
Dynamic and Compiled Communication inOptical Time{Division{MultiplexedPoint{to{Point Networks
byXin YuanB.S., Shanghai Jiaotong University, 1989M.S., Shanghai Jiaotong University, 1992M.S., University of Pittsburgh, 1995

Submitted to the Graduate Faculty ofArts and Sciences in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy
University of Pittsburgh1998

UNIVERSITY OF PITTSBURGHFACULTY OF ARTS AND SCIENCES
This dissertation was presentedbyXin Yuan

It was defended onAugust, 1998and approved byProf. Rajiv Gupta (Co{Chair)Prof. Rami Melhem (Co{Chair)Prof. Henry ChuangProf. Thomas GrossCommittee Chairperson(s)
ii

Copyright by Xin Yuan1998

iii

Dynamic and Compiled Communication inOptical Time{Division{MultiplexedPoint{to{Point NetworksXin Yuan, Ph.D.University of Pittsburgh, 1998Optical interconnection networks are promising networks for future supercomput-ers due to their large bandwidths. However, the speed mismatch between the fast opticaldata transmission and the relatively slow electronic control components poses challengesfor designing an optical network whose large bandwidth can be utilized by end users.The Time{Division{Multiplexing (TDM) technique alleviates this mismatch problem bysacri�cing part of the large optical bandwidth for e�cient network control. This thesisstudies e�cient control mechanisms for optical TDM point{to{point networks. Speci�cally,three communication schemes are considered, dynamic single{hop communication, dynamicmulti{hop communication and compiled communication.Dynamic single{hop communication uses a path reservation protocol to establishall{optical paths for connection requests that arrive at the network dynamically. An e�cientpath reservation protocol is essential for this scheme to achieve high performance. In thisthesis, a number of e�cient distributed path reservation protocols are designed and theimpact of system parameters on these protocols is studied.Dynamic multi{hop communication allows intermediate hops to route messagestoward their destinations. In optical TDM networks, e�cient dynamic multi{hop com-munication can be achieved by routing messages through a logical topology that is moree�cient than the physical topology. This thesis studies e�cient schemes to realize logicaltopologies on top of physical torus topologies, presents an analytical model for analyzing themaximum throughput and the average packet delay for multi{hop networks, and evaluatesthe performance of the optical communication on the logical topologies.Compiled communication eliminates the runtime communication overheads of thedynamic communications by managing network resources at compile time. This thesisconsiders issues for applying the compiled communication technique to optical TDM net-iv

works, including communication analysis, connection scheduling and communication phaseanalysis. A compiler, called the E{SUIF compiler, is implemented to support compiledcommunication on optical TDM networks.Each communication scheme has its advantages and limitations and is more ef-�cient for some types of communication patterns. This thesis compares the performanceof the three communication schemes using a number of benchmarks and real applicationprograms and identi�es the situations where each communication scheme out{performs theother schemes.

v

Contents
List of Figures . viiiList of Tables . xi1 Introduction . 12 Background and related work . 62.1 Optical TDM networks . 62.2 Dynamic single{hop communication with PM 92.3 Dynamic multi{hop communication with PM 102.4 Compiled communication . 112.5 Programming and machine model . 132.6 Compilation for distributed memory machines 143 Dynamic single{hop communication . 173.1 Forward reservation schemes . 203.2 Backward reservation schemes . 233.3 Network simulator and experimental results 253.4 Chapter summary . 344 Dynamic multi{hop communication . 364.1 Realizing logical topologies on physical torus topology 374.1.1 Logical hypercube topology . 384.1.1.1 Problem de�nition . 394.1.1.2 Hypercube on linear array 414.1.1.3 Hypercube connections on rings 454.1.1.4 Hypercube connections on meshes 474.1.1.5 Hypercube connections on tori 504.1.2 Logical torus, all{to{all and allXY topologies 514.2 Performance of the logical topologies under light load 534.3 An analytical model and its veri�cation . 554.4 Performance of the logical topologies . 614.5 Multi{hop communication vs single{hop communication 674.6 Chapter summary . 725 Compiled communication . 745.1 Programming model . 755.2 The communication analyzer . 775.2.1 Section communication descriptor (SCD) 77vi

5.2.2 A demand driven array data ow analysis framework 795.2.3 The analyzer . 845.2.4 Evaluation of the analyzer . 895.3 Virtual to physical processor mapping . 925.4 Connection scheduling algorithms . 995.4.1 Greedy algorithm . 1005.4.2 Coloring algorithm . 1015.4.3 Ordered AAPC algorithm . 1025.4.4 Performance of the scheduling algorithms 1045.5 Communication Phase analysis . 1075.5.1 Evalutation of the communication phase analysis algorithm 1115.6 Chapter summary . 1136 Performance comparison . 1156.1 Hand{coded parallel programs . 1176.2 HPF parallel benchmarks . 1196.3 Programs from SPEC95 . 1206.4 Chapter summary . 1237 Conclusion . 1257.1 Thesis contributions . 1257.2 Future research . 1287.3 Impact of this research . 130Bibliography . 133

vii

List of Figures
2.1 A torus connected network . 62.2 Path multiplexing and link multiplexing . 72.3 Path multiplexing in a linear array . 72.4 Changing the state of a switch in TDM . 72.5 A nodal switching architecture . 103.1 An optical network with distributed control. 173.2 Control messages in forward reservation . 213.3 Control messages in backward reservation 243.4 Comparison of the reservation schemes with dropping 273.5 E�ect of the initial cset size on forward schemes 283.6 E�ect of the initial cset size on backward schemes 293.7 E�ect of holding time . 303.8 E�ect of maximum retransmit time . 313.9 The performance of the protocols for di�erent multiplexing degree 313.10 E�ect of the network size . 323.11 E�ect of the message size . 333.12 E�ect of the speed of the control network 344.1 A router . 374.2 Node numbering in a torus topology . 384.3 Di�erence between embedding and RCA . 38viii

4.4 Dimension r � 1 and r � 2 connections . 424.5 Realizing DIM0 [DIM1 of H3 . 434.6 The channel assignment algorithm . 444.7 Optimal channel assignment for H4 . 454.8 Hypercube on a ring . 464.9 The channel assignment for rings . 474.10 a Mesh con�guration . 484.11 Realizing logical torus topology . 524.12 Performance for logical topologies on 16� 16 torus 554.13 Logical topologies giving lowest packet delay for given and N 564.14 predicted and simulated maximum throughput 604.15 Packet delays for logical all{to{all topology (= 1) 604.16 Packet delays for logical allXY, hypercube and torus topologies (= 1) . . 614.17 Maximum throughput .vs. packet routing time (N = 32) 624.18 Maximum throughput .vs. network size (= 1) 634.19 Packet delay as a function of packet generation rate (= 1:0; N = 16) . . . 644.20 Impact of packet routing time on packet delay (� = 0:005; N = 16) 654.21 impact of network size on the delay (� = 0:01) 664.22 Best logical topology for a given packet generation rate 664.23 Best logical topology for a 16� 16 torus . 674.24 Best logical topology for a given packet routing time (= 1:0) 684.25 Maximum throughput . 694.26 Maximum throughput for di�erent message sizes 704.27 Impact of message size on the average message delay (= 1) 714.28 Impact of packet processing time on the average message delay (= 1) . . . 715.1 The major components in the E{SUIF compiler 755.2 An example program and its interval ow graph 76ix

5.3 Demand driven summary calculation . 845.4 Algorithms for the forward and backward exposed communication 875.5 Calculating backward exposed communications 885.6 Actions in forward propagation . 885.7 Virtual processor space . 945.8 Algorithm for 1-dimensional arrays and 1-dimensioanl virtual processor grid 955.9 Algorithm for multi{dimensional array . 985.10 An example . 985.11 The greedy algorithm. 1015.12 Scheduling connections (0, 2), (1, 3),(3, 4), (2, 4) 1015.13 The graph coloring heuristic. 1035.14 Ordered AAPC scheduling algorithm . 1055.15 Communication phase analysis algorithm 1095.16 Communication phase analysis for TREE IF nodes 1095.17 An example for communication phase analysis 110

x

List of Tables
1.1 General characteristics of the three schemes 43.1 Optimal cset size . 304.1 Summary of logical topologies . 544.2 Maximum throughput for the logical topologies on 32 � 32 torus 634.3 Maximum throughput on a 16� 16 torus 734.4 Average message delay on a 16� 16 torus 735.1 Analysis time . 915.2 Total number of elements to be communicated 925.3 Total number of messages . 925.4 Performance for random patterns . 1065.5 Performance for data distribution patterns 1065.6 Performance for frequently used patterns . 1075.7 Benchmarks and their descriptions . 1115.8 Communication phase analysis time . 1125.9 Analysis precision . 1136.1 Communication pattern description. 1176.2 Communication time (timeslots) for the hand{coded programs 1186.3 Normalized communication time for the hand{coded programs 1196.4 Communication time for the HPF benchmarks. 121xi

6.5 Normalized time for the HPF benchmarks. 1226.6 Communication time for SPEC95 benchmark programs. 1226.7 Normalized communication time for SPEC95 benchmark programs. 1236.8 Average normalized communication time for each scheme. 123

xii

Chapter 1IntroductionFiber{optic technology has advanced signi�cantly over the past few years, so havethe development of tunable lasers, �lters, high{speed transmitter and receiver circuits,optical ampli�ers and photonic switching devices [40, 76]. With the maturing of opticaltechnology, transmission cost, and in particular the cost of high speed data links, hasdropped tremendously. The electronic processing capability of computers cannot match thepotentially very high speed of optical data transmission. The communication bottleneckhas shifted from the transmission medium to the processing needed to control that medium.In optical interconnection networks, each physical link can o�er very high band-width. In order to fully utilize the available bandwidth, an optical link can be sharedthrough time{division multiplexing (TDM) [23, 53, 61] and/or wavelength{division multi-plexing (WDM) [9, 19, 22, 72]. In TDM, optical links are multiplexed by assigning di�erentvirtual communication channels to di�erent time slots, while in WDM, optical links are mul-tiplexed by assigning di�erent virtual communication channels to di�erent wavelengths. Byusing TDM, WDM or TWDM (a combination of TDM and WDM), each link can supportmultiple channels.Point{to{point networks, such as meshes, tori, rings and hypercubes, are used incommercial supercomputers. By exploiting space diversity and tra�c locality, they o�erlarger aggregate throughput and better scalability than shared media networks such asbuses. Optical point{to{point networks can be implemented by replacing electronic linkswith optical links and operating in a packet switching fashion just like electronic networks.The performance of such networks is limited by the speed of electronics since bu�ering andaddress decoding are performed in the electronic domain. Thus, these networks cannote�ciently utilize the potentially high bandwidth that optics can provide. New generationoptical point{to{point networks exploit the channel{routing capability in optical switches.In TDM networks, time{slot routing[61] is used, while in WDM networks, wavelength{routing[20] is used. The channel routing in an optical switch routes messages from a channel1

2of an input port to a channel of an output port without converting the messages into theelectronic domain. The switch states, however, are usually controlled by electronic signals.Using channel routing, two approaches can be used to establish connections inmultiplexed optical networks, namely link multiplexing (LM) and path multiplexing (PM).These connections are called lightpaths since the light signal travels through the connectionsthat may span a number of optical links and switches without being converted into theelectronic domain. In LM, a connection which spans more than one communication link isestablished by using possibly di�erent channels on di�erent links. In PM, a connection whichspans more than one communication link uses the same channel on all the links. In otherwords, PM uses the same time-slot or the same wavelength on all links of a connection,while LM can use di�erent time-slots or di�erent wavelengths, thus requiring time-slotinterchange or wavelength conversion capabilities at each intermediate optical switch. Sincethe technology to support PM is more mature than the one to support LM, this thesis focuseson PM. Since the electronic processing speed is relatively slow compared to the opticaldata transmission speed, optical point{to{point networks should ideally employ all{opticalcommunication in data transmission. In all{optical communication, no electronic processingand no electronic/optical (E/O) or optical/electronic (O/E) conversions are performed atintermediate nodes. Once converted into the optical domain, the signal remains there untilit reaches the destination. All{optical communication eliminates the electronic processingbottleneck at intermediate nodes during data transmission and thus, exploits the largebandwidth of optical links. This thesis considers all{optical networks where a lightpathis established before a communication starts and the data transmission is carried out in apure circuit{switching fashion. This type of communication is referred to as the dynamicsingle{hop communication. In such networks, electronic processing occurs only in the pathreservation process and hence, using an e�cient path reservation protocol is crucial to obtainhigh performance. In this work, a number of path reservation algorithms that dynamicallyestablish lightpaths are designed and the impact of system parameters on the algorithmsis studied. These algorithms use a separate control network to exchange control messagesand allow all{optical communication in the optical data network.Although dynamic single{hop networks achieve all{optical communication in datatransmission, the path reservation algorithms require extra hardware support to exchangecontrol messages and result in large startup overhead, especially for small messages. Analternative is to use dynamic multi{hop communication. In multi{hop networks, interme-diate nodes are responsible for routing packets such that a packet sent from a sender will

3eventually reach its destination, possibly after being routed through a number of intermedi-ate nodes. Clearly, multi{hop networks require E/O and O/E conversions at intermediatenodes. Thus, it is important to reduce the number of hops that a packet visits. This re-duction may be achieved in an optical TDM network by combining the channel{routingtechnique and the packet switching technique. Speci�cally, packets may be routed througha logical topology which has a small diameter as opposed to the physical topology whichmay have a large diameter. The major issue in the multi{hop communication is to designappropriate logical topologies. This thesis considers e�cient schemes for realizing logicaltopologies on top of physical mesh and torus networks using path multiplexing. Realizinglogical topologies on optical networks is di�erent from traditional embedding techniques inthat both routing and channel assignment options must be considered. An analytical modelthat models the maximum throughput and average package latency of multi{hop networksis developed and is used to evaluate the performance of logical topologies and identify theadvantages of each logical topology.While dynamic (single{hop or multi{hop) communications handle arbitrary com-munication patterns, their performance can be limited by the electronic processing whichoccurs during path reservation in single{hop communication and during packet routing inmulti{hop communication. Compiled communication overcomes this limitation for com-munication patterns that are known at compile time. In compiled communication, thecompiler analyzes a program and determines its communication requirement. The compilerthen uses the knowledge of the underlying architecture, together with the knowledge of thecommunication requirement, to manage network resources statically. As a result, runtimecommunication overheads, such as path reservation and bu�er allocation overheads, arereduced or eliminated, and the communication performance is improved. However, due tothe limited network resources, the underlying network cannot support arbitrary communi-cation patterns. Compiled communication requires for the compiler to analyze a programand partition it into phases such that each phase has a �xed, pre-determined communicationpattern that the underlying network can support. The compiler inserts codes for perform-ing network recon�gurations at phase boundaries to support all connections in the nextphase. At runtime, a lightpath is available for each communication without path reserva-tion. Therefore, compiled communication accomplishes all{optical communication withoutincurring extra hardware support and large start{up overheads. This thesis studies theapplication of compiled communication to optical interconnection networks. Speci�cally,it considers the communication analysis techniques needed to analyze the communicationrequirement of a program. These analysis techniques are general in that they can be ap-

4plied to other communication optimizations and can be used for compiled communicationin electronic networks. This thesis also develops a number of connection scheduling schemeswhich realize a given communication pattern with a minimal multiplexing degree. Note thatin optical TDM networks, communication time is proportional to the multiplexing degree.Finally, a communication phase analysis algorithm is developed to partition a program intophases so that each phase contains connections that can be supported by the underlyingnetwork. All the algorithms are implemented in a compiler which is based on the StanfordSUIF compiler[3]. This thesis evaluates the performance of the algorithms in terms of bothanalysis cost and runtime e�ciency. Single{hop Multi{hop CompiledAll{optical comm. Yes No YesStartup overhead Yes No NoExtra hardware Yes No NoArbitrary comm. Yes Yes NoTable 1.1: General characteristics of the three schemesTable 1.1 summarizes the general characteristics of the three schemes. In opticalinterconnection networks, the central problem to be addressed is the reduction of the amountof electronic processing needed for controlling the communication. In dynamic single{hop networks, this problem is addressed by having e�cient path reservation algorithms.In multi{hop networks, this problem is tackled by designing e�cient logical topologies toroute messages. Compiled communication totally eliminates the electronic processing incommunications. However, it only applies to the communication patterns that are knownat compile time. While communications in optical TDM point{to{point networks can becarried out by any of the three communication schemes, it is necessary to understand thestrengths and the limitations of each communication scheme in order to make appropriatechoices when designing an optical interconnection network. In addition to considering theoptions within each communication scheme, this thesis compares the performance of thethree communication schemes using a number of benchmarks and real applications andidenti�es the situations in which each communication scheme has advantage over otherschemes. The remainder of the thesis is organized as follows. Chapter 2 begins by describingbackground and thesis assumptions. This chapter presents an overview of optical intercon-nection networks, discusses the TDM technique and introduces the path multiplexing (PM)and link multiplexing (LM) techniques for establishing connections. This chapter also sur-

5veys the research related to the three communication schemes. Finally, this backgroundchapter surveys the traditional compilation techniques for distributed memory machinesand communication optimizations and discusses the di�erence between the traditional com-munication optimizations and the compiled communication technique.Chapter 3 discusses the techniques used in dynamic single{hop communication.Two types of distributed path reservation protocols, the forward reservation protocols andthe backward path reservation protocols, are described. This chapter also describes a networksimulator for dynamic single{hop communication, evaluates the performance of the twotypes of protocols and studies the impact of system parameters on these protocols.Chapter 4 discusses dynamic multi{hop communication. This chapter presentse�cient schemes for realizing logical topologies on top of the physical torus networks, de-scribes an analytical model that models the maximum throughput and the average packetdelay for the logical topologies and veri�es the model with simulation. In addition, thischapter also describes the simulator for dynamic multi{hop communication, evaluates themulti{hop communication with the logical topologies and identi�es the advantages and thelimitations of each logical topology.Chapter 5 considers compiled communication. This chapter describes the com-munication analyzer and discusses the communication descriptor used in the analyzer, thedata ow analysis algorithms for communication optimizations, and the actual communica-tion optimization performed in the analyzer. The chapter also describes o�-line connectionscheduling algorithms and a communication phase analysis algorithm. Using these algo-rithms, the compiler analyzes the communication requirement of a program, partitions theprogram into phases such that each phase contains connections that can be supported bythe underlying network, and schedules the connections within each phase. The chapter alsopresents the evaluation of the compiler algorithms and studies their runtime e�ciency.Chapter 6 compares the communication performance of the three communicationschemes. Three sets of application (benchmark) programs, including hand{coded parallelprograms, HPF benchmark programs and sequential programs from SPEC95, are used toevaluate the communication performance of the communication schemes. Di�erent sets ofprograms exhibit di�erent communication characteristic. For example, the hand{coded pro-grams are highly optimized for parallel execution, while the programs from SPEC95 are notoptimized for parallel execution. This chapter compares the communication performanceof the three communication schemes and identi�es the advantages of each scheme.Finally, Chpater 7 summarizes the dissertation and suggests some directions forfuture research.

Chapter 2Background and related work
2.1 Optical TDM networksAn optical point{to{point network consists of switches with a �xed number ofinput and output ports. One input port and one output port are used to connect the switchto a local processing element and all remaining input and output ports of a switch are usedfor connections to other switches. An example of such networks is the 4 � 4 torus shownin Figure 2.1. In these networks, each link in the network is time{multiplexed to supportmultiple virtual channels.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15Figure 2.1: A torus connected networkTwo approaches can be used to establish connections in multiplexed networks,namely link multiplexing (LM) and path multiplexing (PM) [62]. PM uses the same channelon all the links along the path to form a connection. On the other hand, LM may use6

7di�erent channels on di�erent links along the path, thus requiring time-slot interchange inTDM networks at each intermediate node. Fig. 2.2 shows the PM and LM connections ata 2 � 2 switch where each link supports two channels. LM is similar to the multiplexingtechnique in electronic networks where a data packet can change channels when it passesa switch. Using LM for communication has many advantages over using PM. For example,the path reservation for a LM connection is simpler than that for a PM connection, and LMresults in better channel utilization. However, optical devices for LM are still in the researchstage and are very expensive using current technology. Hence, this thesis is concerned onlywith path multiplexing because the enabling technology is more mature.
Channel 0
Channel 1

channel interchange

(b) link multiplexing(a) path multiplexingFigure 2.2: Path multiplexing and link multiplexing
43210

c0:

c1: Figure 2.3: Path multiplexing in a linear array
I1

I2

I3O1

O2

O3 I1

O1

I2
O2

O3

I3

(a) Time slot 0 (b) Time slot 1Figure 2.4: Changing the state of a switch in TDMIn order to time{multiplex a network with path multiplexing, a time slot is de�nedto be a �xed period of time and the time domain is divided into a repeated sequence of

8d time slots, where d is the multiplexing degree. Di�erent virtual channels on each linkoccupy di�erent time slots. Figures 2.3 and 2.4 illustrate path multiplexing on a lineararray. In these two �gures, two virtual channels are supported on each link by dividing thetime domain into two time slots, and using alternating time slots for the two channels c0and c1. Let us use (u; v) to denote a connection from node u to node v. Figure 2.3 showsfour established connections over the two channels, namely connections (0; 2) and (2; 1)that are established using channel c0, and connections (2; 4) and (3; 2) that are establishedusing channel c1. The switches, called Time{Multiplexed Switches (TMS), are globallysynchronized at time slot boundaries, and each switch is set to alternate between the twostates that are needed to realize the established connections. For example, Figure 2.4 showsthe two states that the 3 � 3 switch attached to PE 2 must realize for the establishmentof the connections shown in Figure 2.3. Note that each switch can be an electro-opticalswitch (Ti:LiNbO3 switch, for example [36]) which connects optical inputs to optical outputswithout E/O and O/E conversions. The state of a switch is controlled by setting electronicbits in a switch state register.The duration of a time slot may be equal to the duration over which severalhundred bits may be transmitted. For synchronization purposes, a guard band at each endof a time slot must be used to allow for changing the state of switches (shifting a shiftregister) and to accommodate possible drifting or jitter. For example, if the duration of atime slot is 276ns, which includes a guard band of 10ns at each end, then 256ns can beused to transmit data. If the transmission rate is 1Gb=s, then a packet of 256 bits can betransmitted during each time slot. Note that the optical transmission rate is not a�ectedby the relatively slow speed of changing the state of switches (10ns) since that change isperformed only every 276ns.Communications in TDM networks can either be single{hop or multi{hop. Insingle{hop communication, circuit{switching style communications are carried out. A pathfor a communication must be established before the communication starts. In general, anyN �N network, other than a completely connected network, has a limited connectivity inthe sense that only subsets, C = f(x; y)j0 � x; y < Ng, of the possible N2 connections canbe established simultaneously without conict. For single{hop communication the networkmust be able to establish any possible connection in one hop, without intermediate relayingor routing. Hence, the network must be able to change the connections it supports at dif-ferent times. This thesis considers switching networks in which the set of connections thatmay be established simultaneously (that is, the state of the network) is selected by changingthe contents of hardware registers. The single{hop communication can be achieved in two

9ways. First, a path reservation algorithm can be used to dynamically establish and teardown all{optical connections for arbitrary communications. Second, compiled communica-tion uses the compiler to analyze the communication requirement of a program and insertcode to establish all{optical connections (at phase boundaries) before communications start.Unlike the case in a single{hop system where connections are dynamically established andtorn down, connections in a multi{hop system are �xed and a message may travel througha number of lightpaths to reach its destination. Dynamic single{hop communication, dy-namic multi{hop communication and compiled communication will be discussed in somedetails next.2.2 Dynamic single{hop communication with PMTo establish a connection in an optical TDM network, a physical path, PP , fromthe source to the destination is �rst chosen. Then, a virtual path, V P , consisting of avirtual channel in each link in PP is selected and the connection is established. Theselection of PP has been studied extensively and is well understood [50]. It can be classi�edinto deterministic routing, where PP can be determined from the source node and thedestination node (e.g., X{Y routing on a mesh), or adaptive routing, where PP is selectedfrom a set of possible paths. Once PP is selected, a time slot is used in all the links alongPP . The control in optical TDM networks is responsible for the establishment of a vir-tual path for each connection request. Due to the similarity of TDM and WDM networks,many techniques for virtual channel assignment in one of these two types of networks canalso apply to the other type. Network control for multiplexed optical networks can be clas-si�ed into two categories, centralized control and distributed control. Centralized controlassumes a central controller which maintains the state of the whole network and schedulesall communication requests. Many time slot assignment and wavelength assignment algo-rithms have been proposed for centralized control. In [61] a number of time slot assignmentalgorithms are proposed for TDM multi-stage interconnection networks. In [19] wavelengthassignment for wide area networks is studied. A time wavelength assignment algorithmfor WDM star networks is proposed in [23]. Theoretical study for optimal routing andwavelength assignment for arbitrary networks is presented in [64].Distributed control does not assume a central controller and thus is more practicalfor large networks. Little work has been done on distributed control for optical multiplexednetworks. In [61] a distributed path reservation scheme for optical Multistage Intercon-nection Networks (MIN) is proposed. Distributed path reservation methods for both path

10multiplexing and link multiplexing are presented in [63]. This thesis proposes distributedpath reservation algorithms that are more e�cient than the previous algorithms, investigatesvariations in channel reservation methods and studies the impact of the system parameterson the protocols.2.3 Dynamic multi{hop communication with PMBy using path multiplexing, e�cient logical topologies can be established on topof the physical topology. The connections in the logical topologies are lightpaths that mayspan a number of links. In such systems, the switching architecture consists of an opticalcomponent and an electronic component. The optical component is an all{optical switch,which can switch the optical signal from some input channels to output channels in theoptical domain (i.e., without E/O and O/E conversions), and which can locally terminatesome other lightpaths by directing them to the node's electronic component. The electroniccomponent is an electronic packet router which serves as a store{and{forward electronicsoverlaid on top of the optical virtual topology. Figure 2.5 provides a schematic diagram ofthe architecture of the nodal switch in a physical torus topology.
router

5x5 TMS

processorFigure 2.5: A nodal switching architectureSince the electronic processing is slow compared to the optical data transmission,it is desirable to reduce the number of intermediate hops in a multi{hop network. This canbe achieved by having a logical topology whose connectivity is high. However, realizing alogical topology with a large number of connections requires a large multiplexing degree.In a TDM system, large multiplexing degree results in a large time to transmit a packetthrough a lightpath because every light path is established only for a fraction of the time.Hence, there exists a performance trade{o� in the logical topology design between a logicaltopology with large multiplexing degree and high connectivity and a logical topology withsmall multiplexing degree and low connectivity. As will be shown in this dissertation, bothtopologies have advantages for certain types of communication patterns and system settings.

11Multi{hop networks have been extensively studied in the area of WDM wide areanetworks. The works in [6, 20, 47, 57, 77] consider the realization of logical topologieson optical multiplexed networks. These works consider wide area networks and focus ondesigning e�cient logical topologies on top of irregular networks. Since �nding an optimallogical topology on irregular networks is an NP{hard problem, heuristics and simulatedannealing algorithms are used to �nd suboptimal schemes. This dissertation considers reg-ular networks in multiprocessor environments and derives optimal connection schedulingschemes for realizing hypercube communications. Besides logical topology design, connec-tion scheduling algorithms can also be used to realize logical topologies. In [63] messagescheduling for permutation communication patterns in mesh{like networks is considered. In[61] optimal schemes for realizing all{to{all patterns in multi-stage networks are presented.In [33] message scheduling for all{to{all communication in mesh{like topologies is described.The performance of multi{hop networks has also been previously studied. How-ever, most previous performance studies for optical multi{hop networks assume a broadcastbased underlying WDM network, such as an optical star network [45, 67], where the ma-jor concerns are the number of transceivers in each node and the tuning speed of thetransceivers. This thesis studies the logical topologies on top of a physical torus topologyin a TDM network, where the major focus is the trade{o� between the multiplexing degreeand the connectivity of a topology.2.4 Compiled communicationCompiled communication has recently drawn the attention of several researchers[13, 34]. Compiled communication has been used in combination with message passing inthe iWarp system [25, 26, 35], where it is used for speci�c subsets of static patterns. Allother communications are handled using message passing. The prototype system describedin [13] eliminates the cost of supporting multiple communication models. It relies exclusivelyupon compiled communication. However, the performance of this system is severely limiteddue to frequent dynamic recon�gurations of the network. Compiled communication is morebene�cial in optical multiplexed networks. Speci�cally, it reduces the control overhead,which is one of the major factors that limit the communication performance in opticalnetworks. Moreover, multiplexing, which is natural in optical interconnection networks,enables a network to support simultaneously more connections than a non{multiplexednetwork, which reduces the recon�guration overhead in compiled communication.The communication patterns in an application program can be broadly classi�edinto two categories: static patterns that can be recognized by the compiler and dynamic

12patterns that are only known at run-time. For a static pattern, compiled communicationcomputes a minimal set of network con�gurations that satis�es the connection requirementof the pattern and thus, handles static patterns with high e�ciency. Recent studies [48] haveshown that about 95% of the communication patterns in scienti�c programs are static pat-terns. Thus, using the compiled communication technique to improve the communicationperformance for the static patterns is likely to improve the overall communication perfor-mance. Some advantages of using compiled communication for handling static patterns areas follows.� Compiled communication totally eliminates the path reservation and the large startupoverhead associated with the path reservation.� The connection scheduling algorithm is executed o�-line by the compiler. Therefore,complex strategies can be employed to improve network utilization.� No routing decisions are made at runtime which means that the packet header can beshortened causing the network bandwidth to be utilized more e�ectively.� Optical networks e�ciently support multiplexing which reduces the chance of networkrecon�gurations due to the lack of network capacity.� Compiled communication adapts to the communication requirement in each phase.For example, it can use di�erent multiplexing degrees for di�erent phases in a program.In contrast, dynamic communications always use the same con�guration to handle allcommunications in a program which may not be optimal.In order to apply compiled communication to a large scale multiprocessor system,three main problems must be addressed:Communication Pattern Recognition: This problem has been considered by manyresearchers since information on communication patterns has been previously used toperform communication optimizations [11, 28, 34, 51]. The stencil compiler [11] forCM-2 recognizes stencil communication patterns. Chen and Li [51] incorporated apattern extraction mechanism in a compiler to support the use of collective communi-cation primitives. Techniques for recognizing a broad set of communication patternswere also proposed in [28]. However, most of these methods determine a speci�c sub-set of static communication patterns, such as the broadcast pattern and the nearestneighbor pattern, which is not su�cient for compiled communication. Since the com-munication performance of compiled communication relies heavily on the precision of

13the communication analysis, it is desirable to perform more precise analysis that canrecognize arbitrary communication patterns. Furthermore, compiled communicationrequires the partitioning of a program into phases, such that each phase contains com-munications that can be supported by the underlying network, and the scheduling ofconnections within each phase. These are new problems that must be addressed.Compiling Static Patterns: Once the compiler determines a communication patternwithin each phase, which is called a static pattern, the compiler must be able toschedule the communication pattern on the multiplexed network. In TDM networks,communication performance is proportional to the multiplexing degree. Given a com-munication pattern, the smaller the multiplexing degree, the less time the commu-nication lasts. Thus, connection scheduling algorithms that schedule all connectionrequests in a phase with a minimal multiplexing degree must be designed to handlethe static patterns. It has been shown that optimal message scheduling for arbi-trary topologies is NP-complete [19]. Hence, heuristic algorithms that provide goodperformance need to be developed.Handling Dynamic Patterns: A number of techniques can be used to handle dynamiccommunication patterns. One approach is to setup all-to-all connections among allnodes in the system. This way each node has a time slot to communicate with ev-ery other node. However, establishing paths for the all-to-all communication can beprohibitively expensive for large systems. An alternative is to perform dynamic single{hop or multi-hop communications. The dynamic communications are not as e�cientas compiled communication. However, since this method is not used frequently, itse�ect on the overall performance is limited.2.5 Programming and machine modelCompiled communication requires the compiler to extract communication patternsfrom application programs. The method to extract communication patterns in a programdepends on both programming model and machine model. The programming model in-cludes the ones using explicit communication primitives and the ones that require implicitcommunication through remote memory references. There are two di�erent machine archi-tectures, the shared memory machine and the distributedmemory machine. Communicationrequirements for these two machine models are di�erent for a program. In shared mem-ory machines with hardware cache coherence, communications result from cache coherence

14tra�c, while in distributed memory machines, communications result from data movementsbetween processors.Explicit communication: Most of the current commercial distributed mem-ory supercomputers support the explicit communication programming model. In such pro-grams, programmers explicitly use communication primitives to perform the communicationrequired in a program. The communication primitives can be high level library routines,such as PVM [60] or MPI [54], or low level communication primitives such as the sharedmemory operations in the CRAY T3D [59] and the CRAY T3E. Communication patternsin a program with explicit communication primitives can be obtained from the analysis ofthe communication primitives in the program.Implicit communication: Managing explicit communication is tedious and error-prone. This has motivated considerable research towards developing compilers that relieveprogrammers from the burden of generating communication [2, 5, 31, 37, 65, 88]. Suchcompilers take sequential or shared memory parallel programs and generate Single ProgramMultiple Data (SPMD) programs with explicit message passing. This type of programswill be referred to as shared memory programs. Shared memory programs can be compiledfor execution on both distributed memory machines and shared memory machines. In thecase when a program is to be run on a distributed memory machine, the communicationrequirements of the program can be obtained from memory references. If a program is tobe run on a shared memory machine, the communication requirements depend on the cachebehavior. However, a superset of the communication patterns may be obtained by exam-ining the memory references in the program. This work will consider data parallel sharedmemory programs compiled for execution on distributed memory machines. Compilers thatexploit task parallelism [27, 71] are not considered. However, similar techniques may alsoapply to task parallel programs.2.6 Compilation for distributed memory machinesWhile communication requirements of a shared memory program can be obtainedby analyzing the remote memory references in the program, the actual communicationpatterns in the program depend on the compilation techniques used. To obtain realisticcommunication patterns, compilation techniques for compiling shared memory programsfor distributed memory machines must be considered. The most important issues to beaddressed when compiling for distributed memory machines are data partitioning, codegeneration and communication optimization. This section surveys previous work on theseissues.

15Data partitioning decides the distribution of array elements to processors. Thereare two approaches for handling the data partitioning problem. The �rst approach is to adduser directives to programming languages and let the users specify the data distribution.This approach is used in Fortran D [37], Vienna Fortran [15] and High Performance Fortran(HPF) [39] among others. It uses human knowledge of application programs and simpli-�es the compiler design. However, using this approach requires programmers to work at alow level abstraction (understanding the detail of memory layout). Since the best place-ment decision will vary between di�erent architectures, with explicit user placement, theprogrammer must reconsider the data placement for each new architecture. Hence, manyalgorithms have been developed to perform automatic data distribution. An algorithm hasbeen designed for the CM Fortran compiler that attempts to minimize and identify align-ment communications in data parallel Fortran programs [42]. Similar algorithms have beenproposed in [16, 29, 34, 52]. Data partitioning directly a�ects the communication require-ments in a program running on a distributed memory machine. Once data partitioningis decided, the minimum requirement of data movements in a program, which results incommunications, is �xed.Code generation generates the communication code to ensure the correctness ofa program. The Owner computes rule is generally used for distributing the computationonto processors. Under owner computes rule, the owner of the array element on the lefthand side of an assignment statement executes the statement. Thus, the owner of an arrayelement on the right hand side of the assignment statement must send the element to theowner of the left hand side, which results in communication. Without considering e�ciency,a simple scheme can be used to generate the correct SPMD code by inserting guardedcommunication primitives [65]. However, the communication and synchronization overheadof this scheme can be so large that there may be no bene�t for running the program on amultiprocessor system. Several researchers have proposed techniques for generating e�cientcode for array statements, given block, cyclic and block{cyclic distributions. In [43, 44]compile time analysis of array statement with block and cyclic distribution is presented.In [17] Chatterjee et al. present a framework for compiling array assignment statements interms of constructing a �nite state machine. This method handles block, cyclic and block{cyclic distributions. Method in [69] improves Chatterjee's method in terms of bu�er spaceand communication code generation overheads. Other compilers [2, 5, 31, 37, 65, 88] usecommunication optimization to generate e�cient code for programs on distributed memorymachines. Di�erent ways of code generation result in di�erent communication patterns atruntime. For example, the compiler may decide to send/receive all elements in an array to

16speed up the communication. It may also decide to send/receive one element at a time tosave bu�er space.Communication optimizations reduce the cost of communication in a program.Communication performance not only a�ects the performance of a parallel application butalso limits its scalability. Therefore, communication optimization is crucial for the per-formance of programs compiled for a distributed memory machine. Many communicationoptimizations are applied within a single loop using data dependence information. Exam-ples of such optimizations include message vectorization [37, 88], collective communication[28, 51], message coalescing [37] and message pipelining [31, 37]. Earlier methods are basedon location based data dependence, which is not precise since it only determines whethertwo references refer to the same memory location. Later schemes re�ne the informationand use value based data dependence [2]. In value based data dependence, a read referencedepends on a write reference only if the write provides the value for the read reference.Communication optimizations based only on data dependence information usuallyresult in redundant communications [14]. The more recently developed optimizations usedata ow information to reduce redundant communication and perform other optimizations.In [24] a data ow framework which can integrate a number of communication optimizationsis presented. However, the method can only apply to a very small subset of programs whichare constrained in the forms of loop nests and array indices. In [32] a uni�ed frameworkwhich uses global array data ow analysis for communication optimizations is described.Since only a very simpli�ed version of the analysis algorithm is implemented, it is not clearwhether this approach is practical for large programs. In [14, 41] methods that combinetraditional data ow analysis techniques with data dependence analysis for performingglobal communication optimizations are described. These schemes are very e�cient in termsof their analysis cost since bit vectors are used to represent data ow information. However,they cannot obtain the array data ow information that is as precise as the informationcomputed using array data ow analysis approaches. Communication optimization changesthe communication behavior of a program. Since many communication optimizations arecommonly used in production compilers, these optimizations must be considered to obtainrealistic communication patterns in a program.

Chapter 3Dynamic single{hop communicationThis chapter discusses the path reservation protocols for dynamic single{hop com-munication. Two types of distributed path reservation protocols, the forward path reserva-tion protocols and the backward path reservation protocols, have been designed for point{to{point optical TDM networks. A network simulator that simulates all the protocols hasbeen developed and has been used to study the performance of the two types of protocolsand to evaluate the impact of system parameters such as the control packet processing timeand the message size on the protocols.

optical switch

CU

optical switch

CU

optical switch

CU

optical switch

CU

optical switch

CU

host

host

host

host

host

Control UnitCU

Data Channels

Control Channels

Figure 3.1: An optical network with distributed control.In order to support a distributed control mechanism for connection establishment,it is assumed that in addition to the optical data network, there is a logical shadow networkthrough which control messages are communicated. The shadow network has the same17

18physical topology as the data network. The tra�c on the shadow network consists ofsmall control packets and thus is much lighter than the tra�c on the data network. Theshadow network operates in packet switching mode; routers at intermediate nodes examinecontrol packets and update local bookkeeping information and switch states accordingly.The shadow network can be implemented as an electronic network or alternatively a virtualchannel on the data network can be reserved exclusively for exchanging control messages.Figure 3.1 shows the network architecture. A virtual channel in the optical data networkcorresponds to a time slot. It is also assumed that a node can send or receive messagesthrough di�erent virtual channels simultaneously.A path reservation protocol ensures that the path from a source node to a desti-nation node is reserved before the connection is used. A path includes the virtual channelson the links that form the connection, the transmitter at the source node and the receiverat the destination node. Reserving the transmitter and the receiver is the same as reservinga virtual channel on the link from a node to the switch attached to that node. Hence, onlythe reservation of virtual channels on links forming a connection with path multiplexingwill be considered. There are many options available with respect to di�erent aspects ofthe path reservation mechanisms. These are discussed next.� Forward reservation versus backward reservation. Locking mechanisms are needed bythe distributed path reservation protocols to ensure the exclusive usage of a virtualchannel for a connection. This variation characterizes the timing at which the proto-cols perform the locking. Under forward reservation, virtual channels are locked bya control message that travels from the source node to the destination node. Underbackward reservation, a control message travels to the destination to probe the path,then virtual channels that are found to be available are locked by another controlmessage which travels from the destination node to the source node.� Dropping versus holding. This variation characterizes the behavior of the protocolwhen it determines that a connection establishment does not progress. Under thedropping approach, once the protocol determines that the establishment of a con-nection is not progressing, it releases the virtual channels locked on the partiallyestablished path and informs the source node that the reservation has failed. Underthe holding approach, when the protocol determines that the establishment of a con-nection is not progressing, it keeps the virtual channels on the partially establishedpath locked for some period of time, hoping that during this period, the reservationwill progress. If, after this timeout period, the reservation still does not progress, the

19partial path is then released and the source node is informed of the failure. Droppingcan be viewed as holding with holding time equal to zero.� Aggressive reservation versus conservative reservation. This variation characterizesthe protocol's treatment of each reservation. Under the aggressive reservation, theprotocol tries to establish a connection by locking as many virtual channels as possibleduring the reservation process. Only one of the locked channels is then used forthe connection, while the others are released. Under the conservative reservationapproach, the protocol locks only one virtual channel during the reservation process.DeadlockDeadlock in the control network can arise from two sources. First, with limitednumber of bu�ers, a request loop can be formed within the control network. Second,deadlock can occur when a request is holding (locking) virtual channels on some links whilerequesting other channels on other links. This second source of deadlock can be avoided bythe dropping or holding mechanisms described above. Speci�cally, a request will give up allthe locked channels if it does not progress within a certain timeout period.Many deadlock avoidance or deadlock prevention techniques for packet switchingnetworks proposed in the literature [21] can be used to deal with deadlock within the controlnetwork (the �rst source of deadlock). Moreover, the control network is under light tra�c,and each control message consists of only a single packet of small size (4 bytes). Hence,it is feasible to provide a large number of bu�ers in each router to reduce or eliminate thechances of deadlocks.States of virtual channelsThe control network router at each node maintains a state for each virtual channelon links connected to the router. For forward reservation, the control router maintainsthe states for the outgoing links. As discussed later, this enables the router to have theinformation needed for reserving virtual channels and updating the switch states. A virtualchannel, V , on link L, can be in one of the following states:� AV AIL: indicates that the virtual channel V on link L is available and can be usedto establish a new connection,� LOCK: indicates that V is locked by some request in the process of establishing aconnection.

20� BUSY : indicates that V is being used by some established connection to transmitdata.For a link, L, the set of virtual channels that are in the AV AIL state is denotedas Avail(L). When a virtual channel, V , is not in Avail(L), an additional �eld, CID, ismaintained to identify the connection request locking V , if V is in the LOCK state, or theconnection using V , if V is in the BUSY state.3.1 Forward reservation schemesIn the connection establishment protocols, each connection request is assigned aunique identi�er, id, which consists of the identi�er of the source node and a serial numberissued by that node. Each control message related to the establishment of a connectioncarries its id, which becomes the identi�er of the connection when it is successfully estab-lished. It is this id that is maintained in the CID �eld of locked or busy virtual channelson links. Four types of packets are used in the forward reservation protocols to establish aconnection.� Reservation packets (RES), used to reserve virtual channels. In addition to the con-nection id, a RES packet contains a bit vector, cset, of size equal to the number ofvirtual channels in each link. The bit vector cset is used to keep track of the set ofvirtual channels that can be used to satisfy the connection request carried by RES.These virtual channels are locked at intermediate nodes while the RES message pro-gresses towards the destination node. The switch states are also set to connect thelocked channels on the input and output links.� Acknowledgment packets (ACK), used to inform source nodes of the success of con-nection requests. An ACK packet contains a channel �eld which indicates the virtualchannel selected for the connection. As an ACK packet travels from the destinationto the source, it changes the state of the virtual channel selected for the connectionto BUSY , and unlocks (changes from LOCK to AV AIL) all other virtual channelsthat were locked by the corresponding RES packet.� Fail or Negative ack packets (FAIL=NACK), used to inform source nodes of the fail-ure of connection requests. While traveling back to the source node, a FAIL=NACKpacket unlocks all virtual channels that were locked by the corresponding RES packet.

21� Release packets (REL), used to release connections. A REL packet traveling froma source to a destination changes the state of the virtual channel reserved for thatconnection from BUSY to AV AIL.The protocols require that control packets from a destination, d, to a source, s,follow the same paths (in opposite directions) as packets from s to d. The �elds of a packetwill be denoted by packet:field. For example, RES:id denotes the id �eld of the RESpacket. The forward reservation with dropping works as follows. When the source nodewishes to establish a connection, it composes a RES packet with RES:cset set to the virtualchannels that the node may use. This message is then routed to the destination. When anintermediate node receives the RES packet, it determines the next outgoing link, L, on thepath to the destination, and updates RES:cset to RES:cset \ Avail(L). If the resultingRES:cset is empty, the connection cannot be established and a FAIL=NACK message issent back to the source node. The source node will retransmit the request after some periodof time. This process of failed reservation is shown in Figure 3.2(a). Note that if Avail(L)is represented by a bit-vector, then RES:cset \Avail(L) is a bit-wise "AND" operation.
RES

ACK

send data

REL

Source

(b)

Dest.

RES

retransmit time

Inter.Source

(a)

Dest

FAIL/NACK

.

Figure 3.2: Control messages in forward reservationIf the resultingRES:cset is not empty, the router reserves all the virtual channels inRES:cset on link L by changing their states to LOCK and updating Avail(L). The routerwill then set the switch state to connect the virtual channels in the resulting RES:cset ofthe corresponding incoming and outgoing links. Maintaining the states of outgoing linksis su�cient for these two tasks. The RES message is then forwarded to the next nodeon the path to the destination. This way, as RES approaches the destination, the pathis reserved incrementally. Once RES reaches the destination with a non-empty RES:cset,the destination selects from RES:cset a virtual channel to be used for the connection and

22informs the source node that the channel is selected by sending an ACK message withACK:channel set to the selected virtual channel. The source can start sending data once itreceives the ACK packet. After all data is sent, the source node sends a REL packet to teardown the connection. This successful reservation process is shown in Figure 3.2 (b). Notethat although in the algorithm described above, the switches are set during the processingof the RES packet, they can instead be set during the processing of the ACK packet.Holding: The protocol described above can be modi�ed to use the holding policy instead ofthe dropping policy. Speci�cally, when an intermediate node determines that the connectionfor a reservation cannot be established, that is when RES:cset \ Avail(L) = �, the nodebu�ers the RES packet for a limited period of time. If within this period, some virtualchannels in the original RES:cset become available, the RES packet can then continue itsjourney. Otherwise, the FAIL=NACK packet is sent back to the source. Implementing theholding policy requires each node to maintain a holding queue and to periodically check thatqueue to determine if any of the virtual channels has become available. In addition, sometiming mechanism must be incorporated in the routers to timeout held control packets.This increases the hardware and software complexities of the routers.Aggressiveness: The aggressiveness of the reservation is reected in the size of the virtualchannel set, RES:cset, initially chosen by the source node. In the most aggressive scheme,the source node sets RES:cset to f0; :::; N � 1g, where N is the number of virtual channelsin the system. This ensures that the reservation will be successful if there exists an availablevirtual channel on the path. On the other hand, the most conservative reservation assignsRES:cset to include only a single virtual channel. In this case, the reservation can besuccessful only when the virtual channel chosen by the source node is available in all the linkson the path. Although the aggressive scheme seems to have advantage over the conservativescheme, it results in excessive locking of the virtual channels in the system. Thus, in heavilyloaded networks, this is expected to decrease the overall throughput. To obtain optimalperformance, the aggressiveness of the protocol should be chosen appropriately between themost aggressive and the most conservative extremes.The retransmit time is another protocol parameter. In traditional non{multiplexednetworks, the retransmit time is typically chosen randomly from a range [0,MRT], whereMRT denotes some maximum retransmit time. In such systems, MRT must be set to areasonably large value to avoid live-lock. However, this may increase the average messagelatency time and decrease the throughput. In a multiplexed network, the problem of live-lock only occurs in the most aggressive scheme (non{multiplexed circuit switching networkscan be considered as having a multiplexing degree of 1 and using aggressive reservation).

23For less aggressive schemes, the live-lock problem can be avoided by changing the virtualchannels selected in RES:cset when RES is retransmitted. Hence, for these schemes, asmall retransmit time can be used.3.2 Backward reservation schemesIn the forward locking protocol, the initial decision concerning the virtual channelsto be locked for a connection request is made in the source node without any informationabout network usage. The backward reservation scheme tries to overcome this handicap byprobing the network before making the decision. In the backward reservation schemes, aforward message is used to probe the availability of virtual channels. After that, the lockingof virtual channels is performed by a backward message. The backward reservation schemeuses six types of control packets, all of which carry the connection id, in addition to other�elds as discussed next:� Probe packets (PROB) travel from sources to destinations gathering informationabout virtual channel usage without locking any virtual channel. A PROB packetcarries a bit vector, init, to represent the set of virtual channels that are available toestablish the connection.� Reservation packets (RES) are similar to the RES packets in the forward scheme,except that they travel from destinations to sources, lock virtual channels as they gothrough intermediate nodes, and set the states of the switches accordingly. A RESpacket contains a cset �eld.� Acknowledgment packets (ACK) are similar to ACK packets in the forward schemeexcept that they travel from sources to destinations. An ACK packet contains achannel �eld.� Fail packets (FAIL) unlock the virtual channels locked by the RES packets in casesof failures to establish connections.� Negative acknowledgment packets (NACK) are used to inform the source nodes ofreservation failures.� Release packets (REL) are used to release connections after the communication iscompleted.Note that a FAIL=NACK message in the forward scheme performs the functionsof both a FAIL message and a NACK message in the backward scheme.

24The backward reservation with dropping works as follows. When the source nodewishes to establish a connection, it composes a PROB message with PROB:init set tocontain all virtual channels in the system. This message is then routed to the destination.When an intermediate node receives the PROB packet, it determines the next outgoinglink, Lf , on the forward path to the destination, and updates PROB:init to PROB:init\Avail(Lf). If the resulting PROB:init is empty, the connection cannot be established anda NACK packet is sent back to the source node. The source node will try the reservationagain after a certain retransmit time. Figure 3.3(a) shows this failed reservation case.If the resulting PROB:init is not empty, the node forwards PROB on Lf to thenext node. This way, as PROB approaches the destination, the virtual channels available onthe path are recorded in the init set. Once PROB reaches the destination, the destinationforms a RES message with RES:cset equal to a selected subset of PROB:init and sendsthis message back to the source node. When an intermediate node receives the RES packet,it determines the next link, Lb, on the backward path to the source, and updates RES:csetto RES:cset \ Avail(Lb). If the resulting RES:cset is empty, the connection cannot beestablished. In this case the node sends a NACK message to the source node to informit of the failure, and sends a FAIL message to the destination to free the virtual channelslocked by RES. This process is shown in Figure 3.3 (b).
Source Dest

PROB

ACK

REL

RES

send data

(c)

NACK

retransmit time

Source

PROB

PROB

RES

FAIL

(b)

Inter. Dest .

NACK

retransmit time

Source Inter.

PROB

PROB

(a)

Dest. .

Figure 3.3: Control messages in backward reservationIf the resulting RES:cset is not empty, the virtual channels in RES:cset arelocked, the switch is set accordingly and RES is forwarded on Lb to the next node. WhenRES reaches the source with a non-empty RES:cset, the source selects a virtual channelfrom the RES:cset for the connection and sends an ACK message to the destination withACK:channel set to the selected virtual channel. This ACK message unlocks all the virtualchannels locked by RES, except the one in channel. The source node can start sending

25data as soon as it sends the ACK message. After all data is sent, the source node sends aREL packet to tear down the connection. The process of successful reservation is shown inFigure 3.3(c).Holding: Holding can be incorporated in the backward reservation scheme as follows.In the protocol, there are two cases that cause the reservation to fail. The protocol maydetermine that the reservation fails when processing the PROB packet. In this case, holdingis not desirable because the PROB packet is used to collect the channel usage informationand holding could reduce the precision of the information collected (the status of channelson other links may change during the holding period). When the protocol determines thatthe reservation fails during the processing of a RES packet, a holding mechanism similarto the one used in the forward reservation scheme may be applied.Aggressiveness: The aggressiveness of the backward reservation protocols is reectedin the initial size of cset chosen by the destination node. The aggressive approach setsRES:cset equal to PROB:init, while the conservative approach sets RES:cset to containa single virtual channel from PROB:init. Note that if a protocol supports only the con-servative scheme, the ACK messages may be omitted, and thus only �ve types of messagesare needed. As in the forward reservation schemes, the retransmit time is a parameter inthe backward schemes.3.3 Network simulator and experimental resultsA network simulator has been developed to simulate the behavior of multiplexedtorus networks. The simulator models the network with various choices of system param-eters and protocols. Speci�cally, the simulator provides the following options for protocolparameters.� forward and backward reservations, this determines which protocol to be simulated.� initial cset size: This parameter determines the initial size of cset in the reservationpacket. It restricts the set of virtual channels under consideration for a reservation.In forward schemes, the initial cset is chosen when the source node composes theRES packet. Assuming that N is the multiplexing degree in the system, an RES:csetof size s is chosen by generating a random number, m, in the range [0;N�1], andassigning RES:cset = fm mod N;m+1mod N:::;N+s�1mod Ng. In the backwardschemes, the initial cset is set when the destination node composes the ACK packet.An ACK:cset of size s is generated in the following manner. If the available set,RES:INIT , has less available channels than s, the RES:INIT is copied to ACK:cset.

26Otherwise, the available channels are represented in a linear array and the methodused in generating the cset in the forward schemes is used.� timeout value: This value determines how long a reservation packet can be put in awaiting queue. The dropping scheme can be viewed as a holding scheme with timeouttime equal to zero.� maximum retransmit time (MRT): This speci�es the period after which a node willretry a failed reservation. As discussed earlier, this value is crucial for avoiding live-lock in the most aggressive schemes. The actual retransmit time is chosen randomlybetween 0 and MRT � 1.Besides the protocol parameters, the simulator also allows the choices of varioussystem parameters.� system size: This speci�es the size of the network. All our simulations are done ontorus topology.� multiplexing degree. This speci�es the number of virtual channels supported by eachlink. In our simulation, the multiplexing degree ranges from 1 to 32.� message size: The message size directly a�ects the time that a connection is keptbefore it is released. In our simulations, �xed size messages are assumed.� request generation rate at each node (r): This speci�es the tra�c on the network.The connection requests at each node are assumed to have a Poisson inter-arrivaldistribution. When a request is generated at a node, the destination of the request isgenerated randomly among the other nodes in the system. When a generated requestis blocked, it is put into a queue, waiting to be re-transmitted.� control packet processing and propagation time: This speci�es the speed of the controlnetworks. The control packet processing time is the time for an intermediate nodeto process a control packet. The control packet propagation time is the time for acontrol packet to be transferred from one node to the next. It is assumed that all thecontrol packets have the same processing and propagation time.In the following discussion, F is used to denote forward reservation, B denotes thebackward reservation, H denotes holding and D denotes dropping schemes. For example,FH means the forward holding scheme. In addition to the options of backward/forwardreservation and holding/dropping policy, the simulation uses the following parameters. The

27average latency and throughput are used to evaluate the protocols. The latency is theperiod between the time when a message is ready and the time when the �rst packet of themessage is sent. The throughput is the number of messages received per time unit. Underlight tra�c, the performance of the protocols is measured by the average message latency,while under heavy tra�c, the throughput is used as the performance metric. The simulationtime is measured in time slots, where a time slot is the time to transmit an optical datapacket between any two nodes in the network. Note that in multiprocessor applications,nodes are physically close to each other, and thus signal propagation time is very small (1foot per nsec) compared to the length of a message. Finally, deterministic XY{routing isassumed in the torus topology.

0.5

1

1.5

2

2.5

3

3.5

4

0.003 0.009 0.015

T
hr

ou
gh

pu
t

Request Generation Rate

BC
BO
BA
FC
FO
FA

(a) Throughput
100

150

200

250

300

0.003 0.009 0.015

La
te

nc
y

Request Generation Rate

BC
BO
BA
FC
FO
FA

(b) LatencyFigure 3.4: Comparison of the reservation schemes with droppingFigure 3.4 depicts the throughput and average latency as a function of the requestgeneration rate for six protocols that use the dropping policy in a 16 � 16 torus. Themultiplexing degree is taken to be 32, the message size is assumed to be 8 packets andthe control packets processing and propagation time is assumed to be 2 time units. Foreach of the forward and backward schemes, three variations are considered with varyingaggressiveness. The conservative variation in which the initial cset size is 1, the mostaggressive variation in which the initial set size is equal to the multiplexing degree and anoptimal variation in which the initial set size is chosen (by repeated trials) to maximize thethroughput. The letters C, A and O are used to denote these three variations, respectively.For example, FDO means the forward dropping scheme with optimal cset size. Note thatthe use of the optimal cset size reduces the delay in addition to increasing the throughput.Note also that the network saturates when the generation rate is between 0.006 and 0.018,depending on the protocol used. The maximum saturation rate that the 16� 16 torus can

28achieve in the absence of contention and control overhead is given bynumber of linksno: of PEs� av: no: of links per msg �msg size = 1024256 � 8� 8 = 0:0625:Hence, the optimal backward protocol can achieve almost 30% of the theoretical full uti-lization rate.Figure 3.4(b) also reveals that, when the request generation rate, r, is small, forexample r = 0:003, the network is under light tra�c and all the protocols achieve thesame throughput, which is equal to r times the number of processors. In this case, theperformance of the network should be measured by the average latency. In the rest of theperformance study, the maximum throughput (at saturation) and the average latency (atr = 0:003) were used to measure the performance of the protocols. Two sets of experimentsare performed. The �rst set evaluates the e�ect of the protocol parameters on the networkthroughput and delay and the second set evaluates the impact of system parameters onperformance.E�ect of protocol parametersIn this set of experiments, the e�ect of the initial cset size, the holding time andthe retransmit time on the performance of the protocols are studied. The system parametersfor this set of experiments are chosen as follows: system size = 16 � 16, message size = 8packets, control packet processing and propagation time = 2 time units.

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 8 16 32

th
ro

ug
hp

ut

initial cset size

FH32
FH16

FH8
FH4
FH2
FH1

(a) Maximum Throughput 60

70

80

90

100

110

120

1 3 5 8 16 32

la
te

nc
y

initial cset size

FH32
FH16

FH8
FH4

(b) LatencyFigure 3.5: E�ect of the initial cset size on forward schemesFigure 3.5 shows the e�ect of the initial cset size on the forward holding schemewith di�erent multiplexing degrees, namely 1, 2, 4, 8, 16 and 32. The holding time is takento be 10 time units and the MRT is 5 time units for all the protocols with initial cset

29

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 8 16 24 32

th
ro

ug
hp

ut

initial cset size

BD32
BD16

BD8
BD4
BD2
BD1

(a) Maximum Throughput 60

65

70

75

80

85

90

95

100

105

110

1 3 5 8 16 24 32

la
te

nc
y

initial cset size

BD32
BD16

BD8
BD4

(b) LatencyFigure 3.6: E�ect of the initial cset size on backward schemessize less than the multiplexing degree and 60 time units for the most aggressive forwardscheme. Large MRT is used in the most aggressive forward scheme because it is observedthat small MRT often leads to live-lock in this scheme. Only the protocols with the holdingpolicy will be shown since using the dropping policy leads to similar patterns. The e�ect ofholding/dropping will be considered in a later �gure. Figure 3.6 shows the results for thebackward schemes with the dropping policy.From Figure 3.5 (a), it can be seen that when the multiplexing degree is largerthan 8, both the most conservative protocol and the most aggressive protocol do not achievethe best throughput. Figure 3.5(b) shows that these two extreme protocols do not achievethe smallest latency either. The same observation applies to the backward schemes inFigure 3.6. The e�ect of choosing the optimal initial cset is signi�cant on both throughputand delay. That e�ect, however, is more signi�cant in the forward scheme than in thebackward scheme. For example, with multiplexing degree = 32, choosing a non-optimalcset size may reduce the throughput by 50% in the forward scheme and only by 25% in thebackward scheme. In general, the optimal initial cset size is hard to �nd. Table 3.1 liststhe optimal initial cset size for each multiplexing degree. A rule of thumb to approximatethe optimal cset size is to use 1/3 and 1/10 of the multiplexing degree for forward schemesand backward schemes, respectively.Figure 3.7 shows the e�ect of the holding time on the performance of the protocolsfor a multiplexing degree of 32. As shown in Figure 3.7(a), the holding time has littlee�ect on the maximum throughput. It slightly increases the performance for the forwardaggressive and the backward aggressive schemes. As for the average latency under lightwork load, the holding time also has little e�ect except for the forward aggressive scheme,

30Multiplexing Optimal cset sizeDegree Forward Backward4 1 18 2 116 5 232 10 3Table 3.1: Optimal cset sizewhere the latency time decreases by about 20% when the holding time at each intermediatenode increases from 0 to 30 time units. Since holding requires extra hardware supportcompared to dropping, it is concluded that holding is not cost{e�ective for the reservationprotocols. In the rest of the paper, only protocols with dropping policies will be considered.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t

Holding Cycle

BO
BC
FO
BA
FC
FA

(a) Maximum Throughput 50

60

70

80

90

100

110

120

130

140

0 5 10 15 20 25 30 35 40

La
te

nc
y

Holding Cycle

BO
BC
FO
BA
FC
FA

(b) LatencyFigure 3.7: E�ect of holding timeFigure 3.8 shows the e�ect of the maximum retransmit time on the performance.Note that the retransmit time is uniformly distributed in the range 0::MRT � 1. As shownin Figure 3.8 (a), increasing MRT results in performance degradation in all the schemesexcept FDA, in which the performance improves with MRT. This con�rms that the MRTvalue is important to avoid live-lock in the network when aggressive reservation is used.In other schemes this parameter is not important, because when retransmitting a failedrequest, virtual channels di�erent than the ones that have been tried may be included incset. This result indicates another drawback of the forward aggressive schemes: in orderto avoid live-lock, the MRT must be a reasonably large value, which decreases the overallperformance.

31

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

T
hr

ou
gh

pu
t

Retransmit Cycle

BO
BC
FO
BA
FC
FA

(a) Maximum Throughput 60

80

100

120

140

160

0 20 40 60 80 100 120

La
te

nc
y

Retransmit Cycle

BO
BC
FO
BA
FC
FA

(b) LatencyFigure 3.8: E�ect of maximum retransmit timeE�ect of other system parametersIn this section, only dropping schemes with MRT equal to 5 time units for allschemes except FDA will be considered. The MRT for FDA schemes is set to 60. This setof experiments focuses on studying the performance of the protocols under di�erent multi-plexing degrees, system sizes, message sizes and control network speeds. One parameter ischanged in each experiment, with the other parameters set to the following default values(unless stated otherwise): network size = 16� 16 torus, multiplexing degree = 16, messagesize = 8 packets, control packet processing and propagation time = 2 time units.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8 16 32

T
hr

ou
gh

pu
t

Multiplexing Degree

BC
BO
BA
FC
FO
FA

(a) Maximum throughput 60

70

80

90

100

110

120

130

140

1 4 8 16 32

L
a
t
e
n
c
y

Multiplexing Degree

BC
BO
BA
FC
FO
FA

(b) LatencyFigure 3.9: The performance of the protocols for di�erent multiplexing degreeFigure 3.9 shows the performance of the protocols for di�erent multiplexing de-grees. When the multiplexing degree is small, BDO and FDO have the same maximum

32bandwidth as BDC and FDC, respectively. When the multiplexing degree is large, BDOand FDO o�er better throughput. In addition, for all multiplexing degrees, BDO is the bestamong all the schemes. As for the average latency, both FDA and BDA have signi�cantlylarger latency than all other schemes. Also, FDO and BDO have the smallest latencies. Itcan be seen from this experiment that the backward schemes always provide the same orbetter performance (both maximum throughput and latency) than their forward reservationcounterparts for all multiplexing degrees considered.Figure 3.10 shows the e�ect of the network size on the performance of the protocols.It can be seen from the �gure that all the protocols, except the aggressive ones, scale nicelywith the network size. This indicates that the aggressive protocols cannot take advantageof the spatial diversity of the communication. This is a result of excessive reservation ofchannels. When the network size is small, there is little di�erence in the performance of theprotocols. When the network size is larger, the backward schemes show their superiority.

1

1.5

2

2.5

3

3.5

16 64 144 256

T
hr

ou
gh

pu
t

Torus size (N x N)

BC
BO
BA
FC
FO
FA

(a) Maximum throughput 20

30

40

50

60

70

80

90

100

110

120

130

16 64 144 256

La
te

nc
y

Torus size (N x N)

BC
BO
BA
FC
FO
FA

(b) LatencyFigure 3.10: E�ect of the network sizeFigure 3.11 shows the e�ect of the message size on the protocols. The multiplexingdegree in this experiment is 16. The throughput in this �gure is normalized to reect thenumber of packets that pass through the network, rather than the number of messages, thatis, normalized throughput = msg size� throughput:Both the forward and backward locking schemes achieve higher throughput for larger mes-sages. When messages are su�ciently large, the signaling overhead in the protocols is smalland all protocols have almost the same performance. However, when the message size issmall, the BDO scheme achieves higher throughput than the other schemes. This indicatesthat BDO incurs less overhead in the path reservation than the other schemes.

33

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

T
h
r
o
u
g
h
p
u
t

Message size

BDC
BDO
BDA
FDC
FDO
FDA

(a) Maximum throughput 0

50

100

150

200

0 10 20 30 40 50 60 70 80

D
e
l
a
y

Message size

BC
BO
BA
FC
FO
FA

(b) LatencyFigure 3.11: E�ect of the message sizeThe e�ect of message size on the latency of the protocols is interesting. Forwardschemes incur larger latency when the message size is large. By blindly choosing initial cset,forward schemes do not avoid choosing virtual channels used in communications, whichincreases the latency when the message size is large (so that connections are held longerfor communications). Backward schemes probe the network before choosing the initialcsets. Hence, the latency in backward schemes does not increase as much as in forwardschemes when message size increases. Another observation is that in both forward andbackward protocols, aggressive schemes sustain the increment of message size better thanthe conservative schemes. This is also because of the longer communication time withlarger message sizes. Aggressive schemes are more e�cient in �nding a path in case oflarge message size. Note that this merit of aggressive schemes is o�set by over reservation.Another interesting point is that the latency for messages of size 1 results in higher latencythan messages of size 8 in BDA scheme. This can be attributed to too many control messagesin the network in the case when data message contains a single packet (and thus can betransmitted fast). The conicts of control messages result in larger latency.Figure 3.12 shows the e�ect of the control network speed on performance. Themultiplexing degree in this experiment is 32. The speed of the control network is determinedby the time for a control packet to be transferred from one node to the next node and thetime for the control router to process the control packet. From the �gure it can be seenthat when the control speed is slower, the maximum throughput and the average latencydegrade. The most aggressive schemes in both forward and backward reservations, however,are more sensitive to the control network speed. Hence, it is important to have a reasonablyfast control network when these reservation protocols are used.

34

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t

Processing + Propagation Time

BC
BO
BA
FC
FO
FA

(a) Maximum Throughput 40

60

80

100

120

140

160

180

200

2 3 4 5 6 7 8 9 10

La
te

nc
y

Processing + Propagation Time

BC
BO
BA
FC
FO
FA

(b) LatencyFigure 3.12: E�ect of the speed of the control network3.4 Chapter summaryThis chapter presented the forward path reservation algorithms and the backwardpath reservation algorithms to establish connections with path multiplexing for connectionrequests that arrive at the network dynamically. Holding and dropping variants of theseprotocols were described. A holding scheme holds the reservation packet for a period of timewhen it determines that there is no available channel on the next link for the connection. Adropping scheme drops the reservation packet and starts a new reservation once it �nds thatthere is no available channel on the next link for the connection. Protocols with variousaggressiveness were discussed. The most aggressive schemes reserve as many channels aspossible for each reservation to increase the probability of a successful reservation, whilethe most conservative schemes reserve one channel for each reservation to reduce the over{locking problem. The performance of the protocols and the impact of system parameters onthe protocols were studied. The major results obtained in the experiments are summarizedas follows.� With proper protocols, multiplexing results in higher maximum throughput. Multi-plexed networks are signi�cantly more e�cient than non{multiplexed networks.� Both the most aggressive and the most conservative reservations cannot achieve op-timal performance. The performance of the forward schemes is more sensitive to theaggressiveness than the performance of the backward schemes.� The value of the holding time in the holding schemes does not have signi�cant impacton the performance. In general, however, dropping is more e�cient than holding.

35� The retransmit time has little impact on all the schemes except the forward aggressivedropping scheme.� The performance of the forward aggressive dropping scheme is signi�cantly worsethan other protocols. Moreover, this protocol cannot take advantage of both largermultiplexing degree and larger network size.� The backward reservation schemes provide better performance than the forward reser-vation schemes for all multiplexing degrees.� The di�erence of the protocols does not a�ect the communication e�ciency when thenetwork size is small. However, for large networks, the backward schemes providebetter performance.� The backward schemes provide better performance when the message size is small.When the message size is large, all the protocols have similar performance.� The speed of the control network signi�cantly a�ects the performance of the protocols.These protocols achieve all{optical communication in data transmission. However,they require extra hardware support to exchange control messages and incur large startupoverhead. An alternative to the single{hop communication is the multi{hop communication.Multi{hop networks do not require extra hardware support. They use intermediate hopsto route messages toward their destinations. In the next chapter, multi{hop networks areconsidered.

Chapter 4Dynamic multi{hop communicationSince by using time{division multiplexing multiple channels are supported on anoptical link, more sophisticated logical topologies can be realized on top of a simpler phys-ical network to improve the communication performance. These logical topologies reducethe number of intermediate hops that a packet travels at the cost of a larger multiplexingdegree. On the one hand, the large multiplexing degree increases the packet communica-tion time between hops. On the other hand, reducing the number of intermediate hopsreduces the time spent at intermediate nodes. This chapter studies the trade{o� betweenthe multiplexing degree and the number of intermediate hops needed in logical topologiesimplemented on top of physical torus networks. Speci�cally, four logical topologies rangingfrom the most complex logical all{to{all connections to the simplest logical torus topologyare examined. An analytical model for the maximum throughput and the average packetdelay is developed and veri�ed through simulations. The performance and the impact of sys-tem parameters on the performance for these four topologies are studied. Furthermore, theperformance of the multi{hop communication using an e�cient logical topology is comparedwith that of the single{hop communication using a distributed path reservation protocol,and the advantages and the drawbacks of these two communication schemes are identi�ed.To perform multi{hop communication, packets may be routed through intermedi-ate nodes. Speci�cally, a communication module at each node, which will be referred toas the router in this chapter, is needed to route packets toward their destinations. It isassumed that each router contains a routing bu�er that bu�ers all incoming packets. Foreach packet, the router determines whether to deliver the packet to the local PE or to thenext link toward the packet destination. A separate output path bu�er is used for eachoutgoing path that bu�ers the packets to be sent on that path and thus accommodates thespeed mismatch between the electronic router and the optical path. Figure 4.1 depicts thestructure of a router (see also Figure 2.5). Note that the output paths are multiplexed intime over the physical links that connect the local PE to its corresponding switch. In the36

37rest of the chapter, routing delay will be used to denote the time a packet spends in therouting bu�er and the time for the router to make a routing decision for the packet (packetrouting time). Transmission delay will be used to denote the time a packet spends on thepath bu�er and the time it takes for the packet to be transferred on the path.
path

routing buffer

router

processing
router

incoming outgoing
path output path buffer

TDM

link to switch

processor Figure 4.1: A router4.1 Realizing logical topologies on physical torus topologyFour logical topologies are considered in this section, the logical torus topology, thelogical hypercube topology, the logical all{to{all topology, and the logical allXY topologywhere all{to{all connections are established along each dimension. Let us consider anexample in which a packet is transmitted from node 0 to node 11 in the 4� 4 torus shownin Figure 4.2. Using the logical all{to{all topology, the packet will go directly from node0 to node 11. Using the logical allXY topology, the packet will go from node 0 to node3 to node 11. Using the logical hypercube topology, the packet will go from node 0(0000)to node 1(0001) to node 3(0011) to node 11(1011). Using the logical torus topology, thepacket will go from node 0 to node 3 to node 7 to node 11.Traditional embedding techniques that minimize the congestion for a given com-munication pattern are not adequate for minimizing the number of virtual channels neededto realize the communication in an optical network with path multiplexing. The congestionis usually not equal to the number of channels needed to realize a communication pattern.Consider the example in Figure 4.3 in which the congestion in the network is 2, while 3channels are needed to realize the three connections. To e�ciently realize a logical topologyin an optical network, both routing and channel assignment (RCA) options must be takeninto consideration. Schemes to realize these four logical topologies on the physical torustopology will be discussed next.

38

(d) a 4x4 torus

0 1 2 3

7

12

4 5 6

8 9 10 11

13 14 15Figure 4.2: Node numbering in a torus topology
0

12

link
connection

c1
c2

c3

Figure 4.3: Di�erence between embedding and RCA4.1.1 Logical hypercube topologyThis subsection considers the optimal schemes to realize the logical hypercubetopology on top of the physical torus topologies. Since the algorithm to realize the hy-percube topology on the physical torus topologies utilizes the algorithms to realize thehypercube on top of physical mesh, ring and array topologies, algorithms to realize thehypercube topology on top of all these mesh{like topologies are discussed.Given networks of size N , it will be proven that b2N3 c and bN3 + N4 c channelsare the minimum required to realize hypercube communication on array and ring topolo-gies, respectively. Routing and channel assignment schemes that achieve these minimumrequirements are developed, indicating that the bounds are tight and the schemes are opti-mal. These schemes are extended to mesh and torus topologies and it is proven that for a2k�2r�k (k � r�k) mesh or torus, b2�2k3 c and b2k3 + 2k4 c channels are the minimum requiredfor realizing hypercube communication on these two topologies, respectively. Routing andchannel assignment schemes are designed that use at most two more channels than theoptimal to realize hypercube communication on these topologies. In the following sections,�rst the problem of routing and channel assignments for the hypercube communication onthe physical mesh{like topologies is formally de�ned, and then the algorithms are described.

394.1.1.1 Problem de�nitionA network is modeled as a directed graph G(V, E), where nodes in V are switchesand edges in E are links. Each node in a network is assigned a node number startingfrom 0. It is assumed that in arrays and rings the nodes are numbered from left to right inascending order, and that the nodes are numbered in row major order for meshes and tori ofsize n�m. Thus, the node in the ith column and the jth row is numbered as j�m+i. Thissubsection focuses on studying the optimal RCA schemes for these traditional numberingschemes. Optimal node numbering (and its RCA) is a much more complex problem andis not considered in this dissertation. The number of nodes in a network is assumed to beN = 2r. For a mesh or a torus to contain 2r nodes, each row and column must containa number of nodes that is a power of two. Hence, the size of meshes and tori is denotedas N = 2k � 2r�k. Without losing generality, it is always assumed that k � r � k. Thenotations ARRAY (N) and RING(N) are used to represent arrays and rings of size Nrespectively, and MESH(2k � 2r�k) and TORUS(2k � 2r�k) for meshes and tori of size2k � 2r�k respectively.The connection from node src to node dst is denoted as (src; dst). A communica-tion pattern is a collection of connections. The hypercube communication pattern containsa connection (src; dst) if and only if the binary representations of src and dst di�er in pre-cisely one bit. A connection in the hypercube communication pattern is called a dimensionl connection if it connects two nodes that di�er in the lth bit position. In a network ofsize N = 2r, the set, DIMl, where 0 � l � r � 1, is de�ned as the set of all dimension lconnections and Hr is de�ned as the hypercube communication pattern. That isDIMl =f(i; i + 2l) j i mod 2l+1 < 2lg[f(i; i � 2l) j i mod 2l+1 � 2lgHr = [r�1l=0DIMlIt can be easily proven that removing any DIMl, for any l � r�1, from Hr leavestwo disjoint sets of connections, each of which being a hypercube pattern on N2 nodes. Forexample, removing DIM0 from Hr results in an Hr�1 on the even{numbered nodes andanother Hr�1 on the odd{numbered nodes once the nodes are properly renumbered. Next,some de�nitions are introduced and the results of this section are summarized.De�nition: P (x; y) is a directed path in G from node x to node y. It consists of a set ofconsecutive edges beginning at x and ending at y.De�nition: Given a network G and a communication pattern I, a routing R(I) of I is aset of directed paths R(I) = fP (x; y)j(x; y) 2 Ig.

40De�nition: Given a network G, a communication pattern I and a routing R(I) for thecommunication pattern, the congestion of an edge � 2 E, denoted as �(G; I;R(I); �),is the number of paths in R(I) containing �. The congestion of G in the routingR(I), denoted as �(G; I;R(I)), is the maximum congestion of any edge of G in therouting R(I), that is, �(G; I;R(I)) = max�f�(G; I;R(I); �)g. The congestion of Gfor a communication pattern I, denoted as �(G; I), is the minimum congestion of Gin any routing R(I) for I, that is, �(G; I) = minRf�(G; I;R(I))g.De�nition: Given a network G and a routing R(I) for communication pattern I, anassignment function A : R ! INT , is a mapping from the set of paths to the set ofintegers INT , where an integer corresponds to a channel. A channel assignment fora routing R(I) is an assignment function A that satis�es the following conditions:1. If P (x1; y1), P (x2; y2) are di�erent paths that share a common edge, thenA(P (x1; y1)) 6= A(P (x2; y2)). This condition ensures that each channel on onelink can only be assigned to one connection (i.e., there are no link conicts).2. A(P (x; y1)) 6= A(P (x; y2)) and A(P (x1; y)) 6= A(P (x2; y)). This condition en-sures that each node can only use one channel at a time to send to or receivefrom other nodes (i.e., there are no node conicts).A(R) denotes the set of channels assigned to the paths in R and jA(R)j is the sizeof A(R). Let w(G; I;R) denote the minimum number of channels for the routing R,that is, w(G; I;R) = minAfjA(R)jg. w(G; I) denotes the smallest w(G; I;R) over allR, i.e. w(G; I) = minRfw(G; I;R)gLemma 1: w(G; I) � �(G; I).Proof: Follows directly from the above de�nitions. 2The following sections show thatw(ARRAY (N);Hr) = �(ARRAY (N);Hr) = b2N3 cw(RING(N);Hr) = �(RING(N);Hr) = bN3 + N4 cw(MESH(2k � 2r�k);Hr) � b2�2k3 c+ 2 � �(MESH(2k � 2r�k);Hr) + 2w(TORUS(2k � 2r�k);Hr) � b2k3 + 2k4 c+ 2 � �(TORUS(2k � 2r�k);Hr) + 2

414.1.1.2 Hypercube on linear arraySince routing in a linear array is �xed, the RCA problem is reduced to a chan-nel assignment problem. Given a linear array of size N = 2r, it is proven that b2N3 cchannels is the lower bound for realizing the hypercube communication by showing that�(ARRAY (N);Hr) � b2N3 c. A channel assignment scheme is developed that uses b2N3 cchannels for the hypercube communication. This proves that the bound is a tight lowerbound and that the channel assignment scheme is optimal.A lower boundUsing Lemma 1, a lower bound is obtained by proving that there exists a link inthe linear array that is used b2N3 c times when realizing Hr. The following lemmas establishthe bound.Lemma 2: In a linear array of size N = 2r, where r � 2, there are 2r�1 connections inDIMr�1 [DIMr�2 that use the link (n; n + 1) for any speci�c n satisfying 2r�2 � n �2r�1 � 1.Proof: The connections in DIMr�1 and DIMr�2 can be represented byDIMr�1=f(i; i + N2)j0 � i < N2 g [f(i; i � N2)jN2 � i < NgDIMr�2 = f(i; i + N4)j0 � i < N4 or N2 � i < 3N4 g[f(i; i � N4)jN4 � i < N2 or 3N4 � i < NgConsider the connections in DIMr�1. All connections (i; i + N2) with 0 � i � n use link(n; n + 1), where 2r�2 � n � 2r�1 � 1. Hence, as shown in Fig. 4.4 (a), there are n+1connections in DIMr�1 that use link (n; n + 1). Similarly, in DIMr�2, all connections(i; i + N4), where n < i + N4 < N2 , use link (n; n + 1). As shown in Fig. 4.4 (b), there are2r�1 � n � 1 such connections. Hence, there are a total of n + 1 + 2r�1 � n � 1 = 2r�1connections in DIMr�1 and DIMr�2 that use link (n; n+ 1). 2Lemma 3: In a linear array of size N = 2r, there exists a link (n; n+1) such that at leastb2N3 c connections in Hr use that link.Proof: Let Ti(2r) be the number of connections in Hr that use link (i; i + 1) and letT (2r) = maxi(Ti(2r)). Thus T (20) = 0 and T (21) = 1. From Lemma 2, one knows thatfor 2r�2 � n � 2r�1 � 1, link (n; n + 1) is used 2r�1 times by connections in DIMr�1and DIMr�2. Thus, the links in the second quarter of the array (from node 2r�2 to node2r�1 � 1) are used 2r�1 times by dimension r� 1 and dimension r� 2 connections. By thede�nition of hypercube communication, it is known that dimension 0 to dimension r � 3

42
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

0 2 2 2 +2 2
rr-2r-1r-1r-2

2
r-2

<= n <= 2
r-1

-1

(a) connections in dimension r-1 are between nodes.and

n

n+1 source nodes whose

n

(b) connections in dimension r-2 are either between and nodes or between and nodes.

N/2 -n-1 destination nodes whose

connections use link (n, n+1)

connections use link (n, n+1)Figure 4.4: Dimension r � 1 and r � 2 connectionsconnections form a hypercube on this quarter of the array. Thus, Lemma 2 can be recur-sively applied and the following inequality is obtained.T (2r) � 2r�1 + T (2r�2)It can be proven by induction that the above inequality and the boundary conditionsT (20) = 0, T (21) = 1, imply that T (N) = T (2r) � b2N3 c. Hence, there exists a linkwhich is used at least b2N3 c times by connections in Hr. 2The proof of Lemma 3 is constructive in the sense that the link that is used atleast b2N3 c times can be found. By recursively considering the second quarter of the lineararray, one can conclude that the source node, n, of the link (n; n+ 1) that is used at leastb2N3 c times in Hr is n = N4 + N16 + N64 + :: = bN3 c. Hence, the link that is used at least b2N3 ctimes in Hr is (bN3 c; dN3 e).Corollary 3.1 Give an array of size N = 2r, if the nodes in the array are partitioned into2 sets S1 = fij0 � i � ng and S2 = fijn + 1 � i � Ng, where n = bN3 c, then there are atleast b2N3 c connections in Hr from S1 to S2 and b2N3 c connections from S2 to S1. 2Theorem 1: �(ARRAY (N);Hr) � b2N3 c.Proof: Directly from Lemma 3. 2An optimal channel assignment scheme

43
(a) DIM 0

(b) DIM 1

0 1

Channel 1

Channel 2

(c) realizing DIM and DIM using 2 channelsFigure 4.5: Realizing DIM0 [DIM1 of H3By the de�nition of hypercube communication, connections in Hr can be par-titioned into three sets, DIM0, EV ENr and ODDr. DIM0 contains the dimension 0connections, EV ENr contains connections between nodes with even node numbers, andODDr contains connections between nodes with odd node numbers. Each of EV ENr andODDr forms a r � 1 dimensional hypercube communication, Hr�1, if only the nodes in-volved in communications are considered and that the nodes are renumbered accordingly.Thus, channel assignment schemes for Hr�1 can be extended to realize Hr as shown in thefollowing lemma.Lemma 4: Assuming that Hr�1 can be realized on an array of size 2r�1 using K channels,then Hr can be realized on an array of size 2r using 2K + 1 channels.Proof: Hr = EV ENr [ODDr [DIM0. From the above discussion and the assumption,EV ENr and ODDr are Hr�1 (when nodes are properly renumbered), K channels can beused to realize EV ENr or ODDr. Since it can be easily proven that DIM0 can be realizedwith one channel, a total of 2K + 1 channels can be used to realize Hr. 2Let D(N) be the number of channels needed for Hr on an array of size N = 2r.If a channel assignment scheme is used that is in accordance with the proof of Lemma 4, itcan be shown that the equation, D(N) = 2D(N=2)+1. Given that no channel is needed torealize hypercube communication on a 1{node array, D(1) = 0. Solving for D(N) resultsin D(N) = N � 1, which is not optimal. The following lemma improves this simple channelassignment scheme.Lemma 5: Assuming that Hr�2 can be realized on an array of size 2r�2 using K channels,then Hr can be realized on an array of size 2r using 4K + 2 channels.Proof: Consider Hr without dimension 0 and dimension 1 connections. By the de�nitionof Hr, Hr � (DIM0 [DIM1) = DIM2 [:::[DIMr�1 forms four hypercube patterns, each

44Algorithm 1: Assign array(N = 2r)(1) If (r = 0) then return �(2) If (r is odd) then(3) /* applying Lemma 4 */(4) recursively apply Assign array(N=2 = 2r�1) for EV ENr.(5) recursively apply Assign array(N=2 = 2r�1) for ODDr .(6) assign connections in DIM0 to one channel.(7) Else /* r is even, apply Lemma 5 */(8) For i = 0, 1, 2, 3(9) apply Assign array(N=4 = 2r�2) for subarrayi.(10) assign connections in DIM0 [DIM1 to 2 channels.Figure 4.6: The channel assignment algorithmbeing an Hr�2 pattern on nodes fn j n mod 4 = ig (with proper node renumbering), denotedby subarrayi, for i = 0, 1, 2 or 3. From the hypothesis, Hr�2 can be realized on an arrayof size 2r�2 using K channels. The four sub{cube patterns can be realized in 4K channels.The remaining connections to be considered are those in DIM0 and DIM1. It can easilybe proven that connections in DIM0 and DIM1 can be assigned to 2 channels as shown inFig. 4.5. Hence, the hypercube communication Hr can be realized using a total of 4K + 2channels. 2The channel assignment algorithm, Algorithm 1, is depicted in Fig. 4.6. For thebase case, when N = 20 = 1, the hypercube pattern contains no connection. To assignchannels to connections in an array of size N = 2r, r > 0, there are two cases. If r is even,then Lemma 5 is applied to use 4K +2 channels for the hypercube pattern, where K is thenumber of channels needed to realize a hypercube pattern on an array of size 2r�2 = N=4.If r is odd, Lemma 4 is applied to use 2K + 1 channels to realize the hypercube pattern,where K is the number of channels needed to realize a hypercube pattern in an array ofsize 2r�1 = N=2. The example of using this algorithm to schedule H4 in an array of size 16is shown in Fig. 4.7.Theorem 2: Algorithm 1 uses b2N3 c channels for Hr on a linear array with N = 2r nodes,thus w(ARRAY (N);Hr) � b2N3 c.Proof: Let Dodd(2r) and Deven(2r) denote the number of channels needed when r is oddand even, respectively. The number of channels for the hypercube pattern using Algorithm1 can be formulated as follows,Dodd(2r) = 2Deven(2r�1) + 1, when r is odd.Deven(2r) = 4Deven(2r�2) + 2, when r is even.

45
DIM + DIM

Node #: 0 1 3 132 4 5 6 7 8 9 10 11 12 14 15

0

1

2

3

4

5

6

7

8

9

1

2

3

0 1

Channels

0 subarray

subarray

subarray

subarray

Figure 4.7: Optimal channel assignment for H4Using the boundary condition Deven(1) = Deven(20) = 0, it can be proven by induction thatDodd(N) = 2N3 � 13 and Deven(N) = 2N3 � 23 . Hence, Dodd(N) and Deven(N) are equal tob2N3 c. w(ARRAY (N);Hr) � b2N3 c. 2Theorem 3:w(ARRAY (N);Hr) = �(ARRAY (N);Hr) = b2N3 c, and Algorithm 1 is optimal.Proof: Follows from Theorem 1, Theorem 2 and Lemma 1.24.1.1.3 Hypercube connections on ringsBy having links between node 0 and node N�1, two paths can be established fromany node to any other node on a ring. It has been shown [8] that even for a �xed routing,general optimal channel assignment problem is NP{complete. This section focuses on thespeci�c problem of optimal RCA for Hr on ring topologies, obtaining a lower bound on thenumber of channels needed to realize Hr and developing an optimal routing and channelassignment algorithm that achieves this lower bound.Lemma 6: �(RING(N);Hr) � bN3 + N4 c.Proof: This lemma is proven by showing that there exist two cuts on a ring that partitionthe ring into two sets, S1 and S2, such that 2 � bN3 + N4 c connections in Hr originate atnodes in S1 and terminate at nodes in S2. Since there are only 2 links connecting S1 to S2,one of the 2 links must be used at least bN3 + N4 c times, regardless of which routing schemeis used. Consider Hr on a ring of size N = 2r. The connections in DIM0 [:::DIMr�2 formtwo r�1 dimensional hypercube patterns in two arrays of size 2r�1. The �rst array, denotedby subarray1, contains nodes 0, .., 2r�1 � 1 and the second array, denoted by subarray2,contains nodes 2r�1,.., 2r � 1. From Corollary 3.1, it follows that there exists a link in each2r�1 node array such that bN3 c connections in the hypercube pattern use that link in eachdirection. From the discussion in previous section, the link is (bN3 c; dN3 e) in subarray1 and

46
0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

S1

S2

subarray

subarray 1

2

Figure 4.8: Hypercube on a ring(bN3 c + 2r�1; dN3 e + 2r�1) in subarray2. These two links partition the ring into two setsS1 = fij0 � i � bN3 cg[fij2r�1+bN3 c+1 � i � 2r�1g and S2 = fijbN3 c+1 � i � 2r�1+bN3 cg.Hence, there are bN3 c connections from S1\subarray1 to S2\subarray1 and bN3 c connectionsfrom S1 \ subarray2 to S2 \ subarray2 in DIM0 [:::DIMr�2. Thus, there are 2 � bN3 cconnections in DIM0 [:: [DIMr�2 originating at nodes in S1 and terminating at nodesin S2. Fig. 4.8 shows the cuts on a 16{node ring. The remaining connections of Hr are inDIMr�1. By partitioning the ring into S1 and S2, each node in S1 has a dimension r � 1connection to a node in S2. Hence, there are N=2 connections in DIMr�1 between S1 andS2. Therefore, a total of 2� bN3 c +N=2 = 2� bN3 + N4 c connections in Hr are from S1 toS2. Thus, �(RING(N);Hr) � bN3 + N4 c. 2The RCA scheme uses an odd{even shortest path routing. Given a ring of sizeN = 2r, an odd{even shortest path routing works as follows. A connection between twonodes is established using a shortest path. Connections that have two shortest paths are ofthe forms (i; i+2r�1) and (i; i� 2r�1). For these connections, the clockwise path is used ifi is even and the counter{clockwise path if i is odd.The channel assignment algorithm is derived from Lemma 6. There are two partsin the algorithm, channel assignment for connections in DIMr�1 and channel assignmentfor connections in DIM0[::[DIMr�2. Channel assignment for connections in DIM0[::[DIMr�2 is equivalent to channel assignment for two Hr�1 in two disjoint arrays, thus, usingthe channel assignment scheme (for array) described in the previous section, bN3 c channelscan be used to realize these connections. For the connections in DIMr�1, using odd{even

47Algorithm 2: Assign ring(N = 2r)(1) Apply Assign array(N=2 = 2r�1) on subarray1.(2) Apply Assign array(N=2 = 2r�1) on subarray2.Since subarray1 and subarray2 are disjoint,channels can be reused in steps (1) and (2).(3) for i = 0, N/2-2, step 2Assign a channel to connections (i; i+ 2r�1), (i+ 2r�1; i),(i+ 1; i+ 2r�1 + 1) and (i+ 2r�1 + 1; i+ 1)Figure 4.9: The channel assignment for ringsshortest path routing, four connections in DIMr�1, (i; i + 2r�1), (i + 2r�1; i), (i + 1; i +2r�1+1), (i+2r�1+1; i+1), can be realized using one channel. We denote by CONFIGithese four connections. Since the union of all CONFIGi, where i = 0; 2; 4; :::; N=2 � 2is equal to DIMr�1, N=4 channels are su�cient to realize DIMr�1. Fig. 4.9 shows thechannel assignment algorithm for ring topologies.Theorem 4: Algorithm 2 uses bN3 + N4 c channels to realize Hr in a ring of size N = 2r.Proof: Follows from above discussion. 2Theorem 5: w(RING(N);Hr) = �(RING(N);Hr) = bN3 +N4 c, and the odd{even shortestpath routing with Algorithm 2 is an optimal RCA scheme for hypercube connection on rings.Proof: Follows from Lemma 1, Lemma 6 and Theorem 4.24.1.1.4 Hypercube connections on meshesGiven a 2k�2r�k mesh, realizing the hypercube connections on the mesh is equiv-alent to realizing Hk in each row and Hr�k in each column. The following lemma givesthe lower bound on the number of channels required to realize hypercube communicationpatterns on meshes.Lemma 7: �(MESH(2k � 2r � k);Hr) � b2�2k3 c, assuming k � r � k.Proof: The hypercube pattern on the mesh contains 2r�k k{dimensional hypercube pat-terns on 2k arrays in the 2r�k rows. Consider a cut in edges (b2k3 c; d2k3 e) in every row,which partitions the mesh into two parts. From Corollary 3.1, we know that for eachrow there are b2�2k3 c connections from the left of the cut to the right of the cut, hence,there are a total of 2r�k � b2�2k3 c connections crossing the cut. Since there are 2r�kedges in the cut, there exists at least one edge that is used at least b2�2k3 c times. Thus,�(MESH(2k � 2r � k);Hr) � b2�2k3 c. 2Given a mesh of size 2k�2r�k, the hypercube communication pattern in each row isdenoted by Hrowk and the hypercube communication pattern in each column by Hcolr�k. The

48
E

E

E

E

E E E E

O

O

O

O

O O O O

E configuration

O configuration

Figure 4.10: a Mesh con�gurationRCA scheme uses X{Y shortest path routing. Since we already know the optimal channelassignment for Hrowk and Hcolr�k, the challenge here is to reuse channels on connections intwo dimensions e�ciently. Let us de�ne an array con�guration as the set of connections ina linear array that are assigned to the same channel. Ring, mesh and torus con�gurationsare de�ned similarly. Using the de�nition of con�gurations, a mesh con�guration can beobtained by combining array con�gurations in the rows and the columns. For example,if an array con�guration in x dimension and an array con�guration in y dimension canbe combined into a mesh con�guration, the two array con�gurations can be realized in themesh topology using one channel. Notice that, while there is no link conict when assigningchannels to row and column connections, node conicts may occur and must be avoided.Let us �rst take a deeper look at the array con�gurations for arrays of size N = 2k.Following the channel assignment algorithm, Algorithm 1, array con�gurations can be clas-si�ed into three categories; E{con�gurations that contain only connections between even{numbered nodes, O{con�gurations that contain only connections between odd{numberednodes, and EO{con�gurations that contain dimension 0 (and/or) dimension 1 connections

49As discussed in Section 3, if k is odd, there is only one EO{con�guration for connectionsin DIM0, (b2N3 c � 1)=2 E{con�gurations for connections in EV ENk, and (b2N3 c � 1)=2O{con�gurations for connections in ODDk. Similarly, if k is even, there are two EO{con�gurations, (b2N3 c � 2)=2 E{con�gurations and (b2N3 c � 2)=2 O{con�gurations. Thefollowing lemma shows that E{con�gurations and O{con�gurations in rows and columns ofthe mesh can be combined.Lemma 8: Given an E{con�guration, Ex, and an O{con�guration, Ox, in the x directionand an E{con�guration, Ey, and an O{con�guration, Oy, in the y direction, Ex and Ox inall rows and Ey and Oy in all columns can be realized in two mesh con�gurations.Proof: The proof is by constructing the two mesh con�gurations. In the �rst mesh con-�guration, let all odd numbered rows realize Ox and all even numbered row realize Ex. Inthis case, no connection starts or terminates at an odd numbered node in an even columnor at an even numbered node in an odd column. Thus, in the same mesh con�guration, Eycan be realized in odd columns and Oy can be realized in even columns. The second meshcon�guration realizes Ex on odd numbered rows, Ox on even numbered rows, Ey on evennumbered columns and Oy on odd numbered columns. These two mesh con�gurations re-alize Ex and Ox in all rows and Ey and Oy in all columns. Fig. 4.10 shows the constructionof a mesh con�guration. 2Lemma 8 lays the foundation for the channel assignment algorithm. Let a bethe number of E{con�gurations and O{con�gurations in Hrowk , b be the number of EO{con�gurations in Hrowk , c be the number of E{con�gurations and O{con�gurations in Hcolr�k,and d be the number of EO{con�gurations in Hcolr�k. From assumptions, it follows thatk � r � k, a � c, a + b = b2�2k3 c and d � 2. By combining E{con�gurations and O{con�gurations in rows and columns into mesh con�gurations, all the E{con�gurations andO{con�gurations in each row and all the E{con�gurations and O{con�gurations in eachcolumn can be realized using a mesh con�gurations. Using an individual mesh con�gurationfor each EO con�guration in the rows and the columns, a total of a + b + d � b2�2k3 c + 2con�gurations are su�cient to realize the hypercube connections.Theorem 4: Hr can be realized on a 2k � 2r�k mesh, where k � r � k, using b2�2k3 c + 2channels. 2Corollary 4.1: w(MESH(2k � 2r�k);Hr) � b2�2k3 c+ 2 � �(MESH(2k � 2r�k);Hr) + 2.2

504.1.1.5 Hypercube connections on toriAs in the case of realizing Hr on a mesh, Hr can be realized on a 2k � 2r�k torusby realizing Hrowk in each row and Hcolr�k in each column. The following lemma gives a lowerbound on the number of channels required to realize Hr on a torus.Lemma 9: �(TORUS(2k � 2r � k);Hr) � b2k3 + 2k4 c, assuming k � r � k.Proof: The hypercube pattern on the torus contains 2r�k k{dimensional hypercube pat-terns on 2k rings in the 2k rows. Considered two cuts in edges (b2k�13 c; d2k�13 e) and(b2k�13 c + 2k�1; d2k�13 e + 2k�1) in every row which partition the torus into two parts. Fol-lowing the same reasoning as in the proof of lemma 6, it is known that for each row thereare 2 � b2k3 + 2k4 c connections from one part to the other part, hence, there are a total of2r�k � 2� b2k3 + 2k4 c connections crossing the two parts. Since there are 2� 2r�k edges inthe cut, regardless of the routing scheme used, there exist at least one edge that is used atleast b2k3 + 2k4 c times. Thus, �(TORUS(2k � 2r � k);Hr) � b2k3 + 2k4 c. 2X{Y routing between dimensions and odd{even shortest path routing within eachdimension are used to develop the RCA scheme. Next, the combination of ring con�gura-tions into torus con�gurations is considered. As in the case of rings, given a 2k�2r�k torus,the connections in Hr are partitioned into two sets. The �rst set includes all connections inDIM0[::[DIMk�2 in each row and all connections in DIM0[::[DIMr�k�2 in each col-umn. The second set includes the connections in DIMk�1 in each row and the connectionsin DIMr�k�1 in each column. The connections in DIM0 [:: [DIMk�2 in each row andthe connections in DIM0 [::[DIMr�k�2 in each column form four hypercube patterns onfour disjoint 2k�1 � 2r�k�1 sub{meshes in the torus. A straight forward extension of thechannel assignment scheme in the previous section can be used to assign channels to theseconnections with at most b2k3 c+ 2 channels.To realize the connections inDIMk�1 in each row and the connections inDIMr�k�1in each column, The same partitioning for the ring topology discussed in section 4 is followed.Speci�cally, the following con�gurations are constructed in rows and columns respectivelyrowi = f(i; i + 2k�1); (i + 2k�1; i); (i + 1; i + 1 + 2k�1); (i+ 1 + 2k�1; i+ 1)gcolumnj = f(j; j + 2r�k�1); (j + 2r�k�1; j); (j + 1; j + 1 + 2r�k�1); (j + 1 + 2r�k�1; j + 1)gDIMk�1 is composed of the con�gurations rowi, for i = 0; 2; :::; 2k�1 � 2 and DIMr�k�1 iscomposed of the con�gurations columnj for j = 0; 2; :::; 2r�k�1 � 2.Lemma 10 For any i1, i2, where i1 6= i2, rowi1 and rowi2 in each row and columni1 andcolumni2 in each column can be realized in two torus con�gurations.Proof: Similar to the proof of Lemma 8, omitted. 2

51Theorem 5: Hr can be realized on a 2k � 2r�k torus, where k � r� k, using b2k3 + 2k4 c+2channels.Proof: As discussed above, b2k3 c + 2 channels are su�cient to realize all connections inHr, except the connections in DIMk�1 in each row and DIMr�k�1 in each column, byrealizing four hypercube communication patterns on the four disjoint sub{meshes. FromLemma 10, con�gurations rowi, i = 0; 2; :::; 2r�k�1 � 2 and con�gurations columnj, j =0; 2; :::; 2r�k�1 � 2 can be realized in 2r�k�2 torus con�gurations. Since 2k�2 � 2r�k�2torus con�gurations can be used to realize rowi, i = 2r�k�1; 2r�k�1 + 2; ::; 2k�1 � 2, allthe dimension k � 1 connections in each row and dimension r � k � 1 connections in eachcolumn can be realized in 2k�2 torus con�gurations. Hence, Hr can be realized by a totalof b2k3 c+ 2 + 2k�2 = b2k3 + 2k4 c+ 2 con�gurations. 2Corollary 5.1: w(TORUS(2k�2r�k);Hr) � b2k3 + 2k4 c+2 � �(TORUS(2k�2r�k);Hr)+2.24.1.2 Logical torus, all{to{all and allXY topologiesThe logical torus topology coincides with the physical network. Thus, when realiz-ing logical torus topology, there are no link conicts since the physical network can supportall links in the logical network simultaneously. However, node conicts may occur. Underour network model, each node in the network can only access one channel at any giventime slot. Hence, to support 4 out{going links at each node, at least 4 channels are needed.Using 4 channels, the logical torus topology can be realized as follows. All links in a toruscan be classi�ed into four categories, the UP links, the DOWN links, the LEFT links andthe RIGHT links. Each category can be realized using 1 channels without incurring nodeconicts and link conicts as shown in Figure 4.11. Notice that all nodes can be sending andreceiving messages in the �gure. Hence, 4 channels are su�cient and necessary to realizethe logical torus topology on top of the physical torus topology.Optimal schemes to realize all{to{all communication on ring and torus topologiescan be found in [33]. It is shown in [33] that for an N node ring, N � 8, the all{to{allcommunication can be realized with N2=8 channels without node conicts. For an N �Ntorus, the all{to{all communication can be realized withN3=8 channels. The connections oneach channel to realize the all{to{all communication will be called an AAPC con�guration.Details about the connection scheduling can be found in [33].The logical allXY topology realizes all{to{all connections in each dimension inthe physical torus. For an N �N torus, each node in the logical allXY topology logicallyconnects to 2N � 2 nodes. Using the AAPC con�gurations for rings, techniques similar to

52

(a) UP links (b) DOWN links

(c) LEFT links (d) RIGHT linksFigure 4.11: Realizing logical torus topology

53the ones in section 4.1.1.5 can be used to combine the ring con�gurations to form toruscon�gurations and realize the allXY on an N � N torus, where N � 16, resulting in amultiplexing degree of N2=8. For an N �N torus with N � 8, 2N �2 channels can be usedto realize the allXY topology. For example, using the 8 AAPC con�gurations for 8{noderings in [33], 6 con�gurations along each dimension cannot be combined because of nodeconicts, while 2 con�gurations in each dimension can be combined in the torus, resultinga multiplexing degree of 14 = 2� 8� 2 for realizing the allXY topology.4.2 Performance of the logical topologies under light loadThis section considers the communication performance of the logical topologiesunder light load such that the network contentions on both channels and switches arenegligible. An analytical model will be described that takes the network contention e�ectinto consideration later in this chapter.Let us assume that a packet can be transferred from source to destination ona path in one time slot and that the network has a multiplexing degree of d. It takes onaverage d+12 time slots to transfer a packet from a router to the next router. Thus, assumingthat the packet routing time in each router (including the E/O, O/E conversions) is , theaverage number of intermediate routing hops per packet is h, and the network contentionis negligible, the average delay time for each packet can be expressed as follows:delay = (h+ 2) � + (h+ 1) � d+ 12 :The �rst term, (h+2) � , is the average routing time that a packet spends at theh intermediate routers and the 2 routers at the sending and receiving nodes. The secondterm, (h + 1) � d+12 , is the average packet transmission time on paths plus the time thata packet waits in the output path bu�ers. Thus, the average delay time is determined bythree parameters, the multiplexing degree d, the packet routing time , and the averagenumber of hops per packet transmission h. We can assume that the packet routing time is the same for all topologies. Di�erent logical topologies result in di�erent number ofintermediate hops, h, and di�erent multiplexing degree, d. Next, the performance of thefour logical topologies is discussed.Given an N�N torus, the logical all{to{all topology establishes direct connectionsbetween all pairs of nodes and thus, totally eliminates the intermediate hops, resulting inh = 0. Using the algorithm in [33], a multiplexing degree of N38 can be used to realize thelogical all{to{all topology. Thus d = N38 , and the delay time is given by:

54
delayall�to�all = 2� + (N38 + 1)=2 = O(+N3):Given an N�N torus, a logical torus topology can be realized using a multiplexingdegree of 4 (i.e., d = 4). For a logical N �N topology, the average number of intermediatehops is h = N2 � 1. Hence the delay time for the logical torus topology is given by:delaytorus = (N2 + 1)� + N2 � (4 + 1)=2 = O(N �):For N = 2r, the algorithm in section 4.1.1.5 can realize a logical hypercube topol-ogy on an N � N torus using a multiplexing degree of bN3 + N4 c + 2, if r is odd, andbN3 + N4 c + 1, if r is even. For a logical N2 node hypercube, the average number of inter-mediate hops is h = lg(N2)2 � 1 = lg(N) � 1. Hence, the delay time (for an even r) is givenby:delayhypercube = (lg(N) + 1)� + lg(N)� (bN3 + N4 c+ 2)=2 = O(lg(N) +Nlg(N)):Finally, let us consider the logical allXY topology. As discussed in section 4.1.2,when N � 8, the logical topology can be realized using a multiplexing degree of 2N�2. ForN > 8, a multiplexing degree of N28 is needed. Since for two nodes in the same column orrow, no intermediate hop is needed, while in other cases, one intermediate hop is required,the average number of intermediate hops on the logical allXY topology is given by:2N�2N2�1 � 0 + (N2�1)�(2N�2)N2�1 � 1 = N2�2N+1N2�1 :Therefore, for N > 8, the average delay can be expressed as follows:delayall XY = (2 + N2 � 2N + 1N2 � 1)� + (1 + N2 � 2N + 1N2 � 1)� (N28 + 1)=2 = O(+N2):Logical Number of multiplexing total numbertopology intermediate hops (h) degree (d) of connections (P)all{to{all 0 N38 N2(N2 � 1)all XY N2�2N+1N2�1 N28 y N2(2N � 2)hypercube lg(N) � 1 bN3 + N4 c+ 1 z N2lg(N)torus N2 � 1 4 N2 � 4y Assuming that N > 8. If N < 8, the value is 2N � 2.z Assuming that r is even. If r is odd, the value is bN3 + N4 c+ 2.Table 4.1: Summary of logical topologies

55Table 4.1 summarizes the average number of intermediate hops (h), the multi-plexing degree (d) and the total number of logical connections (P) for the four topologies.Figure 4.12 plots the average delay as a function of the packet routing time , for the fourlogical topologies on a physical 16�16 torus. When is very small compared to data trans-mission time (� 0:5), the logical torus topology achieves the smallest delay time. When0:5 � � 4:25, the logical hypercube has the best performance. When 4:25 � � 256:25,the allXY topology gives the best performance. When > 256:25, the all{to{all topologyhas the smallest packet delay.The characteristics exhibited in Figure 4.12 are true for any network size. Speci�-cally, for a given N , there is a value of below which routing on the torus is more e�cientthan routing on the logical hypercube. Similarly, there is a value of , above which routingon the allXY topology is more e�cient than routing on the logical hypercube. Finally, thereis a value of , above which routing on the all{to{all topology is more e�cient than routingon the allXY topology. In Figure 4.13 these special values are plotted for di�erent N andthe (N;) parameter space is divided into four regions. Each region is labeled by the logicaltopology that results in the lowest average packet delay.These results are obtained by ignoring network tra�c contention, and thus arevalid only under light load. In the next section, a queuing model is used to study thenetwork performance under high load.

0

20

40

60

80

100

0 1 2 3 4 5

de
la

y

packet routing time (time slot)

torus
hypercube

all_XY

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

de
la

y

packet routing time (time slot)

torus
hypercube

all_XY
all-to-all

Figure 4.12: Performance for logical topologies on 16� 16 torus4.3 An analytical model and its veri�cationThis section describes an approximate analytical model that takes network con-tention into consideration. This model is used to study the e�ect of the network load onthe maximum throughput and the packet delay. It is assumed that in each time slot, a

56
0.5

1
2
4
8

16
32
64

128
256
512

1024

8x8 16x16 32x32

pa
ck

et
 r

ou
tin

g
tim

e
(t

im
e

sl
ot

)
tours size

all-to-all

allXY

hypercube

torusFigure 4.13: Logical topologies giving lowest packet delay for given and Npacket can be sent from the source to the destination on a path. For example, if a 1Gbpschannel is used with a 53{byte packet (or cell) as de�ned in the ATM standard, then theslot duration is 0:424�s. All other delays in the system are normalized with respect to thisslot duration.The routers and the paths in a network are modeled as a network of queues. Asshown in Figure 4.1, each router has a routing queue that bu�ers the packets to be pro-cessed. The router places packets either into one of the output path queues that bu�erpackets waiting to be transmitted, or into the local processor. Both a router and a pathhave a constant service time. The exact model for such network is very di�cult to obtain.The network is approximated by making the following assumptions: 1) each queue is inde-pendent of each other and 2) each queue has a Poisson arrival and constant service time.These assumptions enable the derivation of expressions for the maximum throughput andthe average packet delay of the four logical topologies by dealing with the M/D/1 queuesindependently. The simulation results con�rm that these approximations are reasonable.The following notation is used in the model:� N . Size of each dimension of the torus. Thus, the network has a total of N2 nodes.� d, h and P are de�ned in the previous section. A frame consists of d time slots.Within a frame, one time slot is allocated to each path. As discussed earlier, theaverage number of paths that a packet traverses is equal to h + 1. The averagenumber of routers that a packet traverses is h+ 2.� �. Average packet generation rate at each node per time slot. This implies that theaverage generation rate of packets to the entire network is N2�. It is assumed thatthe arrival process is Poisson and is independently and identically distributed on allnetwork nodes. Furthermore, it is assumed that all packets are equally likely to be

57destined to any one of the network nodes. At each router, the newly generated packetsand the packets arriving from other nodes are maintained in an in�nite routing bu�erbefore being processed as shown in Figure 4.1.� �s. Average rate of packet arrival at a router per time slot, including both generatedpackets and packets received from other nodes. This composite arrival rate, �s, maybe derived as follows. In any time slot the total number of generated packets thatarrive at all the routing bu�ers is �N2. On average, each of these packets traversesh+ 2 routers within the network. Therefore, under steady state condition, there willbe �N2(h+ 2) packets in all the routers of the network in each time slot. Under theassumption that each packet is equally likely to be in each router, the total arrivalrate is given by �s = �(h+ 2).� �p. Average rate of packet arrival at a path bu�er per time slot. This arrival rate, �p,can be derived as follows. Under steady state condition, in any time slot, the totalnumber of packets in all the routers in the network is �N2(h+2). Of all these packets,�N2 packet will exit the network and �N2(h+2)��N2 = �N2(h+1) packets will betransmitted through paths in the network. Under the assumption that sources anddestinations are uniformly distributed in the network, the average arrival rate is givenby �p = �N2(h+1)P .� . The routing time per packet at a router. Since packets are of the same length, therouting time is a constant value. The average packet departure rate from the routingbu�er, denoted by �s, is �s = 1 .� �p. The average packet departure rate from each path bu�er per time slot. Since inthe model used, each path will be served once in every frame, �p = 1d . The averageservice time in each path is Sp = 1�p = d.Maximum throughputWith the above notation, the maximum throughput and average packet delay ofthe logical topologies can now be studied. First the theoretical maximum throughput isconsidered and then the average packet delay. Two bottlenecks can potentially limit themaximum throughput.� If the average packet arrival rate at a routing bu�er is larger than the average packetdeparture rate, that is if �s � �s, then the throughput will be limited by the routerprocessing bandwidth. The maximum packet generation rate allowed by the router

58bandwidth, �maxs , can be derived as follows: �s � �s, or (h+ 2)� � 1 , or � � 1(h+2) .Thus, �maxs = 1(h+ 2)� If the average packet arrival rate at a path bu�er is larger than the average packetdeparture rate, that is �p � �p, then the throughput will be limited by the path band-width. The maximum fresh packet generation rate allowed by the path bandwidth,�maxp , can be derived as follows: �p � �p, or (h+1)�NP � 1d , or � � P(h+1)Nd . Thus,�maxp = P(h+ 1)NdThe theoretical maximum throughput is the minimum of �maxs and �maxp , that is,�max = min(�maxs ; �maxp). Given a topology, �max = �maxs indicates that the router speedis the bottleneck, while �max = �maxp indicates that the path speed is the bottleneck.Average packet delayAs mentioned before, the packet delay is divided into the routing delay, whichincludes the time a packet spends on routing bu�ers and the time for routers to processthe packets, and the transmission delay, which includes the time a packet spends on pathbu�ers and the actual packet transmission time on the paths.Let us �rst consider the routing delay in each router. It takes timeslots for arouter to process the packet when the packet reaches the front of the routing bu�er. Asfor the packet waiting time in the routing bu�er, since the routing bu�er is modeled as anM=D=1 queue, the average queuing delay depends on the arrival rate �s and is given by:Q = �s()22(1 � �s�s)where �s is the average packet arrival rate, is the expected service time, �s isthe average packet departure rate. Given that �s = 1 , the total time that a packet spendsin each router is given by:routing delay = + �s()22(1� �s) (1)Consider the two components of the transmission delay on each path. The �rstcomponent is the delay required by a packet to synchronize with the appropriate outgoingslot in the frame on which the node transmits and the actual packet transmission time.The average value of this delay is 1+2+:::+dd = d+12 . The second component is the M=D=1queuing delay that a packet experiences at the bu�er before it reaches the head of the bu�er.This follows the same formula as in the routing delay case, and is given by,

59�pS2p2(1 � �p�p) = �pd22(1� �pd)The two components are combined to obtain the total delay a packet encounterson a path as follows,transmission delay = d+ 12 + �pd22(1� �pd) (2)As discussed earlier, each packet takes h + 2 hops and h + 1 paths on average.Thus, given that on average, a packet spends routing delay in each router and transmissiondelay on each path, the average packet delay can be expressed as follows:delay = (h+ 2)� routing delay + (h+ 1)� transmission delay:Using formula (1) and (2), the following average delay encountered by a packetfrom the source to the destination is obtained.delay = (h+ 2)� (+ �s()22(1 � �s)) + (h+ 1)� (d+ 12 + �pd22(1 � �pd))Model veri�cationTo verify the analytical model and to further study the performance of these logicaltopologies, a network simulator was developed that simulates all four logical topologies ontop of the torus topology. The simulator takes the following parameters.� system size, N � N : This speci�es the size of the network. Based on the logicaltopology, the system size also determines the multiplexing degree in the system.� packet generation rate, �: This is the rate at which fresh packets are generated ineach node. It speci�es the tra�c on the network. The inter{arrival of packets followsa Poisson distribution. When a packet is generated at a node, the destination isgenerated randomly among all other nodes in the system with a uniform distribution.� Packet routing time, .Fig 4.14 shows the maximum throughput obtained from the analytical model andfrom simulations. Both 8 � 8 and 16 � 16 physical torus networks with di�erent packetrouting time are examined. As can be seen from the �gure, the analytical results and thesimulation results almost have a perfect match for all cases.Figure 4.15 and Figure 4.16 show the average packet delays obtained from theanalytical model and from simulations. Here, the packet routing time, , is equal to 1

60
5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

m
ax

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s)

packet routing time

alltoall, ana
alltoall, sim
allXY, ana
allXY, sim

hypercube, ana
hypercube, sim

torus, ana
torus, sim

(a) physical 8� 8 torus 20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

m
ax

im
um

 th
ro

ug
hp

ut
 (

pa
ck

et
s)

packet routing time

alltoall, ana
alltoall, sim
allXY, ana
allXY, sim

hypercube, ana
hypercube, sim

torus, ana
torus, sim

(b) physical 16� 16 torusFigure 4.14: predicted and simulated maximum throughputtime slot. For 8 � 8 torus, the analytical model matches the simulation results fairly wellfor all topologies except when the generation rate is close to saturation. The di�erencebetween the results from the analytical model and those from simulations is around 10%.For the 16 � 16 physical topology, the analytical model matches the simulations resultsfor the all{to{all, allXY and hypercube topologies. For the torus topology, the di�erenceis about 20% due to the approximation. Studies using other values of have also beenconducted. The analytical model and the simulation results on those studies match slightlybetter than those shown in Figures 4.15 and 4.16. Thus, overall the analytical model givesa good indication of the actual performance.

35

40

45

50

55

60

65

70

75

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

de
la

y

packet generation rate

simulation
analytical

(a) physical 8� 8 torus 200

300

400

500

600

700

800

900

0.05 0.1 0.15 0.2 0.25 0.3 0.35

de
la

y

packet generation rate

simulation
analytical

(b) physical 16� 16 torusFigure 4.15: Packet delays for logical all{to{all topology (= 1)

61

0

20

40

60

80

100

120

140

160

180

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

de
la

y

packet generation rate

allXY simulation
allXY analytical

hypercube simulation
hypercube analytical

torus simulation
torus analytical

(a) physical 8� 8 torus 0

50

100

150

200

250

300

350

400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

de
la

y

packet generation rate

allXY simulation
allXY analytical

hypercube simulation
hypercube analytical

torus simulation
torus analytical

(b) physical 16� 16 torusFigure 4.16: Packet delays for logical allXY, hypercube and torus topologies (= 1)4.4 Performance of the logical topologiesIn the previous section, an analytical model for performance study for the logicaltopologies was developed and veri�ed. This section focuses on studying the performanceof the logical topologies. Since the simulation and the analytical model match reasonablywell, only the analytical model is used in this section to study the performance.Figure 4.17 shows the impact of packet routing time on the maximum throughput.The underlying topology is a 32�32 torus. For all logical topologies, increasing the speed ofrouters increases the maximum throughput up to a certain limit. For the all{to{all topology,the router speed of 1 packet per 4 time slots is su�cient to overcome the router performancebottleneck. Using faster router will not further improve the maximum throughput. For theallXY and hypercube topologies, the threshold is 1 packet per 2 time slots, and for the torustopology, the threshold is 1 packet per time slot. When the routing speed is faster than thethreshold value, the maximum throughput is bound by the link speed and the maximumthroughput will not increase along with the increase in router speed. Table 4.2 shows thebandwidth limits of routers and links for N = 32.Figure 4.17 also shows that the all{to{all topology achieves higher maximumthroughput than the allXY topology, which in turn achieves higher maximum through-put than the hypercube topology. The logical torus has the worst maximum throughput.This observation holds for all packet routing speeds. Under high workload, all paths inthe all{to{all and allXY topologies are utilized. The algorithms to realize the all{to{alland allXY topologies guarantee that in each time slot all links are used if all connectionsscheduled for that time slot are in use, while the hypercube and torus topologies can not

62achieve this e�ect. Thus, it is expected that the all{to{all topology and the allXY topologywill outperform the hypercube and torus topologies in terms of maximum throughput.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

m
a
x
i
m
u
m

t
h
r
o
u
g
h
p
u
t

packet routing time

alltoall
allXY

hypercube
torus

Figure 4.17: Maximum throughput .vs. packet routing time (N = 32)Figure 4.18 shows the impact of network size on the maximum throughput. Theresults in this �gure are based upon a packet routing time of one time slot. Di�erentpacket routing times were also studied and similar trends were found. In terms of maxi-mum throughput, the all{to{all topology scales the best, followed by the allXY topology,followed by the hypercube topology. The logical torus topology scales worst among all thesetopologies. Figures 4.17 and 4.18 show that by using time{division multiplexing to establishcomplex logical topology, the large aggregate bandwidth in the network can be exploited todeliver higher throughput when the network is under high workload.Although the all{to{all topology is the best in terms of the maximum throughput,it su�ers from large packet delay when the network is not saturated. Packet delay is anotherperformance metric to be considered. For a network to be e�cient, it must also be able todeliver packets with a small delay. It is well known that time{division multiplexing resultsin larger average packet delay due to the sharing of the links. However, as discussed earlier,while using time{division multiplexing techniques to establish logical topologies increasesthe per hop transmission time, it reduces the average number of hops that a packet travels.Thus, the overall performance depends on system parameters. Next, this e�ect for thelogical topologies is studied.

63
topology bottleneck = 0:5 = 1 = 2 = 4�maxs 2.0 1.0 0.5 0.25all{to{all �maxp 0.25 0.25 0.25 0.25�max 0.25 0.25 0.25 0.25�maxs 1.36 0.68 0.34 0.17allXY �maxp 0.25 0.25 0.25 0.25�max 0.25 0.25 0.25 0.17�maxs 0.67 0.33 0.17 0.09hypercube �maxp 0.1 0.1 0.1 0.1�max 0.1 0.1 0.1 0.09�maxs 0.24 0.12 0.06 0.03torus �maxp 0.06 0.06 0.06 0.06�max 0.06 0.06 0.06 0.03Table 4.2: Maximum throughput for the logical topologies on 32� 32 torus

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

m
ax

im
um

 th
ro

ug
hp

ut

Network size

alltoall
allXY

hypercube
torus

Figure 4.18: Maximum throughput .vs. network size (= 1)

64Figure 4.19 shows the delay with regard to the fresh packet generation rate. Theunderlying topology is a 16 � 16 torus and is 1 time slot. The �gure shows that theall{to{all topology incurs very large delay compared to other logical topologies. This isbecause of the large multiplexing degree needed to realize the logical all{to{all topology.Other topologies have similar delay when the generation rate is small, that is, under lowworkload. However, the allXY topology has a larger saturation point than the hypercubeand torus topologies and thus has a small delay even when the network load is reasonablyhigh (e.g. � = 0:25). These results also hold for larger packet routing times.

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4

de
la

y

generation rate

torus
hypercube

allXY
alltoall

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

de
la

y

generation rate

torus
hypercube

allXY

Figure 4.19: Packet delay as a function of packet generation rate (= 1:0; N = 16)Figure 4.20 shows the impact of packet routing time on the average packet delay.The results are based upon a 16 � 16 torus network and a packet generation rate of 0.005.The packet routing speed has an impact on the delay for all topologies. For very smallpacket routing time (= 0:25), the torus topology has the smallest delay. When thepacket routing time increases, the delay in torus increases drastically, while the delays inthe all{to{all and allXY topologies increase slightly. In the all{to{all and allXY topologiesa packet travels through fewer number of routers than it does in the torus topology. Hencethe contention at routers does not a�ect the delay in the all{to{all and allXY topologiesas much as it does in the torus and hypercube topologies. This study also implies that toachieve good packet delay for logical torus topology, fast routers are crucial, while a fastrouter is not as important in the all{to{all and allXY topologies.Figure 4.21 shows the impact of network size on the packet delay for the topologies.The results are based upon a packet routing time of 1 time slot and a packet generationrate of 0.01. This �gure shows the manner in which the delay time grows with regard to thenetwork size. As discussed in section 2, ignoring network contention for a physical N �Ntorus, the all{to{all topology results in a packet delay of O(+ N3), the allXY topology

65

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

de
la

y

Packet routing time

all-to-all
allXY

hypercube
torus

Figure 4.20: Impact of packet routing time on packet delay (� = 0:005; N = 16)has a delay of O(+ N2), hypercube has a delay of O(lg(N) + Nlg(N)), and torus hasa delay of O(N). Thus, the all{to{all topology has very large delay when the networksize is large. The delay di�erences among the other three topologies are relatively smallfor reasonably large sized networks. When the packet routing time is small (= 1:0), thehypercube topology scales slightly better than the torus and the allXY topologies as shownin Figure 4.21 (a). When is large (= 4:0), the hypercube topology and the allXYtopology are better than the other two topologies as shown in Figure 4.21 (b).From the above discussions, three parameters, N , and � a�ect the average packetdelay for all the logical topologies. Next, the regions in the (N; ; �) parameter space, wherea logical topology has the lowest packet delay are identi�ed. Figure 4.22 shows the besttopologies in the parameter space (N;) with �xed �. Comparing Figure 4.13, wherethe network contention is ignored, with Figure 4.22, where the contention is taken intoconsideration, it can be seen that the logical topologies with less connectivity su�er morefrom network contention. As can be seen from Figure 4.22 (a), with small packet generationrate, all four logical topologies occupy part of the (N;) parameter space, which indicatesthat under certain conditions, each of the four topologies out{performs the other threetopologies. While in the case of large packet generation rate as shown in Figure 4.22 (b),the logical torus topology is pushed out of the best topology picture.

66

0

10

20

30

40

50

60

0 50 100 150 200 250 300

de
la

y

Network size

alltoall
allXY

hypercube
torus

(a) = 1:0 0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

de
la

y

Network size

alltoall
allXY

hypercube
torus

(b) = 4:0Figure 4.21: impact of network size on the delay (� = 0:01)

0.25

0.5

1

2

4

8

16

32

64

8x8 16x16 32x32

pa
ck

et
 r

ou
tin

g
tim

e

tours size

all-to-all

allXY

hypercube

torus(a) � = 0:01 0

1

2

3

4

5

6

7

8x8 16x16 32x32

pa
ck

et
 r

ou
tin

g
tim

e

tours size

all-to-all

allXY

hypercube(b) � = 0:06Figure 4.22: Best logical topology for a given packet generation rate

67Figure 4.23 shows the best logical topologies on the (; �) parameter space. Here,the underlying network is a 16� 16 torus. Networks of di�erent size exhibit similar charac-teristics. The majority of the (; �) parameter space is occupied by the logical hypercubeand allXY topologies. The logical torus topology is good only when the � is small and issmall. The logical all{to{all topology out{performs other topologies only when the networkis almost saturated, that is, large � or large . This indicates that in general, the logicalhypercube and allXY topologies are better topologies than the logical torus and all{to{alltopologies in terms of packet delay.

0.125

0.25

0.5

1

2

4

8

16

32

64

1/128 1/64 1/32 1/16 1/8 1/4 1/2

pa
ck

et
 r

ou
tin

g
tim

e

packet generation rate(per node)

alltoall
allXY

hypercube
torus

Figure 4.23: Best logical topology for a 16� 16 torusFigure 4.24 compares the performance of the logical hypercube and allXY topolo-gies. Given a �xed , there is a packet generation rate, �, above which the allXY topologyout{performs the logical hypercube topology. When increases, the line in the �gure movesdown. In other words, the hypercube topology is more sensitive to the packet routing time.4.5 Multi{hop communication vs single{hop communicationPrevious sections considered the logical topologies that can be used to route pack-ets and perform multi{hop communications. As discussed in Chapter 3, another way toperform dynamic communication on multiplexed optical networks is to use a path reser-vation algorithm which reserves an optical path from the source to the destination andthen perform single{hop communications. The performance of these two communication

68

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8x8 16x16 32x32

pa
ck

et
 g

en
er

at
io

n
ra

te

torus size

allXY

hypercube

Figure 4.24: Best logical topology for a given packet routing time (= 1:0)schemes on a physical 16� 16 torus is compared in this section. The logical allXY topologyis used as the logical topology for multi{hop communication since it o�ers large maximumthroughput and reasonably small average package delay for this size of networks. To obtaina fair comparison, the following assumptions are made:� Both networks have the same multiplexing degree. For a 16 � 16 torus, this meansthat both networks have a multiplexing degree of 32, which is required for the logicalallXY topology.� The data packet processing time in the multi{hop communication is equal to thecontrol packet processing time in the path reservation algorithm, since electronic pro-cessing is involved in both cases. Packet processing time, , is used to represent boththe data packet processing time in the multi{hop communication and the controlpacket processing time in the single{hop communication.� Control packet propagation time between two neighboring nodes is equal to datapacket propagation time between the source and the destination, which is equal to 1time slot.� It is assumed that a data message contains s packets. Accordingly, the average mes-sage delay, which is de�ned as the di�erence between the time the message is generatedand the time when the whole message is received, is measured instead of the averagepacket delay. The notation �msg in this section represents the message generation rateper node per time slot. Since messages can be of di�erent sizes, the network load isde�ned to be

69network load = s� �msg � number of nodes;which is equal to the total number of packets injected into the network. For the samereason, the throughput is measured in terms of packets delivered per time slot.The analytical model for the multi{hop communication cannot model the com-munication performance when packets in a message are sent to the same destination sincedestinations of packets are no longer distributed uniformly among all nodes. In some sensethe number of packets in a message reects the locality of the communication tra�c. Allresults in this section are obtained through simulations.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

t
h
r
o
u
g
h
p
u
t

packet processing(routing) time

single-hop, s = 1
multi-hop, s = 1

single-hop, s = 16
multi-hop, s = 16
single-hop, s = 64
multi-hop, s = 64

Figure 4.25: Maximum throughputFigure 4.25 shows the maximum throughput of the two schemes with di�erent mes-sage sizes, s, and packet processing times, . The packet processing time a�ects both thesingle{hop communication and the multi{hop communication, while the message size a�ectsonly single{hop communication (larger message size leads to higher maximum throughput).When the packet processing speed is fast, e.g. = 1, such that the path bandwidth isthe bottleneck in the communication, the multi{hop communication o�ers larger maximumthroughput than the single{hop communication. The reason is that multi{hop commu-nication utilizes the links in the network more e�ciently when the network is saturatedand does not incur additional control overhead. However, the multi{hop communication ismore sensitive to the packet processing time and the maximum throughput of the multi{

70hop communication decreases drastically when the packet processing time increases. In thesingle{hop communication, the packet processing is only involved in the control network,thus, preserving the large bandwidth in the data network when the packet processing timeis large. This e�ect manifests itself when the message size is reasonably large and the extracontrol overhead is amortized over the length of a message. Thus, the single{hop commu-nication o�ers larger maximum throughput when the packet processing time is large andthe message size is su�ciently large. Figures 4.26 (a) and 4.26 (b) show the maximumthroughput with di�erent message sizes for packet processing times of 1 and 4 respectively.As can be seen from the �gures, when the packet processing time is small (= 1), themulti{hop communication o�ers larger maximum throughput for all message sizes. Whenthe packet processing time is large (= 4), the single{hop communication has a largermaximum throughput when the message size is su�ciently large.

0

20

40

60

80

100

0 50 100 150 200 250

th
ro

ug
hp

ut

Messaage size

single-hop
multi-hop

(a) = 1 0

20

40

60

80

100

0 20 40 60 80 100 120

th
ro

ug
hp

ut

Messaage size

single-hop
multi-hop

(b) = 4Figure 4.26: Maximum throughput for di�erent message sizesWhen the network is under light load, it is more meaningful to compare the mes-sage delay. Figure 4.27 shows the impact of the network load and the message size on theaverage message delay. In this �gure, = 1. When the message size is small (size = 4),the multi{hop communication has smaller message delay. When the message size is large(size = 64), the single{hop communication o�ers smaller message delay. In both cases, thelarge network load ampli�es the di�erence between single{hop and multi{hop communica-tions. For messages of medium size (size = 16), the multi{hop communication has smallerdelay when the network load is below a certain point. In general, small messages favor themulti{hop communication while large messages favor the single{hop communication.The packet processing time a�ects the average message delay for both the single{hop communication and the multi{hop communication. In the single{hop communication,

71

0

500

1000

1500

2000

2500

3000

2.6 5.1 7.7 10.2 12.8 15.4 17.9 20.5

m
e
s
s
a
g
e

d
e
l
a
y

network load

single-hop, s = 4
multi-hop, s = 4

single-hop, s = 16
multi-hop, s = 16
single-hop, s = 64
multi-hop, s = 64

Figure 4.27: Impact of message size on the average message delay (= 1)

0

500

1000

1500

2000

2500

0 2 4 6 8 10

m
e
s
s
a
g
e

d
e
l
a
y

packet processing time(load = 10.24)

single-hop, s = 4
multi-hop, s = 4

single-hop, s = 16
multi-hop, s = 16
single-hop, s = 64
multi-hop, s = 64

Figure 4.28: Impact of packet processing time on the average message delay (= 1)

72the packet processing time a�ects the path reservation time only. Thus, given a �xed packetprocessing time, the extra control overhead is almost the same for all message sizes. In themulti{hop communication, the extra overhead applies to each packet in a message, and thusthe larger the message size, the larger the overhead. Figure 4.28 shows the impact of thepacket routing time on the average packet delay. In this �gure, the same network load of10.24 is considered for di�erent message sizes (e.g. a generation rate of 0.01 for messages ofsize 4, 0:01� 4� 256 = 10:24) with di�erent message sizes. As can be seen from the �gure,when the message size is small, the single{hop communication incurs larger message delaywhile for large message sizes, the multi{hop communication incurs larger message delay.The large packet processing time ampli�es these e�ects.4.6 Chapter summaryThis chapter considered the logical topologies for routing message on top of torustopologies. Schemes for realizing the logical torus, hypercube, allXY (where all{to{all con-nections along each dimension are established) and all{to{all topologies on top of physicaltorus networks were discussed. Optimal schemes for realizing hypercube on top of physicalarrays and rings were designed. Schemes that use at most 2 more channels than the optimalfor realizing hypercube on top of meshes and tori were presented.An analytical model for the maximum throughput and the packet latency formulti{hop networks was developed and veri�ed through simulations. This analytical modelwas used to study the performance of the logical topologies and to identify the cases whereeach logical topology out{performs the other topologies. In general, the performance of thelogical topologies with less connectivity, such as the torus and hypercube topologies, aremore sensitive to the network load and the router speed while the logical topologies withmore connectivity, such as the all{to{all and allXY topologies, are more sensitive to networksize. Logical topologies with dense connectivity achieve higher maximum throughput thanthe topologies with less connectivity. In addition, they also scale better with regard tothe network size. In terms of the maximum throughput, the topologies can be ordered asfollows: all{to{all > allXY > hypercube > torus.In term of the average packet delay, the logical torus topology achieves best resultsonly when the router is fast and the network is under light load, while the logical all{to{alltopology is best only when the router is slow and the network is almost saturated. In allother cases, logical hypercube and allXY topologies out{perform logical torus and all{to{all

73topologies. Comparing the logical allXY to the logical hypercube, the allXY topology isbetter when the network is under high load. These results hold for all network sizes.This chapter further compared multi{hop communication with single{hop commu-nication and identi�ed the advantages and the limitations of each communication scheme.The study in this chapter used randomly generated communication tra�c. Performanceevaluation of these two schemes using communication patterns from real application pro-grams, which con�rms the results in this chapter, will be presented in Chapter 6. Multi{hop communication is more e�cient than single{hop communication in terms of maximumthroughput when the packet processing speed is not a bottleneck in the system and whenthe message size is small. When packet processing speed is slow, the single{hop commu-nication has higher maximum throughput when the message size is su�ciently large. Interms of the average message delay when the network is under light load, large messages fa-vor single{hop communication, while small messages favor multi{hop communication. Thelarge packet processing time ampli�es these e�ects. Table 4.3 and Table 4.4 summarizethese conclusions. Table 4.3: Maximum throughput on a 16� 16 torusSmall message size(4) Large message size(64)Small packet processing time Multi{hop Multi{hopLarge packet processing time Multi{hop Single{hop
Table 4.4: Average message delay on a 16� 16 torusNetwork Packet processing Message sizeload time Small(4) Medium(16) Large(64)Small Small Multi{hop Multi{hop Single{hopLarge Multi{hop Single{hop Single{hopLarge Small Multi{hop Single{hop Single{hopLarge Multi{hop Single{hop Single{hopBoth communication schemes su�er from the bottleneck of electronic processing,which occurs in the path reservation in single{hop communication and in the packet routingat intermediate nodes in multi{hop communication. Using the compiled communicationtechnique discussed in the next chapter, this bottleneck can be removed.

Chapter 5Compiled communicationIn compiled communication, the compiler analyzes a program to determine itscommunication requirement. The compiler can then use the knowledge of the underlyingarchitecture, together with the knowledge of the communication requirement, to managenetwork resources statically. As a result, runtime communication overheads, such as thepath reservation overhead and the bu�er allocation overhead, can be reduced or eliminated,and the communication performance can be improved. Due to the limited resources, theunderlying network cannot support arbitrary communication patterns. Thus, compiledcommunication requires the compiler to analyze a program and partition the program intophases such that each phase has a �xed, pre-determined communication pattern that theunderlying network can support. The compiler inserts code to recon�gure the network atphase boundaries, uses the knowledge of the communication requirement within each phaseto manage network resources directly, and optimizes the communication performance.A number of compiler issues must be addressed in order to apply the compiledcommunication technique to optical TDM networks. Speci�cally, given a multiplexing de-gree, the compiler must partition a program into phases such that each phase containsconnections that can be realized by the underlying network with the given multiplexingdegree. To obtain good performance, each phase must contain as much communicationlocality as possible so that less recon�guration overhead will be incurred at runtime. Acompiler, called the E-SUIF (extended SUIF) compiler, is implemented to support com-piled communication. The structure of the compiler is shown in Figure 5.1. There arefour major components in the system. The �rst component is the communication analyzerthat analyzes a program and obtains its communication requirement on virtual processorgrids. The second component is the virtual to physical processor mapping subsystem thatcomputes the communication requirement of a program on physical processors. The thirdcomponent is the communication phase analysis subsystem that partitions the programinto phases such that each phase contains communications that the underlying network can74

75

Communication phase analysis
connection
scheduling
algorithms

Communication analysis

a HPF-like program

program + logical communications

virtual to physical processor mapping

program + physical communications

program + physical communications
+ phases + schedulingFigure 5.1: The major components in the E{SUIF compilersupport. The communication phase analysis utilizes a fourth component of the system, theconnection scheduling algorithms, to realize a given communication pattern with a minimalnumber of channels.Next, the programming model of the compiler will be discussed, followed by thefour components needed to support compiled communication.5.1 Programming modelThe E{SUIF compiler considers structured HPF{like programs that contain con-ditionals and nested loops, but no arbitrary goto statements. The programmer explicitlyspeci�es the data alignments and distributions. For simplicity, this chapter assumes thatall arrays are aligned to a single virtual processor grid template, and the data distributionis speci�ed through the distribution of the template. However, the implementation of thecommunication analyzer handles multiple virtual processor grids. Arrays are aligned to thevirtual processor grid by simple a�ne functions. The alignments allowed are scaling, axisalignment and o�set alignment. The mapping from a point ~d in data space to the corre-sponding point ~e on the virtual processor grid is speci�ed by an alignment matrix M andan alignment o�set vector ~v. ~e = M ~d + ~v. The alignment matrix M speci�es the scalingand the axis alignment, thus it is a permutation of a diagonal matrix. The distribution ofthe virtual processor grid can be cyclic, block or block{cyclic. Assuming that there are p

76processors in a dimension, and the block size of that dimension is b, the virtual processor e isin physical processor e mod (p � b)=b. For cyclic distribution, b = 1. For block distribution,b = n=p, where n is the size of the virtual processes along the dimension.The communication analyzer performs communication optimizations on each sub-routine. A subroutine is represented by an interval ow graph G = (N;E), with nodes Nand edges E. The communication optimizations are based upon a variant of Tarjan's inter-vals [75]. The optimizations require that there are no critical edges which are edges thatconnect a node with multiple outgoing edges to a node with multiple incoming edges. Thecritical edges can be eliminated by edge splitting transformation[32]. Figure 5.2 shows anexample code and its corresponding interval ow graph.ALIGN (i, j) with VPROCS(i, j) :: x, y, zALIGN (i, j) with VPROCS(2*j, i+1) :: w(s1) do i = 1, 100(s2) do j = 1, 100(s3) x(i,j)=...(s4) enddo(s5) enddo(s6) do i = 1, 100(s7) do j = 1, 100(s8) y(i,j)=w(i,j)(s9) enddo(s10) enddo(s11) do i = 1, 100(s12) do j = 1, 100(s13) z(i, j) = x(i+1, j)* w(i, ,j)(s14) z(i, j) = z(i, j)* y(i+1, ,j)(s15) end do(s16) w(i+1, 100) = ...(s17) end do

STOP12

Level 0

0 ROOT

Level 1 Level 2 Level 3

DO i

DO j

DO i1

2 DO j

3 x(i,j) = ...

4

5

6 y(i,j) = w(i,j)

DO i

DO j

z(i, j) = x(i+1, j) * w(i, j)

7

8

9

10

11

z(i,j)=z(i,j)+y(i+1,j)_

w(i, 100) = ...Figure 5.2: An example program and its interval ow graph

775.2 The communication analyzerThe communication analyzer analyzes the communication requirement on virtualprocessor grids and performs a number of common communication optimizations. Thissection presents the data ow descriptor used in the analyzer to describe communication, thegeneral data ow algorithms to propagate the data ow descriptor, and the communicationoptimizations performed by the analyzer.5.2.1 Section communication descriptor (SCD)In order for the compiler to analyze the communication requirement of a program,data structures must be designed for the compiler to represent the communications in theprogram. The data structures must both be powerful enough to represent the communica-tion requirement and simple enough to be manipulated easily.The descriptorThe communication analyzer represents communication using Section Communi-cation Descriptor (SCD). A SCD =< A;D;CM;Q > consists of three components. The�rst component is the array region that is involved in the communication. This includesthe array name A and the array region descriptor D. The second component is the com-munication mapping descriptor CM , which describes the source{destination relationship ofthe communication. The third component is a quali�er descriptor Q, which speci�es thetime when the communication is performed.The bounded regular section descriptor (BRSD)[12] is used as the region descriptor.The region D is a vector of subscript values. Each element in the vector is either (1) anexpression of the form � � i+�, where � and � are invariants and i is a loop index variable,or (2) a triple l : u : s, where l, u and s are invariants. The triple, l : u : s, de�nes a set ofvalues, fl, l + s, l + 2s, ..., ug, as used in the array statement in HPF.The source{destination mapping CM is denoted as < src; dst; qual >. The source,src, is a vector whose elements are of the form � � i+ �, where � and � are invariants andi is a loop index variable. The destination, dst, is a vector whose elements are of the form � j+ �, where and � are invariants and j is a loop index variable. The mapping quali�erlist, qual, is a list of range descriptors. Each range descriptor is of the form i = l : u : s,where l, u and s are invariants and i is a loop index variable. The notation qual = NULLand qual =? denote that no mapping quali�er is needed. The mapping quali�er speci�esthe range of a variable in dst that does not occur in src to express the broadcast e�ect.

78The quali�er Q is a range descriptor of the form i = l : u : s, where i is the loopindex variable of the loop that directly encloses the SCD. This quali�er is used to indicatethe iterations of the loop in which the SCD should be performed. If the SCD is to beperformed in every iteration in the loop, Q = NULL or Q =?. Q will be referred to as thecommunication quali�er. Notice that the quali�ers in most SCDs are NULL.Operations on SCDOperations, such as intersection, di�erence and union, on SCD descriptors are de-�ned next. Since in many cases, operations do not have su�cient information to yield exactresults, subset and superset versions of these operations are implemented. The analyzer usesa proper version to obtain conservative approximations. These operations are extensions ofthe operations on BRSD.Subset Mapping testing. Testing whether a mapping is a subset of another mapping isone of the most commonly used operations in the analyzer. Testing that a mapping relationCM1 (=< s1; d1; q1 >) is a subset of another mapping relation CM2 (=< s2; d2; q2 >) isdone by checking for a solution of equations s1 = s2 and d1 = d2, where variables in CM1are treated as constants and variables in CM2 as variables, and subrange testing q1 � q2.Note that since the elements in s1 and s2 are of the form � � i + �, the equations cangenerally be solved e�ciently. Two mappings, CM1 and CM2 are related if CM1 � CM2or CM2 � CM1. Otherwise, they are unrelated.Subset SCD testing. Let S1 =< A1;D1; CM1; Q1 >, S2 =< A2;D2; CM2; Q2 >,SCD1 � SCD2 () A1 = A2 ^D1 � D2 ^ CM1 � CM2 ^Q1 � Q2.Intersection Operation. The intersection of two SCDs represents the elements consti-tuting the common part of their array sections that have the same mapping relation. Thefollowing algorithm describes the subset version of the intersection operation. Note thatthe operation requires the quali�er Q1 to be equal to Q2 to obtain a non empty result. �denotes an empty set. This approximation will not hurt the performance signi�cantly sincemost SCDs have Q =?.< A1;D1; CM1; Q1 > \ < A2;D2; CM2; Q2 >= �, if A1 6= A2 or CM1 and CM2 are unrelated or Q1 6= Q2= < A1;D1 \D2; CM1; Q1 >, if A1 = A2 and CM1 � CM2 and Q1 = Q2= < A1;D1 \D2; CM2; Q1 >, if A1 = A2 and CM1 � CM2 and Q1 = Q2Di�erence Operation. The di�erence operation causes a part of the array region associ-ated with the �rst operand to be invalidated at all the processors where it was available. In

79the analysis, the di�erence operation is only used to subtract elements killed (by a state-ment, or by a region), which means that the SCD to be subtracted always has CM = >and Q =?.< A1;D1; CM1; Q1 > � < A2;D2;>;?>= < A1;D1; CM1; Q1 >, if A1 6= A2= < A1;D1 �D2; CM1; Q1 >, if A1 = A2.Union operation. The union of two SCDs represents the elements that can be in eitherpart of their array section. This operation is given by:< A1;D1; CM1; Q1 > [< A2;D2; CM2; Q2 >= < A1;D1 [D2; CM1; Q1 >, if A1 = A2 and CM1 = CM2 and Q1 = Q2= list(< A1;D1; CM1; Q1 >, < A2;D2; CM2; Q2 >), otherwise.5.2.2 A demand driven array data ow analysis frameworkMany communication optimization opportunities can be uncovered by propagatingSCDs globally. For example, if a SCD can be propagated from a loop body to the loopheader without being killed in the process of propagation, the communication represented bythe SCD can be hoisted out of the loop body, that is, the communication can be vectorized.Another example is the redundant communication elimination. While propagating SCD1,if SCD2 is encountered such that SCD2 is a subset of the SCD1, then the communicationrepresented by SCD2 can be subsumed by the communication represented by SCD1 andcan be eliminated. Propagating SCDs backward can �nd the earliest point to place thecommunication, while propagating SCDs forward can �nd the latest point where the e�ect ofthe communication is destroyed. Both these two propagations are useful in communicationoptimizations. Since forward and backward propagation are quite similar, only backwardpropagation will be presented next.Generic demand driven algorithms are developed to propagate SCDs through inter-val ow graph. The analysis technique is the reverse of the interval-analysis [30]. Specially,by reversing the information ow associated with program points, a system of request propa-gation rules is designed. SCDs are propagated until they cannot be propagated any further,that is, all the elements in the SCDs are killed. However, in practice, the compiler maychoose to terminate the propagation prematurely to save analysis time while there are stillelements in SCDs. In this case, since the analysis starts from the points that contributeto the optimizations, the points that are textually close to the starting points, where mostof the optimization opportunities are likely to be present, are considered. This gives the

80demand driven algorithm the ability to trade precision for time. In the propagation, ata given time, only a single interval is under consideration. Hence, the propagations arelogically done in an acyclic ow graph. During the propagation, a SCD may expand whenit is propagated out of a loop. When a set of elements of SCD is killed inside a loop, theset is propagated into the loop to determine the exact point where the elements are killed.There are two types of propagations, upward propagation, in which SCDs may need to beexpanded, and downward propagation, in which SCDs may need to be shrunk.The format of a data ow propagation request is< S; n; [UP jDOWN]; level; cnum >,where S is a SCD, n is a node in the ow graph, constants UP andDOWN indicate whetherthe request is upward propagation or downward propagation, level indicates at which levelis the request and the value cnum indicates which child node of n has triggered the request.A special value �1 for cnum is used as the indication of the beginning of downward propa-gation. The propagation request triggers some local actions and causes the propagation ofa SCD from the node n. The propagation of SCDs follows the following rules. It is assumedthat node n has k children.Propagation rulesRULE 1: upward propagation: regular node. The request on a regular node takes anaction based on SCD set S and the local information. It also propagates the informationupward. The request stops when S become empty. The rule is shown in the following pseudocode. In the code, functions action and local are depended on the type of optimization tobe performed. The pred function �nds all the nodes that are predecessors in the intervalow graph and the set killn includes all the elements de�ned in node n. Note that killncan be represented as an SCD.request(< S1; n; UP; level; 1 >) ^ ... ^ request(< Sk; n; UP; level; k >) :S = S1 \ ::: \ Skaction(S, local(n))if (S � killn 6= �) thenfor all m 2 pred(n)Let n be m's jth childrequest(< S � killn;m;UP; level; j >)A response to requests in a node n occurs only when all its successors have beenprocessed. This guarantees that in an acyclic ow graph each node will only be processed

81once. The side e�ect is that the propagation will not pass beyond a branch point. A moreaggressive scheme can propagate a request through a node without checking whether allits successors are processed. In that scheme, however, a nodes may need to be processedmultiple times to obtain the �nal solution.RULE 2: upward propagation: same level loop header node. The loop is containedin the current level. The request needs to obtain the summary information, Kn, for theinterval, perform the action based on S and the summary information, propagate the in-formation past the loop and trigger a downward propagation to propagate the informationinto the loop nest. Here, the summary function Kn, summarizes all the elements de�nedin the interval. It can be calculated either before hand or in a demand driven manner.The method to calculate the summary in a demand driven manner will be described later.Note that a loop header can only have one successor besides the entry edge into the loopbody. The cnum of the downward request is set to -1 to indicate that it is the start of thedownward propagation.request(< S; n; UP; level; 1 >):action(S, Kn)if (S �Kn 6= �) thenfor all m 2 pred(n)Let n be m's jth childrequest(< S �Kn;m;UP; level; j >)if (S \Kn 6= �) thenrequest(< S \Kn; n;DOWN; level;�1 >)RULE 3: upward propagation: lower level loop header node. The relative levelbetween the propagation request and the node can be determined by comparing the levelin the request and the level of the node. Once a request reaches the loop header. Therequest will need to be expanded to be propagated in the upper level. At the same time,this request triggers a downward propagation for the set of elements that are killed in theloop. Assume that the loop index variable is i with bounds low and high.request(< S; n; UP; level; 1 >):calculate the summary of loop noutside = expand(S; i; low : high) �[defexpand(def; i; low : high)inside = expand(S; i; low : high) \ [defexpand(def; i; low : high)if (outside 6= �) then

82for all m 2 pred(n)Let n be m's jth childrequest(< outside;m;UP; level � 1; j >)if (inside 6= �) thenrequest(< inside; n;DOWN; level;�1 >)The variable outside contains the elements that can be propagated out of theloop, while the variable inside contains the elements that are killed within the loop. Theexpansion function has the same de�nition as in [30]. For a SCD descriptor S, expand(S, k,low:high) is a function which replaces all single data item references � � k + � used in anyarray section descriptor D in S by the triple (� � low + � : � � high + � : �). The set defincludes all the de�nitions that are the source of a ow-dependence.RULE 4: downward propagation: lower level loop header node. This is theinitial downward propagation. The loops index variable, i, is treated as a constant in thedownward propagation. Hence, SCDs that are propagated into the loop body must bechanged to be the initial available set for iteration i, that is, subtract all the variableskilled in the iteration i+1 to high and propagate the information from the tail node to thehead node. This propagation prepares the downward propagation into the loop body byshrinking the SCD for each iteration.query(< S; n; UP; level; cnum >):if (cnum = �1) thencalculate the summary of loop n;request(< S � [defexpand(def; k; i + 1 : high); l;DOWN; level � 1; 1 >);elseSTOP /* interval processed */RULE 5: downward propagation: regular node. For regular node, the downwardpropagation is similar to the upward propagation.request(< S1; n;DOWN; level; 1 >) ^ ... ^ request(< Sk; n;DOWN; level; k >) :S = S1 \ ::: \ Skaction(S, local(n))if (S � killn 6= �) thenfor all m 2 pred(n)

83Let n be m's jth childrequest(< S � killn;m;DOWN; level; j >)RULE 6: downward propagation: same level loop header node. When downwardpropagation reaches a loop header (not the loop header whose body is being processing), itmust generate further downward propagation request to go deeper into the body.request(< S; n;DOWN; level; 1 >):action(S, summary(n));if (S �Kn 6= �) thenfor all m 2 pred(n)Let n be m's jth childrequest(< S �Kn;m;DOWN; level; j >);if (S \Kn 6= �) thenrequest(< S \Kn; n;DOWN; level;�1 >);Summary calculationDuring the request propagation, the summary information of an interval is neededwhen a loop header is encountered. An algorithm is described to obtain the summary infor-mation in a demand driven manner. The calculation of kill set of the interval is used as anexample. Let kill(i) be the variables killed in node i, Kin and Kout be the variables killedbefore and after the node respectively. Figure. 5.3 depicts the demand driven algorithm.The algorithm propagates the data ow information from the tail node to the header nodein the interval using the following data ow equation:Kout(n) = [s2succ(n)Kin(s)Kin(n) = kill(n) [Kout(n)When an inner loop header is encountered, a recursive call is issued to get thesummary information for the inner interval. Once a loop header is reached, the kill setneeds to be expanded to be used by the outer loop.

84(1) Summary kill(n)(2) Kout(tail) = �(3) for all m 2 T (n) and level(m) = level(n)-1 in backward order(4) if m is a loop header then(5) Kout(m) = [s2succ(m)Kin(s)(6) Kin(m) = summary kill(m) [Kout(m)(7) else(8) Kout(m) = [s2succ(m)Kin(s)(9) Kin(m) = kill(m) [Kout(m)(10) return (expand(Kin(header), i, low:high))Figure 5.3: Demand driven summary calculation5.2.3 The analyzerThe analyzer performs message vectorization, redundant communication elimi-nation and communication scheduling using algorithms based upon the demand drivenalgorithms described in the previous section. The analyzer performs the following steps:1. Initial SCD calculation. Here the analyzer calculates the communication requirementfor each statement that contains remote memory references. Communications requiredby each statement are called initial SCDs for the statement and are placed precedingthe statement.2. Message vectorization and available communication summary calculation. The ana-lyzer propagates initial SCDs to the outermost loops in which they can be placed. Inaddition to message vectorization optimization, this step also calculates the summaryof communications that are available after each loop. This information is used in thenext step for redundant communication elimination.3. Redundant communication elimination. The analyzer performs redundant communi-cation elimination using a demand driven version of availability communication anal-ysis [30], which computes communications that are available before each statement.A communication in a statement is redundant if it can be subsumed by availablecommunications at the statement. The analyzer also eliminates partially redundantcommunications.4. Message scheduling. The analyzer schedules messages within each interval by placingmessages with the same communication patterns together and combining the messagesto reduce the number of messages.

85Initial SCD CalculationThe owner computes rule is assumed which requires each remote item referencedon the right handside of an assignment statement to be sent to the processor that ownsthe left handside variable. Initial SCDs for each statement represent this data movement.Since the ownership of array elements determines communication patterns, the ownershipof array elements will be described before the initial SCD calculation step is presented.Ownership.All arrays are aligned to a single virtual processor grid by a�ne functions. Thealignments allowed are scaling, axis alignment and o�set alignment. The mapping from apoint ~d in data space to a corresponding point ~e on the virtual processor grid (the ownerof ~d) can be speci�ed by an alignment matrix M and an alignment o�set vector ~v suchthat ~e = M~d + ~v. Using the alignment matrix and the o�set vector, the owner of a dataelement can be determined. Consider the array w in the example program in Figure 5.2,the alignment matrix and the o�set vector are given below.Mw = 01 20 ! ; ~vw = 01 !Initial SCD Calculation.Using the ownership information, the initial SCDs are calculated as follows. Letus consider each component in an initial SCD =< A;D;CM;Q >. A is the array tobe communicated. The region D contains a single index given by the array subscriptexpression. The quali�er Q =? since initial communications must be performed in everyiteration. Let CM =< src; dst; qual >. Since initially communication does not performbroadcast, qual =?. Hence, the calculation of src and dst, which will be discussed in thefollowing text, is the only non-trivial computation in the calculation of initial SCDs.Let ~i be the vector of loop induction variables. When subscript expressions area�ne functions, an array reference can be expressed as A(G~i + ~g), where A is the arrayname, G is a matrix and ~g is a vector. G is called the data access matrix and ~g the accesso�set vector. The data access matrix, G, and the access o�set vector, ~g, describe a mappingfrom a point in the iteration space to a point in the data space. Let Gl, ~gl, Ml, ~vl be thedata access matrix, the access o�set vector, the alignment matrix and the alignment vectorfor the lhs array reference, and Gr, ~gr, Mr, ~vr be the corresponding quantities for the rhsarray reference. The source processor src and destination processor dst are given by:src =Mr(Gr~i+ ~gr) + ~vr; dst =Ml(Gl~i+ ~gl) + ~vl

86Consider the communication of w(i; j) in statement s13 in Figure 5.2. The analyzercan obtain from the program the data access matrices, access o�set vectors, alignmentmatrices and alignment vectors and from them the SCD for the communication given below.As an indication of the complexity of a SCD, the structure for this communication required524 bytes to store.Mz = 10 01 ! ; ~vz = 00 ! ; Mw = 01 20 ! ; ~vw = 01 !Gl = 10 01 ! ; ~gl = 00 ! ; Gr = 10 01 ! ; ~gr = 00 !< A = w;D = (i; j); CM =< (2 � j; i+ 1); (i; j);?>;Q =?>Message Vectorization and Available Communication SummaryIn this phase, the analyzer computes backward exposed communications, which areSCDs that can be hoisted out of a loop, and forward exposed communications, which areSCDs that are available after the loop. Backward exposed communications represent actualcommunications vectorized from inside the loop. When a SCD is vectorized, the initial SCDat the assignment statement are replaced by SCDs for backward exposed communicationsat loop headers. Forward exposed communications represent the communications that areperformed inside a loop and are still alive after the loop. Hence they can be used to subsumecommunications appearing after the loop. By using data dependence information, backwardand forward exposed communications are calculated by propagating SCDs from inner loopbodies to loop headers using a simpli�ed version of the rules discussed in previous section.Algorithms for the forward and backward exposed communication calculation aredescribed in Figure 5.4 (a) and (b). Since only UP propagation is needed, Request(S; n)is used to denote placing a propagation of S after node n. In the algorithms, S is a SCDoccurring inside the interval whose header is node n and whose induction variable is i withlower bound 1 and upper bound h, anti def is the set of de�nitions in the interval that haveanti{dependence relation with the original array reference that causes the communication S,flow def is the set of de�nitions in the interval that have ow{dependence relation with theoriginal array reference that causes the communication S. For a SCD, S, expand(S; i; 1 : h)�rst determines which portion of the S =< A;D;CM;Q > to be expanded. If D is to beexpanded, that is, i occurs in D, the function will replace all single data item references� � i + � used in D by the triple � + � : � � h + � : �. If D cannot be expanded, that is,after expansion D is not in the allowed form, then the communications will stay inside the

87loop. If CM =< src; dst; qual > is to be expanded, that is, i occurs in dst but not in srcand D, the function will add i = 1 : h : 1 into the mapping quali�er list qual.The algorithms determine the part of communicationsOutside, that can be hoistedout of a loop, and Inside, that cannot be hoisted out of the loop. In forward exposed com-munication calculation, the analyzer makes Outside as the forward exposed communicationand ignores the Inside part. In backward exposed communication calculation, the analyzermakes Outside as backward exposed communication. In addition, the analyzer must alsochange the original SCD according to contents of Inside. In the case when the SCD can befully vectorized, the SCD in the original statement is removed. In the case when the SCDcannot be fully vectorized, part of the communication represented by Outside is hoistedout of the loop, while other part represented by Inside stays at the original statement.Thus, the SCD in the original statement must be modi�ed by a communication quali�er toindicate that the SCD only remains in iterations that generate communications in Inside.request(S; n) :Outside = expand(S; i; 1 : h)�[anti defexpand(anti def; i; 1 : h)if (Outside 6= �) thenrecord Outside asforward exposed in node nLet m be the header of theinterval including node nrequest(Outside;m);
(a) Forward exposed communication

request(S; n) :Outside = expand(S; i; 1 : h)�[flow defexpand(flow def; i; 1 : h)Inside = expand(S; i; 1 : h)\[flow defexpand(flow def; i; 1 : h)if (Outside 6= �) thenconvert Inside in terms of Swith quali�er, denoted as Dif (conversion not successful) thenstop /* fail */elsechange the S into Drecord Outside as backwardexposed comm. at node n.Let m be the header of theinterval including node nrequest(Outside;m);(b) Backward exposed communicationFigure 5.4: Algorithms for the forward and backward exposed communicationConsider communications in the loop in Figure 5.5. Assume that arrays a, b andd are identically aligned to the virtual processor grid, initial SCDs, C1 and C2, are shownin Figure 5.5. C3, C4 and C5 are the communications after the backward exposed com-munication calculation. Calculating the backward exposed communication for C1 resultsin communication C3 in the loop header and the removal of the communication C1 fromits original statement. Calculating the backward exposed communication for C2 puts C4in the loop header and changes C2 into C5. Note that, there is a ow{dependence rela-tion from b(i) to b(i-1). In calculating the backward exposed communication for SCD C2,

88
Do i=1, 100

d(i) = a(1)

b(i) = b(i-1)

C1: <a, (1), <(1), (i), nil>, nil>

C2 : <b, (i-1), <(i-1), (i), nil>, nil>

C5: <b, (i-1), < (i-1), (i), nil>, i=2:100:1>

C3: <a, (1), <(1), (i), i=1:100:1>, nil>
C4: <b, (0), <(i-1), i, nil>, nil>

Figure 5.5: Calculating backward exposed communicationsInside =< b; (1 : 99 : 1); < (i� 1; 1); (i; 1);?>;?>. Converting Inside back in terms of C2results in C5.Redundant Communication EliminationThis phase calculates available communications before each statement, and elim-inates a communication at the statement if the communication is available. This opti-mization is done by propagating SCDs forward until all elements are killed. During thepropagation, if another SCD that can be subsumed is encountered, that SCD is redundantand can be eliminated.request(S1; n; UP) ^ ...^request(Sk; n; UP) :S = S1 \ ::: \ Skif (SCDs in n is a subset of S) thenremove the SCDsif (S � killn 6= �) thenfor all m 2 succ(n)request(S � killn; m;UP)(a) Actions on nodes within an interval
request(S;n; UP):calculate the summary of loop nInside= expand(S; i; 1 : i� 1)\([defexpand(def; i; 1 : i� 1))if (inside 6= �) thenLet l be the �rst node.request(Inside; l; DOWN)(b) Actions on a loop headerFigure 5.6: Actions in forward propagationUsing the interval analysis technique [30], two passes are needed to obtain the dataow solutions in an interval. Initially, UP propagations are performed. Once the UP prop-agations reach interval headers, summaries of the SCDs are calculated and DOWN propa-gations of the summaries are triggered. Note that since the data ow e�ect of propagatingSCDs between intervals is captured in the message vectorization phase of the analyzer, boththe UP and DOWN propagations are performed within an interval in this phase.Assuming that node n has k predecessors. When propagating SCDs within aninterval in forward propagation, actions in a node will be triggered only when all its prede-cessors place requests. The nodes calculate the SCD available by performing intersection on

89all SCDs that reach it, check whether communications within the node can be subsumed,and propagate the live communications forward. Figure 5.6 (a) describes actions on thenodes inside the interval in an UP forward propagation. When the UP propagation reachesan interval boundary, the summary information is calculated by obtaining all the elementsthat are available in iteration i, and a DOWN propagation is triggered. Note that in for-ward propagation, communications can be safely assumed to be performed in every iteration(Q =?), since the e�ect of the communication must guarantee that the valid values are atthe proper processors for the computation. Figure 5.6 (b) shows actions at interval bound-aries. The propagation of a DOWN request is similar to that of an UP request except thata DOWN propagation stops at interval boundaries.Global Message SchedulingAfter the redundant communication elimination phase, the analyzer further re-duces the number of messages using a global message scheduling algorithm proposed byChakrabarti et al. in [14]. The idea of this optimization is to combine messages that are ofthe same communication pattern into a single message to reduce the number of messagesin a program. In order to perform message scheduling, the analyzer �rst determines theearliest and latest points for each communication. Placing the communication in any pointbetween the earliest and the latest points that dominates the latest point always yieldscorrect programs. Thus, the analyzer can schedule the placement of messages such thatmessages of same communication patterns are placed together and are combined to reducethe number of messages.The latest point for a communication is the place of the SCD after redundantcommunication elimination. Note that after message vectorization, SCDs are placed in theoutermost loops that can perform the communications. The earliest point for a SCD can befound by propagating the SCD backward. As in [14], it is assumed that communication fora SCD is performed at a single point. Hence, the backward propagation will stop after anassignment statement, a loop header or a branch statement where part of the SCD is killed.Since the propagation of SCDs stops at a loop header node, only the UP propagation isneeded. Once the earliest and latest points for each communication are known, the greedyheuristic in [14] is used to perform the communication scheduling.5.2.4 Evaluation of the analyzerThe analyzer is implemented as part of the E{SUIF compiler which is developedto support compiled communication on optical TDM networks. The E{SUIF compiler is

90based on the Stanford SUIF compiler [73]. The generation of a program used for evalua-tions is carried out in the following steps. First, a sequential program is compiled usingSUIF frontend, scc, to generate the SUIF intermediate representation. Next, the SUIFtransformer, porky, is used to perform a number of scalar optimizations including copypropagation, dead code elimination and induction variable elimination. The communica-tion preprocessing phase is used to annotate global arrays with data alignment information.The analyzer is then invoked to analyze and optimize communications in the program. Af-ter communication optimizations, the backend of the compiler inserts a library call into theSUIF intermediate representation for each SCD remaining in the program. Finally, the s2ctool is used to convert the SUIF intermediate representation into C program, which is theone that is executed for evaluation.To evaluate performance of the analyzer, a communication emulation system isdeveloped. The system takes SCDs as input, emulates the communications described by theSCDs and collects statistics about the required communications, such as the total numberof elements communicated and the total number of messages communicated. The emulationsystem provides an interface to C program in the form of a library call whose argumentsinclude all information in a SCD. The compiler backend in E{SUIF automatically generatesthe library call for each SCD remaining in the program. In this way, the communicationperformance of a program can be evaluated in the emulation system by running programsgenerated by the E{SUIF compiler.Six programs, L18, ARTDIF, TOMCATV, SWIM, MGRID and ERHS are usedin the experiment. Programs ARTDIF, TOMCATV, SWIM, MGRID and ERHS are fromthe SPEC95 benchmark suite. The descriptions of the programs are as follows.1. L18 is the explicit hydrodynamics kernel in livermore loops (loop 18).2. ARTDIF is a kernel routine obtained from HYDRO2D program, which is an astro-physical program for the computation of galactical jets using hydrodynamical NavierStokes equations.3. TOMCATV does the mesh generation with Thompson's solver.4. SWIM is the SHALLOW weather prediction program.5. MGRID is the simple multigrid solver for computing a three dimensional potential�eld.6. ERHS is part of the APPLU program, which is the solver for �ve coupledparabolic/elliptic partial di�erential equations.

91Table 5.1 shows the analysis cost of the analyzer. The analyzer, which implementsall the optimization algorithms on all SCDs in the programs, was run on a SPARC 5machine with 32MB memory. Row 2 and Row 3 shows the program sizes. Row 4 showsthe cumulative memory requirement, which is the sum of number of SCDs passing througheach node. This number is approximately equal to the memory requirement of traditionaldata ow analysis. The value in parenthesis is the maximum number of cumulative SCDsin a node, which is the extra memory needed by the analyzer. In the analyzer, the size of aSCD ranges from 0.6 to about 3 kbytes. The results show that traditional analysis methodwill require large amount of memory when a program is large, while the analyzer uses littleextra memory. Row 5 gives the raw analysis times and row 6 shows the rate at which theanalyzer operates in units of lines=sec. On an average, the analyzer compiles 172 lines persecond for the six programs. Row 9 shows the total time, which includes analysis time andthe time to load and store the SUIF structure, for reference. In most cases, the analysistime is only a fraction of the load and store time.Program L18 ARTDIF TOMCATV SWIM MGRID ERHSsize(lines) 83 101 190 429 486 1104# of initial SCDs 35 12 108 76 125 403accu. memory req. 348(1) 175(1) 5078(3) 767(1) 1166(1) 6029(5)analysis time(sec) 0.62 0.32 3.47 1.87 1.92 20.92lines / sec 133 316 54 229 253 52total time(sec) 2.00 1.75 6.95 6.65 12.52 35.42Table 5.1: Analysis timeTable 5.2 and Table 5.3 show the e�ectiveness of the optimizations in the ana-lyzer. Table 5.2 shows the reduction of the total number of elements to be communicatedand Table 5.3 shows the reduction of the total number of messages. Both cyclic and blockdistributions on 16 PE systems are considered. This experiment is conducted using thetest input provided by the SPEC95 benchmark for programs TOMCATV, SWIM, MGRIDERHS. The outermost iteration number in MGRID is reduced to 1 (from 40). Problemsizes of 6 � 100 for L18 and 402 � 160 for ARTDIF are used. The number of elementsand number of messages communicated after all optimizations is compared to those aftermessage vectorization optimization. Table 5.2 shows that for cyclic distribution, an averagereduction of 31.5% of the total communication elements is achieved. The block distributiongreatly reduces the number of elements to be communicated and a�ects the optimizationperformance of the analyzer. For block distribution, the average reduction is 23.1%. Ta-ble 5.3 shows that the analyzer reduces the total number of messages by 36.7% for cyclic

92distribution and by 35.1% for block distribution. These results indicate that global com-munication optimization opportunities are quite common and the analyzer developed ise�ective in �nding these opportunities.Dist. Opt. L18 ARTDIF TOMCATV SWIM MGRID ERHS�104 �105 �108 �107 �107 �106Vector. 1.38 7.01 1.38 6.38 5.69 3.62cyclic Final 0.96 5.73 0.34 4.58 5.69 2.2969.6% 81.7% 24.6% 71.8% 100% 63.3%�103 �104 �106 �106 �106 �106Vector. 3.26 7.17 5.74 3.38 8.49 3.11block Final 2.57 6.97 5.12 1.08 8.49 1.6578.8% 97.2% 89.1% 32.0% 100% 53.1%Table 5.2: Total number of elements to be communicatedDist. Opt. L18 ARTDIF TOMCATV SWIM MGRID ERHSVector. 368 400 68555 3892 17662 1:14� 106cyclic Final 96 336 41075 1807 17662 0:72� 10626.1% 84.0% 59.9% 46.4% 100% 63.1%Vector. 330 185 16750 3894 14650 9:20� 105block Final 90 161 10915 2209 14650 4:89� 10527.3% 87% 65.2% 56.7% 100% 53.2%Table 5.3: Total number of messages5.3 Virtual to physical processor mappingIn order to support compiled communication, communication patterns on physicalprocessors must be computed. This section assumes that the physical processor grid hasthe same number of dimensions as the logical processor grid. Notice that this is not arestriction because a dimension in the physical processor grid can always be collapsed byassigning a single processor to that dimension. This section presents algorithms to computecommunications on physical processors from SCDs. The computation may not always beprecise due to symbolic constants in the SCD that are unknown at compile time. Thealgorithms employ multi{level approximation schemes to obtain best information.Given a SCD =< A;D;CM =< src; dst; qual >;Q >, let us �rst consider the casewhere A is an one-dimensional array and the virtual processor grid is also one-dimensional.Let src = �� i+� and dst = � i+�, � 6= 0, 6= 0, and qual = NULL. qual 6= NULL will

93be considered later when multi-dimensional arrays and multi-dimensional virtual processorgrids are discussed. Let the alignment matrix and the o�set vector be MA and vA, that is,element A[n] is owned by virtual processor MA �n+ vA. Let us assume that the number ofphysical processors is p and the block size of the distribution of virtual processor grid is b.For an element A[n], the physical source processor of the communication can be computedas follows. (MA � n+ vA) mod (p � b)=bThe virtual destination processor can be computed by �rst solving the equation(MA � n+ vA) = � � i+ � to obtain i = (MA � n+ vA � �)=�and then replacing the value of i in dst to obtain the virtual destination processor � (MA �n+ vA � �)=� + �. Thus, the physical destination processor is given by(� (MA � n+ vA � �)=� + �) mod (p � b)=b.The physical communication pattern for the SCD can be obtained by considering all ele-ments in D. However, there are situations that the exact region D cannot be determinedat compile time. It is desirable to have a good approximation scheme that computes thecommunication patterns when D cannot be determined at compile time.Before the approximation scheme is presented, let us �rst examine the relationbetween communications on physical processors and that on virtual processors. Let us usenotation src ! dst to represent a communication from src to dst. Given a data regionD = l : u : s, the communications on virtual processors can be derived as follows. Bymapping D to the virtual processor grid, the source processors of the communications canbe obtained. Since the mapping from data space to the virtual processor grid is linear, theset of source processors can be represented as a triple vsl : vsu : vss, that is, the sourceprocessors on the virtual processor grid are vsl, vsl + vss, vsl +2 � vss, ..., vsu. Due to theway in which CM:src = ��i+� is computed, equations vsl+i�vss = CM:src, i = 0; 1; 2; :::,always have integer solutions. Since CM:dst is of the form � i + �, where and � areconstants, the destination processors on the virtual processor grid can also be representedas a triple vdl : vdu : vds, where vdl = � ((vsl � �)=�) + �, vdu = � ((vsu � �)=�) + �and vds = � vss=�. Notice that because of the way in which CM is computed, all thedivision operations in the formula result in integers. Thus, communications on the virtualprocessor grid can be represented as vsl ! vdl : vsu ! vdu : vss ! vds, meaning the setfvsl ! vdl; vsl + vss ! vdl + vds; :::; vsu ! vdug.Communications on physical processors are obtained by mapping virtual processors ontophysical processors. Given a block{cyclic distribution with block size b and processor num-ber p, a sequence of processors on the virtual processor grid l; l + s; l + 2 � s; ::: will be

94
������1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

P0 P0 P0P1 P1 P1P1 P0
16 17
P0

repeatedFigure 5.7: Virtual processor spacemapped to a sequence of physical processors repeatedly. For example, assuming that p = 2and b = 2, the sequence of virtual processors 2; 2 + 3 = 5; 2 + 2 � 3 = 8; 2 + 3 � 3 = 11; ::::will be mapped to physical processors 1; 0; 0; 1 repeatedly as shown in Figure 5.7. As willbe seen later, this characteristic can be utilized to develop an approximation algorithm forthe cases when D is unknown at compile time. A point e in the virtual processor grid canbe represented by two components (pp; o), where pp = e mod (p � b)=b is the physical pro-cessor that contains e and o = e mod b is the o�set of e within the processor. Let (ppk; ek)correspond to l + k � s, k = 0; 1; :::. It can be easily shown thatppi = ppj ^ ei = ej implies ppi+1 = ppj+1 ^ ei+1 = ej+1Since in the (pp; o) space, there are p choices for pp and b choices for o, Thus, there existsa k, k � p � b, such that ppk = p0 and ek = e0, which determines a repetition point. In theprevious example, consider the sequence2 = (1; 0); 5 = (0; 1); 8 = (0; 0); 11 = (1; 1); 14 = (1; 0):::.Thus, the physical processors repeat the sequence 1; 0; 0; 1.Communications on physical processor contains two processors, the source proces-sor and the destination processor. Thus, in order for the communications to repeat, bothsource and destination processors must repeat. Following the above discussion, the commu-nication on the virtual processor grid, src ! dst, can be represented by four components(spp; so; dpp; do), where spp is the physical processor that contains src, so is the o�set ofsrc within the processor, dpp is the physical processor that contains dst, do is the o�setof dst within the processor. Assuming that the source array and the destination array aremapped to the same virtual processor grid, there are p choices for spp and dpp, and b choicesfor so and do. Thus, there exists k, k � p2b2, such that both source and destination pro-cessors, and thus the communication pattern, will repeat themselves. The following lemmasummarizes these results. Using this lemma, communication patterns can be obtained byconsidering the elements in D until the repetition point or the end of D, whichever occurs�rst.Lemma: Assume that the virtual processor grid is distributed over p processors withblock size b. Let SCD =< A;D = l : u : s; CM =< src; dst; qual >;Q >, assuming u

95Compute 1{dimensional pattern(D, CM:src, CM:dst)Let D = l : u : s, CM:src = � � i+ �, CM:dst = � i+ �if (l contains variables) thenreturn all{to{all connectionsend ifif (�, �, or � are variables) thenreturn all{to{all connectionsend ifpattern = �for each element i in D dopattern = pattern+ communication of iif (communication repeated) thenreturn patternend ifend forFigure 5.8: Algorithm for 1-dimensional arrays and 1-dimensioanl virtual processor gridis in�nite, there exist a value k, k � p2b2, such that the communication for all m � k,A[l+m�s] has the same source and destination as the communication for A[l+(m�k)�s].Proof: Follows from above discussions. 2The implication of the lemma is that the algorithm to determine the communica-tion pattern for the SCD can stop when the repetition point occurs. In other words, whenthe upper bound of D is unknown, the communication pattern can be approximated byusing the repetition point. Figure 5.8 shows the algorithm to compute the physical com-munication pattern for a 1{dimensional array and a 1{dimensional virtual processor grid.The algorithm �rst checks the SCD. Let D = l : u : s and CM =< �+ � � i; + � � i;?>.If l contains variables or the mapping is not clean (�, �, or � are symbolic constants), thecommunication is approximated with all{to{all connections. Note that by the semanticsof array sections, when l is unknown, the compiler cannot determine the actual sequenceof elements in an array section. When s contains variables, it will be approximated by 1,that is, D is approximated by a superset l : u : 1. When u contains variables, the physicalcommunication is approximated by considering all elements until the repetition point. Notethat when u contains a variable, the sequence in D is l, l + s, l + 2 � s, Although theupper bound of the sequence is unknown to the compiler, the repetition point can be usedto approximate the communication pattern.Now let us consider multi-dimensional arrays and multi{dimensional virtual pro-cessor grids. In an n{dimensional virtual processor grid, a processor is represented by a

96n{dimensional coordinate (p1; p2; :::; pn). The algorithm to compute the communicationpattern �nds all pairs of source and destination processors that require communication.This is done by considering the dimensions in virtual processor grid one at a time. A setof src = (sp1; sp2; :::; spn) ! dst = (dp1; dp2; :::; dpn) pairs is used to represent the com-munications. A wild{card, �, is used to represent the dimension within a tuple that hasnot been considered. Initially the communication set contains a single element where alldimensions are wild{cards. When one dimension is considered, it generates a 1-dimensionalcommunication pattern for a speci�c dimension in the source and the destination, denotedas src dim and dst dim respectively. This 1-dimensional pattern may degenerate to con-tain only source processors or destination processors. A cross product operation is de�nedto merge the 1-dimensional communication patterns into the n-dimensional communica-tion. This operation is similar to the cross product of sets except that speci�c dimensionsare involved in the operation. For the degenerate form of the 1-dimensional pattern, theoperation only involves source processors or destination processors.For example, consider the communication forSCD =< y; (1 : 4 : 1; 1 : 4 : 1); < src = (i; j); dst = (j; i); qual = NULL >;NULL >.Further assume that the virtual processor grid is distributed on 2 processors with blocksize of 2 in each dimension and array y is identically mapped to the virtual processorgrid. Initially, the communication set contains a single element (�; �) ! (�; �), indicat-ing that all dimensions in the source and destination processor have not been consid-ered. Considering the �rst dimension in the data space, which is identically mapped tothe �rst dimension of the virtual grid. Hence, src dim = 1. From the mapping rela-tion CM:src and CM:dst, it is can found that dimension 2 in the destination proces-sor correspond to dimension 1 in the source processor. Hence, dst dim = 2. Apply-ing the algorithm for the 1{dimensional communication pattern obtains the communica-tion to be f0 ! 0; 1 ! 1g with src dim = 1; dst dim = 2. Taking the cross prod-uct of this pattern with the 2-dimensional communication set f(�; �) ! (�; �)g yieldsf(0; �) ! (�; 0); (1; �) ! (�; 1)g. Considering the second dimension of the data space,the 1{dimensional communication set is f0 ! 0; 1 ! 1g with src dim = 2; dst dim = 1.Taking the cross product of this pattern set to the 2{dimensional communication set givesf(0; 0) ! (0; 0); (0; 1) ! (1; 0); (1; 0) ! (0; 1); (1; 1) ! (1; 1)g, which is the physical com-munication for the SCD.The above example does not take constant mappings and non{NULL quali�ers intoconsideration. The algorithm to compute communication patterns for multi-dimensionalarrays that is shown in Figure 5.9 considers all these situations. The algorithm �rst checks

97whether the mapping relation can be processed. If one loop induction variable occurs in twoor more dimensions in CM:src or CM:dst, the algorithm cannot �nd the correlation betweendimensions in source and destination processors, and the communication pattern for theSCD is approximated by all{to{all connections. If the SCD passes the mapping relation test,the algorithm determines for each dimension in the data space the corresponding dimensionsd in the source processor grid. If it does not exist, the data dimension is not distributed andneed not be considered. If there exists such a dimension, the algorithm then tries to �nd thecorresponding dimension dd in the destination processor grid by checking whether there is adimension dd such that CM:dst[dd] contains the same looping index variable as the sourcedimension CM:src[sd]. If such dimension exists, the algorithm computes 1-dimensionalcommunication pattern between dimension sd in the source processor and dimension dd inthe destination processor, then cross{products the 1-dimensional communication patterninto the n-dimensional communication pattern. When dd does not exist, the algorithmdetermines a degenerate 1-dimensional pattern, where only source processors are considered,and cross-products the degenerate 1-dimensional pattern into the communication pattern.After all dimensions in the data space are considered, there may still exist dimensions inthe source processor (in the virtual processor grid) that have not been considered. Thesedimensions should be constants and are speci�ed by the alignment matrix and the alignmento�set vector. The algorithm �lls in the constants in the source processors. Dimensionsin destination processor may not be fully considered, either. When CM:qual 6= NULL,the algorithm �nds for each item in CM:qual the corresponding dimension, computes allpossible processors in that dimension and cross{products the list into the communicationlist. Finally, the algorithm �lls in all constant dimensions in the destination.An example in Figure 5.10 illustrates how communications on physical processorsare derived. In the program, the virtual processor grid is 3-dimensional and the alignmentarray and the alignment o�set vector for arrays x and y are as follows:Mx = 0BBB@ 010 200 1CCCA ; ~vx = 0BBB@ 021 1CCCAMy = 0BBB@ 010 1CCCA ; ~vy = 0BBB@ 112 1CCCA.Let us assume that the virtual processor grid, V PROCS, is distributed as p =(2; 2; 1), which means 2 processors in dimension 0, 2 processors in dimension 1 and 1 pro-cessor in dimension 2, and b = (2; 2; 1), which means the block size 2 in dimension 0, 2 indimension 1 and 1 in dimension 2. After communication analysis, the SCD to represent the

98
Compute communication pattern(SCD)Let SCD =< A;D;CM;Q >if (the format of CM is not good) thenreturn all-to-all connectionsend ifpattern = f(�; �; :::; �)gfor each dimension i in the array doLet sd be the corresponding dimension in source processor grids.Let dd be the corresponding dimension in destination processor grids.1dpattern = compute 1-dimensional pattern(D[i], CM:src[sd], CM:dst[dd])pattern = cross product(pattern, 1dpattern)end forpattern = source processor constants(pattern)for each element i in the mapping quali�er doLet dd be the corresponding destination processor dimension.1dpattern = compute 1-dimensional pattern(CM:qual[i], ?, CM:dst[dd])pattern = cross product(pattern, 1dpattern)end forpattern = destination processor constants(pattern)return patternFigure 5.9: Algorithm for multi{dimensional array

ALIGN (i, j) with VPROCS(2*j, i+2, 1) :: xALIGN (i) with VPROCS(1, i+1, 2) :: yDO i = 1, 5DO j = 1, 5x(i, j) = y(i) + 1END DOEND DO Figure 5.10: An example

99communication is as follows:SCD =< y; (1 : 5 : 1); < src = (1; i+ 1; 2); dst = (2 � j; i+ 2; 1); qual = fj = 1 : 5 : 1g >;NULL >.The communication on physical processors is computed as follows. First considerthe dimension 0 in the array y. From the alignment, the algorithm knows that dimension1 in the virtual processor grid corresponds to this dimension in the data space. Checkingdst in M , the algorithm can �nd that dimension 1 in destination corresponds to dimension1 in source processors. Applying the 1-Dimensional mapping algorithm, an 1{dimensionalcommunication pattern f0 ! 1; 1 ! 0g with src dim = 1 and dst dim = 1 is obtained.Thus the communication list becomes f(�; 1; �) ! (�; 0; �); (�; 0; �) ! (�; 1; �)g after takingthe cross product with the 1{dimensional pattern. Next, the other dimensions in sourceprocessors, including dimension 0 that is always mapped to processor 0 and dimension 2that is always mapped to processor 1 are considered. After �lling in the physical processorin these dimensions in source processors, the communication pattern becomes f(0; 1; 1) !(�; 0; �); (0; 0; 1) ! (�; 1; �)g. Considering the qual inM , the dimension 0 of the destinationprocessor can be either 0 or 1. Applying the cross product operation, the new communica-tion list f(0; 1; 1) ! (0; 0; �); (0; 1; 1;) ! (1; 0; �); (0; 0; 1) ! (0; 1; �); (0; 0; 1) ! (1; 1; �)gis obtained. Finally, the dimension 2 in the destination processor is always mapped toprocessor 0, Thus, the �nal mapping is f(0; 1; 1) ! (0; 0; 0); (0; 1; 1s) ! (1; 0; 0); (0; 0; 1) !(0; 1; 0); (0; 0; 1) ! (1; 1; 0)g.There are several levels of approximations in the algorithm. First, when the algo-rithm cannot correlate the source and destination processor dimensions from the mappingrelation, the algorithm uses an approximation of all{to{all connections. If the mappingrelation contains su�cient information to distinguish the relation of the source and desti-nation processor dimension, computing the communication pattern for a multi-dimensionalarray reduces to computing 1-dimensional communication patterns, thus the approxima-tions within each dimension are isolated to that dimension and will not a�ect the patternsin other dimensions. Using this multi-level approximation scheme, some information isobtained when the compiler does not have su�cient information for a communication.5.4 Connection scheduling algorithmsOnce the communication requirement on physical processors is obtained, the com-piler uses o�{line algorithms to perform connection scheduling and determines the commu-nication phases in a program. This section presents the connection scheduling algorithmsand their performance evaluation. These algorithms assume a torus topology.

100For a given network, a set of connections that do not share any link is called acon�guration. In an optical TDM network with path multiplexing, multiple con�gurationscan be supported simultaneously. Speci�cally, for a network with multiplexing degree d, dcon�gurations can be established concurrently. Thus, for a given communication pattern,realizing the communication pattern with a minimum multiplexing degree is equivalent todetermining the minimum number of con�gurations that contain all the connections in thepattern. Next, some de�nitions will be presented to formally state the problem of connectionscheduling. A connection from a source src to a destination dst is denoted as (src; dst).A pair of connections (s1; d1) and (s2; d2) are said to conict, if they cannot be simulta-neously established because they use the same link.A con�guration is a set of connections f(s1; d1); (s2; d2); :::; (sm; dm)g such that no con-nections in the set conict.Given a set of connections Comm = f(s1; d1); (s2; d2); :::; (sm; dm)g, the set MC = fC1,C2, ..., Ct g is a minimal con�guration set for Comm i�:� each Ci 2 MC is a con�guration and each connection (si; di) 2 R is contained inexactly one con�guration in MC; and� each pair of con�gurations Ci; Cj 2 MC contain connections (si; di) 2 Ci and(sj ; dj) 2 Cj such that (si; di) conicts with (sj ; dj).It has been shown that optimal message scheduling for arbitrary topologies isNP-complete [19]. Therefore these algorithms are heuristics that are demonstrated to pro-vide good performance. Three connection scheduling heuristic algorithms that compute aminimal con�guration set for a given connection set Comm are described next.5.4.1 Greedy algorithmIn the greedy algorithm, a con�guration is created by repeatedly putting con-nections into the con�guration until no additional connection can be established in thatcon�guration. If additional connections remain, another con�guration is created and thisprocess is repeated till all connections have been processed. This algorithm is a modi�ca-tion of an algorithm proposed in [61]. The algorithm is shown in Figure 5.11. The timecomplexity of the algorithm is O(jCommj�maxi(jCij)�d), where jCommj is the number ofthe connections, jCij is the number of connections in con�guration Ci and d is the numberof con�gurations generated.For example consider the linearly connected nodes shown in Figure 5.12. Theresult for applying the greedy algorithm to schedule connections set f(0, 2), (1, 3),(3, 4),

101(1) MC = �, k = 1(2) repeat(3) Ck = �(4) foreach (si; di) 2 Comm(5) if (si; di) does not conict with any connection in Ck then(6) Ck = Ck S (si; di)(7) Comm = Comm � (si; di)(8) end if(9) end for(10) MC = MC S Ck(11) until Comm = �Figure 5.11: The greedy algorithm.(2, 4)g is shown in Figure 5.12(a). In this case, (0, 2) will be in time slot 1, (1, 3) in timeslot 2, (3, 4) in time slot 1 and (2, 4) in time slot 3. Therefore, multiplexing degree 3 isneeded to establish the paths for the four connections. However, as shown in Figure 5.12(b), the optimal scheduling for the four connections, which can be obtained by consideringthe connection in di�erent order, is to schedule (0, 2) in slot 1, (1, 3) in slot 2, (3, 4) inslot 2 and (2, 4) in slot 1. The second assignment only use 2 time slots to establish all theconnections.
Figure 5.12: Scheduling connections (0, 2), (1, 3),(3, 4), (2, 4)5.4.2 Coloring algorithmThe greedy algorithm processes the connections in an arbitrary order. This sub-section describes an algorithm that applies a heuristic to determine the order to processthe connections. The heuristic assigns higher priorities to connections with fewer conicts.By giving the connections with less conicts higher priorities, each con�guration is likely toaccommodate more connections and thus the multiplexing degree needed for the patternsis likely to decrease.The problem of computing the minimal con�guration set is formalized as a graphcoloring problem. A coloring of a graph is an assignment of a color to each node of the

102graph in such a manner that no two nodes connected by an edge have the same color. Aconict graph for a set of connections is built in the following manner, (1) each node in thegraph corresponds to a connection and (2) an edge is introduced between two nodes if theconnections represented by the two nodes are conicted. As stated by the theorem givenbelow, the number of colors used to color the graph is equal to the number of con�gurationsneeded to handle the connections.Theorem: Let Comm = f(s1; d1); (s2; d2); :::; (sm; dm)g be the set of connections and G =(V;E) be the conict graph for Comm. There exists a con�guration setM = fC1; C2; :::; Ctgfor R if and only if G can be colored with t colors.Proof: Since connections that correspond to the nodes with the same color do not conictwith each other, they can be placed in one con�guration. 2Thus, the coloring algorithm attempts to minimize the number of colors used incoloring the graph. Since the coloring problem is known to be NP-complete, a heuristicis used for graph coloring. The heuristic determines the order in which nodes are coloredusing the node priorities. The algorithm is summarized in Fig 5.13. It should be notedthat after a node is colored, the algorithm updates the priorities of uncolored nodes. Thisis because in computing the degree of an uncolored node, only the edges that connect thenode to other uncolored nodes are considered. The algorithm �nds a solution in linear time(with respect to the size of the conict graph). The time complexity of the algorithm isO(jCommj2 � maxi(jCij) � d), where jCommj is the number of the connections, jCij isthe number of connections in con�guration Ci and d is the total number of con�gurationsgenerated.For torus and mesh networks, a suitable choice for priority for a connection isthe ratio of the number of links in the path from the source to the destination and thedegree of the node corresponding to the connection in G. Applying the coloring algo-rithm to the example in Figure 5.12, in the �rst iteration, the connections are reorderedas f(0; 2); (1; 3); (2; 4); (3; 4)g and connections (0, 2), (2, 4) will be put in time slot 1. Inthe second iteration, connections (1, 3), (3, 4) are put in time slot 2. Hence, applying thecoloring algorithm will use 2 time slots to accommodate the connections.5.4.3 Ordered AAPC algorithmThe graph coloring algorithm has better performance than the greedy heuristic.However, for dense communication patterns the heuristics cannot guarantee that the mul-tiplexing degree found would be bounded by the minimum multiplexing degree needed torealize the all-to-all pattern. The algorithm described in this section targets dense com-

103(1) Construct conict graph G = (V, E)(2) Calculate the priority for each node(3) MC = �, k = 1(4) NCSET = V(5) repeat(6) Sort NCSET by priority(7) WORK = NCSET(8) Ck = �(9) while (WORK 6= �)(10) Let nf be the �rst element in WORK(11) Ck = Ck Sf< sf ; df >g(12) NCSET = NCSET �fnfg(13) for each ni 2 NCSET and (f; i) 2 E do(14) update the priority of ni(15) WORK = WORK - fnig(16) end for(17) end while(18) MC = MC + fCkg(19) until NCSET = �Figure 5.13: The graph coloring heuristic.munication patterns. By grouping the connections in a more organized manner, betterperformance can be achieved for dense communication.The worst case of arbitrary communication is the all-to-all personalized communi-cation (AAPC) where each node sends a message to every other node in the system. Anycommunication pattern can be embedded in AAPC. Many algorithms [33, 38] have beendesigned to perform AAPC e�ciently for di�erent topologies. Among these algorithms,the ones that are of interests to us are the phased AAPC algorithms, in which the AAPCconnections are partitioned into contention{free phases. A phase in this kind of AAPCcorresponds to a con�guration. Some phased AAPC algorithms are optimal in that everylink is used in each phase and every connection follows the shortest path. Since all theconnections in each AAPC phase are contention{free, they form a con�guration that usesall the links in the system. Each phase in the phased AAPC communication forms anAAPC con�guration. The set of AAPC con�gurations for AAPC communication pattern iscalled AAPC con�gurations set. The following theorem states the property of connectionscheduling using AAPC phases.Theorem: Let Comm = f(s1; d1); (s2; d2); :::; (sm; dm)g be the set of connections, ifComm can be partitioned into K phases P1 = f(s1; d1); :::; (si1 ; di1)g,P2 = f(si1+1; di1+1); :::; (si2 ; di2)g, ... , PK = f(siK�1+1; diK�1+1); :::; (siK ; diK)g, such that

104Pi, 1 � i � K, is a subset of an AAPC con�guration. Using the greedy algorithm toschedule the connections (s1; d1); (s2; d2); :::; (sm; dm) results in a multiplexing degree lessthan or equal to K.Proof: The theorem is proven by contradiction that for any �, 1 � � � m, let (s�; d�) 2 P� ,1 � � � K, connections (s1; d1), ..., (s�; d�) can be scheduled by the greedy algorithm usinga multiplexing degree less than or equal to �.Let (s�; d�) 2 P� be the �rst connection that does not satisfy the above proposi-tion. That is, (s1; d1), ..., (s��1; d��1) are scheduled using a multiplexing degree of � and(s�; d�) cannot be accommodated in con�guration �. Since the connections in P� do notconict with each other, another connection that belongs to P , < � must be scheduledin con�guration �. Hence, (s�; d�) is not the �rst connection that does not satisfy theproposition, which contradicts the assumption. 2The theorem states that if the connections are reordered by the AAPC phases, atmost all AAPC phases are needed to realize arbitrary pattern using the greedy schedulingalgorithm. For example, following the algorithms in [33], N3=8 phases are needed for aN�Ntorus. Therefore, in a N � N torus, N3=8 degree is enough to satisfy any communicationpattern. To obtain better performance on dense communication patterns, it is better tokeep the connections in their AAPC format as much as possible. It is therefore better toschedule the phases with higher link utilization �rst. This heuristic is used in the orderedAAPC algorithm. In ordered AAPC algorithm, the rank of the AAPC phases is calculatedso that the phase that has higher utilization has higher rank. The phases are then scheduledaccording to their ranks. The algorithm is depicted in Figure 5.14. The time complexity ofthis algorithm isO(jCommj(lg(jCommj)+maxi(jCij)�K)), where jCommj is the number ofthe connections, jCij is the number of connections in con�guration Ci and K is the numberof con�gurations needed. The advantage of this algorithm is that for this algorithm themultiplexing degree is bounded by N3=8. Thus, in situations where the greedy or coloringheuristics fail to meet this bound, AAPC can be used.5.4.4 Performance of the scheduling algorithmsIn this section, the performance of the connection scheduling algorithms on 8� 8torus topology is studied. The performances of the algorithms are evaluated using randomlygenerated communication patterns, patterns encountered during data redistribution, andsome frequently used communication patterns. The metric used to compare the algorithmsis the multiplexing degree needed to establish the connections. It should be noted that a

105(1) PhaseRank[*] = 0(2) for(si; di) 2 Comm do(3) let (si; di) 2 Ak(4) PhaseRank[k] = PhaseRank[k] + length((si; di))(5) end for(6) sort phase according to PhaseRank(7) Reorder Comm according the sorted phases.(8) call greedy algorithmFigure 5.14: Ordered AAPC scheduling algorithmdynamic scheduling algorithm will not perform better than the greedy algorithm since itmust establish the connections by considering the connections in the order that they arrive.A random communication pattern consists of a certain number of random connec-tions. A random connection is obtained by randomly generating a source and a destination.Uniform probability distribution is used to generate the sources and destinations. Thedata redistribution communication patterns are obtained by considering the communicationresults from array redistribution. In this study, data redistributions of a 3D array are con-sidered. The array has block{cyclic distribution in each dimension. The distribution of adimension can be speci�ed by the block size and the number of processors in the dimen-sion. A distribution is denoted as p:block(s), where p is the number of processors in thedistribution and s is the block size. When the distribution of an array is changed (whichmay result from the changing of the value p or s), communication may be needed. Manyprogramming languages for supercomputers, such as CRAFT FORTRAN, allow an arrayto be redistributed within a program.Table 5.4 shows the multiplexing degree required to establish connections for ran-dom communication patterns using the algorithms presented. The results in each row arethe averages obtained from scheduling 100 di�erent randomly generated patterns with thespeci�c number of connections. The results in the column labeled combined algorithm areobtained by using the minimum of the coloring algorithm and the AAPC algorithm results.Note that in compiled communication, more time can be spent to obtain better runtimenetwork utilization. Hence, the combined algorithm can be used to obtain better result bythe compiler. The percentage improvement shown in the sixth column is achieved by thecombined algorithm over the dynamic scheduling. It is observed that the coloring algorithmis always better than the greedy algorithm and the AAPC algorithm is better than the otheralgorithms when the communication is dense. It can be seen that for sparse random pat-

106number of greedy coloring AAPC combined improvementconnections. algorithm algorithm algorithm algorithm percentage100 7.0 6.7 6.9 6.6 6.3%400 16.5 16.1 16.5 15.9 3.8%800 27.2 25.9 26.5 25.6 6.3%1200 36.3 34.5 35.3 34.2 6.1%1600 45.0 43.5 43.4 42.8 5.1%2000 53.4 50.4 50.4 49.7 7.4%2400 60.8 57.5 57.4 56.7 7.2%2800 68.8 64.4 62.4 62.4 10.2%3200 76.3 70.8 64 64 19.2%3600 83.9 76.8 64 64 31.1%4000 91.6 83 64 64 43.1%Table 5.4: Performance for random patternsterns (100 - 2400 connections), the improvement range varies from 3.8% to 7.2%. Largerimprovement results for dense communication. For example, the combined algorithm uses43.1% less multiplexing degree than that of the greedy algorithm for all{to{all pattern.This result con�rms the result in [33] that it is desirable to use compiled communicationfor dense communication.No. of No. of greedy coloring AAPC combined improvementconnections patterns algorithm algorithm algorithm algorithm percentage0 - 100 34 1.2 1.2 1.2 1.2 0.0%101 - 200 50 5.9 4.9 4.8 4.6 28.3%200 - 400 54 10.6 9.7 10.0 9.5 11.6%401 - 800 105 17.7 15.9 16.0 15.5 14.2%801 - 1200 122 31.7 28.7 28.6 27.6 14.9%1201 - 1600 0 0 0 0 0 0%1601 - 2000 15 46.3 42.8 35.1 35.1 31.9%2001 - 2400 77 55.5 51.5 51.9 50.4 10.1%2401 - 4031 0 0 0 0 0 0%4032 43 92 83 64 64 43.8%Table 5.5: Performance for data distribution patternsTo obtain more realistic results, the performance is also evaluated using the com-munication patterns for data redistribution and some frequently used communication pat-terns which occurs in the programs analyzed by the E{SUIF compiler. Table 5.5 shows theperformance of the algorithms for data redistribution patterns. The communication pat-terns are extracted from the communication resulting from the random data redistribution

107of a 3D array of size 64� 64� 64. The random data redistribution is created by randomlygenerating the source data distribution and the destination data distribution with regard tothe number of processors allocated to each dimension and the block size in each dimension.Precautions are taken to make sure that the total processor number is 64 and the block sizeis not too large so that some processors do not contain any part of the array. The tablelists the results for 500 random data redistributions. The �rst column lists the range ofthe number of connections in each pattern. The second column lists the number of dataredistrictions whose number of connections fell into the range. For example, the secondcolumn in the last row indicates that among the 500 random data redistributions, 43 re-sults in 4032 connections. Columns three to six list the multiplexing degree required by thegreedy algorithm, the coloring algorithm, the AAPC algorithm and the combined algorithmrespectively. The seventh column lists the percentage improvement by the combined algo-rithm over the greedy algorithm. The result shows that the multiplexing degree requiredto establish connections resulting from data redistribution is less than that resulting fromthe random communication patterns. For the data redistribution pattern, the percentageimprovement obtained by using the combined algorithm ranges from 10.1% to 31.9%, whichis larger than the improvement for the random communication patterns.Pattern No. of conn. greedy coloring AAPC comb percentagering 128 3 2 2 2 50%nearest neighbor 256 6 4 4 4 50%hypercube 384 9 7 8 7 28.6%shu�e{exchange 126 6 4 5 4 50%all{to{all 4032 92 83 64 64 43.8%Table 5.6: Performance for frequently used patternsTable 5.6 shows the performance for some frequently used communication patterns.In the ring and the nearest neighbor patterns, no conicts arise in the links. However, thereare conicts in the communication switches. The performance gain is higher for thesespeci�c patterns when the combined algorithm is used.5.5 Communication Phase analysisArmed with the connection scheduling algorithms, the compiler can determinewhen two communication patterns can be combined so that the underlying network cansupport both patterns simultaneously and thus, can partition a program into phases such

108that each phase contains connections that can be supported by the underlying network.This section considers the compiler algorithm to partition a program.The communication phase analysis is carried out in a recursive manner on thehigh level SUIF representation of a program, which is similar to an abstract syntax tree.SUIF represents a program in a hierarchical manner. A procedure contains a list of SUIFnodes, where each node can be of di�erent types and can contain sub{lists. Some impor-tant SUIF node types include TREE FOR, TREE LOOP, TREE IF, TREE BLOCK andTREE INSTR. A TREE FOR node represents a for{loop structure. It contains four sub{lists, lb list which contains the SUIF to compute the lower bound, ub list which containsthe nodes to compute the upper bound, step list which contains the nodes to compute thestep, and body which contains the loop body. A TREE LOOP node represents a while{loopstructure. It contains two sub{lists, test and body. A TREE IF node represents an if{then{else structure. It contains three sub{lists, header which is the test part, then part whichcontains the nodes in the then part, and the else part. A TREE BLOCK node representsa block of statements, it contains a sub{list body. A TREE INSTR nodes represents astatement.Given a SUIF representation of a program, which contains a list of nodes, thecommunication phase analysis algorithm determines the communication phases for eachsub{lists in the list and then determines the communication phases of the list. In additionto the annotations for communications, a composite node, which contains sub{lists, is as-sociated with two variables, pattern, which is the communication pattern that is exposedfrom the sub{lists, and the kill phase, which has a boolean value, indicating whether itssub{lists contain phases.The algorithm to analyze communication phases in a program for a node list isshown in Figure 5.15. The algorithm assumes that the multiplexing degree for the systemis d. It also uses one of the algorithms discussed in section 5.4, denoted asmultiplexing degree(Comm), to compute the multiplexing degree required to realize com-munication pattern Comm. Given a node list, the algorithm �rst recursively examines thesub{lists of all nodes and annotates the nodes with pattern and kill phase. This post{ordertraversal of the SUIF program accumulates the communications in the innermost loops �rst,and thus can capture the communication locality when it exists and is supported by the un-derlying network. Figure 5.16 describes the operations for TREE IF nodes. The algorithmsfor TREE IF node computes the phases for the three sub{lists. In the cases when there arephases within the sub{lists and when the network does not have enough capacity to supportthe combined communication, a phase is created in each of the sub{list to accommodate the

109Communication Phase Analysis(list)Input: list: a list of SUIF nodesOutput: pattern: communication pattern exposed out of the listkill phase: whether there are phases within the listAnalyze communication phases for each node in the list.c pattern = NULL; kill phase = 0For each node n in list in backward order doif (n is annotated with kill phase) thenGenerate a new phase for c pattern after n.c pattern = NULL; kill phase = 1end ifif (n is annotated with communication pattern a) thennew pattern = c pattern+ aif (multiplexing degree(new pattern) � d) thenc pattern = new patternelseGenerate a new phase for c pattern after n.c pattern = a; kill phase = 1end ifend ifend forreturn c pattern and kill phaseFigure 5.15: Communication phase analysis algorithmCommunication Phase Analysis for TREE IFAnalyze the header list.Analyze the then part list.Analyze the else part list.Let comb = the combined communications from the three sub{lists.If (there are phase changes in the sub{lists) thenGenerate a phase in each sub{list for the communication exposed.pattern = NULL; kill phase = 1if (multiplexing degree(comb) > d) thenGenerate a phase in each sub{list for the communication exposed.pattern = NULL; kill phase = 1elsepattern = comb; kill phase = 0end ifAnnotate the TREE IF node with pattern and kill phase.Figure 5.16: Communication phase analysis for TREE IF nodes

110

C5

C4

C0

Kill_phase = 1

Phase for C4

Phase for C0

Phase for C4& C5
& C5

(a) analyze sub-lists (c) final result(b) analyze the main list

C5

C4

C2

C1 C3

C0

DO

IFphase for
C1 & C2

Phase for
C3

C5

C4

C2

C1 C3

C0

DO

IFphase for
C1 & C2

Phase for
C3

Phase for C0

Figure 5.17: An example for communication phase analysiscorresponding communication from that sub{list. Otherwise, the TREE IF node is anno-tated with the combined communication indicating the communication requirement of theIF statement. Algorithms for processing other node types are similar. After all sub{listsin all nodes in the list are analyzed, the node list contains a straight line program, whosenodes are annotated with communication, pattern and kill phase. The algorithm exam-ines all these annotations in each node from back to front. A variable c pattern is usedto maintain all communications currently accumulated. There are two cases when a phaseis generated. First, once a kill phase annotation is encountered, which indicates there arephases in the sub{lists, thus, it does not make sense to maintain a phase passing the nodesince there are phase changes during the execution of the sub{lists, a new phase is createdto accommodate the connection requirement after the node. Second, in the cases whenadding a new communication pattern into the current (accumulated) pattern exceeds thenetwork capacity, a new communication phase is needed.Figure 5.17 shows an example for the communication phase analysis. The programin the example contains six communications, C0, C1, C2, C3, C4, C5 and C6, an IFstructure and a DO structure. The communication phase analysis algorithm �rst analyzesthe sub{lists in the IF and DO structures. Assuming the combination of C1 and C2 canbe supported by the underlying network, while combining communications C1, C2 and C3exceeds the network capacity, which results in the two phases in the IF branches and the

111Prog. Description Distrib.0001 Solution of 2-D Poisson Equation by ADI (*, block)0003 2-D Fast Fourier Transform (*, block)0004 NAS EP Benchmark - Tabulation of Random Numbers (*, block)0008 2-D Convolution (*, block)0009 Accept/Reject for Gaussian Random Number Generation (block)0011 Spanning Percolation Cluster Generation in 2-D (*, block)0013 2-D Potts Model Simulation using Metropolis Heatbath (*, block)0014 2-D Binary Phase Quenching of Cahn Hilliard Cook Equation (*, block)0022 Gaussian Elimination - NPAC Benchmark (*, cyclic)0025 N-Body Force Calculation - NPAC Benchmark (block, *)0039 Segmented Bitonic Sort (block)0041 Wavelet Image Processing (*, block)0053 Hop�eld Neural Network (*, block)Table 5.7: Benchmarks and their descriptionsKill phase is set for the IF header node. Assuming that all communications of C5 withinthe DO loop can be supported by the underlying network, Figure 5.17 (a) shows the resultsafter the sub{lists are analyzed. The algorithm then analyzes the list by considering eachnode from back to forth, it combines communications C4 and C5. Since the IF header nodeis annotated with kill phase. A new phase is generated for communications C4 and C5after the IF structure. The algorithm then proceeds to create a phase for communicationC0. Figure 5.17 (c) shows the �nal result of the communication phase analysis for thisexample.5.5.1 Evalutation of the communication phase analysis algorithmThis section presents the performance evaluation of the E{SUIF compiler for com-piled communication. The compiler is evaluated with respect to the analysis time and theruntime performance. The E{SUIF compiler analyzes the communication requirement of aprogram and partitions the program into phases such that each phase contains a communi-cation pattern that can be realized by a multiplexing degree of d, where d is a parameter.In addition, the compiler also gives channel assignments for connections in each phase. Itis assumed that the underlying network is a 8� 8 torus.Programs from the HPF benchmark suite at Syracuse University are used to evalu-ate the algorithms. The benchmarks and their descriptions are listed in Table 5.7. The tablealso shows the data distribution of the major arrays in the programs. These distributionsare obtained from the original benchmark programs. Table 5.8 breaks down the analysis

112benchmarks size (lines) overall logical communication phase analysis0001 545 11.33 0.45 8.030003 372 24.83 0.50 11.800004 599 19.08 0.42 15.020008 404 27.08 0.68 13.280009 491 46.72 4.45 19.650011 439 14.78 0.57 11.370013 688 23.08 1.07 17.300014 428 15.58 1.03 11.380022 496 22.57 0.77 18.350025 295 5.77 0.78 3.350039 465 16.08 0.38 13.130041 579 9.93 0.28 6.620053 474 7.39 0.35 4.33Table 5.8: Communication phase analysis timetime. The table shows the time for overall analysis, the logical communication analysis andthe communication phase analysis. The overall analysis includes the time to load and storethe program, the time to analyze communication requirement on the virtual processor grid,the time to derive communication requirement on the physical processor grid and the timefor communication phase analysis. The communication phase analysis time accounts fora signi�cant portion of the overall analysis time for all the programs. This is because thecommunication phase operates on large sets of data (communication pattern). However, formedium size programs, such as the benchmarks used, the analysis time is not signi�cant.Table 5.9 shows the precision of the analysis. It compares the average number ofchannels and connections per phase obtained from our algorithms with those in actual exe-cutions. The number of channels and connections per phase in actual executions is obtainedby accumulating the connections within each phase, which is determined by the compiler.When a phase change occurs, the statistics about the number of connections within eachphase is collected and the connection scheduling algorithm is invoked to compute the num-ber of channels needed for the connections in that phase. For most programs, the analysisresults match the actual program executions, which indicates that approximations are sel-dom used. For the programs where approximations occur, the channel approximation isbetter than the connection approximation as shown in benchmark 0022. This is mainlydue to the approximation of the communications that are not vectorized. For such commu-nications, if the underlying network can support all connections in a loop, the phase willcontain the loop and use the channels for all communications in the loop. However, for the

113benchmark connections per phase channels per phaseprograms actual compiled percentage actual compiled percentage0001 564.4 564.4 100% 9.1 9.1 100%0003 537.6 537.6 100% 8.6 8.6 100%0004 116.3 116.3 100% 5.5 5.5 100%0008 562.6 562.6 100% 8.9 8.9 100%0009 91.2 230.7 39.6% 4.3 6.6 65.1%0011 126.3 126.3 100% 5.2 5.2 100%0013 67.3 67.3 100% 3.1 3.1 100%0014 126.4 126.4 100% 4.0 4.0 100%0022 13.1 413.2 3% 4.6 8.9 52.7%0025 80.0 80.0 100% 3.0 3.0 100%0039 125.7 125.8 99.9% 8.8 8.8 99.9%0041 556.1 556.1 100% 8.8 8.8 100%0053 149.2 575.2 25.9% 9.0 9.1 98.9Table 5.9: Analysis precisionconnections, the compiler approximates each individual communication inside the loop withall communications of the loop. Since the number of channels for a communication patterndetermines the communication performance, this type of approximation does not hurt thecommunication performance.5.6 Chapter summaryThis chapter addressed the compiler issues for applying compiled communica-tion. In particular, algorithms for communication analysis were presented which take intoconsideration common communication optimizations including message vectorization, re-dundant communication elimination and message scheduling. A demand driven array dataow framework, which improves over previous communication optimization algorithms byreducing the analysis cost and improving the analysis precision, was developed for the com-munication optimizations. Three o�-line connection scheduling algorithms were describedthat realize a given communication pattern with a minimal multiplexing degree. A com-munication phase analysis algorithm, which partitions a program into phases such thateach phase contains communications that can be supported by the underlying network, wasdeveloped. The algorithm also exploits communication locality to reduce the amount ofrecon�guration overhead during program execution.A compiler, called the E{SUIF compiler, implements all the above algorithms andthus, supports compiled communication. The E{SUIF compiler compiles a HPF{like pro-

114gram, analyzes its communication requirement, partitions the program into phases such thateach phase contains connections that can be supported by the underlying network, assignschannels for connections in each phase, and outputs a C program with the communica-tion and phase annotations such that when the program is executed, the communications(and phases) in the program can be simulated. All the algorithms were evaluated in thecompiler. It was found that the communication optimization algorithms are e�cient interms of the analysis cost and are e�ective in �nding the optimization opportunities. Thecommunication phases analysis algorithm generally captures the program runtime behavioraccurately.In the last three chapters, techniques for the three communication schemes arediscussed. Next chapter evaluates the three communication schemes and compares theirperformance using real application programs.

Chapter 6Performance comparisonThis chapter evaluates the relative performance of the three communication schemespresented in Chapters 3, 4, and 5 using real application programs. Three sets of programsare used in the evaluation. The �rst set of programs includes three hand{coded parallelprograms, where communications are well de�ned and highly optimized for parallel execu-tion. The second set of programs includes a number of HPF benchmark programs whichare tuned for parallel execution. The third set of programs includes a number of programsfrom SPEC95 which are not optimized for parallel execution.The performance measurement is the communication time in the unit of time slots.A packet, which contains a number of words, can be transmitted through a lightpath ina time slot. In addition, normalized time is also used to compare the performance of theschemes. In normalized time, the best communication time among all schemes is assigned avalue of 1:0 and communication times of all schemes are normalized with respect to the bestcommunication time. The normalized time shows the best scheme for each program and howother schemes perform compared to the best scheme. It is assumed that the communicationin each pattern is performed in a synchronized manner. That is, the program synchronizesbefore and after each communication pattern and thus no interleaving of communicationsand computations is allowed.Because the E{SUIF compiler does not handle the message passing paradigm, the�rst set of experiment is carried out manually by extracting the communication patterns inthe programs by hand. The programs in the second and third sets are generated automat-ically by the E{SUIF compiler for the experiment. As discussed in Chapter 5, the E{SUIFcompiler �rst analyzes and optimizes the communications in a program and represents thecommunications using Section Communication Descriptors (SCDs). It then performs thecommunication phase analysis and partitions the program into phases and schedules thecommunication pattern within each phase. Finally, the backend of the E{SUIF compilergenerates a library call, lib comm, for each SCD and another library call, lib phase for each115

116phase. The lib comm takes a SCD with all runtime information as parameter. When theprogram is executed, the lib comm procedure invokes a network simulator which simulatesdynamic single{hop communication, dynamic multi{hop communication or compiled com-munication to obtain the communication time of the communication using one of the threecommunication schemes. The lib phase is useful only when simulating compiled communi-cation. It accesses to the communication requirement of each phase (that is obtained by thecompiler), and performs channel assignment for connections within each phase. Thus, thecommunication performance of a program is obtained by running the program generatedby the E{SUIF compiler.The experiments use the following system settings.� Physical network: 8� 8 torus.� Packet size: 4 words.� Routing algorithm: XY routing between dimensions and Odd{Even shortest{pathrouting within each dimension.� Dynamic single{hop communication.{ Control protocol: Conservative backward reservation protocols (cset size is 1).As discussed in Chapter 3, the conservative backward reservation protocol almosthas the best performance among all the path reservation protocols.{ Control packet processing time: 1 time slot.{ Control packet propagation time: 1 time slot.{ Maximum control packet retransmission time: 5 time slot.{ Multiplexing degree: 1, 4, 14, 20.� Dynamic multi{hop communication.{ Logical topologies: torus, hypercube, allXY and all{to{all.{ packet switching time: 1 time slot.� Compiled communication.{ Connection scheduling algorithms: combined algorithm for the �rst set of exper-iment, AAPC algorithm for the second and third experiments.

1176.1 Hand{coded parallel programsThis set of program includes three hand{coded parallel programs, namely GS,TSCF and P3M . The GS program uses Gauss{Siedel iterations to solve Laplace equa-tion on a discretized unit square with Dirichlet boundary conditions. It contains a nearestneighbor communication pattern with fairly large message size (64 packets messages). TheTSCF program simulates the evolution of a self{gravitating system using a self consis-tent �eld approach. It contains a hypercube communication pattern with small messagesize (1 packet message). P3M performs particle{particle particle{mesh simulation [84].This program contains �ve static communication patterns. Table 6.1 describes the staticcommunication patterns that arise in these programs.Pattern Type DescriptionGS shared array ref. PEs are logically linear array, Each PEcommunicates with two PEs adjacent to it.TSCF explicit send/recv hypercube patternP3M 1 data redistrib. (:block, :block, :block) ! (:, :, :block)P3M 2 data redistrib. (:, :, :block) ! (:block, :block, :)P3M 3 data redistrib. (:block, :block, :) ! (:, :, :block)P3M 4 data redistrib. (:, :, :block) ! (:block, :block, :block)P3M 5 shared array ref. PEs are logically 3{D array, each PEcommunicates with 6 PEs surrounding itTable 6.1: Communication pattern description.Table 6.2 shows the communication time for these patterns in one main loop stepin the programs. Table 6.3 shows the normalized time where the best communication timeis normalized to 1:0. In this experiment, it is assumed that there is su�cient multiplexingdegree to support all the patterns in compiled communication. Thus, each phase con-tains one communication pattern and no network recon�guration is required to within eachpattern. For dynamic single{hop communication, the communication time for �xed mul-tiplexing degrees of 1, 4, 14 and 20 is evaluated. For dynamic multi{hop communication,the logical torus, hypercube, allXY and all{to{all topologies are considered. The followingobservations can be made from the results in Table 6.3.� Compiled communication out{performs dynamic single{hop communication in allcases. The average communication time for dynamic single{hop communication is4.5 to 8.0 times greater than that for compiled communication, depending on themultiplexing degree used in dynamic single{hop communication. Larger performance

118gains are observed for communications with small message sizes (e.g., the TSCF pat-tern) and dense communication (e.g., the P3M 2 pattern). Large multiplexing degreedoes not always improve the communication performance for dynamic single{hop com-munication. For example, a multiplexing degree of 1 results in the best performance(for dynamic single{hop communication) for the pattern in GS while a degree of 14has the best performance for the P3M 5 pattern.� Compiled communication out{performs dynamic multi{hop communication in all casesexcept for the TSCF program where dynamic multi{hop communication has bettercommunication time when using the logical hypercube topology. The reason is thatthe TSCF program only contains hypercube communication with message size equalto 1. Multi{hop communication achieves good communication performance whencommunication patterns in a program matches the logical topology. However, on av-erage, the communication time for multi{hop communication is 3.0 to 7.6 times largerthan the communication time for compiled communication, depending on the logicaltopology used.� Compiled communication achieves an average normalized time of 1.1 for all the com-munication patterns, which indicates that compiled communication almost deliversoptimal communication performance.� Comparing dynamic multi{hop communication with dynamic single{hop communi-cation, multi{hop communication has better performance when the message size issmall (e.g. TSCF , P3M 5), and when the communication requires dense connections(e.g. P3M 2; 3), while single{hop communication is better when the message size islarge (e.g. GS).Pattern GS TSCF P3M 1 P3M 2,3 P3M 4 P3M 5Compiled comm. 131 19 831 382 457 40torus 404 30 3366 1656 1632 127Multihop hypercube 792 13 3371 1338 1499 74comm. allXY 990 17 3157 1058 960 121alltoall 4159 70 1326 749 1326 276d = 1 209 215 3194 6655 2091 378Single{hop d = 4 296 118 2029 2998 1302 213comm d = 14 924 107 1713 2171 1508 196d = 20 1296 108 1702 2096 1314 231Table 6.2: Communication time (timeslots) for the hand{coded programs

119Pattern GS TSCF P3M 1 P3M 2,3 P3M 4 P3M5 AverageCompiled comm. 1.0 1.5 1.0 1.0 1.0 1.0 1.1torus 3.1 2.3 4.1 4.3 3.6 3.2 3.4Multihop hypercube 6.0 1.0 4.1 3.5 3.3 1.9 3.3comm. allXY 7.6 1.3 3.8 2.8 2.1 3.0 3.4alltoall 31.7 5.4 1.6 2.0 2.9 6.9 8.4d = 1 1.6 16.5 3.9 17.4 4.6 9.5 8.9Single{hop d = 4 2.3 9.1 2.4 7.8 2.8 5.4 5.0comm d = 14 7.1 8.2 2.1 5.7 3.3 4.9 5.2d = 20 9.9 8.2 2.0 5.5 2.9 5.8 5.7Table 6.3: Normalized communication time for the hand{coded programsIn this study, two types of communication patterns are observed in a well de-signed parallel program, �ne grain communications resulted from shared array referencesand coarse grain communications resulted from data redistributions. The �ne grain commu-nication causes sparse connections with small message sizes, while the coarse grain commu-nication results in dense connections with large message size. For a communication systemto e�ciently support the �ne grain communication, the system must have small latency.Optical single{hop networks that use dynamic path reservation algorithms have a largestartup overhead, thus cannot support this type of communication e�ciently. As shown inour simulation results, compiled communication where the startup overhead is eliminatedand dynamic multi{hop communication perform this type of communications e�ciently.For the coarse grain communication, the control overhead in the dynamic communicationsis not signi�cant. However, dense communication results in a large number of conictsin the system (path reservation in dynamic single{hop communication and packet routingin dynamic multi{hop communication), and the dynamic control systems are not able toresolve these conicts e�ciently. By using an o�{line connection scheduling algorithm,compiled communication handles this type of communications e�ciently. The performancestudy con�rms the conclusion in [33] that static management of the dense communicationpatterns results in large performance gains.6.2 HPF parallel benchmarksThis set of programs is from the Syracuse University HPF benchmark suite. Thebenchmarks and their descriptions are listed in table 5.7 in Section 5.5.1 . The benchmarksinclude many di�erent types of applications, however, all of the programs contain onlyregular computations.

120The major di�erence between this experiment and the �rst experiment is that, inthis experiment, compiled communication is applied to the whole program instead of eachindividual communication pattern. Assuming a multiplexing degree of 10, the compilertries to aggregate as many communications as possible into a phase as opposed to the �rstexperiment where compiled communication is assumed to have an in�nite number of virtualchannels to handle each individual communication pattern in the programs. In addition, thisset of programs contains communication patterns about which the compiler cannot obtainprecise information. Two factors may degrade the performance of compiled communication.First, compiler approximations may result in the waste of bandwidth for establishing con-nections that are not used. Second, aggregating more communications in a phase reducesthe number of network recon�gurations, but may result in larger communication time sincelarger multiplexing degree is needed for more communications. This experiment aims atstudying the performance of compiled communication under these limitations.Table 6.4 shows the communication time of the programs using di�erent com-munication schemes. Table 6.5 shows the normalized time. Even with the limitationsdiscussed earlier, compiled communication in general out{performs dynamic communica-tions to a large degree. The bene�ts of managing channels at compile time and eliminatingthe runtime path reservation overhead over{weights the bandwidth losses through the im-precision of compiler analysis. The average normalized time for compiled communication is1.1 which indicates that compiled communication almost delivers the best communicationperformance for this set of programs. However, performance degradation in compiled com-munication due to the conservative approximation in compiler analysis is observed in someof the programs. For example, compiler over{estimating the communication requirement isfound in benchmarks 0009 and 0022. Note that the overall communication time for the pro-grams in Table 6.4 may not show this, because each program contains many communicationpatterns and the pattern that is approximated may not dominate the overall communica-tion time. The performance loss due to aggregating communications, which results in largermultiplexing degree, is observed in benchmark 0025. Nonetheless, the overall trend of thisexperiment is very similar to that in the �rst experiment.6.3 Programs from SPEC95Four programs, ARTDIF (from HYDRO2D), TOMCATV, SWIM and ERHS (fromAPPLU) are used in this experiment. These programs are also used in Section 5.2.4,where the descriptions of these programs can be found, to evaluate performance of thecommunication analyzer in the E{SUIF compiler.

121

benchmarks 0001 0003 0004 0008 0009 0011Compiled comm. 45,624 752 1,368 2,256 2,394 105,252torus 197,760 3,296 1,776 9,888 3,108 158,594Multihop hypercube 159,840 2,664 1,032 7,992 1,806 147,496comm. allXY 125,280 2,088 1,704 6,439 2,982 265,636alltoall 87,960 1,466 4,944 4,398 8,652 1,027,818d = 1 888,240 14,804 1,920 44,412 3,360 141,052Single{hop d = 4 357,600 5,960 2,208 17,880 3,864 181,506comm d = 14 267,360 4,456 3,504 13,368 6,132 372,678d = 20 273,360 4,556 4,224 13,668 7,392 484,374benchmarks 0013 0014 0022 0025 0039 0041Compiled comm. 166,280 63,400 3,244,819 29,854 68,704 1,504torus 257,980 129,800 6,382,683 25,470 106,525 6,592Multihop hypercube 363,340 200,600 9,509,070 58,661 132,348 5,328comm. allXY 748,220 379,200 5,922,920 63,264 135,353 4,176alltoall 3,368,600 1,679,200 6,379,275 214,343 393,166 2,932d = 1 154,080 71,200 6,844,054 23,440 115,488 29,608Single{hop d = 4 256,240 125,200 6,402,631 31,221 136,390 11,920comm d = 14 779,920 391,200 6,516,485 61,712 214,042 8,912d = 20 1,086,160 550,800 6,925,278 81,958 261,832 9,112Table 6.4: Communication time for the HPF benchmarks.

122
benchmarks 0001 0003 0004 0008 0009 0011Compiled comm. 1.0 1.0 1.3 1.0 1.3 1.0torus 4.3 4.4 1.7 4.4 1.7 1.5Multihop hypercube 3.5 3.5 1.0 3.5 1.0 1.4comm. allXY 2.7 2.3 1.7 2.9 1.7 2.5alltoall 1.9 1.9 4.8 2.0 4.8 9.8d = 1 19.3 19.7 1.9 19.7 1.9 1.3Single{hop d = 4 7.8 7.9 2.1 7.9 2.1 1.7comm d = 14 5.8 5.9 3.4 5.9 3.4 3.5d = 20 5.9 6.0 4.1 6.0 4.1 4.6benchmarks 0013 0014 0022 0025 0039 0041 averageCompiled comm. 1.1 1.0 1.0 1.3 1.0 1.0 1.1torus 1.7 2.1 2.0 1.1 1.6 4.4 2.6Multihop hypercube 2.4 3.2 2.9 2.5 1.9 3.5 2.5comm. allXY 4.9 6.0 1.8 2.7 2.0 2.8 2.8alltoall 21.9 26.7 2.0 9.1 5.7 1.9 7.6d = 1 1.0 1.1 2.1 1.0 1.7 19.7 7.5Single{hop d = 4 1.7 1.9 2.0 1.3 2.0 7.9 3.9comm d = 14 5.1 6.2 2.0 2.7 3.1 5.9 4.4d = 20 7.1 8.7 2.1 3.6 3.8 6.1 5.2Table 6.5: Normalized time for the HPF benchmarks.
Pattern ARTDIF TOMCATV SWIM ERHSCompiled comm. 1,224 15,480 2,708 6,689torus 2,724 34,260 1,378 4,380Multihop hypercube 4,338 57,240 2,309 6,482comm. allXY 8,583 108,900 4,409 15,117alltoall 38,772 491,460 19,169 68,800d = 1 666 8,280 669 1,148Single{hop d = 4 2,478 31,260 1,574 4,382comm d = 14 8,538 108,060 4,511 15,166d = 20 12,168 154,140 6,343 21,614Table 6.6: Communication time for SPEC95 benchmark programs.

123Pattern ARTDIF TOMCATV SWIM ERHS averageCompiled comm. 1.8 1.9 4.0 5.8 3.3torus 4.1 4.1 2.1 3.8 3.5Multihop hypercube 6.5 6.9 3.5 5.6 5.6comm. allXY 12.9 13.1 6.6 13.1 11.4alltoall 58.2 59.2 28.7 59.9 51.5d = 1 1.0 1.0 1.0 1.0 1.0Single{hop d = 4 3.7 3.8 2.3 3.8 3.4comm d = 14 12.8 13.0 6.7 13.2 11.4d = 20 18.2 18.6 9.4 18.8 16.3Table 6.7: Normalized communication time for SPEC95 benchmark programs.Table 6.6 shows the communication performance of the programs. Table 6.7 showsthe normalized time. The test inputs are used as the inputs to these program, which de-termine the problem size. To reduce the simulation time, the main iteration numbers inprograms ARTDIF, SWIM and ERHS are reduced to one. All programs ARTDIF, SWIM,TOMCATV and ERHS only contains simple nearest neighbor communication patterns.Compiled communication performs worse than dynamic single{hop communication with amultiplexing degree of one because it aggregates communications and uses larger multiplex-ing degree than needed. Hence, it is desirable to develop more advanced communicationphase analysis techniques that can use di�erent multiplexing degrees for di�erent partsof a program to achieve best performance. However, considering all the programs evalu-ated, compiled communication out{performs other schemes to a large degree as shown inTable 6.8.Comm. Comp. Multi{hop Single{hopschemes comm. torus hype. allXY alltoall 1 4 14 20Norm. time 1.5 3.0 3.3 4.6 16.1 6.6 4.0 5.9 7.4Table 6.8: Average normalized communication time for each scheme.6.4 Chapter summaryThis chapter studied the communication performance for the three communicationmechanisms, dynamic single{hop communication, dynamic multi{hop communication andcompiled communication using three sets of programs. The following conclusions weredrawn from the study.

124� Compiled communication out{performs dynamic communications to a large degreefor applications with regular computations.� The performance of compiled communication can be further improved by incorpo-rating more advanced communication phase analysis techniques that allow di�erentmultiplexing degrees in di�erent parts of a program.� The major disadvantage of dynamic communications is that they cannot adapt todi�erent communication requirements. Thus, they support some communication pat-terns e�ciently while they are ine�cient for other communication patterns. Compiledcommunication e�ciently supports all types of communication patterns that can bedetermined at compile time.� Comparing dynamic multi{hop communication and dynamic single{hop communica-tion, dynamic multi{hop communication achieves better performance when the mes-sage size is small and when the communication is dense, while dynamic single{hopcommunication is better when the message size is large. This result matches the resultsin Section 4.5 where dynamic single{hop communication is compared with dynamicmulti{hop communication using randomly generated communication patterns.

Chapter 7ConclusionWhile optical interconnection networks have the potential to provide very largebandwidth, network control, which is performed in the electronic domain due to the lackof suitable photonic logic devices, has become the communication bottleneck in such net-works. In order to design e�cient optical networks where end users can utilize the largebandwidth, e�cient network control mechanisms must be developed to reduce the controloverheads. This thesis addresses the network control bottleneck problem in optical net-works by considering three communication schemes, dynamic single{hop communication,dynamic multi{hop communication and compiled communication. In addition to developingtechniques to improve communication performance in each scheme, this thesis also com-pares the communication performance of the three schemes and identi�es the advantagesand the limitations of each scheme. In the following sections, the thesis contributions aresummarized and directions for future research are identi�ed.7.1 Thesis contributionsThis thesis makes contributions in the design of control mechanisms for time{multiplexed optical interconnection networks. The contributions are in two areas: opticalinterconnection networks and compiler analysis techniques. In the optical interconnectionnetworks area, this thesis introduces e�cient control schemes for dynamic single{hop com-munication and dynamic multi{hop communication. This thesis also proposes and validatesthe idea of applying the compiled communication technique to optical TDM networks. In thecompiler area, this thesis addresses all the issues needed to apply the compiled communica-tion paradigm to optical interconnection networks, including communication optimization,communication analysis, connection scheduling and communication phase analysis. Themain contributions of the thesis are detailed as follows.
125

126� Dynamic single{hop communication. Two sets of e�cient path reservation al-gorithms, forward path reservation protocols and backward path reservation proto-cols, are designed. Variants of the protocols, including holding/dropping and aggres-sive/conservative schemes, are considered. The performance of the protocols and theimpact of system parameters on these protocols are evaluated. Forward path reser-vation protocols extend traditional path reservation schemes for electronic networksand are simpler compared to backward path reservation protocols. However, theseschemes su�er from either the over{locking problem for aggressive schemes or the lowsuccessful reservation rate for conservative schemes. Backward path reservation pro-tocols overcome these problems by probing the network state before reserving chan-nels. Performance study has established that in optical time{division multiplexingnetworks, backward path reservation protocols, though more complex than forwardpath reservation protocols, result in better communication performance when the cor-responding system and protocol parameters are the same. It is also found that whilesome system or protocol parameters, such as the holding time for holding schemes,do not have a signi�cant impact on the performance of the protocols, other param-eters, such as the aggressiveness of a protocol and the speed of the control network,a�ect the performance drastically. Similar techniques can be extended for the pathreservation in WDM wide area networks [78, 87].� Dynamic multi{hop communication. Schemes for realizing four logical topolo-gies, torus, hypercube, allXY and all{to{all, on top of the physical torus topologiesare considered. Optimal and near optimal routing and channel assignment (RCA)schemes for realizing hypercube on array, ring, mesh and torus topologies are devel-oped. An analytical model for analyzing the maximum throughput and the averagepacket delay is developed and veri�ed via simulation. This model is used to study theperformance of dynamic multi{hop communication using the four logical topologies.It is found that in terms of the maximum throughput, the logical all{to{all topology isthe best while the logical torus topology has the lowest performance. In terms of theaverage packet delay, the logical torus topology achieves best results only when therouter is fast and the network is under light load, while the logical all{to{all topologyis best only when the router is slow and the network is almost saturated. In all othercases, logical hypercube and allXY topologies out{perform logical torus and all{to{alltopologies. In addition, the impact of system parameters, such as the packet switch-ing time, on these topologies are studied. In general, the performance of the logicaltopologies with low connectivity, such as the torus and hypercube topologies, are more

127sensitive to the network load and the router speed while the logical topologies withmore connectivity, such as the all{to{all and allXY topologies, are more sensitive tonetwork size. Some of the techniques developed for multi{hop communication in op-tical TDM networks can be applied to other areas. The optimal scheme to realizehypercube on mesh{like topologies can be used to e�ciently perform communicationsin algorithms that contain hypercube communication patterns [50]. The modelingtechnique can be extended to the modeling of WDM networks or electronic networksthat perform multi{hop communication.� Compiled communication. This thesis considers all the issues necessary to applycompiled communication to optical TDM networks, including communication opti-mization, communication analysis, connection scheduling and communication phaseanalysis.{ Communication optimization and communication analysis. A communicationdescriptor called Section Communication Descriptor (SCD) that describes com-munications on virtual processor grids is developed. A communication analyzerwhich performs a number of communication optimizations, including messagevectorization, redundant communication elimination and message scheduling, ispresented. All the optimizations use a demand driven global array data owanalysis framework. This framework improves previous data ow analysis algo-rithms for communication optimizations by reducing analysis cost and increas-ing analysis precision. Algorithms are developed to derive communications onphysical processors from SCDs. These algorithms address the problem of e�ec-tive approximations in the cases when the information in a SCD is insu�cientfor deriving precise communication on physical processors. The communicationoptimization technique is general and can be implemented in a compiler thatcompiles HPF{like programs for distributed memory machines. The communi-cation analysis technique can be used by a compiler that requires the knowledgeof the communication requirement of a program on physical processors.{ Connection scheduling. A number of heuristic connection scheduling algorithmsare developed to schedule connections on torus topologies. Some of the algo-rithms can also be applied to other topologies.{ Communication phase analysis. A communication phase analysis algorithm isdesigned to partition a program into phases such that each phase contains com-munications that can be supported by the underlying network, while capturing

128the communication locality in the program to reduce the recon�guration over-heads. This algorithm can also be applied to compiled communication on elec-tronic networks.� Communication performance comparison. A number of benchmarks and realapplication programs, including hand{coded parallel programs, HPF kernel bench-marks and programs from SPEC95, are used to compare the communication perfor-mance of the three communication schemes. The relative strengths and weaknessesof the three schemes are evaluated. The study establishes that even with the limita-tions of compiler analysis, compiler communication generally out{performs dynamiccommunications. It delivers high communication performance for all types of com-munication patterns that are known at compile time. The dynamic single{hop com-munication and dynamic multi{hop communication both su�ers from the inability toadapt to the communication requirement. Given a �xed system setting, they pro-vide good performance for some communication patterns while fail to achieve highperformance for other communication patterns. Comparing these two communica-tion schemes, multi{hop communication has the advantage when the message sizeis small and when the communication requires dense connections, while single{hopcommunication has the advantage when the message size is large.7.2 Future researchThe research of this thesis can be extended in various ways. Some of the algorithmscan be improved. Additional work may either extend the applicability of the techniquesor improve the techniques. Following are a number of future research directions that arerelated to this thesis.� Improving backward path reservation algorithms. In the backward reservation,once a channel is reserved, the reservation fails only when the network state changes.Due to the distributed manner of collecting channel states and reserving channels inbackward path reservation algorithms, the information for channels on links close tothe source node is not as accurate as the information for channels on links close to thedestination node. This problem can be severe when the network size is large. Twopossible solutions to this problem are as follows. First, a more e�cient control networkcan be used to route control messages. For example, a Multistage InterconnectionNetwork (MIN) with multi{cast capability can be used to route control messages sothat control messages can reach all nodes along the path at the same time. This allows

129a protocol to collect the channel usage information more e�ciently and increases thechance of successful reservation. Second, assuming that the control network has thesame topology as the data network, the backward path reservation protocols canselectively collect the channel usage information. The idea behind this improvementis that wrong information may be worse than no information.� Path reservation with adaptive routing. In the thesis, path reservation algo-rithms assume a deterministic routing. Preliminary research on extending the pathreservation protocols with adaptive routing was carried out. The preliminary resultsshow that using current path reservation protocols (both forward and backward reser-vations), the adaptive routing yields lower maximum throughput on the physical torustopology for uniform communication tra�cs. Further research is needed to explainthis phenomenon and to design path reservation protocols that take advantage ofadaptive routing.� Topologies for multi{hop communication. In this thesis, four logical topolo-gies, torus, hypercube, allXY and alltoall, on top of the physical torus topologies areconsidered. There are two ways to extend this work. First, a di�erent physical topol-ogy can be considered. For instance, it would be interesting to consider e�cientlyrealizing regular topologies, such as mesh, torus, on top of an irregular topology. Sec-ond, there are logical topologies other than the four logical topologies considered thatcan achieve good communication performance. Examples include the tree and theshu�e{exchange topologies.� Interprocedural communication optimization. The communication analyzer inthe thesis performs a number of communication optimizations, including message vec-torization, global redundant communication elimination and global message schedul-ing, using intraprocedural array data ow analysis. By incorporating the interpro-cedural array data ow analysis, more optimization opportunities can be uncovered.The intraprocedural array data ow analysis framework uses interval analysis. It cannaturally be extended to interprocedual analysis by treating a procedure as an inter-val. However, many details, such as array reshaping at subroutine boundaries andits impact on communications, must be considered in order for the interproceduralanalysis to work.� Improving communication phase analysis. The communication phase analysisalgorithm in the thesis follows simple heuristics, it considers the control structures in aprogram using post{order traversal. This enables the algorithm to consider communi-

130cations in innermost loops �rst, aggregate the communications out of loops to reducethe recon�guration overhead and capture the communication locality. However, whilethe algorithm is simple to implement, the phases it generates are not optimal in thesense that there may exist other program partitioning schemes that result in lessphases in a program. More advanced communication phase analysis algorithms basedon better communication model [66] may be developed by using a general control owgraph for program representation and by considering the communication requirementof the whole procedure when generating phases.� Compact communication descriptor. The communication descriptor in the com-piler that describes communication patterns on physical processors is a at structure.It contains all pairs of source and destination nodes. This descriptor is both largeand hard to manipulate. More compact communication descriptor is desirable for thecompiler. The challenge however, is that the descriptor must both be compact andeasy to use by the analysis algorithms.� Irregular communication patternsMany scienti�c codes contain irregular communication patterns that can only be de-termined at runtime. This thesis has restricted the compiled communication techniqueto be applied to the programs that contain only regular computations. This restric-tion can be relaxed by using a strategy similar to the Chaos runtime library[74]. Thislibrary performs an inspector phase that calculates the runtime schedule once formany executions of the communication pattern. Similarly the connection schedulingalgorithms can gather communication information at runtime and assign channels toall connections within the next looping structure to be used for subsequent iterations.7.3 Impact of this researchThis thesis establishes that the compiled communication technique is more e�cientthan both dynamic single{hop communication and dynamic multi{hop communication. Thecompiler algorithms that enable the application of compiled communication on optical TDMnetworks, though can be further improved, are available in this thesis. Although the com-piled communication technique can only apply to the communication patterns that areknown at compile time, mechanisms that allow the compiler to manage network resourcesso that compiled communication can be supported must be incorporated in future opticalTDM networks for multiprocessor systems to achieve high performance. Dynamic communi-cation schemes must be used to handle general communication in an optical TDM network.

131Dynamic single{hop communication incurs large startup overhead and is thus ine�cient forsmall messages which occur frequently in parallel applications. Dynamic multi{hop com-munication is e�cient for small messages, however, it places electronic processing in thecritical path of data transmission and cannot fully utilize the large bandwidth in opticallinks when the optical data transmission speed is signi�cantly faster than the electronicprocessing speed. Hence, both schemes have their own advantages and the better choicebetween these two schemes depends on the application programs and the advances in opticalnetworking technology.This thesis develops techniques for e�cient communication in optical TDM net-works. Many techniques developed can be applied to other areas. The path reservationalgorithms for dynamic single{hop communication can be extended for WDM wide areanetworks. The e�cient routing and channel assignment algorithms for hypercube communi-cation pattern can be used to e�ciently perform communications in algorithms that containhypercube communication patterns. The modeling technique for multi{hop communicationin optical TDM networks can be extended for WDM networks and electronic networks withmulti{hop communication. The communication optimization technique based on a demanddriven data ow analysis technique can be incorporated in a compiler that compiles a HPF{like language for distributed memory machines. The communication analysis technique canbe used by compilers that perform architectural dependent communication optimizations,or compiled communication on electronic networks.

Bibliography

Bibliography[1] A.S. Acampora and M.J. Karol, \An Overview of Lightwave Packet Network." IEEENetwork Mag. 3(1), pages 29-41, 1989.[2] S. P. Amarasinghe and M. S. Lam \Communication Optimization and Code Generationfor Distributed Memory Machine." In Proceedings ACM SIGPLAN'93 Conference onProgramming Languages Design and Implementation, June 1993.[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C. W. Tseng, \The SUIF Compilerfor Scalable Parallel Machines." Proceedings of the Seventh SIAM Conference on ParallelProcessing for Scienti�c Computing, February, 1995.[4] H.R. As, \Media Access Techniques: the Evolution towards Terabit/s LANs andMANs." Computer Networks and ISDN Systems, 26(1994) 603{656.[5] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G. Holm, A. Lain, D.J. Palermo, S. Ramaswamy, and E. Su. \The PARADIGM Compiler for Distributed-Memory Multicomputers." in IEEE Computer, Vol. 28, No. 10, pages 37-47, October1995.[6] J.A. Bannister, L. Fratta and M. Gerla \Topological Design of the Wavelength{DivisionOptical Network." IEEE INFOCOM'90, pages 1005|1013, 1990.[7] R.A. Barry and P.A. Humblet. \Models of Blocking Probability in All{optical Networkswith and withoutWavelength Changers." In Proceeding of IEEE Infocom, pages 402-412,April 1995.[8] B. Beauquier, J. Bermond, L. Gargano, P. Hell, S. Perennes and U. Vaccaro \GraphProblems Arraying from Wavelength{Routing in All{Optical Networks." Workshop onOptics and Computer Science, 1997.[9] C. A. Brackett, \Dense wavelength division multiplexing networks: Principles and ap-plications," IEEE Journal on Selected Areas of Communications, Vol. 8, pp. 948-964,Aug. 1990.[10] J. Brassil, A. K. Choudhury and N.F. Maxemchuk, \The Manhattan Street Network:A High Performance, Highly Reliable Metropolitan Area Network," Computer Networksand ISDN Systems, 26(6-8), pages 841-858, 1994.[11] M. Bromley, S. Heller, T. McNerney and G. L. Steele, Jr. \Fortran at Ten Gigaops:the Connection Machine Convolution Compiler'." In Proc. of SIGPLAN'91 Conf. onProgramming Language Design and Implementation. June, 1991.133

134[12] D. Callahan and K. Kennedy \Analysis of Interprocedural Side E�ects in a ParallelProgramming Environment." Journal of Parallel and Distributed Computing, 5:517-550,1988.[13] F. Cappelllo and C. Germain. \Toward high communication performance through com-piled communications on a circuit switched interconnection network." In Proceedings ofthe Int'l Symp. on High Performance Computer Architecture, pages 44-53, Jan. 1995.[14] S. Chakrabarti, M. Gupta and J. Choi \Global Communication Analysis and Opti-mization." Proceedings of the ACM SIGPLAN'96 Conference on Programming LanguageDesign and Implementation (PLDI), Pages 68 | 78, Philadelphia, PA, May, 1996.[15] B. Chapman, P. Mehrotra and H. Zima \Programming in Vienna Fortran." Scienti�cProgramming, 1:31{51, Fall 1992.[16] S. Chatterjee, J. R. Gilbert, R. Schreiber and S. Teng \Automatic Array Alignment inData{Parlllel Programs." Proceedings of the 20th Annual ACM Symposium on Principlesof Programming Languages, Charleston, SC, Jan. 1993.[17] S. Chatterjee, J. Gilbert, F. J. E. Long, R. Schreiber and S. Teng \Generating localaddresses and communication sets for data{parallel programs." In Proc. of PPoPP,pages 149{158, San Diego, CA, May 1993.[18] C. Chen and s. Banerjee, \A New Model for Optimal Routing and Wavelength Assign-ment in Wavelength Division Multiplexed Optical Networks," Proc. IEEE Infocom'96,pages 164{171, 1996.[19] I. Chlamtac, A. Ganz and G. Karmi. \Lightpath Communications: An Approach toHigh Bandwidth Optical WAN's" IEEE Trans. on Communications, Vol. 40, No. 7, July1992.[20] I.Chlamtac, A. Ganz and G. Karmi \Lightnets: Topologies for High{Speed Optical Net-works." Journal of Lightwave Technology, Vol. 11, No. 5/6, pages 951|961, May/June1993.[21] W. Dally and C. Seitz, \Deadlock{Free Message Routing in Multiprocessor Intercon-nection Networks." IEEE trans. on Computers, Vol. C{36, No. 5, May 1987.[22] P. Dowd, K. Bogineni and K. Ali, \Hierarchical Scalable Photonic Architectures forHigh-Performance Processor Interconnection", IEEE Trans. on Computers, vol. 42, no.9, pp. 1105-1120, 1993.[23] A. Ganz and Y. Gao, \A Time-Wavelength assignment algorithm for WDM StartNetworks", Proc. of IEEE INFOCOM, 1992.[24] C. Gong, R. Gupta and R. Melhem. \Compilation Techniques for Optimizing Commu-nication on Distributed-Memory System". International conference on Parallel Process-ing. Vol. II, pages 39-46, August 1993.[25] T. Gross. \Communication in iWarp Systems." In Proceedings Supercomputing'89,pages 436{445, ACM/IEEE, Nov. 1989.[26] T. Gross, A. Hasegawa, S. Hinrichs, D. O'Hallaron, and T. Stricker \CommunicationStyles for Parallel Systems." IEEE Computer, vol.27, no. 12, December, 1994, pp. 34-44.

135[27] T. Gross, D. O'Hallaron, and J. Subhlok \Task parallelism in a High PerformanceFortran framework." IEEE Parallel & Distributed Technology, vol 2, no 2, 1994, pp16-26.[28] M. Gupta and P. Banerjee. \A Methodology for High{Level Synthesis of Commu-nication on Multicomputers." In International Conference on Supercomputing, Pages357{367, 1992.[29] M. Gupta and P. Banerjee. \Demonstration of Automatic Data Partitioning Tech-niques for Parallelizing Compilers on Multicomputers." IEEE Trans. on Parallel andDistributed Systems, 3(2)179-193, 1992.[30] M. Gupta and E. Schonberg \A Framework for Exploiting Data Availability to Opti-mize Communication." In 6th International Workshop on Languages and Compilers forParallel Computing, LNCS 768, pp 216-233, August 1993.[31] M. Gupta, S. Midki�, E. Schonberg, V. Seshadri, K.Y. Wang, D. Shields, W.M. Chingand T. Ngo. \An HPF compiler for the IBM SP2." In proc. Supercomputing'95, SanDiego, CA, Dec. 1995.[32] M. Gupta, E. Schonberg and H. Srinivasan \A Uni�ed Framework for OptimizingCommunication in Data-parallel Programs." In IEEE trans. on Parallel and DistributedSystems, Vol. 7, No. 7, pages 689-704, July 1996.[33] S. Hinrichs, C. Kosak, D.R. O'Hallaron, T. Stricker and R. Take. \An Architecture forOptimal All{to{All Personalized Communication." In 6th Annual ACM Symposium onParallel Algorithms and Architectures, pages 310-319, June 1994.[34] S. Hinrichs. \Compiler Directed Architecture{Dependent Communication Optimiza-tion." Ph.D dissertation, School of Computer Science, Carnegie Mellon University, 1995.[35] S. Hinrichs \Simplifying Connection{Based Communication." IEEE Parallel and Dis-tributed Technology, 3(1)25{36, Spring 1995.[36] H. Scott Hinton, \Photonic Switching Using Directional Couplers", IEEE Communi-cation Magazine, Vol 25, no 5, pp 16-26, 1987.[37] S. Hiranandani, K. Kennedy and C. Tseng \Compiling Fortran D for MIMDDistributed{memory Machines." Communications of the ACM, 35(8):66-80, August1992.[38] T. Horie and K. Hayashi. \All{to{All Personalized Communication on a wrap{aroundMesh." In Proceedings of CAP Workshop, November, 1991.[39] High Performance Fortran Forum. High Performance Fortran Language Speci�cationVersion 1.0., May 1993.[40] T. Ikegami \WDM Devices, State of the Art." Photonic Networks, Springer, pages79{90, 1997.[41] K. Kennedy and N. Nedeljkovic \Combining dependence and data-ow analyses tooptimize communication." In Proceedings of the 9th International Parallel ProcessingSymposium, Santa Barbara, CA, April 1995.

136[42] K. Knobe, J.D. Lukas and G.L. Steele, Jr. \Data Optimization: Allocation of Arraysto Reduce Communication on SIMD Machines." Journal of Parallel and DistributedComputing, 8:102-118, 1990.[43] C. Koelbel \Compiling Programs for Nonshared Memory Machines." Ph.D thesis, Pur-due University, August 1990.[44] C. Koelbel and P. Mehrotra \Compiling global name{space parallel loops for dis-tributed execution." IEEE Trans. on Parallel and Distributed Systems, 2(4):440-451,Oct. 1991.[45] M. Kovacevic, M. Gerla and J.A. Bannister, \On the performance of shared{channelmultihop lightwave networks," Proceedings IEEE INFOCOM'95, Boston, MA, pages544{551, April 1995.[46] M. Kumar. \Unique Design Concepts in GF11 and Their Impact on Performance".IBM Journal of Research and Development. Vol. 36 No. 6, November 1992.[47] J. P. Labourdette and A. S. Acampora \Logically Rearrangeable Multihop LightwaveNetworks." IEEE Trans. on Communications, Vol. 39, No. 8, pages 1223|1230, August1991.[48] D. Lahaut and C. Germain, \Static Communications in Parallel Scienti�c Programs."In Parallel Architecture & Languages, Europe, pages 262{274, Athen, Greece, July 1994.[49] S. Lee, A. D. Oh and H.A. Choi \Hypercube Interconnection in TWDM Optical Pas-sive Star Networks", Proc. of the 2nd International Conference on Massively ParallelProcessing Using Optical Interconnections. San Antonio, Oct. 1995.[50] F. Leighton, Introduction to parallel algorithms and architecture: arrays, trees, hyper-cubes. Morgan Kaufmann, 1992.[51] J. Li and M. Chen. \Compiling Communication {e�cient Programs for Massive ParallelMachines." IEEE Trans. on Parallel and Distributed Systems, 2(3):361-376, July 1991.[52] J. Li and M. Chen \The Data Alignment Phase in Compiing Programs for DistributedMemory Machines." Journal of Parallel and Distributed Computing, 13(2):213{221, Oc-tober 1991.[53] R. Melhem, \Time{Multiplexing Optical Interconnection Network; Why Does it PayO�?" In Proceedings of the 1995 ICPP workshop on Challenges for Parallel Processing,pages 30{35, August 1995.[54] \The Message Passing Interface Forum". Draft Document for a Standard Message Pass-ing Interface, November 1993.[55] B. Mukherjee, \WDM{based local lightwave networks | Part I: Single{hop systems,"IEEE Network Magazine, vol. 6, no. 3, pp. 12{27, May 1992.[56] B. Mukherjee, \WDM{based local lightwave networks | Part II: Multihop systems,"IEEE Network Magazine, vol. 6, no. 4, pp. 20{32, July 1992.[57] B. Mukherjee, S. Ramamurthy, D. Banerjee and A. Mukherjee \Some Principles forDesigning a Wide{Area Optical Network." IEEE INFOCOM'94, Vol. 1, pages 1d1.1|1d1.10, 1994.

137[58] S. Nugent, \The iPSC/2 direct{connect communications technology." In Proceedingsof the 3rd conference on Hypercube Concurrent Computers and Application, Volume 1,Jan. 1988.[59] R. W. Numrich, P.L. Springer and J.C. Peterson, \Measuerment of CommunicationRates on the CRAY-T3d Interprocessor Network". In Proceedings of High PerformanceComputing and Networking, LNCS 797.[60] R. Manchek, \Design and Implementation of PVM version 3.0", Technique report,University of Tennessee, Knoxville, 1994.[61] C. Qiao and R. Melhem, \Recon�guration with Time Division Multiplexed MIN's forMultiprocessor Communications." IEEE Trans. on Parallel and Distributed Systems,Vol. 5, No. 4, April 1994.[62] C. Qiao and R. Melhem. \Reducing Communication Latency with Path Multiplexing inOptically Interconnected Multiprocessor Systems." In Proceedings of the InternationalSymposium on High Performance Computer Architecture, pages 34-43, January 1995.[63] C. Qiao and Y. Mei, \On the Multiplexing Degree Required to Embed Permutation ina Class of Networks with Direct Interconnects." In IEEE Symp. on High PerformanceComputer Architecture, Feb. 1996.[64] R. Ramaswami and K. Sivarajan, \Optimal Routing and Wavelength Assignment inAll{Optical Networks." IEEE INFOCOM'94, vol. 2, pages 970{979, June 1994.[65] A. Rogers and K. Pingali \Process decomposition through locality of reference." InProc. SIGPLAN'89 conference on Programming Language Design and Implementation,pages 69-80, June 1989.[66] C. Salisbury and R. Melhem \Modeling Communication Costs in Multiplexed OpticalSwitching Networks", The International Parallel Processing Symposium, Geneva, 1997.[67] K.Sivarajan and R. Ramaswami, \Multihop networks based on de bruiji graphs," Pro-ceedings IEEE INFOCOM'91, Bal Harbour, FL, pages 1001{1011, April 1991.[68] K.M. Sivalingam and P.W. Dowd, \Latency hiding strategies of pre{allocation basedmedia access protocols for WDM phontic networks," in Proc. 26th IEEE SimulationSymposium, pages 68 { 77, Mar. 1993.[69] J. Stichnoth, D. O'Hallaron, and T. Gross \Generating communication for array state-ments: Design, implementation, and evaluation," Journal of Parallel and DistributedComputing, vol. 21, no. 1, Apr, 1994, pp. 150-159.[70] J. Subhlok, D. O'Hallaron, T. Gross, P. Dinda, J. Webb \Communication and memoryrequirements as the basis for mapping task and data parallel programs." Proc. Super-computing '94, Washington, DC, Nov. 1994, pp. 330-339.[71] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross \Exploiting task and dataparallelism on a multicomputer," Proceedings of the ACM SIGPLAN Symposium onPrinciples and Practice of Parallel Programming, San Diego, CA, May, 1993, pp 13-22.

138[72] S. Subramanian, M. Azizoglu and A. Somani, \Connectivity and Sparse WavelengthConversion in Wavelength-Routing Networks." Proc. of INFOCOM'96, pages 148{155,1996.[73] Stanford Compiler Group \The SUIF Library", Stanford University.[74] A. Sussman, G. Agrawal and J. Saltz, \PARTI primitives for unstructured and blockstructured problems." Computing Systems in Engineering, Vol. 3, No. 4, pages 73{86,1992.[75] R.E. Tarjan \Testing ow graph reducibility." Journal of Computer and System Sci-ences, 9:355-365, 1974.[76] A.M. Vengsarkar \Optical Fiber Devices." Photonic Networks, Springer, Pages 133{140, 1997.[77] A. Venkateswaran and A. Sengupta \On a Scalable Topology for Lightwave Networks."IEEE INFOCOM'96, Vol. 2, pages 4a.4.1|4a.4.8, 1996.[78] X. Yuan, R. Gupta and R. Melhem, \Distributed Control in Optical WDM Networks,"IEEE Conf. on Military Communications(MILCOM), pages 100-104, McLean, VA, Oct.21-24, 1996.[79] X. Yuan, R. Gupta and R. Melhem, "Demand-driven Data Flow Analysis for Com-munication Optimization," Workshop on Challenges in Compiling for Scalable ParallelSystems, New Orleans, Louisiana, Oct. 23-26, 1996.[80] X. Yuan, R. Melhem and R. Gupta \Compiled Communication for All{optical TDMNetworks", Supercomputing'96, Pittsburgh, PA, Nov. 1996.[81] X. Yuan, R. Melhem and R. Gupta \Distributed Path Reservation Algorithms forMultiplexed All-optical Interconnection networks" the Third International Symposiumon High Performance Computer Architecture(HPCA 3), San Antonio, Texas, Feb.1-5,1997[82] X. Yuan, R. Gupta, and R. Melhem " An Array Data Flow Analysis based Commu-nication Optimizer," Tenth Annual Workshop on Languages and Compilers for ParallelComputing (LCPC'97), Minneapolis, Minnesota, August 1997[83] X. Yuan, R. Gupta, and R. Melhem " Does Time Division Multiplexing Close theGap Between Memory and Optical Communication Speeds?" Workshop on ParallelComputing, Routing, and Communication (PCRCW'97), Atlanta, Georgia, June 1997.[84] X. Yuan, C. Salisbury, D. Balsara and R. Melhem, \A Load Balancing Package on Dis-tributed Memory System and its Application the Particle-Particle Particle-Mesh (P3M)Methods." Parallel Computing, Vol. 23, No.19, pages 1525-1544, Oct. 1997.[85] X. Yuan, R. Melhem and R. Gupta \Performance of Multihop Communication Us-ing Logical Topologies on Torus Networks." The Seventh International Conference onComputer Communications and Networks (IC3N'98), Lafayette, Louisiana, 1998.[86] X. Yuan and R. Melhem "Optimal Routing and Channel Assignment for HypercubeCommunication on Optical Mesh-like Processor Arrays." the Fifth International Confer-ence on Massively Parallel Processing Using Optical Interconnections(MPPOI'98), LasVegas, June 1998

139[87] X. Yuan, R. Melham, R. Gupta, Y, Mei and C. Qiao "Distributed Control Protocols forWavelength Reservation and Their Performance Evaluation" Submitted to IEEE trans.on Communications, 1998.[88] H. Zima, H. Bast and M. Gerndt. \SUPERB: A tool for semi{automatic MIMD/SIMDparallelization." Parallel Computing, 6:1-18, 1988.[89] Z. Zhang and A. Acampora, \A Heuristic Wavelength Assignment Algorithm for Mul-tihop WDM Networks with Wavelength Routing and Wavelength Reuse." Proc. IEEEInfocom'94, pp 534-543, June 1994.

