddiretly the redundant bits from original word representation. The following two typesof redundany are identi�ed (also see Figure 6.3).� If a pointer is saved in a plae that is lose to the plae it points to, the value ofthe pointer and the address of the pointer share the same pre�x. Sine the valueis aessed always from its address, the pre�x of the value an be onsideredas redundant as it an be onstruted from its address easily. In this ase, the
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(a) pointer addresses share the same prefix

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or negative values

P

Q

prefix(P) = prefix(Q)

same chunk

xxx xxx1 0Figure 6.3. Representing a 32-bit value with fewer than 32 bits.pre�x bits of the pointer an be safely disarded.� If a value is lose to zero, the higher order bits are sign extensions and theyare either all 0s or all 1s. In either ase, there is no need to remember all theseidential bits and thus the pre�x bits are onsidered as redundant. Only thesign bit should be remembered and the rest an be safely disarded.With the ompression opportunities identi�ed, one ould dynamially disard allredundant bits and use the least possible bits to represent a value, or disard someredundant bits but use �xed number of bits to represent a value. Sine data valueshange dynamially, the former strategy would bring too muh omplexity to dynamimemory management and thus is not used. For the latter, we need to hoose the �xednumber of bits based upon the ost-bene�t analysis of using this �xed number of bitsto arry out ompression.6.4.1 Potential savings in spae due to redundany removalThe bene�ts of a dynami ompression sheme ome from the spae savings and theorresponding ahe miss redution due to the spae savings. As a result, the bene�tsestimation is based upon spae savings and the experiment is designed as follows. Theoriginal sheme always represents a word-sized value with 32 bits. The new sheme



92uses a �xed bit width L and if after removing the redundant pre�x bits from a value'srepresentation, the required number of bits is less that L, L bits are used to representthis value; otherwise, 32 bits are used to represent the value. The total number ofbits required for representing values involved in all aesses for di�erent values of Lwere olleted.
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voronoiFigure 6.4. Required bits with �xed length.The programs from the Olden suite with small inputs were exeuted to ollet thepro�ling information. The results are shown in Figure 6.4 with the original requiredbits normalized as 100%. A smaller �xed length saves greater number of bits for eahompressible value. However, if L is too small, the probability that a value will berepresented using 32 bits is high. From the results in Figure 6.4, it an be seen that�nd some benhmarks ahieve the best pro�ling results at the point with �xed 4 bitswhile some ahieve the best results with 8 or 16 bits. However, if the �xed length isbigger than 16 bits, the required bits inrease almost linearly for all benhmarks.6.4.2 Potential osts of redundany removalLet us now study the ost of dynami ompression. The real ost is implementationdependent and a preise estimation an only be done when both the ompressionsheme and the lower level arhiteture are all well de�ned. A oarse estimation is



93presented instead and it is suÆient to guide the design of the ompression sheme.Sine the bene�ts ome from the ompression of �elds whose majority instanes areompressible values, a suessful ompression sheme should speedup the aesses ofompressible values; otherwise, the slowdown of majority aesses will downgrade sig-ni�antly the overall performane. On the other hand, the aesses of inompressiblevalues ould be slower than those of ompressible ones. Thus, the ost estimationis performed by answering the following question. If only aesses of inompressiblevalues are slowed down, would the ost from aessing inompressible values be o�setby the bene�t obtained from aesses of ompressible values? This in turn dependson the distribution of ompressible and inompressible values. The results for Oldenbenhmark programs are shown in Figure 6.5. A memory aess is onsidered to bea �tting aess if its value an be represented by �xed 4, 8, 16 bits respetively. Theresults in Figure 6.5 show that more than half of the aesses ould be expensive non-�tting aesses if using 4 bits. While with 16 bits, the perentages of �tting aessesare between 69% and 99%. As a result, 16-bit is a ost-e�etive point and a goodandidate to use.Dynami values hange frequently and it is usually more expensive to onvert aompressible value to an inompressible one, or vie versa. With dynami expansionof values onsidered, a study of the benhmarks has been done from the storage pointof view and the results are shown in Figure 6.6. All values are initially alloatedwith �xed lengths, 4 bits, 8 bits and 16 bits respetively. If a value hanges fromompressible to inompressible, it gets expanded and stays as an inompressible valuefrom then onwards. Therefore later aesses will be �tting-aesses even if theyare aessing the inompressible value. The results show that with a �xed 16-bitrepresentation, the majority memory aesses �t this length and dynami onversionis very infrequent.From the above analysis and the results in estimated osts and bene�ts, we on-lude that a well-balaned ompression sheme should represent a 32 bits value with
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96�xed 16 bits, allow dynami expansion, but not allow dynami shrinking.6.5 Choosing the time for ompressionThe next problem to be onsidered is that of determining when these types should beompressed. The following three possible shemes are studied.� Complete ompression at the beginning. The simplest sheme is to ompress all�elds of a type at the beginning. If implementing in a ompiler, it means thatthe memory layout of the type is redued to half of its original size at ompiletime. It has the simpliity that the o�set of eah �elds is known at ompiletime and ode generation is therefore simpli�ed.� Seletive ompression at the beginning. Sine di�erent �elds exhibit di�erentompression opportunities and some �elds suh as oating point value �eldsare general hard to ompress. Consider the ost the program has to pay atruntime to aess inompressible �elds, it is more preferable to ompress onlythose highly ompressible �elds and leave the rest as they are. This sheme stillhas the property that the o�sets of the �elds are known at ompile time.� Compression after last write. Sine the ompressibility of a value an only behanged by a write operation, after the last write of a �eld, its representation is�xed and more aggressive ompression sheme an be used and we do not haveto worry that the values might hange later. This ompletely eliminates the ostthat a ompression sheme has to pay to handle onversions from ompressiblevalues to inompressible ones.Figure 6.7 shows the experimental results in studying the Olden benhmark pro-grams under di�erent ompression time. For the seletive ompression sheme at thebeginning, a �eld is hosen if 80% of its instanes are ompressible. The x axis of
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Figure 6.7. Deiding the time for ompression.



98the �gure shows the exeution time whih has been normalized to 5000 units. The yaxis shows the required heap spae during the exeution. \free()" is not onsideredduring program exeution and thus the memory requirements inrease ontinuouslyand derease to zero at the end of the exeution.The sheme that ompresses an objet after its last write an remove the dynamionversion ost from ompressible values to inompressible ones. It an also ahievebest spae savings for 4 out of 8 programs. Although it looks like an appealingapproah, it is diÆult to apply in pratie. Usually at some program point, only asmall number of nodes in a data struture are modi�ed. However, the whole datastruture might be traversed and nodes are dynamially seleted for modi�ation. Itwould be very expensive, and sometimes impossible, to predit the last write to apartiular node.Comparing the two shemes that ompress data items at the beginning, the re-sults show that although ompressing all the �elds ahieves more spae redutionat the beginning, it requires more data expansion during program exeution. Thuseventually, it requires more spae than the seletive ompression sheme. Moreover,the results show that seleing only highly ompressible data �elds for ompressionredues both the spae requirements and dynami osts of aessing inompressiblevalues. Overall, the sheme that ompresses seleted �elds at the beginning ahievesthe best result for 5 out of 8 programs and almost the best for another 2 programs.6.6 ConlusionA type-based pro�ling framework is introdued in this hapter to explore the runtimevalue representation redundany for Olden benhmark suites. It pro�les eah type inthe program at �eld level and all objet instanes are heked to set up a ost-bene�tmodel. The model is used in the design of new ompression shemes. In partiular,three important questions were answered. We deided to ompress all objets of a



99given type if there was no address arithmeti and no type asting. Promising �eldswere seleted for ompression at the beginning of the exeution. A 32-bit valueis represented using �xed 16 bits and while dynami expansion is allowed, dynamishrinking is not allowed. This hapter also identi�ed two types of value representationredundany from ommon pre�x of pointer addresses and sign extensions of smallvalues.
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Chapter 7Profile-guided data ompressiontransformationsIn the preeding hapter, a type based pro�ling framework was introdued to iden-tify opportunities for reduing redundany in the dynami representation of values.Results of studies onduted using the pro�ling framework have identi�ed the mostimportant harateristis of a suitable ompression sheme by answering the what,how and when questions. In this hapter, a onrete ompiler based ompressionsheme will be introdued. The design details are onsistent with the harateristisdisussed in the preeding hapter.A ompiler based approah exploits the ompression optimization opportunitiesthrough transformation. First, the data strutures and types with ompression oppor-tunities are identi�ed. Fields are paked in a way to ahieve better ost-bene�t ratio.Before ode generation, the original memory layouts of these types are hanged toompressed forms suh that eah node takes less spae than before. Seond, the orig-inal ode sequene that aesses the ompressed �elds is onverted to a new sequeneto aess the modi�ed type with ompression and deompression done dynamially.By reduing the value representation redundany, dynami resoures suh as aheand main memory spae, memory bandwidth are utilized more e�etively.The rest of this hapter is organized as follows. The data ompression transfor-mations are introdued in setion 7.1. The instrution and ompiler support neededto perform these transformations are disussed in setions 7.2 and 7.3 respetively.Experimental results are shown in setion 7.4. Finally, setion 7.5 onludes thehapter.



1017.1 Data ompression transformationsFrom the disussion in the preeding hapter, it is known that many dynami valuesexhibit value representation redundany and the maximal ost-bene�t ratio appearsat about the point to represent values with �xed 16 bits. Therefore, employing aompiler transformation that replaes a 32-bit variable by a 16-bit variable and pakstwo variables into a single word is the logial hoie. In the example below, a pointer�eld and a small value �eld are paked into a single 32-bit �eld value next.Original Struture: Transformed Struture:strut list node f strut list node f� � � ; � � � ;int value; int value next;strut list node *next; g *t;g *t;In this way, 4 bytes are saved from eah node in the linked list. Although indiatedby a type redelaration, this transformation is not done at the soure level and there isno need to generate the new delaration at soure ode level. Instead the optimizingompiler will hange the memory layout before ode generation and then generatenew ode sequenes aordingly. As we see, there are two types of �elds: pointeraddresses and small value �elds. They are handled di�erently through two types ofdata ompression transformations.Common-pre�x transformation for pointer data. The pointer ontained in thenext �eld of the link list an be ompressed under ertain onditions. In partiular,onsider the addresses orresponding to an instane of list node (addr1) and the next�eld in that node (addr2). If the two addresses share a ommon 17 bit pre�x beausethey are loated fairly lose in memory, the next pointer is lassi�ed as ompressible.In this ase the ommon pre�x from address addr2 whih is stored in the next pointer�eld is eliminated. The lower order 15 bits from addr2 represent the representationof the pointer in ompressed form. The 32 bit representation of a next �eld an be



102reonstruted when required by obtaining the pre�x from the pointer to the list nodeinstane to whih the next �eld belongs.Narrow data transformation for non-pointer data. Now let us onsider theompression of the narrow width integer value in the value �eld. If the 18 higherorder bits of this value are idential, that is, they are either all 0's or all 1's, it islassi�ed as ompressible. The 17 higher order bits are disarded and leaving a 15bit entity. Sine the 17 bits disarded are idential to the most signi�ant order bitof the 15 bit entity, the 32 bit representation an be easily derived when needed byrepliating the most signi�ant bit.Paking together ompressed �elds. The value and next �elds of a node be-longing to an instane of list node an be paked together into a single 32 bit word asthey are simply 15 bit entities in their ompressed form. Together they are stored invalue next �eld of the transformed struture. The 32 bits of value next are dividedinto two half words. Eah ompressed �eld is stored in the lower order 15 bits of theorresponding half word. Aording to the above strategy, bits 15 and 31 are notused by the ompressed �elds. Next the handling of inompressible data in partiallyompressible data strutures is desribed. The implementation of partially ompress-ible data strutures requires an additional bit for enoding information. This is why�elds are ompressed down to 15 bit entities and not into 16 bit entities.Partial ompressibility. The basi approah is to alloate only enough storage toaommodate a ompressed node when a new node in the data struture is reated.Later, as the pointer �elds are assigned values, it is heked to see if the �elds areompressible. If they are, they an be aommodated in the alloated spae; otherwiseadditional storage is alloated to hold the �elds in unompressed form. The previouslyalloated loation is now used to hold a pointer to this additional storage. Therefore



103for aessing inompressible �elds the approah has to go through an extra step ofindiretion.If the inompressible data stored in the �elds is modi�ed, it is possible that the�elds may now beome ompressible. However, suh heks are not arried out andinstead the �elds in suh ases are left in unompressed form. This is beause ex-ploitation of suh ompression opportunities an lead to repeated alloation and deal-loation of extra loations if data values repeatedly keep osillating between the om-pressible and inompressible kind. To avoid repeated alloation and dealloation ofextra loations the approah is simpli�ed so that one a �eld is assigned an inom-pressible value, from then on wards, the data in the �eld is always maintained inunompressed form.The most signi�ant bit (bit 31) in the word is used to indiate whether or notthe data stored in the word is ompressed or not. It ontains a 0 to indiate thatthe word ontains ompressed values. If it ontains a 1, it means that one or bothof values were not ompressible and instead the word ontains a pointer to an extrapair of dynamially alloated loations whih ontain the values of the two �elds inunompressed form. While bit 31 is used to enode extra information, bit 15 is neverused for any purpose.The example in Figure 7.1 illustrates the above method using an example in whihan instane of list node is alloated and then the value and next �elds are set up oneat a time. As we an see �rst storage is alloated to aommodate the two �elds inompressed form. As soon as the �rst inompressible �eld is enountered additionalstorage is alloated to hold the two �elds in unompressed form. Under this shemethere are three possibilities whih are illustrated in Figure 7.3. In the �rst ase both�elds are found to be ompressible and therefore no extra loations are alloated. Inthe seond ase the value �eld, whih is aessed �rst, is ompressible but the next�eld is not. Thus, initially value �eld is stored in ompressed form but later whenthe next �eld is found to be ompressible, extra loations are alloated and both



104�elds are store in unompressed form. Finally in the third ase the value �eld is notompressible and therefore extra loations are alloated right away and none of thetwo �elds are ever stored in ompressed form.
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nilFigure 7.1. Dealing with inompressible data.7.2 Instrution set supportCompression redues the amount of heap alloated storage used by the program whihtypially improves the data ahe behavior. Also if both the �elds need to be read intandem, a single load is enough to read both the �elds. However, the manipulationof the �elds also reates additional overhead. To minimize this overhead new RISC-



105style instrutions are designed. Six simple instrutions have been designed of whihthree eah are for pointer and non-pointer data respetively that eÆiently implementommon-pre�x and narrow-data transformations. The semantis of the these instru-tions are summarized in Figure 7.2. These instrutions are RISC-style instrutionswith omplexity omparable to existing branh and integer ALU instrutions. Let usdisuss these instrutions in greater detail.Cheking ompressibility. Sine we would like to handle partially ompressibledata, before atually ompressing a data item at runtime, �rst a hek is made todetermine whether the data item is ompressible. Therefore the �rst instrutiontype that is introdued allows eÆient heking of data ompressibility. Two newinstrutions have been designed and they are desribed below. The �rst heks theompressibility of pointer data and the seond does the same for non-pointer data.bneh17 R1, R2, L1 { is used to hek if the higher order 17 bits of R1 and R2are the same. If they are the same, the exeution ontinues and the �eld heldin R2 an be ompressed; otherwise the branh is taken to a point where wehandle the situation, by alloating additional storage, in whih the addressin R2 is not ompressible. The instrution also handles the ase where R2ontains a nil pointer whih is represented by the value 0 both in ompressedand unompressed forms. Sine 0 represents a nil pointer, the lower order 17bits of an alloated address should never be all zeroes - to orretly handle thissituation we have modi�ed our mallo routine so that it never alloates storageloations with suh addresses.bneh18 R1, L1 { is used to hek if the higher order 18 bits of R1 are idential (i.e.,all 0's or all 1's). If they are the same, the exeution ontinues and the valueheld in R1 is ompressed; otherwise the value in R1 is not ompressible andthe branh is taken to a point where we plae ode to handle this situation by



106alloating additional storage.
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31     30 ... 16        15       14 ... 0Figure 7.2. DCX instrutions.Extrat-and-expand. If a pointer is stored in ompressed form, before it anbe dereferened, its 32-bit representation must be reonstruted. Compressed non-pointer data should be handled similarly before its use. Therefore the seond instru-tion type that is introdued arries out extrat-and-expand operations. There arefour new instrutions that we desribe below. The �rst two instrutions are used toextrat-and-expand ompressed pointer �elds from lower and upper halves of a 32-bitword respetively. The next two instrutions do the same for non-pointer data.xtrhl R1, R2, R3 { extrats the ompressed pointer �eld stored in lower order bits(0 through 14) of register R3 and appends it to the ommon-pre�x ontained in



107higher order bits (15 through 31) of R2 to onstrut the unompressed pointerwhih is then made available in R1. The ase when R3 ontains a nil pointer isalso handled. If the ompressed �eld is a nil pointer, R1 is set to nil.xtrhh R1, R2, R3 { extrats the ompressed pointer �eld stored in the higher or-der bits (16 through 30) of register R3 and appends it to the ommon-pre�xontained in higher order bits (15 through 31) of R2 to onstrut the unom-pressed pointer whih is then made available in R1. If the ompressed �eld is anil pointer, R1 is set to nil.The instrutions xtrhl and xtrhh an also be used to ompress two �elds to-gether. However, they are not essential for this purpose beause typially thereare existing instrutions whih an perform this operation. In the MIPS likeinstrution set that was used in this work this was indeed the ase.xtrl R1, R2 { extrats the �eld stored in lower half of the R2, expands it, and thenstores the resulting 32 bit value in R1.xtrh R1, R2 { extrats the �eld stored in the higher order bits of R2, expands it,and then stores the resulting 32 bit value in R1.Next a simple example is given to illustrate the use of the above instrutions. Letus assume that an integer �eld t! value and a pointer �eld t! next are ompressedtogether into a single �eld t! value next. In Figure 7.3(a) it is shown how ompress-ibility heks are used prior to appropriately storing newvalue and newnext valuesin to the ompressed �elds. In Figure 7.3(b) we illustrate the extrat and expandinstrutions by extrating the ompressed values stored in t! value next.



108; $16 : &t� > value next; $18 : newvalue; $19 : newnext; branh if newvalue is not ompressiblebneh18 $18, $L1; branh if newnext is not ompressiblebneh17 $16, $19, $L1; store ompressed data in t� > value nextori $19, $19, 0x7fffswr $18, 0($16)swr $19, 2($16)j $L2$L1: ; alloate extra loations and store pointer; to extra loations in t� > value next; store unompressed data in extra loations� � �$L2: � � �(a) Illustration of ompressibility heks.; $16: &(t� > value next); $17: unompressed integer t� > value; $18: unompressed pointer t� > next; load ontents of t� > value nextlw $3,0($16); branh if $3 is a pointer to extra loationsbltz $3, $L1; extrat and expand t� > valuextrl $17, $3; extrat and expand t� > nextxtrhh$18, $16, $3j $L2$L1: ; load values from extra loations� � �$L2: � � �(b) Illustration of extrat and expand instrutions.Figure 7.3. An example.



1097.3 Compiler supportSimilar to objet layout optimization tehniques, data ompression transformationsneed to rearrange the �elds in an objet. A basi assumption of objet layout trans-formations states that it is ensured by the programmer that appliation of layouttransformations are safe (program orretness is ensured). Generally, if there is noaddress arithmeti and �elds are aessed from their names, the assumption an besatis�ed. Starting from this assumption, the optimizing ompiler automatially trans-form the data types and generate orresponding ode. The key aspets of the ompilertransformation are disussed as follows.Identifying �elds for ompression and paking. The andidate �elds are las-si�ed from the type-based pro�ling desribed in the previous hapter. A �eld is iden-ti�ed to be highly ompressible if 90% of the �elds instanes are ompressible. Apointer value is onsidered as ompressible if it shares the 17 bits pre�x with its ad-dress and a small value is onsidered as ompressible if the higher order 18 bits arethe same.The most ritial issue is that of pairing ompressed �elds for paking into a singleword. Based on the pro�ling information, �elds are further ategorized into hot �eldsand old �elds. With all ategorized �elds, there are two hoies in paking. It ispossible to pak two hot �elds together if they are typially aessed in tandem. Thisis beause in this situation a single load an be shared while reading the two values. Itis also useful to ompress any two old �elds even if they are not aessed in tandem.This is beause even though they annot share the same load, they are not aessedfrequently. In all other situations it is not as useful to pak data together beauseeven though spae savings will be obtained, exeution time will be adversely a�eted.Cmallo vs mallo. Cmallo [17℄, a modi�ed version of mallo, is used to arryout storage alloation. This form of storage alloation was developed by Chilimbi et



110al. [17℄ and as desribed earlier it improves the loality of dynami data struturesby alloating the linked nodes of the data struture as lose to eah other as possiblein the heap. Compared to system mallo, it has one more pointer parameter whihindiates the parent node of the new node. The new node is alloated in the sameahe line hunk as it parent node if there are still enough spae to hold the new one.Otherwise, a new hunk is alloated. As a onsequene, this tehnique inreases thelikelihood that the pointer �elds in a given node will be ompressible. Therefore itmakes sense to use mallo in order to exploit the synergy between mallo anddata ompression.Register pressure. Another issue that we onsider in our implementation is thatof potential inrease in register pressure. The ode exeuted when the pointer �eldsare found to be inompressible is substantial and therefore it an inrease registerpressure signi�antly ausing a loss in performane. However, we know that this odeis exeuted very infrequently sine very few �elds are inompressible. Therefore, inthis piee of ode we �rst free registers by saving values and then after exeutingthe ode the values are restored in registers. In other words, the inrease in registerpressure does not have an adverse e�et on frequently exeuted ode.Instrution ahe behavior and ode size. The additional instrutions gener-ated for implementing ompression an lead to an inrease in ode size whih anfurther impat the instrution ahe behavior. It is important to note however thata large part of the ode size inrease is due to the handling of the infrequent ase inwhih the data is found not to be ompressible. In order to minimize the impat onthe ode size we an share the ode for handling the above infrequent ase aross allthe updates orresponding to a given data �eld. To minimize the impat of the per-formane on the instrution ahe, we an employ a ode layout strategy whih plaesthe above infrequently exeuted ode elsewhere and reate branhes to it and bak so



111that the instrution ahe behavior for more frequently exeuted ode is minimallya�eted. Our implementation urrently does not support the above tehniques andtherefore we observed ode size inrease and degraded instrution ahe behavior inour experiments.Code generation. The remainder of the ode generation details for implementingdata ompression are in most part quite straightforward. One the �elds have beenseleted for ompression and paking together, whenever a use of a value of any ofthe �elds is enountered, the load is followed by an extrat-and expand instrution.If the value of any of ompressed �elds is to be updated, the ompressibility hek isperformed before storing the value. When two hot �elds that are paked together areto be read/updated, initially we generate separate loads/stores for them. Later in aseparate pass, the later of the two loads/stores is eliminated whenever possible.7.4 Implementation and experiments7.4.1 Experimental setupTehniques desribed have been implemented to evaluate their performane. Thetransformations have been implemented as part of the g ompiler and the DCX in-strutions have been inorporated in the MIPS like instrution set of the supersalarproessor simulated by simplesalar [10℄. The evaluation is based upon six benh-marks taken from the Olden test suite whih ontains pointer intensive programs thatmake extensive use of dynamially alloated data strutures.In order to study the impat of memory performane we varied the input sizesof the programs and also varied the L2 ahe lateny. The programs were run forthree input sizes { small (this is the standard input that is typially used to runthe benhmark), medium and large (see Figure 8.10(a)). The ahe organization ofsimplesalar is shown in Figure 8.10(b). There are �rst level separate instrution



112and data ahes (I-ahe and D- ahe). The lower level ahe is a uni�ed-ahe forinstrutions and data. The L1 ahe used was a 16K diret mapped ahe with 9yle miss lateny while the uni�ed L2 ahe is 256K with 100/200/400 yle misslatenies. Our experiments are for an out-of-order issue supersalar with issue widthof 4 instrutions and the Bimod branh preditor.Program Appliation small input medium input large inputtreeadd Reursive sum of values in a B-tree 20 1 21 1 22 1bisort Bitoni Sorting 32768 1 128000 1 312000 1tsp Traveling salesman problem 65536 1 131072 1 262144 1perimeter Perimeters of regions in images 12 1 13 1 14 1health Columbian health are simulation 3 2000 1 3 3000 1 3 4000 1mst Minimum Spanning tree of a graph 512 1 1024 1 2048 1(a) Benhmarks and inputs used.Parameter ValueIssue Width 4 issue, out of orderInstrution ahe 16K diret mapIahe miss lateny 9 ylesLevel 1 data ahe 16K diret mapLevel 1 data ahe miss lateny 9 ylesLevel 2 uni�ed ahe 256K 2-way asso.Memory lateny Con�guration 1/2/3 =(level 2 ahe miss lateny) 100/200/400 yles(b) Cahe on�gurations used.Figure 7.4. Experimental setup.7.4.2 Impat on storage needsThe transformations applied for eah program and their impats on node sizes areshown in Figure 7.5. In the �rst four benhmarks (treeadd, bisort, tsp, andperimeter), node sizes are redued by storing pairs of ompressed pointers in asingle word. In the health benhmark a pair of small values are ompressed togetherand stored in a single word. Finally, in the mst benhmark a ompressed pointer and



113Program Transformation Applied Node Size Change (bytes)treeadd CommonPre�x/CommonPre�x from 28 to 20bisort CommonPre�x/CommonPre�x from 12 to 8tsp CommonPre�x/CommonPre�x from 36 to 32perimeter CommonPre�x/CommonPre�x from 12 to 8health NarrowData/NarrowData from 16 to 12mst CommonPre�x/NarrowData from 16 to 12Figure 7.5. Applied transformations.a ompressed small value are stored together in a single word. The hanges in nodesizes range from 25% to 33% for �ve of the benhmarks. Only in ase of tsp is theredution smaller { just over 10%.The runtime savings in heap alloated storage are measured for eah of the threeprogram inputs. The results are given in Figures 7.6(a-). The average savings arenearly 25% while they range from 10% to 33% aross di�erent benhmarks. Evenmore importantly these savings represent signi�ant levels of heap storage { typiallyin megabytes. For example, the 33% storage savings for treeadd represents 4.2Mbytes, 8.3 Mbytes, and 17 Mbytes of heap storage savings for small, medium andlarge program inputs respetively. It should also be noted that suh savings annot beobtained by other loality improving tehniques desribed earlier [56, 35, 13, 17, 16℄.From the results in Figure 7.6(a-) another very important observation is made.The extra loations alloated when non-ompressible data is enountered is non-zerofor all of the benhmarks. In other words we observe that for none of the data stru-tures to whih our ompression transformations were applied, were all of the instanesof the data enountered at runtime atually ompressible. A small amount of addi-tional loations were alloated to hold a small number of inompressible pointers andsmall values in eah ase. Therefore the generality of our transformation whih al-lows handling of partially ompressible data strutures is extremely important. If theappliation of ompression was restrited to data �elds that are always guaranteed



114Storage (bytes)Program Original Compressed nodes + SpaeExtra loations = Total savingstreeadd 12582900 8388600 + 13440 = 8402040 33.2 %bisort 786420 524280 + 25600 = 549880 30.1 %tsp 5242840 4194272 + 6080 = 4200352 19.9 %perimeter 4564364 3260260 + 5120 = 3265380 28.5 %health 566872 509952 + 320 = 510272 10.0 %mst 3414020 2367492 + 320 = 2367812 30.6 %average 25.4 %(a) Redution in heap storage for small input.Storage (bytes)Program Original Compressed nodes + SpaeExtra loations = Total savingstreeadd 25165812 16777208 + 26560 = 16803768 33.2 %bisort 3145716 2097144 + 136320 = 2233464 29.0 %tsp 10485720 8388576 + 12160 = 8400736 19.9 %perimeter 9322572 6658980 + 10560 = 6669540 28.5 %health 847584 762348 + 320 = 762668 10.0 %mst 13643780 9453572 + 320 = 9453892 30.7 %average 25.2 %(b) Redution in heap storage for medium input.Storage (bytes)Program Original Compressed nodes + SpaeExtra loations = Total savingstreeadd 50331636 33554424 + 51260 = 33605684 33.2 %bisort 3145716 2097144 + 204160 = 2301304 26.8 %tsp 20971480 16777184 + 23040 = 16800224 19.9 %perimeter 20332620 14523300 + 23680 = 14546980 28.5 %health 1128240 1014804 + 320 = 1015124 10.0 %mst 54550532 37781508 + 320 = 37781828 30.7 %average 24.9 %() Redution in heap storage for large input.Figure 7.6. Impat on storage.



115to be ompressible, no ompression would have been ahieved and therefore no spaesavings would have resulted. Code Size (bytes)Program Original Transformed Inreasetreeadd 5480 6376 16.4%bisort 11944 16720 40.0%tsp 18280 19172 4.9%perimeter 14976 18160 21.3%health 15952 21324 33.7%mst 12768 14136 10.7%average 21.1%(a) Code size before linking.Code Size (bytes)Program Original Transformed Inreasetreeadd 228360 228444 0.04%bisort 257552 257572 0.01%tsp 238004 238448 0.18%perimeter 233736 238340 1.97%health 256608 257200 0.23%mst 232296 232440 0.06%average 0.41%(b) Code size after linking.Figure 7.7. Impat on objet ode size.The inrease in ode size aused by ompression transformations was also mea-sured (see Figures 7.7). The inrease in ode size prior to linking is signi�ant whileafter linking the inrease is very small sine the user ode is small part of the bina-ries. However, the reason for signi�ant inrease in user ode is beause eah timea ompressed �eld is updated, our urrent implementation generates a new opy ofthe additional ode for handling the ase where the data being stored may not beompressible. In pratie it is possible to share this ode aross multiple updates.



116One suh sharing has been implemented, the inrease in the size of user ode willalso be quite small.7.4.3 Impat on exeution timeBased upon the yle ounts provided by the simplesalar simulator we studied thehanges in exeution times resulting from ompression transformations. The impatof input size and L2 lateny on exeution times was also studied. Let us examinethe results in Figure 7.8(a) { these results are for L2 ahe lateny of 100 yles.The redution in exeution times in omparison to the original programs whih usemallo range from 3% to 64% while on an average the redution in exeution timeis around 30%. The redutions in exeution times inrease gradually with the inputsize.The exeution times are ompared with versions of the programs that use mallo.The new approah outperforms mallo in �ve out of the six benhmarks (our ver-sion of mst runs slightly slower than the mallo version). On an average it outper-forms mallo by nearly 10%. Our approah outperforms mallo beause onethe node sizes are redued, typially greater number of nodes �t into a single aheline leading to a low number of ahe misses. Additional runtime overhead is inurredin form of extra instrutions needed to arry out ompression and extration of om-pressed values. However, this additional exeution time is more than o�set by thetime savings resulting from redued ahe misses; thus leading to overall redution inexeution time.It should be pointed out that the use of speial DCX instrutions was ritial inreduing the overhead of ompression and extration. Without DCX instrutions theprograms would have ran signi�antly slower. The average redution in exeutiontimes, in omparison to original programs, dropped from 30% to 12.5%. Instead ofan average redution in exeution times of 10% in omparison to mallo versions



117of the program we observed an average inrease of 9% in exeution times.The experiments of Figure 7.8(a) were also repeated for higher L2 ahe laten-ies. The results are presented in Figures 7.8(b-). As the lateny of L2 ahe isinreased, ompression outperforms mallo by a greater extent. The graph in Fig-ure 7.8(d) plots the average redution in exeution time that ompression providesover mallo for the di�erent ahe latenies. As it an be seen, on an average, om-pression redues the exeution times by 10%, 15%, and 20% over mallo for L2ahe latenies of 100, 200, and 400 yles respetively. These numbers also improvegradually with input size. In summary our approah provides large storage savingsand signi�ant exeution time redutions over mallo.7.4.4 Impat on power onsumptionExperiments have also been done to ompared the power onsumption for the om-pression based programs with that of the original programs and mallo basedprograms (see Figures 7.9(a-d)). These measurements are based upon the Watth [9℄system whih is built on top of the simplesalar simulator. These results trak theexeution time results quite losely. The average redution in power onsumptionover the original programs is around 30% whih inreases gradually with the size ofthe input. The graph in Figure 7.8(d) plots the average redution in power dissipationthat ompression provides over mallo for the di�erent ahe latenies. As we ansee, on an average, ompression redues the power dissipation by 5%, 10%, and 15%over mallo for L2 ahe latenies of 100, 200, and 400 yles respetively. Thesenumbers further improve gradually as the input size is inreased.7.4.5 Impat on ahe performaneFinally, Figure 7.10 presents the impat of ompression on ahe behavior, inluding I-ahe, D-ahe and uni�ed L2 ahe behaviors. As expeted, the I-ahe performane



118Program Input Size Con�guration 1 Con�guration 2 Con�guration 3Comp:Orig: Comp:mallo Comp:Orig: Comp:mallo Comp:Orig: Comp:mallosmall 58.8 % 81.0 % 62.1 % 73.2 % 66.6 % 65.4 %treeadd medium 58.8 % 81.0 % 62.0 % 73.2 % 66.6 % 65.4 %large 58.7 % 81.0 % 62.0 % 73.2 % 66.5 % 65.4 %small 75.3 % 73.9 % 62.8 % 58.6 % 48.6 % 42.9 %bisort medium 69.3 % 69.5 % 54.8 % 53.4 % 40.7 % 38.7 %large 67.7 % 64.9 % 51.9 % 48.1 % 36.5 % 32.8 %small 97.3 % 99.7 % 96.5 % 99.7 % 95.3 % 99.8 %tsp medium 97.0 % 99.7 % 96.2 % 99.7 % 94.9 % 99.8 %large 96.8 % 99.5 % 95.9 % 99.6 % 94.5 % 99.6 %small 75.1 % 91.8 % 73.8 % 87.1 % 72.2 % 81.6 %perimeter medium 76.3 % 92.3 % 74.8 % 87.7 % 72.9 % 82.1 %large 77.6 % 93.1 % 76.0 % 88.5 % 73.9 % 82.9 %small 83.4 % 94.6 % 83.6 % 91.3 % 83.7 % 89.3 %health medium 68.1 % 95.5 % 66.3 % 93.1 % 65.3 % 91.8 %large 62.1 % 95.8 % 60.0 % 93.8 % 58.8 % 92.6 %small 35.7 % 102.2 % 28.3 % 101.7 % 23.2 % 101.2 %mst medium 37.8 % 102.1 % 31.2 % 101.6 % 26.8 % 101.0 %large 36.6 % 102.2 % 30.7 % 101.6 % 26.6 % 101.0 %small 70.9 % 90.5 % 67.9 % 85.3 % 64.9 % 80.0 %average medium 67.9 % 90.0 % 64.2 % 84.8 % 61.2 % 79.8 %large 66.6 % 89.4 % 62.7 % 84.1 % 59.5 % 79.0 %(a) Change in yle ounts
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(b) Compression vs mallo.Figure 7.8. Change in exeution time due to data ompression.



119Program Input Size Con�guration 1 Con�guration 2 Con�guration 3Comp:Orig: Comp:mallo Comp:Orig: Comp:mallo Comp:Orig: Comp:mallosmall 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %treeadd medium 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %large 60.9 % 89.7 % 62.5 % 83.4 % 65.0 % 75.5 %small 77.9 % 79.2 % 67.6 % 66.0 % 54.9 % 51.1 %bisort medium 73.7 % 75.9 % 61.3 % 61.6 % 47.9 % 46.8 %large 73.3 % 72.1 % 59.5 % 56.9 % 44.5 % 41.3 %small 97.1 % 99.8 % 96.5 % 99.9 % 95.6 % 99.9 %tsp medium 96.7 % 99.8 % 96.1 % 99.8 % 95.1 % 99.9 %large 96.7 % 99.7 % 96.0 % 99.7 % 94.9 % 99.7 %small 75.9 % 95.1 % 74.7 % 91.6 % 73.1 % 86.8 %perimeter medium 77.1 % 95.6 % 75.8 % 92.2 % 74.1 % 87.4 %large 78.6 % 96.4 % 77.2 % 93.1 % 75.2 % 88.2 %small 90.0 % 101.4 % 87.8 % 95.9 % 86.2 % 92.1 %health medium 73.5 % 101.1 % 69.5 % 96.6 % 67.1 % 93.8 %large 66.8 % 100.9 % 62.7 % 96.8 % 60.2 % 94.3 %small 38.9 % 104.5 % 31.5 % 103.8 % 25.7 % 102.9 %mst medium 40.5 % 104.2 % 33.9 % 103.4 % 28.9 % 102.5 %large 39.7 % 104.2 % 33.5 % 103.4 % 28.7 % 102.5 %small 73.4 % 95.0 % 70.1 % 90.1 % 66.7 % 84.7 %average medium 70.4 % 94.4 % 66.5 % 89.5 % 63.0 % 84.3 %large 69.3 % 93.8 % 65.2 % 88.9 % 61.4 % 83.6 %(a) Change in power onsumption.
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(b) Compression vs mallo.Figure 7.9. Impat on power onsumption.



120is degraded due to inrease in ode size aused by our urrent implementation ofompression. However, the performanes of D-ahe and uni�ed ahe are signi�antlyimproved. This improvement in data ahe performane is a diret onsequene ofompression. I-ahe D-ahe Uni�ed-aheProgram Input Size Comp:Orig: Comp:mallo Comp:Orig: Comp:mallo Comp:Orig: Comp:mallosmall 105.2 % 104.8 % 62.2 % 60.4 % 85.1 % 49.7 %treeadd medium 106.4 % 105.5 % 61.5 % 59.7 % 85.0 % 49.7 %large 107.3 % 104.7 % 60.0 % 59.8 % 84.9 % 49.7 %small 153.3 % 155.9 % 65.0 % 58.7 % 16.2 % 16.8 %bisort medium 228.2 % 234.1 % 68.7 % 63.1 % 15.5 % 16.6 %large 228.2 % 234.1 % 47.3 % 38.3 % 7.4 % 7.0 %small 5.0 % 120.5 % 70.1 % 90.3 % 84.1 % 100.1 %tsp medium 4.0 % 122.1 % 66.0 % 94.0 % 84.4 % 100.1 %large 3.6 % 124.9 % 62.4 % 84.3 % 84.4 % 100.1 %small 145.1 % 86.0 % 69.1 % 71.3 % 67.1 % 67.0 %perimeter medium 205.1 % 83.5 % 68.9 % 70.9 % 67.0 % 66.8 %large 321.8 % 78.0 % 69.1 % 70.3 % 67.0 % 66.8 %small 122.2 % 112.1 % 82.2 % 96.2 % 41.6 % 62.3 %health medium 133.8 % 116.6 % 82.2 % 97.8 % 46.4 % 67.3 %large 144.8 % 120.7 % 82.1 % 98.6 % 51.9 % 71.1 %small 26.6 % 61.6 % 41.0 % 100.9 % 16.2 % 100.0 %mst medium 16.8 % 48.2 % 49.0 % 96.3 % 21.3 % 100.0 %large 13.8 % 42.7 % 33.2 % 94.8 % 21.5 % 100.0 %small 92.9 % 106.8 % 64.9 % 79.6 % 51.7 % 66.0 %average medium 115.7 % 118.3 % 66.0 % 80.3 % 53.3 % 66.8 %large 136.6 % 117.5 % 59.0 % 74.3 % 52.8 % 65.8 %Figure 7.10. Change in ahe misses - on�guration 1.7.5 Related workReently there has been a lot of interests in exploiting narrow width values to improveprogram performane [9, 64, 61℄. However, our work fouses on pointer intensiveappliations for whih it is important to also handle pointer data. A lot of researh hasbeen onduted on development of loality improving transformations for dynamiallyalloated data strutures. These transformations alter objet layout and plaement



121to improve ahe performane [56, 17, 13℄. However, none of these transformationsresult in spae savings.Existing ompression transformations [53, 18℄ rely upon ompile time analysis toprove that ertain data items do not require a omplete word of memory. They areappliable only when the ompiler an determine that the data being ompressed isfully ompressible and they only apply to narrow width non-pointer data. In ontrast,our ompression transformations apply to partially ompressible data and, in additionto handling narrow width non-pointer data, they also apply to pointer data. Theapproah introdued in this hapter is not only more general but also simpler in onerespet. It does not require ompile-time analysis to prove that the data is alwaysompressible. Instead simple ompile-time heuristis are suÆient to determine thatthe data is likely to be ompressible.ISA extensions have been developed to eÆiently proess narrow width data in-luding Intel's MMX [44℄ and Motorola's AltiVe [57℄. Compiler tehniques are alsobeing developed to exploit suh instrution sets [31℄. However, the instrutions in-trodued in this hapter are quite di�erent from MMX instrutions beause bothpartially ompressible data strutures and pointer data must be handled.7.6 ConlusionIn this hapter, two types of data ompression transformations are introdued toapply data ompression tehniques to ompat the sizes of dynamially alloateddata strutures. These transformations result in large spae savings and also resultin signi�ant redutions in program exeution times and power dissipation due toimproved memory performane.An attrative property of these transformations is that they are appliable topartially ompressible data strutures. This is extremely important beause aord-ing to our experiments, while the data strutures in all of the benhmarks studied



122in this hapter are very highly ompressible, they always ontain small amounts ofinompressible data.This approah is appliable to a more general lass of programs than existingompression tehniques: it an ompress pointers as well as non-pointer data; and itan ompress partially ompressible data strutures. Finally the DCX ISA extensionshave been designed to enable eÆient manipulation of ompressed data. The sametask annot be arried using MMX type instrutions. The main ontribution of thiswork is that data ompression tehniques an now be used to improve performaneof general purpose programs and therefore it takes the utility of ompression beyondthe realm of multimedia appliations.



123
Chapter 8Exploiting value representationredundany in hardwareData ompression transformations were introdued in the preeding hapter to ex-ploit the value representation redundany whih was disovered from the type basedpro�ling framework introdued in hapter 6. Both pro�les and semanti informationare used to selet the �elds for ompression and pak them together. Cahe perfor-mane is improved due to improved data loality. However, the approah also hassome limitations. Soure ode has to be available in order to perform pro�ling, anal-yses and transformations. Thus, it is not appliable if only binary ode is available.Moreover, restritions suh as address arithmeti and type asting may prohibit theappliation of these transformations (e.g., for SPEC benhmarks). In order to over-ome the above drawbaks, a hardware-based approah for exploiting ompression isonsidered in this hapter. This hardware approah does not analyze or transform theprogram and thus is appliable to all programs, inluding SPEC benhmarks whihould not be handled by the data ompression transformations.

tag
x

tag offsetindex

Address:

Tag: Data:

?Figure 8.1. Memory address and ahe aess.To study the potential of this approah, the harateristis of values involved



124in word-sized aesses from the ahe (Figure 8.1) were studied for programs fromOlden, SPEC 95int, and SPEC 2000int benhmark suites. These values are dividedinto three ategories: ompressible small values { these are values whose higher order18 bits are all zeros or all ones; ompressible address values { these are values thatshare the same 17-bit pre�x with their addresses; and inompressible values { theseare all remaining values that are aessed. The results are summarized in Figure8.2. On an average, 59% of dynami appeared values are ompressible and an berepresented by less than or equal to 16 bits. Note that even though ompiler basedapproah ould not handle SPEC benhmarks, the data belonging to these programsis still highly ompressible.
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Figure 8.2. Values enountered during program exeution.Given the fat that the value representation redundany exists uniformly aross aspetrum of benhmark programs, it is useful to design a hardware approah whihskips the omplexity of ompile-time analysis and transformation, and takes advan-tage of the value representation redundany observed through pro�ling diretly. Inthis hapter, a new ahe design is proposed to exploit value representation redun-dany. Values are stored in ompressed form and the storage that is freed by thisproess is used to enable a novel style of ahe line prefething.The rest of the hapter is organized as follows. The ompression ahe design isdisussed in setion 8.1. The implementation and experimental results are given insetion 8.2. Related work will be disussed in setion 8.3. Setion 8.4 summarizes the



125hapter.8.1 Compression enabled partial ahe line prefethingFirst the representation of ompressible values in hardware is given and then it isshown how the ahe performane an be improved by enabling prefething of partialahes lines. The desription of how the ahe is aessed and maintained dynamiallyis also given.8.1.1 Value representation in hardwareAs already disussed, in many ases, values an be represented by their lower order16 bits as shown in Figure 8.3(a)(b). Figure 8.3(a) shows that the pre�x of a pointervalue ould be disarded if it shares the same pre�x with the memory address wherethe value is stored. Figure 8.3(b) shows that the pre�x of a small value ould bedisarded if these bits are sign extensions.
(a) pointer addresses share the same prefix

0 231-1- 231+1

11 … 1 xxx 00… 0 xxx

(b) small positive or negative values

P

Q

prefix(P) = prefix(Q)

same chunk

xxx xxx1 0Figure 8.3. Representing a 32-bit value with fewer than 32 bits.Sine dynamially, both ompressible and inompressible values will be enoun-tered. When ompressible values are represented in their ompressed formats, amethod is required to distinguish ompressible values from inompressible ones. Inaddition, to reonstrut the original values at runtime, we must know whether theyrepresent ompressed addresses or ompressed small values.



126To help distinguish these ases, we have a 32-bit value ompressed to 15 bitsinstead and use the 16th bit to tells its type (shown by \VT" in Figure 8.4). Similarly,we need one more bit to tell whether the word ontains ompressed or unompressedvalues (shown by \VC" in Figure 8.4). However this bit is not stored as part of thevalue representation but stored in the ahe as ags and will be disussed in moredetail in ahe design setion.
VVT

Vprefix(P)

VSign(V)

VT = 1

VT = 0

16 bits

32 bits

VC

VC = 0

VC = 1

Figure 8.4. Representing ompressed values in hardware.8.1.2 Partial ahe line prefethingHardware tehniques for prefething ahe lines [49, 47℄ have been proposed to im-prove ahe performane in high performane systems. If a ahe line l is not in theahe, a memory aess m for a word in l results in a ahe miss. Prefething loadsthe line l into the ahe before m is enountered. By the time m is enountered later,l is already in the ahe and there is no ahe miss. In this way, prefething hides thelong ahe miss lateny. The problem with prefething is that it greatly inreases thememory traÆ. Although it is a very e�etive tehnique for high performane systemswith big memory bandwidth, the signi�ant inrease in memory traÆ restrits itsappliation to other systems suh as embedded systems.By exploiting the dynami value representation redundany, we an perform hard-ware prefething with no inrease in memory traÆ. Our method fethes ompressiblevalues into the ahe and stores the values in the ahe in ompressed formats. By



127having a ompressible word represented by 16 bits, a signi�ant part of the ahespae is spared. Let us onsider the example shown in Figure 8.5 where it is assumedthree out of four words are ompressible in eah ahe line. The saved spae in eahahe line (0:5 � 4 bytes=word� 3 words = 6 bytes) is not enough to hold anotherahe line. Therefore, we hoose to prefeth only part of another line.
(a) before compression

(b) after compression (c) combine another line

X1

X1

X2Figure 8.5. Compressing data in the ahe to hold more words.Let us onsider the situation shown in Figure 8.5. If the ompressible words fromanother ahe line with orresponding o�sets are prefethed, then three additionalompressible words an be stored whih overs 7 out of 8 words from two ahe lines.On the other hand, if the inompressible words are fethed, we need two unused half-word-sized spots to store all bits of a prefethed word and some indexing spae toindiate its order. The 6 bytes of available spae an only store one more word fromthe prefethed line. Therefore a design is developed to only prefeth ompressiblevalues from another line.The example in Figure 8.6 illustrates how ompression enabled prefething anenhane performane. Figure 8.6(b) shows a ode fragment that traverses a link listwhose node struture is shown in Figure 8.6(a). The memory alloator would alignthe address alloation and eah node takes one ahe line (we assume 16 bytes perline ahe). There are 4 �elds among whih two are pointer addresses, one is a type
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struct node {

int type;

int info;

struct node *prev;

struct node *next;

};

(a) node declaration

…

(1) while ( p ) {

(2)     if (p type == T)

(3) sum += p info;

(4)     p = p next;

}

…

(b) sample codeFigure 8.6. Dynami data struture delaration.�eld and the other one ontains a large value. Exept this large information value�eld, the other three �elds are identi�ed as highly ompressible �elds. The sampleode shown in Figure 8.6(b) alulates the sum of the information �eld for all nodes oftype T. Without ahe line ompression, eah node takes one ahe line. To traversethe list, the next �eld is followed and a new node is aessed.A typial aess sequene for this piee of ode would generate a new ahe missat statement (2) for every iteration of the loop (see Figure 8.7(a)). All ompressionaesses to other �elds in the same node fall into the same ahe line and thus areall ahe hits as shown in Figure 8.7(b). However, if all ompressible �elds are om-pressed, a ahe line would be able to hold one omplete node and three �elds fromanother node. Now an aess sequene will have ahe hits at statements (2) and(4) plus a possible ahe miss at statement (3). The partial ahe line prefethingan improve performane in two folds. First, if the node is not of the type T, wedo not need to aess the large information �eld. This saves a ahe miss. Seond,even in the ase we do need to aess it, the ahe miss happens at statement (3).Although the new and old sheme generate the same number of ahe misses, the missat statement (3) is not on the ritial program exeution path whih is \(1)(2)(4)"and it has less impat on the performane.
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Figure 8.7. Cahe layout before and after ompression.8.1.3 Cahe design detailsThe new ahe design an be implemented in either a single or a multiple level ahehierarhy. A two level ahe hierarhy shown in Figure 8.8 is used and the ompressionenabled partial ahe line prefething is employed in both ahes.
CPU

Level 1

Cache
Level 2

Cache

Memory

chip boundary

Figure 8.8. Two level ompression ahe design.The ompression sheme used is desribed as before. A value is ompressible if itsatis�es either of the following two onditions.� If the 18 higher order bits are all ones or all zeros, the 17 higher order bits aredisarded.



130� If the 17 higher order bits are the same as those of the value's address, the 17higher order bits are disarded.The physial ahe line at eah level an potentially hold the ontents from twolines, identi�ed as the primary ahe line and the aÆliated line. The primary aheline is de�ned as the line mapped to this set in a normal ahe of the same size andassoiativity. Its aÆliated ahe line is the unique line that is alulated through asingle operation as shown below.< Tagaffiliated; Setaffiliated >=< Tagprimary; Setprimary > � maskwhere the mask is a prede�ned value. The mask is hosen to be 0x1 whih meansthe primary and aÆliated ahe lines are onseutive lines of data. Thus, given aahe line, it has two possible plaes to stay in the ahe, its primary loation and anaÆliated loation. Our ahe aess and replaement poliy desribed later ensurethat at most one opy of a ahe line is kept in the ahe at any time.In a standard two level ahe hierarhy, the requests from the upper level areahe line based. For example, if there is a miss at the �rst level ahe, a request forthe whole line is issued to the seond level ahe. In the ompression ahe design,the requested line might stay as an aÆliated one in the seond level ahe and thusontains only partial data. To maximize the bene�ts from partially prefethed aheline, there is no need to get a omplete line as long as the requested data item anbe found. So the ompression ahe design still keeps the requests to the seond levelahe as word based and a ahe hit at the seond level ahe only returns a partialahe line. The returned line might be plaed as a primary line or an aÆliated line. Ineither ase, ags are needed to indiate whether a word is available in the ahe lineor not. A ag PA (Primary Availability) for the primary ahe line is assoiated withone bit for eah word and another ag AA (AÆliated Availability) for the aÆliatedahe line is provided. As disussed, a value ompressibility ag (VC) is used toidentify if a value is ompressible or not. For the values stored in the primary line,



131a one-bit VCP ag is assoiated for eah word. On the other hand, if a value anappear in the aÆliated line, it must be ompressible and thus no extra ag is neededfor these values. The design details of the �rst level ompression ahe are shown inFigure 8.9.
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Figure 8.9. Compression ahe.8.1.4 Dynami value representationIt happens only in the best ase that both the primary and the aÆliated lines arefully ompressible. Normally, some words from one or both lines are not ompressible.In those ases, priority is given to hold the words from the primary line. Thus, theprimary line an always �nd the plae to save the value while the aÆliated line onlykeeps a word, if this word is ompressible, and the word at the same o�set from theprimary line is also ompressible.At runtime, if a value hanges from ompressible to inompressible, a plae tostore the value must be found. There are two possibilities. If the value is to be storedin a primary ahe line, the orresponding word from the aÆliated ahe line is kiked



132out. The aÆliated line is written bak to lower level memory hierarhy if it is dirty.If the value is to be stored in an aÆliated ahe line, the aÆliated line is moved toits primary plae. The other line whih stays in its primary plae is kiked out andwritten bak if that line is dirty.8.1.5 Cahe aess poliyThere are three ahe interfaes to onsider: CPU/L1 ahe, L1/L2 ahe and L2ahe/Memory. For a ahe aess from CPU to L1 ahe, the set index of its primaryahe line is extrated, the least signi�ant bit is ipped to aess its aÆliated line.Both lines are aessed simultaneously. If the tag mathes either of them, and itsorresponding availability bit is set, the word is extrated, extended and returnedto the CPU. For a ahe aess from L1 ahe to L2 ahe, if the aessed wordis available in L2, it is a ahe hit and only the available words are returned. Foran aess from L2 ahe to memory, both the primary and the aÆliated lines arefethed. However, before returning the data, the ahe lines are ompressed and onlyavailable plaes from the primary line are used to store the ompressible items fromthe aÆliated line. The memory bandwidth is still the same as before.For both L1 and L2 ahe, when a new ahe line arrives, the prefethed aÆliatedline is disarded if it is already in the ahe (it must be in its primary plae in thissituation). When a new ahe line replaes an existing ahe line, the aÆliated plaeof the existing ahe line is heked to see if the tag mathes. If yes, the ompressiblewords are �lled into the available spots of its aÆliated plae. However, if the line isdirty, we still write bak the ontent and only keep a lean partial opy in its aÆliatedplae.



1338.2 Implementation and experiments8.2.1 Experimental setupThe ompression enabled partial ahe line prefething has been implemented andevaluated using Simplesalar 3.0 [10℄. We use a two level ahe hierarhy: separate8K �rst level data and instrution ahes and a uni�ed 64K level two ahe. Forthe baseline on�guration, L1 data ahe is diret mapped and uni�ed L2 ahe istwo-way set assoiative. Our ompression ahe is designed on top of the baselineon�guration, with the ability to math its aÆliated ahe line. Sine the proposedahe design doubles the number of lines searhed in omparison to the baselineon�guration, omparison is also made to a ahe of higher assoiativity: a 2-wayset assoiative L1 ahe plus a uni�ed 4-way set assoiative L2 ahe. They are ofthe same size as the baseline on�guration. Other parameters are all the same andsummarized in Figure 8.10. A spetrum of programs from Olden [14℄, SPEC95, andSPEC2000 [50℄ benhmark suites are used.Parameter ValueIssue Width 4 issue, out of orderI ahe 8K diret mapped (64 bytes/line)I ahe miss lateny 10 ylesL1 data ahe 8K diret mappedL1 data ahe miss lateny 10 ylesL2 uni�ed ahe 64K 2-way (128 bytes/line)Memory lateny 100 yles (L2 ahe miss lateny)Figure 8.10. Baseline experimental setup.
8.2.2 Overall performaneFigure 8.11 shows the overall performane omparison with the baseline and thehigher assoiativity ahe on�gurations. The results are normalized with respet to



134the baseline ahe performane. Smaller numbers mean better results.
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Figure 8.11. Performane omparison.The newly designed ahe gives onsistently better results than the baseline ahe.On an average, programs run about 7% faster. Speedup omes from the fat thatunlike many other prefething shemes whih save the prefethed data into the aheand have the possibility of polluting the ahe line, the ompression ahe never kiksout a ahe line if the baseline ahe does not have to replae it with the same aesssequene. As a result, the ahe miss rate an redue but never inrease. In manyases, the new design even outperforms the higher assoiativity ahe on�guration.The reason is that although higher assoiativity ahe has a better replaement poliy,the proposed ahe an keep more data. For example, in a two-way set assoiativeahe, 2 ahe lines form one set an hold the ontents from two lines at most whilein the ompressed direted mapped ahe, two ahe lines an potentially hold theontents of 4 lines. While the proposed design may have higher number of onitmisses, than the higher assoiativity ahe, it may have fewer apaity misses if thedata items are highly ompressible. On an average, exeution time is 2% faster thanthat of a higher assoiativity ahe.8.2.3 Cahe miss omparisonThe omparison results of L1 and L2 ahe misses for di�erent on�gurations areshown in Figure 8.12 and Figure 8.13 respetively. As we an see, through prefething,



135the ompression ahe greatly redues the ahe misses ompared to the baselineon�guration.
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Figure 8.12. Comparison of L1 ahe misses.
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Figure 8.13. Comparison of L2 ahe misses.An interesting phenomenon observed is that although in many ases the ompres-sion ahe has more L1 ahe misses than the higher assoiativity ahe on�guration,it still ahieves better overall performane. For example, for 130.li from SPECint95,although the new ahe design has more L1 and L2 ahe misses than the higher as-soiativity ahe, 6% improvement in performane over the higher assoiativity aheis observed. As was mentioned in the previous setions, this suggests that di�erentahe misses have di�erent performane impats, i.e. some ahe misses hurt theperformane more than other ahe misses.To further analyze this phenomenon, we arried out additional experiments. Givena set of memory aess instrutions m, the importane of this set is de�ned as the



136perentage of total exeuted instrutions that diretly depend on m. In ase that mis the set of all ahe miss instrutions from a program exeution, its importane pa-rameter indiates how many dependent instrutions are bloked by the ahe misses.A higher number means that the ahe misses blok more instrutions and thus hurtthe performane more. The method to approximately ompute this perentage isshown as follows. Aording to Amdahl's law, we haveSpeedupoverall = ExeutionoldExeutionnew= 1(1� Frationenhaned) + FrationenhanedSpeedupenhaned) Frationenhaned = Speedupenhaned(1� 1Speedupoverall)Speedupenhaned � 1 :In the Simplesalar simulator, without speulative exeution, the memory addressgenerated and their aesses are a�eted by the following fators: the exeutableprogram, the input, the seed for the random generator. If all these fators are �xed,two runs with di�erent ahe on�gurations will generate exatly the same instrutionexeution sequene as well as the memory address aess sequene. Thus, by varyingonly the ahe miss penalty and running the program twie, we would observe thesame number of ahe misses happen at the same instrutions. Moreover, given this�xed set of instrutions that have ahe misses, their diretly dependent instrutionsare also �xed. As we know, by shortening the miss penalty, the main hange tothe exeution is the redued dependene length from a ahe miss instrution to itsdiretly dependent instrutions, the enhaned fration ould thus be onsidered asthe perentage of the instrution that are diretly depending on these ahe misses.Now, for di�erent ahe on�gurations, this fration is omputed as follows. First,the ahe miss lateny is redued in half, whih means Speedupenhaned =2. Seond,the overall performane speedup is measured, whih is Speedupoverall. It is omputed



137from the total number of yles before and after hanging the miss penalty. Now, thevalue of Frationenhaned an be obtained. The results are plotted in Figure 8.14.
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Figure 8.14. The estimation of ahe miss importane.From the omparison results for di�erent benhmark programs shown in Fig-ure 8.14, it an be seen that the ompression ahe redues the importane of theahe misses for most benhmarks. For the benhmarks that are slower than thehigher assoiative ahe, it is seen that they have larger importane parameters. Forthe benhmarks with signi�ant importane redution, further study of the averageready queue length, when there is at least one outstanding ahe miss, was arriedout. The queue length inrease of our ompression ahe over the higher assoiativityahe was studied. The results are shown in Figure 8.15. The results indiate thatthe average queue length is improved by up to 78% for these benhmarks. This pa-rameter tells us when there is a ahe miss in the new ahe design, the pipeline stillhas a lot of work to do.In summary, the ahe misses that are enountered in the proposed ompressionahe design are less important in omparison to both the baseline and the higherassoiativity ahe on�gurations.
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Figure 8.15. Average miss yle ready queue length.8.2.4 Memory traÆThe partial prefething of the next ahe line is enabled only in the ase that there areavailable spots in the primary ahe line and the orresponding aÆliated words arealso ompressible. By ombining the lower order bits from two words, and using thesame memory bandwidth, more data items are e�etively transmitted. So the memorytraÆ is not inreased. Atually, the overall memory traÆ is redued beause ofthe redution in the seond level ahe misses. The only situation that may auseinreased memory traÆ happens if a store instrution writes to the primary plaeor the aÆliated plae hanges a ompressible value to an inompressible one. Eitherit will generate a ahe miss if writing to the aÆliated plae, or kik out a (dirty)aÆliated line. In either ases, the memory traÆ would inrease. However, sinethis happens infrequently, a net redution in memory traÆ is observed. Figure 8.16summarizes all these impats and shows the �nal results. Thus it is observed that thenew ahe design onsistently performs better than the baseline on�guration and insome ases, it an even outperform the higher assoiativity ahe on�guration.



139

olden.bisort

olden.health

olden.mst

olden.perimeter

olden.treeadd
olden.tsp

olden.voronoi

spec2000.176.gcc

spec2000.181.mcf

spec2000.300.twolf

spec95.099.go

spec95.124.m88ksim

spec95.126.gcc

spec95.130.li

spec95.132.ijpeg
Average

40

60

80

100

N
or

m
al

iz
ed

 T
ra

ffi
c 

P
er

ce
nt

ag
e

Baseline Cache
Compression Cache
Higher Associativity Cache

Figure 8.16. Comparison of memory traÆ.8.3 Related workA number of di�erent designs have been proposed to perform hardware and/or soft-ware prefething to improve ahe performane [49, 47℄. Sine prefething mightfeth unneessary bloks or feth bloks at the wrong time, it has the potential prob-lem of wasting valuable memory bandwidth and polluting the ahe. However, thenew ahe does not inrease the memory traÆ and a ahe line is never replaed justto hold prefethed words. It also e�etively transmits more words and redues thememory traÆ.Some ompression ahe designs [33, 61℄ have been proposed to improve the datadensity inside the ahe. In [33℄ a ahe design is proposed that ompresses two on-seutive lines using a omplex ompression algorithm, both the ompression and thedeompression are expensive. As a result, it annot meet the ritial time onstraintsof a level one ahe and is used at a lower level in the hierarhy. In [61℄ data isompressed using frequent values found from programs. If two oniting ahe linesan be ompressed, both are stored within the ahe; otherwise, only one of themis stored. Both of the above designs do not distinguish between the importane ofdi�erent words within a ahe line and a partially ompressible ahe lines annot beexploited.The pseudo assoiative ahe [43℄ also has a primary ahe line and a seondary



140ahe line. However, if a ahe line enters its seondary plae, it has to kik out theoriginal line and hene there is a danger of onverting a fast hit to a slow hit or evena ahe miss. On the ontrary, proposed ompression ahe design only stores a aheline to its seondary plae if there are free spots. Neither will it pollute the ahe linenor will it degrade the original ahe performane.8.4 ConlusionA novel ahe design is developed in this hapter to remove the value representationredundany whih was found in hapter 6. It partially prefethes the ompressiblewords from the next ahe line and stores these words in the ahe. It removes theprefeth bu�er and thus minimizes the ahe size inrease. Unlike other prefethingshemes that save the words in the ahe, it never pollutes the ahe line. On anaverage, the new ahe improves the overall performane 7% over the baseline aheand 2% over the higher assoiativity ahe on�guration. The new design adopts thepositive aspets of hardware prefething and eliminates the problems it has, espeially,it makes better use of both memory bandwidth and ahe spae. In this way, thisdesign opens the way to apply hardware prefething to more restrited environmentssuh as embedded systems.
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Chapter 9Conlusion and future workThis dissertation makes ontributions in the areas of program pro�ling and pro�le-guided ompiler optimizations. While pro�le-guided optimizations an greatly im-prove program performane over the traditional ones, reent advanes in pro�lingollet huge amount of pro�ling data and make information retrieval at analysis stagea bottlenek. On the other hand, due to the inreasing performane gap betweenCPU and memory, new optimization opportunities arise from the fat that a signi�-ant perentage of the spae stores redundant data. New type of pro�les and pro�lingtehniques are needed in the design of new optimization tehniques. In this disser-tation, these problems are solved through the design and appliation of new dataompression tehniques. In partiular, the ontributions are summarized in setion9.1. Setion 9.2 disusses diretions for further researh.9.1 Summary of ontributionsTWPP+ representation. A new representation is proposed to ompress wholeprogram path pro�les inluding both ontrol ow and memory address infor-mation. While prior work aimed at ompressing the pro�les to ahieve maximalompression ratio, the proposed timestamped whole program path representa-tion puts more emphasis on organization and speed up the information retrievalin ompiler analysis and optimization. Control ow and memory addresses areexpliitly separated from eah other. The omplete ontrol ow is representedby a two levels organization. A global all graph is kept to remember the allingontext information. At the funtion level, a sequene of timestamps is attahedto eah basi blok in the ontrol ow graph to indiate when it is exeuted.



142Memory address trae is expliitly represented as dependene edges and reor-ganized as a sequene of dependene edges attahed at eah load instrutionpoint in the ontrol ow graph.Appliations of TWPP+. Instead of onsidering a trae as a stream of symbols,TWPP+ divides a omplete trae into a ontrol ow trae part and a memorydependene trae part; eah part is then reorganized to allow fast retrieval ofinformation during data ow analyses. Common queries in data ow analysesould be proessed muh faster and thus ould be used to integrate the exe-ution information into a broad range of data ow analyses and optimizations.Three appliations are demostrated in this dissertation to use the informationontained in TWPP+ representation. It ould be used to study the overallbehavior of a program exeution. By regrouping and sorting the memory de-pendene edges, redundant load and store instanes are identi�ed. A signi�antperentage of load instrutions are highly redundant and ould be further op-timized to improve performane. With the timestamps, the exat exeutionorder is maintained in the TWPP+ suh that it is muh faster to identify thefrequeny of some data ow fats at some program points with respet to thegiven whole program path. The TWPP+ representation an also be use asdebug tool to reate dynami slies at any program exeution point. Di�erentsliing algorithms are simulated using this representation with di�erent ost andslie auray tradeo�.Type-based pro�ling for identifying value redundany. A type-based pro�lingframework is proposed to pro�le the programs with respet to both high-leveltype information as well as value harateristis. It is implemented with aombination of instrumentation and simulation using SUIF ompiler [54℄ andSimplesalar simulator [10℄. In this framework, data types are pro�led at �eldlevel; value range summaries are olleted for eah �eld. With this information,



143andidate types for ompression ould be identi�ed. A bene�t-ost model basedon pro�les is used in the framework to assist the design and appliation of thenew ompression tehniques.Appliations of value redundany. Two new types of value representation redun-dany are identi�ed for small values and pointer addresses respetively. Thosetypes of redundany exist widely in a spetrum of programs. They are simplein logi and easy to explore in pratie. Moreover, this dissertation proposedboth software and hardware approahes to explore them.Data ompression transformations are proposed and implemented as a ompilerapproah. Code are transformed aording to aess pattern of the andidatedata �elds. To further redue the runtime overhead, data ompression instru-tion extensions are designed and evaluated. With the help of six new simpleRISC- style instrutions, the memory footprints are greatly redued and theoverall performane is improved on top of existing memory loality enhane-ment tehniques.A novel hardware ahe design is proposed and evaluated to improve the pro-gram performane by reduing the number of ahe misses. Compressible valuesare transmitted from the memory and stored in the ahe in ompressed for-mats. By removing value representation redundany, the ompression ahe ane�etively feth and store more data items with the given memory bandwidthand the given ahe size. The experiments further identi�ed that in many pro-grams, the prefethed ompressed data items are more important for programexeution. The overall performane is greatly improved from the ompressionwith redued ahe misses and memory traÆ.



1449.2 Future workPro�le database. With the inreasing program omplexity, advanes in programpro�ling tend to ollet a huge amount of pro�ling data. This ould be theresult from olleting whole program paths, or from the iterative olletionswith di�erent inputs. The former is disussed in this dissertation, the later hasbeen employed in pro�ling ompliated ommerial programs. In all these ases,it would be helpful to design a uni�ed interfae for stored pro�les. The pro�lesould be organized as an independent subsystem { a speial database. Di�erentanalyses and optimizations ould issue di�erent queries to this subsystem andthe queris are proessed similar to that of SQL queries.New optimizations. Compared to prior pro�les, a whole program path providesaurate exeution information. Espeially, it keeps the information aross theloop boundaries and proedural sopes. Reorganizing the whole program pathat multiple semanti levels, TWPP+ an be used to enhane existing dataow analysis tehniques as well as design new optimization passes. It wouldbe very interesting to explore additional optimization opportunities using theinformation provided by TWPP+.Dynami sliing. Dynami sliing is used as an example to illustrate the strengthof the new timestamped whole program path representation. Although it isbeyond the sope of this dissertation to fully explore dynami sliing, it wouldbe an interesting topi to evaluate di�erent dynami sliing algorithms withthe presene of pointers and arrays in real C programs. The experiene in ourresearh group [63℄ showed that the memory requirement is extremely large ifdynamially maintaining the data dependene edges. Sine the aurate sli-ing algorithm ould also be implemented by bakward san of the trae, it ismore realisti to ompare the implementations of the aurate sliing algorithm



145using di�erent representations and then hoose the right representation to usein pratie. While an aurate algorithm might exeute longer, its memoryrequirement is well ontrolled.
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