
Scalable Superscalar Processing
bySoner OnderBSc, Middle East Technical University, 1983MSc, Middle East Technical University, 1988

Submitted to the Graduate Faculty ofArts and Sciences in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy
University of Pittsburgh1999

UNIVERSITY OF PITTSBURGHFACULTY OF ARTS AND SCIENCES
This dissertation was presentedbySoner OnderIt was defended onJuly 12, 1999and approved by

Prof. Henry ChuangProf. Guang R. GaoProf. Mary Lou So�aProf. Rajiv Gupta (Committee Chairperson)
ii

Copyright by Soner Onder1999

iii

Scalable Superscalar ProcessingSoner Onder, PhDUniversity of Pittsburgh, 1999In this dissertation, it is demonstrated that there is su�cient parallelism in ordinary pro-grams to scale the issue width of the out-of-order issue superscalar processors provided that pro-cessors employ very large instruction windows and near-perfect dynamic memory disambiguation.The state-of-the-art instruction wake-up and dynamic memory disambiguation techniques are thor-oughly analyzed and it is demonstrated that they do not scale beyond an issue width of 8. Thisdissertation proposes alternative techniques for dynamic memory disambiguation and instructionwake-up mechanisms that scale well upto an issue width of 32.Large instruction windows can be implemented without adversely e�ecting the processorclock using the concept of dynamically generating a dependence graph which is then used to directlywake-up instructions which are shelved in the reorder bu�er. The resulting microarchitecture iscalled the Direct Wake-up Microarchitecture (DWMA). DWMA implements very large instructionwindows with little loss in performance compared to an ideal central window implementation of thesame size. For example, The DWMA processor achieves 84 %, 79 % and 67 % of the performance ofan ideal central window processor at issue widths of 8, 16 and 32 instructions, respectively.The solution to scalable dynamic memory disambiguation is based on a novel memoryorder violation detection mechanism which allows full out-of-order issuing of the store instructionsin the instruction window. As a result, memory dependence predictors which rely only on theprogram counter values to make their predictions can be e�ectively employed without introducingfalse memory dependencies. Using this technique together with the store-set memory disambiguatora processor can achieve 100 %, 96 %, and 85 % of the performance of a processor that embodies a"perfect" memory disambiguator at issue widths of 8, 16, and 32 instructions, respectively.Evaluatation of both the existing techniques as well as the new ones demanded developmentof many simulators. As a result, a new domain speci�c language called Architecture DescriptionLanguage (ADL) has been designed and implemented in a powerful simulation system called theFlexible Architecture Simulation Tool (FAST). FAST has been used to generate all the cycle-levelaccurate simulators required for this thesis.
iv

AcknowledgmentsI am thankful that I had such great parents and two great brothers who have been a constantsource of support throughout my life. My mother with her unparalleled love and undiminishingenergy to support her children, my father for being such an honest man and hence a great role modelfor me, my brothers with their unconditional love and understanding, my deceased grandmother forshowing me the value of having an absolutely pure heart, my lovely wife Nilufer for �nding greatmany ways to support me while she herself was struggling to �nish her Ph.D. and being a greatmother to our daughter at the same time, and our daughter Gunseli for just being herself deservesappreciation that no word in existing languages can express. I am eternally indebted to all of them.I hope that God accepts my wishes for their well-being for I always felt myself more than lucky justfor having them.My special thanks are for my supervisor Prof. Rajiv Gupta. I am greatly indebted for hissupport that extended through many years of work during which I have learned so many things fromhim. We have carried out an exciting work with its ups and downs together. He was always there,ready to give his time to help sort my convoluted pile of thoughts into an organized structure andmake them ideas. These years have been invaluable for me and I will always remember them well.I would like to thank my committee members, Prof. Henry Chuang, Prof. Mary Lou So�aand Prof. Guang R. Gao for giving their precious time and helping me develop this dissertation toits �nal shape. Prof. So�a was always there to listen to me when I needed her advice. Prof. Chuangwas there to answer my questions related to hardware implementations. Prof. Gao's commentsabout the direction of my work has been invaluable. Their kindness will not be forgotten on mypart. I would like to thank Prof. Robert Daley for arranging my RA support during my �rstyear at Pitt. I also would like to thank my friend Dr. Frederick D. Ullman for �nding many manyways to support me from a distance. His friendship and help in guiding me especially during theearly years of my Ph.D. studies have been invaluable.It is also my duty to give due credit to all the good spirited sta� of the Department ofComputer Science of University of Pittsburgh for helping me achieve things quicker and just forbeing themselves so that we simply were able to share our feelings about nice things.As a �nal word, I would like to wish that my colleagues and friends will soon be writingtheir own version of this script. I thank them all for being there.v

Table of Contents
List of Tables . viiiList of Figures . ix1 Introduction . 11.1 Issues in Superscalar Processing . 21.2 Simulation Framework . 61.3 Thesis Organization . 72 Background . 82.1 Available Parallelism . 82.2 Superscalar Processors . 102.3 Data Flow Architectures . 112.4 Data Flow - Von Neumann Hybrids . 122.5 Automatic Simulator Generation from Speci�cation 133 Exploitable Instruction Level Parallelism and Scalability 143.1 Processor Model . 163.2 Model Implementation . 183.3 Results of the Parallelism Study . 183.4 Scalability of Instruction Issue Mechanisms . 203.5 Scalability of Memory Disambiguation Techniques 213.6 Concluding Remarks . 244 Evaluation of Dependence Based Microarchitecture . 254.1 The Wake-up Algorithm . 254.2 The Evaluation . 274.3 The Analysis . 304.4 Performance of DBMA with State-of-the-art Techniques 314.5 Concluding Remarks . 335 Dynamic Data Forwarding . 345.1 The Fan-out problem . 365.2 Dynamic Data Forwarding Graph . 385.3 DDFG Execution . 395.4 DDFG Construction . 395.5 DDFG Performance Evaluation . 405.6 Concluding Remarks . 416 Direct Instruction Wake-up . 426.1 Direct Wake-up Graph . 426.2 The Direct Wake-up Microarchitecture . 456.3 DWG Generation Algorithm . 47vi

6.4 Instruction scheduling . 486.5 Experimental Evaluation . 506.6 Concluding Remarks . 517 Analysis of the Store Set Algorithm . 547.1 The Store Set Algorithm . 547.2 The Evaluation . 567.3 The Analysis . 587.4 Concluding Remarks . 628 Memory Disambiguation with Out-of-order Stores . 638.1 False Memory Order Violations . 638.2 Precisely Detecting Memory Order Violations . 648.3 Delayed Exception Handling and Value Matching . 668.4 Taking Advantage of Value Redundancy . 688.5 Performance Evaluation . 688.5.1 Dynamic Load Latencies. 698.5.2 Instructions Per Cycle. 698.5.3 Scalability With Di�erent Table Sizes . 708.5.4 Reduction of False Memory Dependencies . 738.6 Bypassing Memory Operations . 748.7 Concluding Remarks . 779 Architecture Description Language - ADL . 799.1 Language Overview . 809.2 Microarchitecture Speci�cation . 829.3 ISA Speci�cation . 889.4 Calling Convention Speci�cation . 929.5 Statistics Collection and Debugging . 959.6 Concluding Remarks . 9610 FAST - Flexible Architecture Simulation Tool . 9710.1 Overview . 9810.2 The ADL Compiler . 9910.2.1 Generating the Assembler . 10010.2.2 Generating the Decoder . 10210.2.3 Generating the Disassembler . 10310.2.4 Generating the Simulator . 10310.3 The Debugger . 10310.4 Evaluation of FAST Implementation . 10510.5 Advanced Machine Descriptions . 10710.6 Concluding Remarks . 10811 Conclusions . 10911.1 Improvement in the State-of-the-art . 10911.2 Contributions . 11211.3 Future Research Directions . 113Appendix A Sample ADL Micro Architecture Description . 116Appendix B Sample ADL ISA Description . 122Bibliography . 141vii

List of Tables
10.1 Software Sizes. 10510.2 ADL programs and generated software . 10610.3 Components of the Uni�ed Description . 10710.4 Performance of Various Techniques . 108

viii

List of Figures
1.1 Dynamic percentage of branches separated by a single instruction 31.2 Thesis Contribution in Instruction Window Implementation 41.3 Thesis Contribution in the area of Memory Disambiguation 52.1 Jouppi's Piecewise Linear Superscalar Performance Model 92.2 A Generic Superscalar Processor . 103.1 Superscalar Central Window Processor Model (CW) 163.2 Spec95 Performance as a Function of Window Size 193.3 Spec95 Performance as a Function of Issue Width . 193.4 Scalability of Dependence Based Microarchitecture 203.5 Scalability of No Speculation and Blind Speculation Techniques 213.6 Scalability of Store Set Algorithm . 234.1 Dependence-based microarchitecture . 264.2 Scheduling on DBMA . 264.3 Performance of DBMA and CW 8-Issue Processors 274.4 Performance of DBMA and CW 16-Issue Processors 284.5 Performance of DBMA and CW 32-Issue Processors 284.6 Scalability of Central Window and DBMA . 294.7 Central Window vs DBMA: An Example Schedule. 304.8 Performance of DBMA and CW . 325.1 Handling of data fan-out . 365.2 SSF-2 versus full fanout . 37ix

5.3 Sample code and its DDFG . 385.4 DDFG versus Full Fan-Out 8 and 16 Issue Processors 405.5 DDFG versus Full Fan-Out 16 and 32 Issue Processors 416.1 Example wake-up graph and its schedule. 446.2 The Direct Wake-up Microarchitecture . 466.3 Descriptor Queues Used for the Graph Generation 476.4 Instruction descriptor. 496.5 IPC values for DWMA . 506.6 IPC values for DWMA . 516.7 IPC values for DWMA . 526.8 Scalability of CW and DWMA . 527.1 Store Set Implementation . 557.2 IPC values Store Set and Ideal cases . 577.3 Example spill code and its schedule . 597.4 Normalized Average Dynamic Load Latencies . 607.5 Normalized Standard Deviation Values for Dynamic Load Latencies 617.6 Percentage of Serialized Load Instructions . 618.1 Removing the Store-Store Dependencies . 648.2 Speculative issuing of loads . 658.3 Normalized Average Dynamic Load Latencies . 698.4 Normalized Standard Deviation Values for Dynamic Load Latencies 708.5 IPC values Out-of-order Store Set, Store Set and Ideal cases 718.6 Scalability of Out-of-order Algorithm - Integer Benchmarks 728.7 Scalability of Out-of-order Algorithm - Integer Benchmarks 728.8 Normalized False Memory Dependencies . 738.9 Normalized Counts of Load/Store Instructions Synchronized Through SSIT Table . 748.10 Memory Dependency Collapsing [39] . 75x

9.1 ADL Clock Labeling . 819.2 A Simple Pipelined Processor . 839.3 Example artifact declarations . 849.4 Handling of Hazards. 879.5 Instruction format speci�cation . 899.6 MIPS Load Word Instruction . 929.7 Macro Instruction Example. 939.8 MIPS Calling Convention Speci�cation . 949.9 Language Support for Gathering Statistics . 9610.1 FAST Main Components . 9810.2 Three Steps of Program Simulation . 9910.3 A Portion of Mnemonics Table . 10010.4 Sample ADL Instruction Declaration and Generated Rule 10110.5 Sample Debugger Screens . 10411.1 IPC values for 8-issue CW, DWMA-OOS and DBMA-SSET 11011.2 IPC values for 16-issue CW, DWMA-OOS and DBMA-SSET 11011.3 IPC values for 32-issue CW, DWMA-OOS and DBMA-SSET 11111.4 Performance of CW, DBMA-SSET and DWMA-OOS 111

xi

Chapter 1IntroductionThe last decade have witnessed a silent revolution. Today, with few exceptions, everymicroprocessor that has been produced for the desktop, workstation and server environment is anout-of-order issue superscalar processor. These processors are built with complex instruction fetch-ing, scheduling and issuing mechanisms with each new generation having ever increasing capabilitiesto exploit instruction level parallelism. There are many reasons behind this trend. Chip manufac-turing technologies have made a big leap in their capabilities to put more transistors onto the samechip area. It is already being widely discussed how to best make use of one billion transistors thatwill soon be possible to put on a single chip [53, 35, 62]. However, the advances in manufacturingtechnologies is only one side of the coin. Superscalar processors have been successful mainly becauseof their inherent advantages: (a) they can execute existing code faster without a need for recom-pilation; (b) they can make use of run time information to extract higher degrees of instructionlevel parallelism; and (c) they can make e�ective use of speculative techniques such as aggressiveload, branch and value speculation, all of which can be implemented e�ciently in such a setting.These advantages make out-of-order superscalar processing the most likely architectural choice forthe foreseeable future, well into the next decade.In order to deliver ever increasing amounts of instruction level parallelism, each successivegeneration of superscalar processors is being designed with capabilities to issue more instructionsevery cycle. Today, 4-issue superscalar processors are widely available. Processors that can issueupto 16 instructions are on the horizon, all because of a very simple reason. Delivering higherdegrees of instruction level parallelism requires making the machine wider. This is true even whenone considers the technique of value prediction [34, 36, 28, 9, 69] which can enable dependentinstructions to execute in parallel. Ultimately, it is the number of instructions that a processor canissue simultaneously that puts an upper bound on the performance of the architecture.This trend however brings in two important questions, namely, the issue of available par-allelism and the scalability of existing techniques. It has already been shown by many researchersthat ordinary programs have signi�cant degrees of instruction level parallelism that can be exploitedby the hardware through a number of techniques [20, 8, 35, 53, 47, 70]. However, we need to know if\typical" programs that are the target domain for superscalar processors have su�cient extractableinstruction level parallelism by the out-of-order superscalar processing paradigm. In other words,1

2we would like to know the limits of instruction level parallelism from a superscalar processing per-spective. Once we know that there is su�cient exploitable instruction level parallelism to scale theissue width, we would like to know if existing microarchitectural techniques scale to higher issuewidths to exploit it.As it can be seen, there is a need for changing our approach to evaluating superscalar mi-croarchitecture techniques. We need to ask not only the question of whether or not a new techniqueincreases the performance, but also whether the technique scales as the issue width of the processoris increased. Although some techniques have been evaluated from a scalability perspective in rela-tion to the manufacturing and implementation constraints recently [59], the limitations of existingtechniques as the issue width is increased have not been studied before.1.1 Issues in Superscalar ProcessingOne of the primary goals of this thesis is to establish the necessary foundation for a changeof perspective in superscalar microarchitecture research such that evaluations stress the scalability ofthe techniques. Doing so, this thesis considers three areas of superscalar processing as performancecritical. These are the instruction fetch, memory disambiguation, and instruction wake-up and issueareas. In order to uncover and exploit high levels of parallelism, it is crucial that each of these areashave scalable implementations. Among these, this thesis focuses on the instruction wake-up andissue and memory disambiguation techniques and develops novel alternatives to existing algorithms.Let us now focus on each of these areas, examine the state-of-the-art techniques and briey discussthe contributions of this thesis.Instruction Fetch. In order to issue multiple instructions in each cycle, it is essential that theprocessor possess the capability of fetching a large number of instructions every cycle. This task ismade di�cult by the presence of frequent branches which disrupt the instruction stream. Branchesare problematic for high performance superscalar processors because of two reasons: (a) in a typicalprogram one out of every 4-5 instructions is a branch instruction. In order to issue a large numberof instructions every cycle, multiple branches must be predicted correctly and multiple blocks mustbe fetched and combined; (b) when the instruction stream encounters a taken branch, the remaininginstructions in the cache line are discarded. In other words, misalignment is a signi�cant consumer ofthe instruction fetch bandwidth [48]. In fact, approximately 50 % of the branches on the average inthe dynamic instruction stream in Spec95 benchmarks are separated by only one useful instruction(see Figure 1.1).In addressing the fetch problem, the trace cache mechanism has yielded promising results[61, 17]. Although there is a room for improvement in this area, the trace cache approach is asigni�cant step towards eliminating the fetch bottleneck. Recent work in this area reported thatwith realistic branch prediction using Spec95 integer benchmarks a 16-issue superscalar can achievean IPC of 3.95 and with perfect branch prediction an IPC of 7.6. This �gure is within close proximity

3

go
m

88
ks

im gc
c

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x
in

tA
ve

ra
ge

to
m

ca
tv

sw
im

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d ap
si

fp
pp

p
wav

e5
fp

Ave
ra

ge

0.0%

20.0%

40.0%

60.0%

80.0%

Figure 1.1: Dynamic percentage of branches separated by a single instructionof a perfect fetcher that can deliver an IPC of 9.5 [6]. Therefore, this thesis does not investigate thefetch problem further.Instruction Wake-up and Issue. Superscalar out-of-order processors mimic dataow architec-tures to exploit large amounts of instruction level parallelism. Doing so, they bu�er a large numberof instructions which observe true data dependencies to begin their execution. To uncover high de-grees of instruction level parallelism, a large number of instructions must be continuously examinedfor ready instructions. In other words a large instruction window is needed from which ready in-structions may be found to sustain a steady ow of instructions to the functional units for execution.In fact, the required window size increases quadratically with increasing issue width [47].Implementation of a large instruction window in a superscalar processor, without slowingdown the processor clock, requires better techniques for identifying ready instructions than what areavailable today. This is because fetching and bu�ering a large number of instructions in a processoris by itself not su�cient to derive the bene�ts of a large instruction window. The waiting instructionsmust be woken up at the earliest possible time that they become ready to sustain a high degree ofinstruction level parallelism. In other words, implementation of a large instruction window is madedi�cult by the need for fanning out the wake-up signal to waiting instructions and selecting forissuing the instructions which are ready. When we assume that instructions are woken up by meansof broadcasting, as in a central window implementation, we are faced with signi�cant delays whichoriginate from wire delays, tag matching time as well as the associative logic necessary to implementthe wake-up functionality [49]. These delays increase signi�cantly for high issue widths required toexploit high degrees of instruction level parallelism. This is because the delay of the wake-up logic

4of an instruction window is a function of the window size and the issue width. These delays increasequadratically for most building blocks of the instruction window [49].

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Ideal Window Implementation
DWMA Window Implementation
DBMA Window Implementation

Figure 1.2: Thesis Contribution in Instruction Window ImplementationWhile a number of alternative architectures have been considered to address the wake-up problem [63, 62, 71, 30, 50], existing solutions within the context of out-of-order superscalarexecution paradigm have not produced satisfactory results. Today, e�cient implementation of largeinstruction windows in superscalar processors is an unresolved problem.This dissertation proposes a novel solution to the implementation of large instruction win-dow problem. The solution is based on the novel idea of generating a special form of dataow graphcalled Direct Data Forwarding Graph (DDFG). By generating and consuming such a graph dynami-cally, large instruction windows can be implemented in superscalar processors without slowing downthe processor clock. The wake-up process is achieved by associating explicit wake-up lists with exe-cuting instructions. The wake-up list of an instruction identi�es a small number of instructions thatrequire an operand used and/or the result computed by the instruction for their execution. A designof a microarchitecture, the direct wake-up microarchitecture (DWMA) that implements the wake-upalgorithm based upon dynamic construction of wake-up lists has been designed and evaluated fully.Accomplishments in this area resulted in microarchitecture techniques which out-performthe best non-broadcasting based window implementations such as the Dependence Based Microar-chitecture (DBMA) by Palacharla et al [50]. Simulation results indicate that with contributions of

5

8 16 32
Issue Width

2.0

7.0

12.0

17.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

ideal disambiguator
out−of−order 64K
store set 64K

Figure 1.3: Thesis Contribution in the area of Memory Disambiguationthis thesis, we are a step closer to implementing very large instruction windows at the e�ciency ofideal window implementations. This performance data is illustrated in Figure 1.2.Dynamic Memory Disambiguation. In conventional architectures including superscalar out-of-order issue processors data dependencies manifest themselves in two forms. These are dependenciesthrough registers and dependencies through memory. Because of the limited name space (i.e. num-ber of register names), many false dependencies are imposed by the compiler while expressing thesemantics of the program. These dependencies can be removed easily by employing register renamingtechniques since register names are short names which are fully available as soon as the instructionsare fetched. On the other hand, dependencies through memory are much more problematic. Mem-ory addresses are not available until the address computation has been performed. In many cases,they are arti�cially dependent on the completion of other memory operations. Therefore, renamingof the memory operations cannot be done su�ciently early so that performance is not lost. In orderto handle this problem, superscalar processors may employ load speculation.Load speculation is a technique that allows a superscalar processor to initiate load instruc-tions before all preceding store instructions perform their address computations so that the e�ectof arti�cially imposed dependencies through the memory can be alleviated. However, in order toachieve high performance, load instructions should be held precisely until such time that their issue

6will not cause memory dependence violations but not held any longer than necessary [40]. In otherwords, load instructions should wait for the completion of the store instructions they are dependenton until those store instructions are issued, but not any longer. As a result, for high performance itis essential that an e�ective dynamic memory disambiguation mechanism be provided.Recent innovations in the area of memory disambiguation are Moshovos and Sohi's work[39] and the development of a simple and e�cient speculative memory disambiguator by Chrysosand Emer [10]. These techniques have shown quite promising results. However, detection of memoryorder violations when all instructions including the store instructions are allowed to issue out-of-order becomes particularly di�cult to handle. As a result, existing algorithms impose an ordering ofstore instructions in the instruction window. This results in signi�cant loss of performance especiallyat high issue widths since the processor cannot exploit all the available parallelism because of thesearti�cial dependences.This thesis introduces a novel memory order violation detection mechanism so that fullout-of-order execution can be realized. When applied to the store set algorithm by Chrysos andEmer [10] which is the best performing memory disambiguator to date, the technique out-performsthe original technique at all table sizes and in fact produces IPCs which are very close to the valuesobtained by an ideal memory disambiguator. The performance data for the new technique averagedover Spec95 benchmarks is illustrated in Figure 1.3 where the new algorithm has been labelled out-of-order and the original algorithm has been labelled store set. These results show that given a highbandwidth instruction fetcher and the improved memory disambiguator, a speculative superscalarprocessor can uncover signi�cant amounts of instruction level parallelism over a large instructionwindow.1.2 Simulation FrameworkComputer architecture research is experimental in nature. Within our frame of knowledge,there is no better substitution to analyze the e�ects of hundreds of parameters and design decisionsthat may e�ect performance. As a result, most studies in this area involve signi�cant amount ofcoding, debugging and simulation activities which are performed repeatedly.Contrary to other studies, this thesis has followed a largely unexplored approach to theproblem of microarchitecture simulation. Observing that many variations of microarchitecturaltechniques would be needed, instead of hand-coding a simulator and then going through the error-prone process of modifying it many times, a domain speci�c language called Architecture DescriptionLanguage (ADL) has been designed and its compiler has been implemented [46]. The architectureto be simulated is described in the ADL language, compiled through the ADL compiler to yield anassembler, a disassembler and a cycle level simulator automatically. This is a completely integratedsystem that provides the desired simulators in a short period of time. The ADL compiler and itshost environment have been together named the Flexible Architecture Simulation Tool (FAST).

7FAST system generates highly e�cient detailed execution driven simulators. For a numberof simulated architectures, it has been observed that the generated simulators have simulation speedscomparable to those of hand-coded simulators. Typical simulators have been found to be slower thanhand-coded simulators by less than a factor of two [46].1.3 Thesis OrganizationAs it can be seen, this thesis has made contributions in two related areas of computer sci-ence, namely, the microarchitecture research conducted in the sub-�eld of superscalar processors, andin the programming languages area by developing a domain speci�c language for microarchitecturesimulations in the sub-�eld of domain speci�c languages.The remainder of this thesis is organized as follows. In Chapter 2, a summary of priorwork which are related to the topics in this dissertation is presented. Chapter 3 discusses themethodology used for assessing the scalability of existing techniques. In Chapter 4, the DBMA byPalacharla et al. is analyzed in detail and it is illustrated why this solution does not scale well.Next in Chapter 5, the novel idea of Dynamic Data Forwarding is presented and its performance isanalyzed. Chapter 6, presents the design of the Direct Wake-up Microarchitecture and thoroughlyanalyzes its performance. In Chapter 7, the Store Set Algorithm by Chrysos and Emer is presentedand its performance is evaluated in detail. It is illustrated that new memory order violation detectiontechniques are needed to have full out-of-order store instruction issuing. Chapter 8, gives the novelmemory order violation detection algorithm developed for this purpose.Contributions of this thesis in the �eld of microarchitecture is followed by the contributionsin the area of domain speci�c languages with the presentation of the the Architecture DescriptionLanguage (ADL) in detail in Chapter 9 and its implementation Flexible Architecture Simulation Tool(FAST) in Chapter 10. The thesis concludes with a discussion of the accomplishments and futuredirections in Chapter11.

Chapter 2BackgroundIn this chapter, a review of the topics that are related to the techniques developed in thisdissertation is presented. Since each chapter also includes a brief discussion of the related mate-rial, this chapter has rather been organized to be an overview of the related areas. In Section 2.1techniques that can be used to measure available and exploitable parallelism in programs are dis-cussed. Next, in Section 2.2, a brief history of superscalar processors is presented along with theirbasic principles of operation. Since dynamic data forwarding and direct instruction wake-up areessentially data-ow techniques, a brief review of dataow computing is presented in Section 2.3.Although employing these techniques within the context of superscalar processors will not make theresulting processor a dataow-Von Neumann hybrid, this once quite active research area is relevantand is covered in Section 2.4. Finally, prior work in the area of automatic generation of simulatorsis discussed in Section 2.5.2.1 Available ParallelismAvailable instruction level parallelism in programs has been the focus of attention since ithas been realized that parallel execution of machine instructions is a feasible way to speed-up theexecution of sequential programs. Establishing limits of instruction level parallelism is signi�cant asit may yield bounds on attainable performance by instruction parallel machines.Theoretical modeling of the problem has led to the notion of program parallelism (PP) andmachine parallelism (MP) [27]. According to this de�nition, machine parallelism is de�ned as theproduct of the average degree of superpipelining and the degree of parallel issue. In other words, themachine parallelism is de�ned to be the maximum number of in ight instructions in the executionstages of the processor. Program parallelism is de�ned to be the average speedup when the programis executed on an in�nitely parallel superscalar processor compared to execution on a single issueprocessor.According to the model, instruction level parallelism versus machine parallelism curve isdivided into two linear regions. In the �rst region, the machine parallelism is less than the programparallelism and in the second the machine parallelism is greater than the program parallelism. Thisearly model does not explain the rounding of the actual curve in the transition region. Theobald et8

9
IL

P

Machine Parallelism

theoretical

actual

MP < PP

MP > PP

Figure 2.1: Jouppi's Piecewise Linear Superscalar Performance Model
al. introduce the notion of smoothability of program parallelism [64] based on the observation thatprogram parallelism is never perfectly smooth. A superscalar processor which has an issue widthof n can �nd more than n instructions ready during some cycles and less than n in others. In thisrespect, smoothability is de�ned to be the ratio of the performance with a machine parallelism P tothe performance with in�nite machine parallelism.More recently, Noonburg et al. have presented another theoretical model of superscalarperformance [44]. In this study, the two techniques, namely, Jouppi's model and the notion ofsmoothability are combined together by employing a parallelism distribution function which yieldsbetter prediction of the actual performance of a given setting.The theoretical approach is appealing since simulation studies take a long time. It ishowever di�cult to accurately model the machine parallelism that can be obtained using di�erentmicro-architectural techniques. Adding to the di�culty are the techniques such as branch predic-tion, memory dependence prediction and value prediction. Program parallelism that will be foundunder a in�nitely parallel superscalar processor that employs these techniques will be quite di�erentthan the processor which does not employ them. Di�culty of modeling these program and datadependent techniques make cycle-accurate simulation still the preferred choice. As a result, mostother parallelism studies have been largely experimental. These studies are covered in Chapter 3.

102.2 Superscalar ProcessorsA superscalar processor is a machine capable of issuing multiple instructions in the samecycle from a single instruction stream. Therefore, superscalar processors fetch and decode severalinstructions at a time. The outcomes of conditional branch instructions are predicted to supplyan uninterrupted instruction stream. Once the data dependencies among instructions are decided,instructions are selected for execution based on the availability of their operands rather than theoriginal program order. An instruction is said to issue when it progresses from the fetch stageinto the execution stage. By being able to continue issuing instructions even if earlier instructionscannot be issued, a superscalar machine is capable of performing out-of-order instruction issue. Ageneric superscalar that employs separate oating point and integer instruction bu�ers is shown inFigure 2.2.
in

st
ru

ct
io

n
ca

ch
e

in
st

ru
ct

io
n

bu
ff

er
s

de
co

de
re

na
m

e
di

sp
at

ch

Fl
oa

tin
g

pt
R

eg
is

te
r

Fi
le

in
te

ge
r

R
eg

is
te

r
Fi

le

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

��������
��������
��������
��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���������

��������
��������
��������

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������

Instruction Buffers

Floating Point

pr
e-

de
co

de

Functional
Units
Data Cache

Functional
Units

Integer
Instruction Buffers

M
E

M
O

R
Y

Reorder and CommitFigure 2.2: A Generic Superscalar ProcessorThe ability of a superscalar machine to issue multiple instructions is dependent upon theavailable parallelism in the instruction stream and its ability to look ahead in the instruction stream.The greater the capability of the processor, the better the processor's ability to exploit instructionlevel parallelism.Although superscalar processors are thought to be extensions of reduced instruction set pro-cessors by many, contrary to the RISC approach of early 1980s, superscalar processors are anythingbut simple. Unlike dataow based parallel machines, they rely on complex hardware mechanisms toobserve output and anti-dependences. Most widely used technique for this purpose is the scoreboardmechanism which was �rst used in the CDC6600 machine [66]. Another very important processor hasbeen IBM 360/91 which made use of Tomasulo's Algorithm [68]. Although both of these machineswere limited to issuing a single instruction per cycle, both approaches has played a signi�cant role

11in the design of superscalar processors. Tomasulo's algorithm laid out the essentials for out-of-orderinstruction processing based on data availability in conventional processors.2.3 Data Flow ArchitecturesStatic dataow architecture was based on the original design by Dennis and Misuanas [15].According to Dennis [13], \the guiding principle has been to design hardware systems that would faith-fully implement the semantics of computations expressed as dataow graphs. The original hardwareconcept envisioned instruction templates having spaces to receive the operands of the instructions".In this scheme, a dataow graph is represented as a collection of activity templates, consisting of anopcode for the instruction, operand slots for receiving operands of the instruction and one or moredestination address �elds which contain the addresses of other activity templates that should receivethe result of the instruction. The machine operates by �ring an instruction whenever its operandsare ready (i.e. tokens are present on all of its input arcs), and there is no token on any of its outputarcs. Once the instruction is executed, the machine propagates the computed result to its intendedrecipients, enabling further instructions for execution.Being the very �rst in this �eld, static dataow machine has been challenged in manyrespects. We can group these challenges into two categories, namely, implementability issues andrepresentation related problems. Representation related problems can be listed as the di�culty ofrepresenting multiple contexts such as ordinary recursion, and parallel invocation of loop bodies.Moreover, array handling has not been solved satisfactorily. In general, static dataow machinescannot exploit all the parallelism available in a program. For example, multiple iterations of aloop cannot run in parallel even if there are no loop carried dependences. Implementation relatedproblems were mainly due to the implementation of acknowledgment arcs required by the originaldesign. Acknowledgment arcs limit the parallelism that can be exploited and they double the tokentra�c. In order to handle these shortcomings of static dataow machine, dynamic dataow ma-chines have been proposed. In order to distinguish between multiple iterations of loops, and di�erentfunction invocations, activity names are extended to include an iteration count, and the procedurecontext. A node can be enabled when tokens are present on its input arcs that has the same iden-ti�er (i.e. the same iteration count, and the procedure context). This mechanism eliminated theneed for acknowledgment arcs, however, brought in other implementation problems. For every to-ken generated, the corresponding node must be found based on the tag of the token. This taskrequires a search of waiting templates which is achieved by an associative search. Since this storagemust both be large and fast, it is not practical to implement this storage using content addressablememories. Therefore, all implemented tagged token dataow architectures use some form of hashingmechanism to locate the destination slots, thus requiring a very long pipeline. In general, a longpipeline is not preferred for programs that has limited parallelism. In fact, failure of many dataowmachines to execute sequential and vectorizable code as e�ciently as conventional architectures has

12always formed the basis of criticism for the dataow architectures. Another signi�cant problem withthe tagged token dataow architectures has been the unpredictability of the amount of parallelismavailable in the program. If the parallelism is not controlled, a highly parallel program may run untilall the resources of the machine are exhausted and then deadlock. Another problem with taggedtoken dataow architectures has been the di�culty of deciding a tag size.The above mentioned problems of tagged token dataow architectures led to the designof Explicit Token Store architecture (ETS). According to Papadopoulos [52], the central idea inthe ETS model is that storage for tokens is dynamically allocated in sizable blocks, with detailedusage of locations within a block determined at compile time. Since activation frames are allocateddynamically and explicitly, storage for all tokens will be ready. Mapping of the actual dataow arcsto these locations is performed by the compiler. A token in ETS consists of an instruction pointer(IP), a frame pointer (FP) and a data value. When a token arrives, the tag bits of the destination ischecked. If it is empty, the token's data value is stored in the indicated operand of the instruction.Otherwise, the value is extracted from the location, making it empty and resulting in the instructionbeing �red.ETS has a very important place in the history of dataow based computing. Most of therecent work which concentrated on dataow Von Neumann hybrid solutions uses ideas of ETS. Insection 2.4, these hybrid solutions are discussed.2.4 Data Flow - Von Neumann HybridsCurrent hybrid architectures are usually based on the multi-threading concept and most ofthem try to eliminate the data fan-out problem by replacing the dataow aspect of the computationwith a Von Neumann style store/fetch mechanism. For example, the argument fetch machine pro-posed by Dennis and Gao [14, 18] is dataow from the instruction scheduling point of view, whileinstructions fetch operands from the memory and store computed results into the memory like a VonNeumann machine. This machine later evolved into super actor machine (SAM) [23]. Many otherhybrids do the sequencing at the thread level based on the availability of operands for the threadbut use program counters to execute sequential threads.One of the �rst hybrid machines is the Iannucci's hybrid machine [24]. This machinesupports a cache memory with synchronization control and a hardware mechanism of processorready queues for fast context switching. This machine later evolved into IBM's empire project,which was later abandoned due to non-technical reasons. ETL in Japan [19] and the Sandia NationalLaboratories in the United States are working on multi-threaded machines based on the ETS wayof handling the storage and the tokens.A signi�cant step in the introduction of dataow based multi-threading was the P-RISCidea proposed by Nikhil and Arvind [42]. In a very clear and simple model, they showed how the twofundamental problems in multiprocessing [2], namely the latency and the cost of synchronization,

13can be handled using a simple model of sequential threads, fork, and join operations. The P-RISCidea continues to be an important one and evolved with the implementation of *T machine [43].2.5 Automatic Simulator Generation from Speci�cationTo date, the automatic generation of micro architecture simulators from architecture de-scriptions has been largely unexplored. The notable exceptions are the work of Cook [11] based ona functional programming language called LISAS, Visualization-based Microarchitecture Workbenchby Diep [16], Larsson's work titled Generating E�cient Simulators from a Speci�cation Language[31], the work of Leupers et al. [33] dealing mainly with DSP speci�c applications, and �nally, thework of Ramsey et al. [57] with the New-Jersey Tool Kit.LISAS is used as a speci�cation language for describing instruction set architectures. Thelanguage describes instruction formats, and simple register �les. Semantics of instructions are im-plemented through functions. The language is not capable of describing the microarchitecture of theprocessors.Visualization-based Microarchitecture Workbench generates an application programs in-terface (API) for use with the C++ language. The tool generates the API and the programming isdone essentially in C++ using the API.Ramsey et al. have taken the instruction set representation as a general problem. Usingthe New Jersey Tool Kit, it is possible to rapidly develop system software which deal with theinstruction set architecture of the machine such as linkers and assemblers.Larsson's system can generate a disassembler, and a simulator from a microarchitecturespeci�cation. The presented language is capable of describing the instruction set architecture forautomatic generation of functional simulators but the language is not capable of describing the mi-croarchitecture. An attempt is also made to generate the assembler, but the automatically generatedassembler is a very simple assembler that cannot assemble arbitrary programs. Instead it is usedmainly as a debugging tool.

Chapter 3Exploitable Instruction Level Parallelismand ScalabilityThere are many studies that have tried to establish limits of instruction level parallelismby either assuming a restrictive processor model or models with unlimited capabilities. Earlierstudies in this area mainly assumed restrictive processor models and generally painted a picture thatILP cannot be scaled more than a few instructions per cycle [26, 72]. Later studies incorporatedfeatures such as register renaming, perfect branch prediction and perfect caches and reported moreoptimistic numbers, reaching as high as 60 instructions per cycle [73]. Later, when perfect memorydisambiguation mechanisms were considered, IPCs in the order of several thousands were observed[4]. More recently, register renaming, memory renaming, as well as perfect disambiguation andremoval of compiler induced dependencies through the stack pointer have been considered [55]. Allthese studies indicate that very large degrees of instruction level parallelism is available in theseprograms.These studies however have assumed either a too restrictive processor model or processormodels which are not realizable. Examples of restricted processor models include processor mod-els which assume no memory disambiguation capabilities or processors employing the best branchprediction techniques of their time. Examples of unrealizable processors include processors withunlimited issue capability and unlimited look-ahead.The problem with restrictive processor models is that the established limits of instructionlevel parallelism through these studies become obsolete quickly. Each successive publication an-nounces higher degrees of available instruction level parallelism. Such studies at best provide anindication of the state of the art, and not a limit for the future processors. Unrealizable processormodels represent the other extreme. Since these models have never been meant to be realizable,they can only establish the limits on instruction level parallelism imposed by the true dependenciesin the benchmark programs. Although it is useful to know that benchmark programs have high de-grees of available instruction level parallelism, these studies cannot serve as a baseline for comparingvarious microarchitecture techniques against each other. As a result, none of the previous studieshave been suitable for the goals of this thesis that aims to discover implementable microarchitecturalmechanisms which will allow scaling the issue width of the future processors.14

15In order for a parallelism study to be useful for developing new microarchitectures, thestudy should be based on a realistic processor model with idealized components. Having a realisticprocessor model helps innovation on this model to be carried to real implementations. Using idealizedcomponents on the other hand establishes performance targets for future innovation in individualcomponents. As newer techniques are developed, idealized components can be replaced with realisticones and the model can still serve as a performance limit into the future. More signi�cantly, havingidealized components allows us to study individual realistic techniques without having side e�ects.For example, for a con�guration which is fetch starved, the claims of good performance of instructionissue logic compared to a central window approach will make sense only until such time that abetter fetch mechanism becomes available. On the other hand, a novel instruction issue mechanismevaluated in a machine con�guration where all the remaining components such as the fetch andthe memory disambiguation are ideal can demonstrate the true potential of the technique andthe evaluation of the technique will not become useless with the advances in fetch and memorydisambiguation components.The processor model used in this thesis aims to satisfy the above requirements. It is a su-perscalar out-of-order issue processor with ideal mechanisms. We equip this processor with an idealfetch unit, an ideal memory disambiguator and an issue mechanism based on the central windowmodel. With continuing advances in microarchitecture research and recent promising results [61, 10]it is only a matter of time before we have realistic techniques for the fetch, memory disambiguationand the instruction selection and issue logic with performances closely following that of ideal im-plementations. Since this thesis aims to establish such microarchitectural techniques, this model isquite suitable to the goals of the work.In this chapter, we �rst present a study of exploitable instruction level parallelism in theSpec95 benchmarks by a superscalar out-of-order issue processor. Unlike the prior studies, this studyassumes a robust out-of-order issue superscalar processor model with idealized mechanisms. Doingso, the purpose of this study is two fold. First, we would like to demonstrate empirically that thereis su�cient exploitable instruction level parallelism in programs such as the Spec95 benchmarks toscale the issue width of superscalar processors. Second, we would like to study the relationship ofthe processor's issue width to that of the e�ective window size as prior studies starting with the veryearly ones [29] have well established that for higher degrees of ILP, processors must posses extensiveability to look forward. Finally, by using the ideal processor model as our reference line we wouldlike to demonstrate that existing techniques for the issue logic and memory disambiguation do notscale well. In the following sections, we plug-in each of the best published techniques in these areasinto the processor model and leave the rest of the processor ideal. Results obtained indicate thatthere is a lot of room for improvement in both of these areas.The organization of this chapter is as follows. The realistic idealized processor model usedin the study is given in Section 3.1, and its implementation parameters are provided in Section 3.2.The results of the of the experimental evaluation to measure exploitable instruction level parallelismusing the Spec95 benchmarks are discussed in Section 3.3. Results obtained in this section serve as

16the baseline for the evaluation of the scalability of the instruction issue techniques in Section 3.4 andthe scalability of the memory disambiguation techniques in Section 3.5. The chapter is concludedwith a brief discussion of the implication of the results of the study.3.1 Processor ModelA generic superscalar out-of-order processor model employing a central window implemen-tation illustrated in Figure 3.1 forms the basis for the realistic idealized processor model that is usedin the studies. The machine model has been derived from Tomasulo's algorithm [68]. By selectinga generic out-of-order superscalar processor model as the basis, we can be fairly con�dent that themodel is implementable with realistic components, but with idealized components it represents theperformance limit for the out-of-order superscalar processing technique itself.For studying the exploitable instruction level parallelism, the processor is equipped with anideal fetch unit, a central window for scheduling and functional units with realistic latencies. In thefollowing sections properties of each of the main components of the processor are outlined in detail.When a particular technique is to be studied, corresponding ideal component is replaced with thetechnique being evaluated. The performance of the machine is then compared with the machinethat has all the components ideal. This approach exposes the limits of the particular technique thatis being studied.
ID / Rename

bypass

.................FU2 FUnFU1

IF

IW

TAG

File File

REG

(a) Processor block diagram

Load

Integer division

Integer multiply

Other integer

Float multiply

Float addition

Float division

Other float

2

8

4

1

4

3

8

2

Latency (cycles)Functional Unit

(b) Functional unit latenciesFigure 3.1: Superscalar Central Window Processor Model (CW)

17Instruction Fetch. The fetch unit is a perfect instruction fetcher that fetches a group of instruc-tions upto the processor's issue limit (8, 16, 32 and 64) every cycle and ships them to the ID unit.We provide proper bu�ering between the fetch unit and decode unit, as well as the decode/renameunit and the instruction window so that any number of instructions can travel from one stage to thenext up to the issue limit. The branch prediction is assumed to be perfect, and as long as the ID unithas space to accept instructions, the fetch unit sends the fetched instructions to the ID unit. The IDunit decodes the instructions, renames them and sends them to the instruction window. All resultproducing instructions are renamed and each instruction is allocated a pair of source registers wherethe available data can be copied. In this way, all the dependencies except the true dependencies areremoved. With this approach, the performance of the machine is dependent solely on the windowsize, and all other resources are allocated per window entry.
Instruction Window. The instruction window (IW) is implemented as an associative array ofreservation stations. If one or more operands for an instruction is missing, the instruction waits forthese operands in the IW, until they become available. When all the operands become available orwill become available via the by-pass paths by the time the instruction arrives at the functional unit,the instruction proceeds to one of the functional units. There are issue width number of functionalunits observing the latencies shown in Figure 1(b). At each cycle, upto the issue limit instructionscan proceed to functional units for execution. If the number of ready instructions is greater than theissue limit, older instructions are issued before the newer ones, following an oldest-�rst policy. Thereare su�cient buses to propagate the results from the functional units to all the destinations withoutdelays. Proper bypassing of results to the functional unit inputs is provided so that a dependentinstruction can start execution in the cycle immediately following the cycle in which a result isproduced. For example, two integer instructions where one is truly data dependent upon the otherwill execute in successive cycles.
Functional Units. Functional units are symmetrical fully pipelined units and each can accepta fresh instruction every cycle. The memory subsystem has su�cient number of ports so thatport contention is not a problem. An ideal data cache is simulated with unit access time. Loador store instructions may be executed out-of-order as the load store unit does perfect memorydisambiguation. We do not however equip this processor with unit latencies. Although there isalways the possibility that innovation may reduce functional unit latencies, functional unit latencieshave remained relatively constant over the course of last two decades. Assuming unit latencies inthe model would shift the processor model towards an unrealizable one, and would adversely e�ectthe results of the studies related to the performance of the issue window techniques.

183.2 Model ImplementationAn implementation of the processor has been described for the MIPS ISA using the ADL[46] language and the simulators have been generated from these descriptions automatically. Thesesimulators have then been used to execute the Spec95 integer and oating point benchmarks. Spec95benchmarks have been compiled using gcc version 2.7.0 with the optimization ags -O3 to generateMIPS code which were then linked with GNU C library version 1.09.1.Since detailed cycle-level simulations take a considerable amount of time, one commonapproach is to execute benchmarks until a speci�ed number of instructions are executed. However,in a study employing large windows it is more important to capture the behavior of completeprograms. Therefore, the Spec95 test inputs have been used and programs have been executed untilcompletion. However, in a few cases which have intolerably long simulation times, the input datasets have been modi�ed so that a smaller set of data is processed. For example, 099.go plays thegame on a 6x9 board, and 104.hydro2d solves a problem of 1/5-th the original size. The instructionsper cycle (IPC) �gures have been based on the total number of instructions retired and the totalnumber of cycles spent to execute the program (retired/cycles).3.3 Results of the Parallelism StudyThe machine described in the previous section has been simulated across the Spec95 bench-marks for the issue widths of 8, 16, 32 and 64 instructions. For each issue width, the window size hasbeen doubled starting with the issue width until a window size of 8192 instructions, yielding a totalof 684 runs. The harmonic means of the Spec95 benchmarks at each issue width/window size com-bination have been computed and summarized in Figure 3.2. As it can be seen from this graph, veryhigh degrees of instruction level parallelism can be exploited by using an idealized out-of-order issueprocessor with these programs. More signi�cantly however, at each issue width, the performancegains taper o� only after instruction window size reaches to roughly the square of the issue width.It is easy to see that for high performance, the instruction window size must grow quadratically asthe issue width is increased. With the provision that the instruction window size is set to at leastto the square of the issue width, almost a linear speed-up is possible as the issue width is increased(see Figure 3.3).We have illustrated that with proper disambiguation, out-of-order issue superscalars canmake use of very large instruction windows. For maximal performance, the instruction window sizemust be at least as large as the square of the issue width of the processor. In other words, thee�ective window size is a quadratic function of the issue width of the processor. To the best of theauthor's knowledge, this study is the �rst such study to establish experimentally that the instructionwindow of a superscalar processor must grow quadratically in order to provide high performance.Since a central window approach is based on a broadcast and select mechanism, it cannot be used

19

0

5

10

15

20

25

30

4 16 64 256 1024 4096 16384

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Window size

Effect of window size on available parallelism

8-issue
16-issue
32-issue
64-issue

Figure 3.2: Spec95 Performance as a Function of Window Size

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Issue width

IPC versus issue width

window-size=issue-width**2

Figure 3.3: Spec95 Performance as a Function of Issue Width

20to handle the instruction wake-up requirements of such large instruction windows. We thereforeexamine alternative means for implementing such large windows.3.4 Scalability of Instruction Issue MechanismsA number of alternative architectures have been considered to address the wake-up problem[63, 62, 71, 30, 50]. Among these, only the approach taken in the design of the dependence basedmicroarchitecture (DBMA) [50] proposes a solution to the wake-up problem in the context of aconventional superscalar architecture that is of reasonable complexity in comparison to a centralwindow processor. DBMA uses a set of FIFOs, equal in number to the issue width, to implement theinstruction window. Since the architecture only needs to check the instructions at the heads of theFIFOs, it can bu�er a large number of in-ight instructions without increased hardware complexity.

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW
Dbma

Figure 3.4: Scalability of Dependence Based MicroarchitectureThe published results on DBMA indicate that the architecture provides performance verycompetitive to that of a central window, yet the mechanism has greatly reduced complexity [50].Unfortunately, the original evaluation used a non-aggressive memory access mechanism that doesnot perform load speculation. After verifying that published performance of the algorithm can bereplicated in our test bed, the algorithm was evaluated using the realistic ideal processor modeloutlined in the previous sections. In other words, only the central window based issue logic of theprocessor has been replaced with an implementation of the DBMA. The Spec95 benchmarks werethen executed under the DBMA processor and the harmonic mean IPC for the Spec95 suite wascomputed at issue widths of 8, 16, and 32. It was found that at an issue width of 8, DBMA can

21provide about 54 % of the IPC of CW. At an issue width of 16, the performance drops to 48 % andat an issue width of 32 it further diminishes to 43 %. The scalability data for the DBMA processorhas been summarized in Figure 3.4. These results clearly indicate that there is a great need fordevising a superior instruction wake-up and issue mechanism.3.5 Scalability of Memory Disambiguation TechniquesIn order to get high performance, out-of-order superscalar processors must issue load in-structions as early as possible without causing memory order violations. Without the provision ofe�ective memory disambiguation, bene�ts of providing a large instruction window cannot be har-vested. This is because most dependency chains start with a load operation. When the leadingload instruction in such a chain is delayed, the whole chain is delayed which results in signi�cantloss of parallelism. To illustrate the point, the performance of three techniques that deal with thescheduling of load instructions were studied. These are, no load speculation, blind speculation andload speculation based upon the store set memory dependence predictor [10].

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW
Blind Speculation
No Speculation

Figure 3.5: Scalability of No Speculation and Blind Speculation TechniquesNo Speculation. When a processor employs no load speculation, it checks all prior store addressesagainst the address of a pending load. When there are no prior stores with a matching address, theload instruction is allowed to issue. On the other hand, if there is an address match and the storedata is not ready the issuing of the load is delayed. Depending on the processor implementation,the processor may elect not to issue a load instruction even when the store data is ready in order toreduce by-passing hardware that would be necessary. In these implementations the load instruction

22simply waits until the store completes. In this study, it is assumed that when the store instructionhas both its address and the data value ready, the load instruction is allowed to issue and obtain itsdata value directly from the unissued store instruction.Please note that this scheme requires all prior store addresses to be known before a loadinstruction can compare its address against the prior store instructions. This is a signi�cant problemwith schemes that do not perform load speculation since it results in unnecessary delaying of loadinstructions because of unrelated store instructions. In a superscalar processor which employs a largeinstruction window the possibility of having at least a few store instructions with unknown storeaddresses is quite high. As a result, this scheme can exploit very limited amounts of instructionlevel parallelism. In most cases, no parallelism across loop iterations is exploited even when theloop iterations are completely independent. The results of simulations for no speculation case isillustrated in Figure 3.5. These results con�rm the �ndings of earlier studies that the load/storeparallelism provides little performance gains, and the benchmark programs do not have su�cientinstruction level parallelism to issue more than a few instructions per cycle [25].The performance data shown in Figure 3.5 indicates that no-speculation mechanism canprovide only a fraction of the performance of the ideal disambiguator and does not scale as theissue width is increased. At an issue width of 8, no-speculation mechanism achieves about 42 % ofthe performance of the ideal disambiguator. At an issue width of 16, it can provide only 26 % ofthe performance of the ideal disambiguator. Finally, at an issue width of 32, a mere 16 % of theperformance of the ideal disambiguator is obtained.Blind Speculation. Observing that too much parallelism is lost because of the strict requirementof prior store addresses to be known, an alternative scheme is to allow issuing of load instructionswhenever their register data dependencies are satis�ed even when there are prior store instructionswith unknown addresses. Since the load instructions are allowed to issue speculatively, store instruc-tions check formemory order violations as they are issued. A memory order violation is a violation ofa read after write dependency through the memory. When such a violation is detected, the executionis restarted beginning with the load instruction that has obtained the wrong value. Performanceof the blind speculation at various issue widths is illustrated together with the performance of nospeculation in Figure 3.5. Blind speculation achieves 52 %, 33 % and 21 % of the performance ofthe ideal disambiguator for 8, 16 and 32 issues respectively.As it can easily be seen, blind speculation can help boost the performance of the machine,but it also does not scale. As opposed to no speculation technique which looses too much paral-lelism because of unnecessary delaying of load instructions, the blind speculation looses too muchparallelism because of too many memory order violations. It is clear from this experimental datathat without the provision of e�ective load speculation that does not cause frequent memory orderviolations there is no point in establishing large instruction windows, or increasing the issue widthof the machine.

23Store Set Memory Disambiguation. E�ective load speculation without causing excessive restartscan be accomplished by using a memory dependence predictor to guide instruction scheduling. Bycaching the previously observed load/store dependencies, a dynamic memory dependence predictorguides the instruction scheduler so that load instructions can be initiated early, even in the presenceof a large number of unissued store instructions in the instruction window. A number of such tech-niques have been developed yielding increasingly better results [21, 40, 39]. More recently, store setalgorithm by Chrysos and Emer [10] out-performed all prior mechanisms yielding performance closeto that of an ideal disambiguator at an issue width of 8.

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW
Store Set

Figure 3.6: Scalability of Store Set Algorithm
This algorithm has been implemented and compared against the baseline processor CW.The performance of the store set algorithm as a function of the issue width is illustrated in Figure 3.6.As it can be seen from this graph, the algorithm closely matches the performance of the idealdisambiguator at an issue width of 8, but starts to loose performance afterwards. The algorithmprovides 96 %, 81 % and 62 % of the performance of the ideal disambiguator at issue widths 8, 16and 32 respectively. As it can be seen, for high performance, an e�ective memory disambiguationmechanism must be provided. Only with an e�ective memory disambiguation mechanism, the truepotential of out-of-order issue superscalars can be unravelled. In this respect, the store set algorithmprovides good memory disambiguation performance upto a certain issue width, but does not scalewell afterwards. As a result, there is great room for improvement in this area.

243.6 Concluding RemarksIn this chapter an evaluation of the exploitable instruction level parallelism in the Spec95benchmarks using a superscalar out-of-order processor model has been presented. Unlike the priorstudies, the utilized model is a realistic ideal superscalar model and it is not tied to a particularimplementation. This model enabled us to study the true performance potential of each of theevaluated techniques. In the following chapters, the same baseline processor is used to assess thee�ectiveness of various microarchitectural techniques for the instruction selection and issue, andmemory disambiguation techniques.While it has been illustrated that the existing techniques of memory disambiguation andinstruction issue techniques do not scale, the question of why that is the case has not been addressedin this chapter. In Chapter 4, we study the DBMA algorithm in detail and present the reasons forthe poor performance of the algorithm. Alternative implementations of the issue window is given inChapters 5 and 6. Similarly, the store set algorithm is evaluated extensively in Chapter 7 and agreatly improved disambiguator is presented in Chapter 8.

Chapter 4Evaluation of Dependence BasedMicroarchitectureThe wake-up algorithm proposed by Palacharla et al. in [50] attempts to reduce the com-plexity associated with large instruction windows that is demanded by high performance superscalararchitectures of the future. The motivation for the design of the wake-up algorithm is the di�cultyof scaling a large central window to host many in-ight instructions [49]. The study di�ers fromprior studies in its unique approach to use explicit instruction dependencies for instruction wake-upand scheduling. Nevertheless, as it has been illustrated in Chapter 3, the algorithm's performanceis far from ideal with aggressive load speculation using a memory dependence predictor and thereis signi�cant room for improvement. In this chapter, a thorough analysis of the underlying reasonsfor the loss of performance is presented.The organization of the chapter is as follows. First, in Section 4.1, a detailed summaryof the algorithm is presented along with the implementation of the algorithm in the dependencebased microarchitecture (DBMA). Next in Section 4.2, detailed experimental evaluation of DBMAis presented. In Section 4.3, reasons for the poor performance of the algorithm are analyzed. Theperformance of the algorithm using state-of-the-art techniques available today is presented in Sec-tion 4.4. Finally, a brief discussion of the results is presented in Section 4.5.4.1 The Wake-up AlgorithmThe wake-up algorithm proposed by Palacharla et al. in [50] is based upon the observationthat if a set of instructions form a dependence chain, then the wake-up mechanism only needs toexamine the �rst instruction in the chain since the other instructions can never be successfully wokenup before the �rst instruction. Once the �rst instruction has been woken up, the next instructionin the chain should be considered by the wake-up mechanism. An architecture that exploits thisobservation, called the dependence based microarchitecture (DBMA), was designed and evaluated in[50]. The pipeline of the DBMA microarchitecture is shown in Figure 4.1. This architecture pro-vides a set of FIFOs that decouple the instruction fetch from instruction execution. The dependence25

26
Fe

tc
h

D
ec

od
e

St
ee

r
R

en
am

e

W
ak

eu
p

Se
le

ct

R
eg

is
te

r
Fi

le

B
yp

as
s

D
at

a-
C

ac
he

FIFOS

FETCH DECODE
STEER SELECT

REG READ
ACCESS COMMIT

REG WRITE
BYPASS

EXECUTEWAKEUPRENAME DCACHEFigure 4.1: Dependence-based microarchitecturechains are dynamically identi�ed and instructions belonging to a chain are steered into a FIFO queueby the rename-steer stage. The number of queues is equal to the issue width. Only the instructionsat the queue heads are monitored for operand availability and are thus candidates for being wokenup. The availability of an operand is indicated by the setting of a bit in a table called the reservationtable. The complexity of the wake-up mechanism is proportional to the number of queues, that is,the issue width of the processor.
4

3 2

1
3 2 1

4

(a) Dependence Graph (b) FIFO ContentsFigure 4.2: Scheduling on DBMALet us consider the algorithm for steering instructions into FIFOs in greater detail. In-structions are steered as they are fetched to one of the queues by observing dependencies amonginstructions. Since dependent instructions cannot execute in parallel, a dependent instruction issteered behind the instruction on which it depends. Multiple instructions may require the sameoperand value, and thus can be dependent on the same producer instruction. In this case the �rstdependent instruction is scheduled behind the producer. However, additional dependent instruc-tions are steered to empty FIFOs. By doing so, this heuristic allows all instructions dependent uponthe same producer to be initiated simultaneously once the producer instruction makes the operandavailable. This aspect of the steering heuristic is crucial to its performance. If an instruction cannotbe placed in any queue according to the above criteria, the fetching and decoding is stalled till aqueue becomes available.The DBMA scheduling process is illustrated in Figure 4.2. In this example, the processorfetches instructions 1,2,3 and 4 in that order. Dependencies of these instructions are shown inFigure 4.2a. When the �rst instruction is fetched, it is put into an empty FIFO. When instruction

272 is encountered which is dependent on instruction 1, the instruction is put behind instruction 1.Next, the processor fetches instruction 3. Since instruction 3 is dependent on instruction 2, it isplaced behind instruction 2. Finally, when instruction 4 is fetched the processor cannot put it behindinstruction 1 as there is already an instruction there. As a result, the new instruction is steered toan empty FIFO.With the above steering of instructions into the FIFOs, when instruction 1 completes bothinstruction 2 and 4 will be at the heads of the FIFOs and they can start executing in parallelprovided they have only one missing operand. Please note that if a new instruction is fetched thatis not dependent on either instruction 3 or instruction 4 the decoding has to stall until an emptyFIFO becomes available.4.2 The EvaluationPalacharla et al. carried out an evaluation of the above wake-up mechanism by comparingits performance with a central window implementation. The central window implementation em-ployed the same basic pipeline except for the wake-up and issue stages. They demonstrated thatthe IPCs obtained by the DBMA microarchitecture were within a few percent of the central windowbased architecture. The baseline processor used in the above evaluation employed an instructionfetch unit that was based upon McFarling's gshare [37] branch predictor. Furthermore, memorydisambiguation was dealt with by issuing a load instruction only after memory addresses of all priorstores were known.

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0
CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(a) 8 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(b) 8 Issue - Floating point BenchmarksFigure 4.3: Performance of DBMA and CW 8-Issue Processors

28

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0 CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(a) 16 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0 CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(b) 16 Issue - Floating point BenchmarksFigure 4.4: Performance of DBMA and CW 16-Issue Processors

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0

CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(a) 32 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

CW gshare no load speculation
DBMA gshare no load speculation
CW ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation
DBMA ideal fetch ideal disambiguation infinite queues

(b) 32 Issue - Floating point BenchmarksFigure 4.5: Performance of DBMA and CW 32-Issue Processors

29Using similar processor con�gurations, the published performance of the DBMA has beensuccessfully replicated. Although not evaluated in [50], the oating point benchmarks have alsobeen evaluated and they showed similar behavior. Also, while the original study has assumed unitlatencies, realistic latencies outlined in Figure 1(b) have been utilized in the evaluations. The resultsof simulations for issue widths 8, 16 and 32 are shown in Figure 4.3, 4.4 and 4.5 respectively. Asit can easily be seen, DBMA matches the performance of the central window processor when it isequipped with a regular fetch unit based on the gshare [37] branch predictor and the processor doesnot employ load speculation (see CW/DBMA gshare no load speculation cases). In these �gures,IPCs for DBMA are typically within 10% of the central window processor.

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW ideal fetch ideal disambiguator
DBMA ideal fetch ideal disambiguator

(a) Integer Benchmark Harmonic Means 8 16 32
Issue Width

0.0

5.0

10.0

15.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW ideal fetch ideal disambiguator
DBMA ideal fetch ideal disambiguator

(b) Floating Point Benchmark Harmonic MeansFigure 4.6: Scalability of Central Window and DBMAHowever, when dynamic memory disambiguation is employed, the performance of DBMAbecomes signi�cantly worse (see CW/DBMA ideal fetch ideal disambiguation cases). With mostbenchmarks, DBMA scores well below CW providing below 50% of the performance of the centralwindow. The overall trend in these cases are further summarized in Figure 4.6(a) and (b). These�gures clearly show that as the issue width is increased the performance of DBMA in relation tocentral window drops even further. The gap between the two architectures is notably larger in caseof oating point benchmarks which require larger instruction windows to hide the latency of theoating point operations so that a high IPC can be delivered. Overall, the results of this studyshow that the DBMA wake-up mechanism typically provides half the IPCs of those achievable bythe central window mechanism.

304.3 The AnalysisNext we discuss the reasons for the loss of performance that was observed for the DBMAwake-up algorithm. To uncover high degree of instruction level parallelism, as is needed for wideissue processors, we need to examine an increasingly larger number of instructions [47]. The windowof instructions over which parallelism can be detected by the DBMA mechanism can be limited intwo situations. If the FIFOs are full, the fetching would be stalled and no more parallelism wouldbe detected. If the instruction steering algorithm requires additional empty FIFOs to proceed, andnone are available, it must stall until some FIFOs become empty.The performance of DBMA assuming that the FIFOs have unlimited lengths was studied.The results of this experiment are indicated by the data point dbma ideal fetch ideal disambiguatorin�nite queues in Figure 4.3, 4.4 and 4.5. As we can see, providing longer queues does not resultin any performance improvement. From further analysis it has become clear that the performanceof the DBMA architecture was limited by the number of queues. In other words the performanceof the design which limits the number of queues to the issue width and uses the proposed steeringalgorithm, does not scale to high issue widths.
DIV R3,R16,R17
LW R4,0(R3)
ADD R5,R4,R8
XOR R8,R5
SLL R9,R5,1
OR R10,R5,R4
MUL R12,R3,R2
SUB R11,R5,R4

(a) Sample code

(b) Dependence graph

DIV

MULLW

ADD

XOR SLL OR SUB

LW R4,0(R3)

R3,R16,R17DIV

ADD R5,R4,R8

XOR R8,R5,R6

SLL R9,R5,1

OR R10,R5,R4

MUL R12,R3,R2

SUB R11,R5,R4

(d) Schedules

DIV

MUL

LW

ADD

XOR

SLL

0 8 10 11 12 13 18Clock cycle

C
entral W

indow
 Schedule

OR

SUB

Functional Unit Latency(cycles)

Other integer

Integer multiply

Integer division

Load

(c) Funtional Unit latencies

2

8

6

1

DIV

LW

ADD

XOR

SLL

OR

MUL

SUB

D
B

M
A

 Schedule

Cycle 13

DIVADD

SLL

LWXOR

C
ycle 11

C
ycle 10

C
ycle 8

C
ycle 0

C
ycle 12

C
ycle 13

SUB

OR

MUL

XOR

SLL

ADD

SLL

XOR

LWADDXOR

SLL

Figure 4.7: Central Window vs DBMA: An Example Schedule.

31A frequently arising scenario which causes the DBMA to lose performance is illustrated inFigure 4.7. This example also motivates the solution to the wake-up problem which is presentedin Chapter 6. Consider the code sequence and its dependence graph as shown in Figure 4.7(a)and Figure 4.7(b). Assuming that no delays are introduced due to fetching of instructions, thiscode sequence when scheduled on a central window processor of two functional units executes in13 cycles as shown in Figure 4.7d. The schedule begins with the issuing of the DIV instruction.Upon its completion, at the beginning of cycle 8, the LW and MUL instructions are issued. Thecompletion of the LW enables the issuing of the ADD instruction at cycle 10, and at cycle 11 all theremaining instructions become ready. Assuming that the processor selects and issues the two oldestinstructions XOR and SLL �rst, the execution concludes with the scheduling of OR and SUB at cycle12. Now consider the scheduling of the same code sequence on the DBMA which contains twoFIFOs corresponding to the two functional units. The �rst four instructions (DIV, LW, ADD, XOR)are fetched and successfully steered into the �rst FIFO as they form a dependence chain. The �fthinstruction, SLL, is steered to the empty queue since it is dependent upon the ADD instructionin the �rst queue and the ADD instruction already has a dependent instruction (XOR) behind it.The sixth instruction, OR, is also dependent on the ADD instruction and requires an empty queue.However, since there is no empty queue available, the fetching and steering stalls. At cycle 12 emptyqueues are available and therefore the OR instruction can be steered to an empty queue and as aconsequence now the MUL instruction can also proceed to an empty queue. Even though now theMUL instruction can be issued, its issuing in comparison to the central window schedule has beensubstantially delayed. Being a long latency operation, the delay in the scheduling of MUL extendsthe schedule to 18 cycles.In summary, the above example illustrates that if the DBMA runs out of available queues,fetching of further instructions stalls and thus instruction window over which the DBMA can uncoverinstruction level parallelism is severely limited. It should be noted that if non-aggressive fetch andmemory disambiguation mechanisms had been employed, delays introduced due to them would haveslowed down the central window schedule as well and the performance of DBMA and central windowwould be comparable. This is essentially what led to the observed experimental results presentedearlier.4.4 Performance of DBMA with State-of-the-art TechniquesIn Chapter 3, it had been shown that when an e�ective memory disambiguation is notemployed, the set of instructions which can execute in parallel is severely limited. As a result, theinstruction issue window cannot extract parallelism regardless of the instruction wake-up and issuetechnique that is used. In such cases, an inferior scheme may show performance as good as a superiorscheme, since the superior scheme cannot utilize its full potential because of other bottlenecks in theprocessor.

32

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
CW gshare fetch store set disambiguator
DBMA gshare fetch store set disambiguator

(a) 8 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
CW gshare fetch store set disambiguator
DBMA gshare fetch store set disambiguator

(b) 8 Issue - Floating point BenchmarksFigure 4.8: Performance of DBMA and CW
Since an ideal memory disambiguator cannot be used in a real implementation, in thissection we evaluate the performance of the DBMA using the state-of-the-art instruction fetch andmemory disambiguation techniques. For this purpose, we utilize an aggressive fetch mechanismbased on McFarling's gshare predictor that can fetch multiple blocks every cycle by performingmultiple branch predictions. For memory disambiguation, we employ the store set algorithm [10].Both the CW processor and the DBMA processor with these settings are perfectly realizable today.The results of the simulations for an 8 issue processor are shown in Figure 4.8. As it can beseen easily, previous results that we obtained using an ideal fetcher and an ideal disambiguator hold,although with some di�erences. In general, integer benchmarks have lower branch prediction ratesthan the oating point benchmarks. Because of excessive branch misprediction initiated roll-backs,the central window processor cannot as e�ectively establish a full large instruction window over whichit can exploit high degrees of parallelism. Therefore, DBMA shows better relative performance withthe integer benchmarks. On the other hand, oating point benchmarks have both better branchprediction rates and they require exploitation of high degrees of instruction level parallelism in orderto yield high IPC values. This is because in order to hide the latency of oating point operations alarge number of in-ight instructions is needed. Since DBMA cannot look-ahead as farther as thecentral window processor if performs signi�cantly worse in case of oating point benchmarks. Withthese results, it has been demonstrated that the DBMA approach is severely limited with either thecontemporary techniques as well as using fetch and memory disambiguation techniques that may bedeveloped in the future.

334.5 Concluding RemarksUse of the dependence information to guide the instruction scheduling is a signi�cantstep towards reduced complexity and increased performance. Unfortunately, because the originalevaluation made use of a model which was severely limited, the algorithm's claim of high performancewith reduced complexity became false one year after its publication with the advances in memorydisambiguation. This event clearly shows the bene�ts of using an evaluation methodology whichmakes use of a realistic, yet idealized processor model. These results at the same time show thatthe so called window size problem has not been solved.In Chapter 5, we develop a novel graph representation for encoding the instruction depen-dencies that can be dynamically generated from ordinary RISC code. A simple microarchitecturethat can make use of such a graph for e�cient waking-up of blocked instructions is presented inChapter 6. It is experimentally demonstrated that use of such explicit wake-up graphs is not proneto the limitations of the DBMA approach, yields high performance and is highly scalable.

Chapter 5Dynamic Data ForwardingContemporary superscalar processors are out-of-order issue processors which do not blockinstruction issue as long as it is possible. When the processor encounters an instruction whoseoperands are not yet ready, the blocked instruction is forced to step aside, paving the way for theready instructions to �ll-in the pipelines. These blocked instructions are later executed dataowstyle once the required result becomes available.As it has already been demonstrated in Chapter 4, the ability of the processor to look aheadas far as possible while communicating the newly produced results to the blocked instructions at theearliest possible time is crucial for extracting high degrees of instruction level parallelism. Ideally,all the instructions waiting for the result should be able to utilize the data value at the beginning ofthe next cycle. On the other hand, sending the data value to potentially all the instructions in theinstruction window requires a broadcast and selectmechanism. For these reasons, most contemporarysuperscalar processors implement the instruction window in some form of associative memory whereinstructions monitor common data buses for the data values they need by matching their tags tothose broadcast on the bus [68]. Although this is an e�cient mechanism enabling back-to-backexecution of dependent instructions, for very large windows the mechanism is not feasible becauseof the increased hardware complexity [49].An alternative mechanism to the currently employed instruction wake-up techniques insuperscalar processors is to store the blocked instructions in random access memory and to wake-up these instructions through direct matching [52]. Since the instructions would reside in ordinaryrandom access memory, it would be possible to implement very large instruction windows e�cientlyusing this technique.Direct matching has been studied extensively in the context of dataow architectures byPapadopoulos and Culler [51, 52]. On the other hand, the form of direct matching used in dataowprocessors cannot be readily applied in the context of out-of-order superscalar processors. Beforedirect matching can be used in the context of a superscalar processor, a number of issues need tobe addressed:1. In order to use direct matching, an explicit dataow graph must be stored and maintained inthe processor. In case of dataow processors this graph is encoded in the instruction stream34

35whereas superscalar processors utilize instruction sets that make use of implicit communicationthrough register names. Therefore, the dataow graph must be generated dynamically usingregister names.2. Unlike the dataow processors, most superscalar processors deal with general purpose codethat has low to moderate parallelism. This type of code is very sensitive to any delays in thepropagation of values.3. The data fan-out problem is a serious problem in a superscalar setting. When the graph isgenerated dynamically, there is no way of knowing how many destinations a value should beforwarded to in advance. The number of uses of a value is arbitrary and may assume any valuebetween one and the window size. Distributing a result to multiple memory locations rapidlyrequires many ports which may result in slowing down the clock.Among the above issues, the solution to the data fan-out problem holds the key to therest. Without having a �xed number of destinations per instruction, dynamic generation of thedataow graph from ordinary RISC code is largely unmanageable in the hardware. Similarly, theneed to initiate dependent instructions in successive cycles has to be handled as a subproblem ofdata fan-out.In order to address these problems, a novel data-fanout mechanism has been developed.This data fan-out mechanism assumes a �xed number of def-use edges and a �xed number of use-useedges per instruction. The fan-out is handled using the def-use edges �rst. Once the �xed limitis reached, additional uses are satis�ed through use-use edges of consumer instructions. In otherwords, instructions which are being woken-up are used as stepping stones to waking-up furtherinstructions. This form of data forwarding is called source-to-source forwarding and a dataowgraph dynamically computed from a conventional instruction stream in this respect is called theDynamic Data Forwarding Graph (DDFG). The semantics of DDFG can easily be implementedusing direct matching and unlike the prior direct matching techniques [74, 51], the graph does notlimit parallelism or introduce additional instructions to carry out data propagation.In the remainder of the chapter, in Section 5.1, the existing solutions for the fan-out problemand the reasons they are inadequate for a superscalar setting are discussed and the novel solutionof source-to-source forwarding are presented. The dynamic data forwarding graph is introducedformally in Section 5.2, which is followed by the presentation of the execution semantics of thegraph in Section 5.3 and the construction algorithm from RISC code in Section 5.4. Finally, inSection 5.5, it is illustrated that the use of a DDFG provides competitive performance to that of adata distribution/wake-up scheme that assumes full fan-out capability such as the central instructionwindow.

365.1 The Fan-out problemThe fan-out problem is the representation and the implementation of the ow of valuesfrom their producers to their consumers. There are mainly three approaches to the problem. Theseare: (a) Providing varying size destination lists; (b) Assuming a �xed fan-out per instruction andimplementing the required fan-out by inserting identity instructions; and (c) Assuming a �xed fan-out and blocking the instruction issue if issuing the new instruction will cause the fan-out limit tobe exceeded (DTS [74]). Alternative ways of implementing the fan-out has been �rst demonstratedby Kenneth Todd [67]. Early dataow machines employed the varying length lists approach (TTDA[3]) whereas later dataow machines employed the identity instruction approach (ETS [51]).Using a varying length list is not suitable for superscalar processors since varying lengthlists are di�cult to manage e�ciently in the hardware. Similarly, the blocking algorithm (DTS [74])is not suitable since it severely limits the parallelism that can be exploited. Finally, insertion ofidentity instructions is not desirable for superscalar processors since the need for a large data fan-out occurs when the instruction window becomes full. Insertion of identity instructions dynamicallywould �ll-up the instruction window, resulting in reduced e�ective window size and consumingvaluable functional unit bandwidth to execute the identity instructions.The developed solution uses the novel idea of source operand to source operand forwarding(SSF). Like ETS, we assume a �xed fan-out, but we give the capability to forward data to the sourceoperands of the instructions as well. When an instruction executes, it sends its source operands totheir next uses, as well as its result. Figure 5.1 illustrates the ow of the values of x and y for varioustechniques.
I1: x=c + const

I2: y=a / b

I3: a=x + y

I4: b=x * const

I5: c=x + b

I6: d=y - b(a) Varying length

I1: x=c + const

I2: y=a / b

I3: a=x + y

I4: b=x * const

I5: c=x + b

I6: d=y - b

x = x

(b) Identity I6: d=y - b

I5: c=x + b

I4: b=x * const

I3: a=x + y

I2: y=a / b

I1: x=c + const

(c) SSFFigure 5.1: Handling of data fan-outAs it can be seen, SSF handles the distribution of data values using a �xed fan-out peroperand without introducing additional instructions. However, in its current form, it also restrictsthe amount of parallelism that can be exploited. This is because the propagation of a data value

37is delayed when one operand of an instruction arrives but the other operand of the instructionis missing. Since an instruction is scheduled for execution when both operands are available, thepropagation of the available operand does not start until after the other operand is received. Forexample, in Figure 5.1(c), instruction I5 cannot start its execution until the long latency instructionI2 completes and activates I3, although I5's other operand would have been available long beforethe completion of I2. It has been veri�ed experimentally that this case occurs too often and it isdetrimental to the performance. Figure 5.2 compares the performance of SSF with a fan-out limitof two and the central window. As it can be seen, the loss of performance is quite large for largerissue widths. In order to eliminate the excessive delay, we need to allow data forwarding to continuewhen at least one of the operands is available. This approach leads us to the concept of treating thesource operands and the instruction itself as independently schedulable entities. We therefore treatthe source and result values uniformly and refer to each data value that needs to be propagated anoplet.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Issue width

Full fan out
SSF

Figure 5.2: SSF-2 versus full fanoutThe concept of oplets forms the basis of DDFG. A dyadic instruction has three oplets,while a monadic instruction has only two. An oplet is an executable entity that has a tag indicatingthe status of the oplet, a value and a number of destinations that need this value. We de�ne theexecution of an oplet as the propagation of the value it carries to its destinations whereas execution ofan instruction as consuming the input values, performing the operation indicated by the instructionand generating a result oplet. Therefore, the program execution is realized by the execution of theoplets of the graph and its instructions. Like any other dataow style execution, both oplets and

38instructions can only execute when they have the required data values ready. Separation of theinstruction operands into oplets has two signi�cant consequences. It allows oplets to have their ownlife time. Therefore, an oplet receiving a data value can propagate it further without delays, givensu�cient hardware resources. In other words, data ows freely through the forwarding edges. On theother hand, separate data operands require additional links called matching links for joining themlater. Revisiting the example in Figure 5.1(c), we observe that the left operand of the instruction I3can propagate the value to instruction I5 although the instruction I3 itself was still blocked waitingfor the value of y from the divide instruction. As a result, the execution of I5 can start as soon asI4 is completed, while I2 is still executing.5.2 Dynamic Data Forwarding GraphWe now de�ne the Dynamic Data Forwarding Graph (DDFG) formally.De�nition: A DDFG is a directed graph G = (Voplet [Voperation; Ef [Ematch) where Voperation isthe set of nodes representing program instructions, Voplet is the set of nodes representing instructionoplets, Ef is the set of data forwarding edges, and Ematch is the set of matching edges between theinstructions and their oplets.De�nition: A DDFG has a forwarding degree Fd i� 8V �Voplet; outdegreef (V) � Fd where outdegreefis the number of forwarding edges emanating from V .The DDFG deals with only those instructions which are in the instruction window andfully speci�es the data driven execution in the instruction window. An example DDFG which hasa forwarding degree of 2 is shown in Figure 5.3. For the purposes of illustration, oplet nodes havebeen labeled with the register identi�ers of the original program code.
DIV
LW
ADD
XOR
SLL
OR
SUB

R3,R16,R17
R4,0(R3)
R5,R4,R8
R8,R6,R5
R9,R5,1
R10,R5,R4
R11,R5,R4

I1:
I2:

I4:
I5:
I6:
I7:

I3:

(a) Code

DIV R3

R17R16

SUB R11

R5 R4

LW R4

R3 0

SLL

1

R9

R5

ADD R5

R8R4

XOR

R6 R5

R8

OR R10

R5 R4(b) DDFGFigure 5.3: Sample code and its DDFG

39There are many possibilities in the assignment of the forwarding edges in a DDFG, eachleading to di�erent instruction schedules. For the construction of the forwarding edges, a simpleheuristic is used which works well. For each use of a value in the program order, the uses areassigned to producer oplets breadth-�rst. This approach favors older instructions in the window,and rapidly distributes a value to its destinations since each level in the graph can distribute a valueto increasingly more destinations.5.3 DDFG ExecutionThe execution of DDFG is data-driven. An operation node can execute when it has bothdata values (assuming it is a dyadic operation), and an oplet can execute when it has one data value.Arrival of a data value at an oplet triggers the following sequence of events:1. If the oplet has out-degree greater than zero, a copy of the data value is produced for eachlink and sent through each link.2. A copy of the data value is sent through the matching link to the operation node and the opletis deallocated.3. Upon having both data values, an operation node performs the operation and sends the resultvalue to the adjoining result oplet.4. The result oplet sends the value through its forwarding edges and both the operation nodeand the result oplet are deallocated.5.4 DDFG ConstructionA DDFG is easily constructed as the program executes using an algorithm similar to re-naming. For this purpose, an array of queues whose size is equal to the number of architecturalregisters is needed. Each queue entry holds a descriptor consisting of a counter and a pointer thatpoints at the producer oplet which will have the value of a given register. Fetched instruction'ssource register identi�ers are used to access the queue array to select the set of producer oplets forthis register value. If the corresponding queue is empty, there are no pending values for this registerand the value is provided to the instruction from the register �le. Otherwise the descriptor at thehead of the queue identi�es the producer oplet that must be used for this consumer. A forward-ing edge is set-up from the producer oplet to the current instruction oplet and the counter of thedescriptor is incremented. If the value of the counter is greater than the degree of forwarding, theentry is removed from the queue. In any case, a new descriptor is formed which identi�es the currentinstruction's oplet as a new producer and the descriptor is inserted to the tail of the queue. Onceall the operands of an instruction are processed, a new descriptor is created for the result oplet,

40the queue corresponding to the result register is ushed and the new descriptor is inserted into thequeue. For a DDFG which has a degree of forwarding of one, the queue array becomes unnecessaryand a table of size equal to the number of architectural registers is su�cient to generate the graph.When the size of each queue is unlimited, a balanced DDFG is obtained. While a balanced DDFGis ideal for the distribution of the values, in practice generated DDFGs will be unbalanced becauseof the limited queue sizes. It has been observed that the queues must be as large as the degree offorwarding for achieving high performance but returns diminish rapidly beyond this size.5.5 DDFG Performance EvaluationThe performance of the DDFG compared to full data fan-out has been studied with degreeof forwarding of 2 and degree of forwarding of 4. Data produced using a degree of forwarding of 2 islabelled DDFG-2 and degree of forwarding of 4 is labelled DDFG-4. When we examine the results for8 and 16 issue processors (see Figure 5.4) we observe that a forwarding degree of 2 captures most ofwhat can be extracted with broadcasting.

8 16 32 64 128 256 512 1024 2048
Number of in−flight instructions

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

8 issue DDFG−2
8−issue Full fan−out
16−issue DDFG−2
16−issue Full fan−out

Figure 5.4: DDFG versus Full Fan-Out 8 and 16 Issue ProcessorsFor example, at 256 in-ight instructions, the full data fan-out is only 6 percent better thanDDFG-2. Given the cost of increasing the degree of forwarding, the payo� is very little for forwardingdegrees greater than 2 at these issue widths. However, at bigger issue rates such as 32, the e�ectivewindow size rapidly increases. For 32 issue the e�ective window size is around 1024 entries althougha window size of 2048 still provides some measurable performance improvement. For 1024 in-ight

41

8 16 32 64 128 256 512 1024 2048
Number of in−flight instructions

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

16 issue DDFG−4
16−issue Full fan−out
32−issue DDFG−2
32−issue DDFG−4
32−issue Full fan−out

Figure 5.5: DDFG versus Full Fan-Out 16 and 32 Issue Processorsinstructions, full data fan-out is faster than DDFG-2 by about 21 percent, and faster than DDFG-4 byabout 9 percent. More signi�cantly, the required degree of forwarding increases slowly and a linearincrease in the forwarding degree with respect to the issue width always matches the performanceof a processor equipped with full data fan-out capability.5.6 Concluding RemarksIt has been shown that full data fan-out for high performance is not necessary. It has beenshown further that direct matching can be feasibly implemented within the context of a superscalarby using the novel approach of generating a DDFG from a conventional instruction stream as partof the renaming process. Using a �xed data fan-out per instruction, this graph can deliver highperformance and can be used to implement very large instruction windows.In Chapter 6, it is illustrated how the DDFG semantics can be feasibly implemented bycirculating simple descriptors which represent oplet/instruction pairs. A high performance scalablemicroarchitecture that utilizes the DDFG is described in full detail and its performance is evaluated.

Chapter 6Direct Instruction Wake-upIn Chapter 5, it has been illustrated that for high performance full fan-out is not necessaryand a Dynamic Data Forwarding Graph DDFG can be used to address the scalability of the issuewindow in out-of-order issue superscalars using direct matching. Although the DDFG paradigmhas been designed around the concept of the ow of values from producer instructions to consumerinstructions, an implementation of the concept does not have to rely on explicit movement of data.As it has been demonstrated by Gao et al. [18], instead of propagating data values, signals can bepropagated to wake-up waiting instructions and a conventional register �le can be used to supplythe data values.In this chapter, a novel instruction wake-up algorithm that dynamically associates explicitwake-up lists with executing instructions according to the dependences between instructions is pre-sented. This technique leads to easy integration of the wake-up mechanism into a conventionalsuperscalar pipeline. The wake-up graph is generated dynamically as part of the renaming processby storing the graph nodes directly in the reorder bu�er. It then is utilized to guide the instructionscheduling.The organization of the chapter is as follows. In Section 6.1, the concept of using a directwake-up graph DWG for instruction scheduling and the semantics of the graph are discussed. InSection 6.2, a detailed design of a microarchitecture called Direct Wake-up Microarchitecture, DWMAwhich utilizes a DWG for instruction scheduling is presented. In Section 6.3, the algorithm for thegeneration of the wake-up graph utilized in the DWMA is given. In Section 6.4 the details of theinstruction scheduling as it is implemented in the DWMA is presented. In Section 6.5 the performanceof the DWMA architecture is analyzed and compared with that of the realistic ideal model. Finally,in Section 6.6 the implications of the approach for future processors is discussed.6.1 Direct Wake-up GraphContrary to the approach taken in a central window implementation where instructions areconstantly monitored for readiness, direct wake-up algorithm identi�es and considers for wake-up afresh subset of waiting instructions from the instruction window in each cycle. If in the current cyclean instruction is expected to complete its execution, then another instruction waiting for the result42

43of the completed instruction may become ready in the next cycle. Thus, such an instruction will beamong the set of instructions examined for wake-up and if ready, it would be issued for executionin the next cycle.In order to guide this wake-up heuristic, a wake-up graph is constructed and maintaineddynamically. Since the graph is to be maintained in hardware, it is subject to the same constraintsthat were imposed on the DDFG graph. In particular, the number of edges emanating from anode cannot be unbounded. In the hardware implementation the wake-up graph is represented byassociating with each instruction an explicit wake-up list, W-LIST, which identi�es the instructionsthat will be woken up by that instruction (i.e., the wake-up list is the representation of edges in thegraph). Ideally in the W-LIST of an instruction we would like to place all the instructions which useits result (i.e., all instructions to which there is a def-use edge). But since the number of entries inthe W-LIST must be a �xed small number in a practical implementation, we cannot include all suchinstructions in the W-LIST. We therefore follow the same approach that has been used to construct aDDFG. We allow an instruction that computes a result to directly wake-up only a small �xed numberof instructions in the instruction stream that use the result while the others are woken up indirectly.The responsibility of waking up future instructions in the instruction stream is delegated to thosebeing woken-up directly through the def-use edges. To carry out the wake-up of further instructionswe introduce use-use edges �rst from the instructions that are being directly woken-up and thenfrom the instructions which are being woken-up indirectly through the use-use edges. This processof introducing use-use edges is repeated till all instructions have been handled. Thus, the wake-upgraph contains both def-use and use-use edges. In summary, an instruction can wake-up instructionsconnected through both def-use and use-use edges. In this implementation, it is assumed that thereare at most six edges in the W-LIST of an instruction. These are labelled (d0,d1), (l0,l1) and (r0,r1)corresponding to the result, the left operand and the right operand on an instruction.It is important to note that the instructions that are linked through a chain of use-useedges may execute in an order di�erent from the order they appear in the chain. Consider a chainof use-use edges that has been created due to an operand value v. When the value v is computedby its producer, the �rst instruction in the chain is considered for wake-up. Let us assume that theinstruction cannot issue because its other operand is unavailable. In this situation, since the value vis available, we will consider the next instruction in the chain for wake-up even though the previousinstruction is still waiting. It is possible that this instruction is found to be ready and thus mayexecute prior to the preceding instruction in the chain. Thus, the introduction of use-use edges doesnot restrict out-of-order execution. Its only consequence is that all instructions waiting for the sameoperand are not examined simultaneously by the wake-up algorithm. Rather in each cycle only asubset of instructions waiting for the value are examined.Clearly the wake-up graph that is constructed dynamically is inuenced by the order inwhich the instructions appear in the code sequence. In addition, the form of the graph is alsoinuenced by the timing of instruction execution. In fact while the initial form of the wake-up graph

44is determined by the original instruction ordering, the graph undergoes transformations determinedby execution timing. Let us consider the modi�cations to the graph that may take place. When aninstruction is �rst added to the wake-up graph, it is linked to the producer of its �rst unavailableoperand, that is, it is added to the W-LIST of the producer of this operand. Now let us assume thatthis operand becomes available. This will cause the instruction waiting for the value to be consideredfor wake-up. At this point it may be determined that the second operand of the instruction isunavailable. In this case the instruction would be added to the W-LIST of the producer of thismissing operand. In other words, while one def-use edge has been removed, another one is added tothe wake-up graph.

SUB

MUL

OR

SLL

XOR

ADD

LW

DIV

d0 d1 l1 r0 r1l0

LW MUL

ADD

XOR SLL

OR SUB

LW

DIV

ADD

XOR

SLL

OR

MUL

SUB

d0 d1

d0

d0 d1

l1l0

(b) Internal Representation using W-LISTs

(c) Schedule

R4,0(R3)

R3,R16,R17

R5,R4,R8

R8,R5,R6

R9,R5,1

R10,R5,R4

R12,R3,R2

R11,R5,R4

DIV

MUL

LW

ADD

XOR

SLL

0 8 10 11 12 13Clock cycle

OR

SUB

D
W

M
A

 Schedule

DIV

MULLW

ADD

OR SUB

XOR SLL

(a) Wake-up graph

Figure 6.1: Example wake-up graph and its schedule.Finally we would like to make the observation that an instruction may be woken up 0, 1or 2 times before it can execute. If the instruction has all of its operands available when it is �rstfetched, it is issued immediately and thus never woken up. If the instruction has only one operandmissing when it is �rst fetched, then it will be woken up once when that missing operand becomesavailable (either immediately using a def-use edge or in a delayed fashion through a use-use edge). Ifboth of the operands of an instruction are missing when it is fetched then it may be woken up twice,

45once when the �rst operand becomes available, and then again when the second operand becomesavailable.Wake-up Graph Example. Now let us consider the example that has been used in Chapter 4to demonstrate that the dependence based microarchitecture has limited look-ahead. When weexamine the code sequence (see Figure 6.1), we see that the wake-up links for all the instructionsexcept OR and SUB can be established using def-use edges, that is using d0 and d1. This is becausethe ADD instruction has four children and therefore two result links are not su�cient. We thereforeassociate XOR and SLL, the �rst two instructions, directly with the result of ADD through def-useedges, whereas we satisfy the remaining two children OR and SUB using use-use edges emanatingfrom XOR. The resulting wake-up graph is shown in Figure 6.1(a).The execution schedule is realized as follows. When the DIV instruction completes itsexecution, it wakes-up the instructions LW and MUL through its def-use edges d0 and d1. WhenLW completes its execution, it wakes up the ADD instruction through its d0 edge. Once ADD iscompleted it activates the XOR and SLL instructions also through d0 and d1 edges. When XOR isactivated, it can now activate OR and SUB through its l0 and l1 links. The resulting schedule isgiven in Figure 6.1(c). As we can see, in this case, the schedule generated using the direct wake-upalgorithm is of the same length as that generated by the central window algorithm.6.2 The Direct Wake-up MicroarchitectureNext the direct wake-up microarchitecture (DWMA) that has been designed to dynamicallyconstruct the wake-up graph and make use of it for instruction scheduling is presented. As shownin Figure 6.2, DWMA is a highly parallel decoupled superscalar with an eight stage pipeline. Theconstruction of the wake-up graph is begun in the Decode and Graph GEN-1 stage and completedin the Rename and Graph GEN-2 stage. The graph constructed is stored in the form of W-LISTsassociated with instructions in their respective reorder bu�er entries. Since all instructions thathave entered the processor pipeline must have a reorder bu�er entry, the size of the instructionwindow from which instruction level parallelism is extracted is limited by the reorder bu�er size.The subset of instructions that are to be considered by the wake-up mechanism are fetched andexamined from the reorder bu�er by the Fetch W-LIST and Wake-up stage while the updates to thewake-up graph are performed by the Register Read and W-LIST WB stage through write backs tothe appropriate entries in the reorder bu�er.Each stage has a width equal to the issue width. The instructions that are executedin parallel are obtained from the heads of the FIFOs and there is a one-to-one correspondencebetween the FIFOs and the functional units. The instructions are put into the FIFO in the form ofinstruction descriptors which, in addition to the usual opcode and physical register numbers neededfor the instruction's execution, also contain additional information required to carry out the wake-up activities associated with the instruction. Each instruction's descriptor is entered into the queue

46
Fe

tc
h

R
en

am
e

FIFOS

FETCH DECODE
ACCESS COMMITBYPASS

EXECUTE DCACHERENAME

GRAPH FETCH
W-LIST

W-LIST
WB

REG WRITEREG READ

G
ra

ph
 G

en
-2

G
ra

ph
 G

en
-1

D
ec

od
e

GRAPH
GEN -1 GEN -2

WAKEUP

B
yp

as
s

D
at

a-
C

ac
he

W
-L

is
t

W
B

Reorder Buffer

W
ak

eu
p

Fe
tc

h
W

-L
is

t

R
eg

is
te

r
R

ea
d

Figure 6.2: The Direct Wake-up Microarchitecturewhen it is �rst fetched and every time it is woken up by another instruction. Thus, the FIFOs containonly a subset of instructions from the instruction window. In particular, these are the instructionsthat according to our wake-up heuristic may be ready for execution.Let us consider the operation of the key pipeline stages that construct and process thewake-up graph as well as the reorder bu�er that holds the graph in greater detail.Reorder bu�er: The reorder bu�er is issue-width interleaved and its address space is divided equallyamong the individual FIFOs. In other words, the low order bits of the reorder bu�er addressesalso identify the queue that will process the instruction. The instructions are allocated a reorderbu�er entry on a circular basis to distribute the work more or less uniformly to individualqueues. In other words, the reorder bu�er index allocated to the instruction modulo thenumber of functional units yields the functional unit that will execute this instruction.Decode and Graph GEN-1: In this stage, the instruction is decoded and in parallel the producers'W-LISTs, to which the current instruction must be added, are identi�ed from the source registeridenti�ers. A reorder bu�er entry is allocated to the instruction by incrementing the tailpointer of the reorder bu�er.Rename and Graph GEN-2: The source register identi�ers of the instruction are renamed to physicalregisters and a result register is allocated if necessary. In parallel, the current instruction andits W-LIST are written to the instruction's assigned reorder bu�er entry. The instruction isassigned to a functional unit (or FIFO). The assignment is carried out in a round robin fashionand thus can be computed as the reorder bu�er index modulo the issue width. An instructiondescriptor is formed and sent to the appropriate FIFO.Fetch W-LIST and Wake-up: The reservation table is accessed to determine whether the operandsof the instruction descriptors at the heads of the FIFOs are ready. In parallel, the reorderbu�er is accessed to fetch the W-LISTs of these instructions. The instructions corresponding

47to (l0,l1) are woken up if the left operand is available, the instructions corresponding to (r0,r1)are woken up if the right operand is available, and the instructions corresponding to (d0,d1)are woken up if the instruction takes a single cycle to execute. The ready woken up descriptorsare pushed back to the heads of the appropriate FIFOs. The current instruction descriptors,that were initially obtained from the heads of the FIFOs, have now been processed. The onesthat are found to be ready and have their functional unit free are sent to the next stage. Onthe other hand if the functional unit is busy, the ready descriptors are pushed back to the headof their respective FIFOs. If the instruction is not ready, then it is simply forwarded to thenext stage.Register Read and W-LIST WB: If the current descriptor is ready, the operand values are read fromthe register �le. If it is not ready the descriptor is written back to the W-LIST of the producerof the missing operand in the reorder bu�er.As we can see from the above description, processing of W-LISTs is done in parallel with the conven-tional functions of the pipeline stages Decode, Rename, Wake-up and Register Read. Therefore theadditional tasks necessary to implement the direct wake-up are juxtapositioned with the conventionalpipeline functions in Figure 6.2.We have discussed the overall operation of DWMA. In the remaining sections, the detailedalgorithm for generating the wake-up graph is presented and how the instruction scheduling is carriedby DWMA is discussed in greater detail.6.3 DWG Generation AlgorithmFor the purpose of graph generation, an array of queues with each logical register beingassociated with a single queue is utilized (see Figure 6.3(a)).
.

Q0 Q1 Q2 Qn

a) Descriptor Queues

source register number

b) Descriptor format

Reorder buffer index Counter Left/Right/Result

Figure 6.3: Descriptor Queues Used for the Graph GenerationEach entry in a queue is a descriptor identifying a producer for the register's data value. Adescriptor contains three �elds, namely the reorder bu�er index of the producer, the wake-up groupof the producer (left operand, right operand, or result) and a one bit counter (see Figure 6.3(b)).When an instruction is being decoded, its source register identi�ers are used to access the producer

48queue array and the descriptor at the head of the queue is copied to the instruction's correspondingoperand. The descriptor's counter is incremented, and if it now overows, the descriptor is removedfrom the head of the queue. Otherwise, the updated descriptor is left at the head of the queue. Thisprocess ensures that, for any given counter size, there are at most that many edgesemanating from the instruction corresponding to each of its operands and its result.Two new descriptors are formed, one for each operand which can now serve as new producers ofthese values and they are inserted at the tail of the corresponding queues. Please note that if thereis no space left in a queues, the instruction decode need not stall but can simply discard the newdescriptors it just formed since there are already quite a few producers that can be used as wake-upslots by the following instructions that need the same value.Lets consider the ADD instruction in the code sequence shown in Figure 6.1. When thisinstruction is fetched, it creates a descriptor for the result register R5, sets its counter to zero and setsits wake-up group to result. The queue corresponding to register R5 is ushed and this descriptoris inserted into the queue. When the XOR instruction is fetched, it indexes the queue array forits source register R5 and gets the descriptor. Since its counter is zero, there are available def-uselinks. The instruction establishes the link by copying the current descriptor, incrementing its counterand re-inserting the descriptor back to the head of the queue. XOR instruction now creates a newdescriptor where the wake-up group is set to left operand, initializes its counter to zero and insertsthe descriptor to the tail of the queue. When the processor fetches the SLL instruction, the aboveprocess is repeated. However, since the counter of the descriptor for R5 now overows, instead ofre-inserting the descriptor back to the head of the queue, the descriptor is discarded. At this point,we have consumed all the available def-use edges, but we have two new descriptors in the queuewhich are of type use-use edges. When the processor fetches the OR and the SUB instructions, theabove process is repeated. This process essentially makes these two new instructions children of theXOR instruction through use-use edges.6.4 Instruction schedulingDWMA implements the instruction scheduling uniformly by propagating instruction speci�cinformation in the form of instruction descriptors which are hardware pointers uniquely identifyingthe instruction. The format of the instruction descriptor is shown in Figure 6.4. The My-ROB-i�eld is the index of the reorder bu�er entry allocated to this instruction. The Op-bits �eld indicateoperand availability; there is one bit per operand. Left and Right register numbers are physical(renamed) registers for this instruction. Finally the PTR-missing �eld is a pointer to the W-LIST ofa producer instruction. When both of the operands are missing, only one of them has to be recordedas part of the instruction descriptor since the descriptor itself is stored into the W-LIST of the otheroperand. The actual processing of the instruction descriptors stored into the FIFOs is handled at arate of one descriptor per FIFO through the Fetch W-List and Wake-up stage. Each descriptor �eld is

49
My ROB-i Op-bits Left Reg# Right Reg# PTR-MissingFigure 6.4: Instruction descriptor.used to handle the wake-up process. The processing of each of the descriptors consists of two mainsteps. These are determining whether or not the instruction described by the current descriptor isready and waking up those instructions which are in the wake-up list of the current instruction. Theprocess of determining the status of the current instruction is handled in parallel with the fetchingof the wake-up list.Determining the status of the instruction. The status of the current instruction is determinedby accessing the reservation table. For this purpose, the physical register identi�ers are sent to thereservation table to fetch the operand availability. Please note that only the instruction describedby the descriptor needs to access the reservation table, as the ready status for all the instructionsbeing woken-up can be easily computed from their descriptors and the operand status for the currentdescriptor.Fetching of the Wake-up List. Simultaneously with the reservation table access, the stage sendsthe My-ROB-i �eld of the instruction descriptor to the reorder bu�er to fetch the W-LIST associatedwith this instruction. Since the descriptor is at the head of the queue, it should now wake-up anyinstructions which are in its wake-up list.Once the W-LIST and the operand availability information is obtained, the status of theinstructions being woken-up is determined easily by performing the following operations in parallel:� if the left operand is available, in group l0,l1 one zero bit from the Op-bits �eld of each descriptoris turned on.� if the right operand is available, in group r0,r1 one zero bit from the Op-bits �eld of eachdescriptor is turned on.� if the instruction is a single cycle instruction, in group d0,d1 one zero bit from the Op-bits �eldof each descriptor is turned on.The set of instructions which are ready are easily identi�ed using the operand availabilityinformation for the currently processed instruction descriptor. The instruction itself is ready, if bothoperands are available. The dependent instructions are ready if they are only missing the data ofthe source operands of the currently processed instruction (i.e., the edges are of use-use type), or ifthe current instruction is a single cycle integer instruction whose result would make them ready.Following the above operation, we now have a number of descriptors, namely, the originaldescriptor and its dependent descriptors. We �rst process the dependent descriptors. If these

50descriptors are ready they are pushed back to the head of the FIFO. In the next cycle, they cannow wake-up their dependents and issue. If they are not ready, they are written back to the reorderbu�er by the next stage. If the original descriptor is ready, and the corresponding functional unit isfree, the instruction is issued for execution through the Read registers and W-LIST WB stage. If thecorresponding functional unit is busy, the descriptor is pushed back to the head of the FIFO.Longer latency operations need a similar treatment with a di�erent timing. One cyclebefore the completion of the result, they access their reorder bu�er entry to fetch the descriptors intheir result wake-up group (d0, d1). These descriptors are inserted to the head of the queue theybelong. In the next cycle, these instructions can resume operation if they now have all of theirmissing operands.6.5 Experimental Evaluation

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0
CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(a) 8 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(b) 8 Issue - Floating point BenchmarksFigure 6.5: IPC values for DWMADWMA architecture has been evaluated for issue widths 8, 16, and 32 and its performancehas been compared with the central window processor. The resulting IPCs for all the benchmarks areshown in Figures 6.5, 6.6 and 6.7. An 8-issueDWMA architecture attains 85% and 82% of the 8-issuecentral window processor performance for integer and oating point benchmarks respectively. At anissue width of 16, DWMA architecture achieves 81 % of the performance of the ideal central windowprocessor for integer benchmarks and 76 % for oating point benchmarks. The high performanceof DWMA is also evident in case of 32 issue processors. With integer benchmarks the same trend iscontinued at 72 % of the performance of the central window processor. However, with oating pointbenchmarks DWMA loses some performance achieving about 62 % of the ideal processor. The larger

51performance loss for the oating point benchmarks is directly related with the MIPS-I instructionset, which does not have double word load and store instructions. Instead, two load single operationsare performed to load a double word. This results in a double precision operand requiring separatewake-up links for each half of the double precision value, consuming valuable wake-up links. Muchbetter performance can be obtained by treating double precision registers as single objects for thewake-up purposes.

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0
CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(a) 16 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(b) 16 Issue - Floating point BenchmarksFigure 6.6: IPC values for DWMAThe harmonic means of IPCs obtained by the two algorithms are plotted in Figure 6.8. Asit can be seen, DWMA processor closely follows the performance of the central window processor incase of integer benchmarks. In case of oating point benchmarks, performance loss becomes moresigni�cant after an issue width of 16. At these high issue widths, available parallelism is beingexploited fully by the central window processor. Therefore, the limitation of a degree of forwardingof 2 becomes more signi�cant.6.6 Concluding RemarksIn this chapter, a superscalar out-of-order processor, namely, DWMA that dynamicallygenerates a wake-up graph and utilizes it has been presented. This processor design is the �rst suchprocessor in the published literature demonstrating that high performance superscalar processing cansigni�cantly bene�t from the application of dataow concepts. The application of dataow conceptshas been made possible by the novel concepts of source-to-source forwarding, direct data forwardingand direct instruction wake-up. This approach makes it feasible to implement very large instruction

52

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0
36.0

CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(a) 32 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

CW ideal fetch ideal disambiguator
DWMA ideal fetch ideal disambiguator

(b) 32 Issue - Floating point BenchmarksFigure 6.7: IPC values for DWMA

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW integer
DWMA integer

(a) Harmonic Means for Integer Benchmarks 8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

CW floating point
DWMA floating point

(b) Harmonic Means for Floating point Bench-marksFigure 6.8: Scalability of CW and DWMA

53windows, which otherwise are not possible to implement feasibly with the current implementationtechnologies.Approach taken in the design of DWMA exploits instruction level parallelism over a largeinstruction window. In this respect, it can exploit similar levels of parallelism that can be exploitedby dataow processors such as ETS [51]. In contrast to the dataow approach of treating memorydataow as an integral part of the synchronization process by use of the I-structures, DWMA has torely on predictive speculative techniques with explicit load/store instructions being utilized. In thefollowing chapters, it is demonstrated that memory dataow can be e�ciently handled within thisframework.

Chapter 7Analysis of the Store Set AlgorithmThe store set algorithm proposed by Chrysos and Emer in [10] is a memory dependencepredictor that is typically integrated into the issue window logic. The predictor provides informationabout whether or not a recently fetched load or store instruction can issue once it satis�es itsregister data dependencies. If a load instruction is predicted to be dependent on a store instruction,this information is communicated to the scheduler and the scheduler enforces the ordering in theinstruction window. In addition to the load/store dependencies, the algorithm may require a storeinstruction to be ordered with respect to another store instruction. In other words, the predictormay request both load/store dependencies as well as store/store dependencies to be enforced fromthe scheduler. Since the predictor is accessed early in the pipeline, the implementation does nothold the load instructions longer than it is necessary. As a result, as long as the predictor correctlypredicts the dependencies, the algorithm provides very high performance. When the predictor doesnot correctly predict the dependencies, it may make load instructions dependent on the wrong storeinstructions which may result in memory order violations or may result in unnecessary delaying ofthe load instructions.As it has been illustrated in Chapter 3, the algorithm performs superbly upto an issuewidth of 8, but algorithm's high performance diminishes at higher issue widths. In this chapter, athorough analysis of the underlying reasons for the loss of performance is presented.The organization of the chapter is as follows. First, in Section 7.1, a detailed outline ofthe algorithm is presented. Next in Section 7.2, detailed experimental evaluation of the algorithm ispresented. In Section 7.3, reasons for the loss of performance of the algorithm at high issue widthsare analyzed. Finally, a brief discussion of the results is presented in Section 7.4.7.1 The Store Set AlgorithmThe store-set algorithm is a simple and very e�ective memory disambiguator that relies onthe fact that the future memory dependencies can be correctly identi�ed from the history of memoryorder violations. In this respect, a store set is de�ned to be the set of store instructions a load hasever been dependent upon. The algorithm starts with empty sets, and speculates load instructionsaround stores blindly. When memory order violations are detected, the o�ending store and the load54

55instructions are placed in a store set. Since a load may depend upon multiple stores and multipleloads may depend on a single store, an e�cient implementation of the concept may be di�cult. Inorder to use direct mapped structures, Chrysos and Emer propose certain simplifying assumptionsin their implementation which limit a store to be in at most one store set at a time as well as thetotal number of loads that can have their own store set. Furthermore, stores within a store set areconstrained to execute in order. With these simpli�cations, only two directly mapped structuresshown in Figure 7.1 are needed to implement the desired functionality.
Load/Store PC

Store Set ID Table
 (SSIT)

SSID

Store inum

Last Fetched Store Table
(LFST)

Index

Figure 7.1: Store Set ImplementationWhen new load and store instructions are fetched, they access the store set id table (SSIT)to fetch their store set identi�ers (SSIDs). If the load/store has a valid SSID, it belongs to a storeset. Store instructions access the last fetched store table (LFST) to obtain a hardware pointer to thelast store instruction that is a member of the same store set which was fetched before the currentstore instruction. Current store instruction is made dependent on this store. Next, recently fetchedstore instruction puts its own id, that is, a hardware pointer to itself, into the table. Similarly, loadinstructions are made dependent upon the store instruction whose id is found in the LFST table. Asa result, the algorithm orders stores within a store set in program order, but allows multiple loadsto be dependent on a single store.The assignment of store set identi�ers is carried out upon the detection of a memory orderviolation. As a result, only those loads and stores that need to be synchronized are entered inthe tables resulting in e�cient utilization of the table space. However, since a store can only be amember of a single store set, it is possible that two di�erent loads each belonging to di�erent storesets compete for a single store and cause additional memory order violations. In order to overcomethis problem, Chrysos and Emer propose a set of rules for the creation of store set entries:1. If neither the load nor the store has been assigned a store set, one is allocated and assigned toboth instructions. Although any mechanism could be used to create a store set id, an exclusiveor hash of the load instruction's PC works well.2. If the load has been assigned a store set, but the store has not, the store becomes a memberof the load instruction's store set by inheriting load instruction's SSID.

56 3. If the store has been assigned a store set, but the load has not, the load is assigned the storeinstruction's store set.4. If both the load and the store have already been assigned store sets, one of the two store sets isdeclared the winner. The instruction belonging to the loser's store set is assigned the winner'sstore set.The last rule ensures that no two loads competing for a single store cause thrashing since therule always declares the same instruction the winner. The algorithm is reported to require modesttable sizes. This is attributable to high locality of memory dependencies as well as the algorithm'sapproach to the store set creation. It has been indicated that the algorithm performs superbly using4K or more SSITs and 128 or more entries of LFST. At an issue width of 8 instructions per cycle,the performance of the algorithm is within few percentages of what can be accomplished using anideal memory disambiguator which has perfect knowledge of load and store dependencies.7.2 The EvaluationThe original store set algorithm has been implemented faithfully using the ADL language[46] and SPEC95 benchmarks have been executed at various issue widths. As a reminder, theideal memory disambiguator identi�es the provider store instruction instance for each of the loadinstruction instances. Hence, for a given load, the ideal disambiguator indicates whether or not thestore instruction on which the load is truly dependent has been issued. The disambiguator usesmemory address traces augmented with load/store sequence numbers to identify such dependencieswith perfect accuracy.In order to evaluate the performance of the memory disambiguator, the machines withideal and the store set disambiguators were kept identical in all other aspects except the memorydisambiguator. Both superscalar processors employ an ideal instruction fetcher that has perfectbranch prediction and delivers issue width instructions every cycle. Similarly, the issue window isa large central window implementation which can schedule instructions as soon as the data depen-dencies for an instruction are satis�ed. In order to show the e�ects of the predictor table size on theperformance, the performance of the algorithm is reported at both 4K entry tables as well as 64Ktables which experience very few destructive aliasing.Results for an 8 issue machine are shown in Figures 2(a) and 2(b). These results con�rmthe published performance of the store set algorithm with some minor di�erences. Although mostbenchmarks with the exception of 110.applu have been reported to perform well in the originalstudy, it has been observed that all benchmarks show performance losses compared to the idealdisambiguator with the exception of 107.mgrid and 145.fpppp. With 4K tables, benchmarks 110.ap-plu, 141.apsi, 145.fpppp and 146.wave5 demonstrate signi�cant performance losses. However, with64K tables the algorithm closely matches the performance of the ideal disambiguator. Di�erencesbetween these results and the published performance of the store set algorithm are attributable to

57

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0 ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(a) 8 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(b) 8 Issue - Floating point Benchmarks

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0
ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(c) 16 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
ideal disambiguator
store set disambiguator 64K
store set disambiguatore 4K

(d) 16 Issue - Floating point Benchmarks

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0

ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(e) 32 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(f) 32 Issue - Floating point BenchmarksFigure 7.2: IPC values Store Set and Ideal cases

58using an ideal front end as well as using a di�erent ISA (MIPS versus Alpha) and using di�erentcompilers (gcc versus DEC cc). On the average, the store set algorithm achieves over 97% of theperformance of the ideal disambiguator for oating point benchmarks and over 98% for the integerbenchmarks with 64K tables. With 4K tables, the corresponding values drop to 80% for oatingpoint benchmarks and 96% for integer benchmarks.When simulations were carried out using the same machine con�gurations for the issuewidths of 16 and 32, it was observed that performance loss as a result of non-ideal memory dis-ambiguation becomes quite signi�cant (see Figures 2(c), 2(d), 2(e) and 2(f)). Among the integerbenchmarks, both 126.gcc and 147.vortex show signi�cant performance losses at an issue width of16 and above and only 130.li continues to perform well as the issue width is increased. A simi-lar behavior is observed among the oating point benchmarks. With the exception of 107.mgridand 125.turb3d, all benchmarks indicate signi�cant performance losses compared to an ideal disam-biguator. At an issue width of 16 and 64K tables, store set can achieve about 85% and 82% of theperformance of the ideal disambiguator for integer and oating point benchmarks respectively. With4K tables, the algorithm can achieve about 69% of the ideal performance for integer benchmarksand 61% for oating point benchmarks. At an issue width of 32 and 64K tables, performance dropsfurther to 67% and 64%. When harmonic means are used, an additional 3 to 4% performance loss isobserved with respect to the ideal disambiguator. With 4K tables, the algorithm can provide only35% of the performance of the ideal disambiguator for oating point benchmarks and 50% for integerbenchmarks. These results indicate that there is a signi�cant room for improvement, especially atissue widths of 16 and above.7.3 The AnalysisAlthough the cost of restart increases as the instruction window is enlarged, this is notthe main reason behind the poor performance of the algorithm at high issue widths. The algorithmexperiences performance losses because it forces the issuing of store instructions within a store setto be in-order. In-order issuing of the stores within a store set in turn causes dependent loads toissue in-order. While this restriction is not signi�cant for a wide range of cases, it creates signi�cantdegrees of false memory dependencies with two types of loops.One of them is the case where certain iterations of a loop occasionally become dependenton another iteration as in the case of 110.applu. The other involves loops with register spill code. Inboth cases, the algorithm essentially serializes loop iterations once appropriate store set entries arecreated since the algorithm cannot distinguish between multiple instances of the same load and storeinstructions. In this case, all the instances of the same store instruction become members of thesame set and are forced to issue in-order. Limitations of the algorithm become more pronounced athigh issue widths because at small issue widths there is still ample amount of unexploited parallelismto hide the e�ects of serialization. At large issue widths, the available parallelism in the program is

59already being fully exploited. Therefore, the e�ects of the serialization of the operations cannot behidden by other operations from the pool of available instructions.

LD-0

ST-0

InstructionsCycle

1

0 ST-1 ST-2 ST-3

LD-1 LD-2 LD-3
LD-0

ST-0

4

3

ST-1

LD-1 ST-2

LD-2 ST-3

LD-3 ...

InstructionsCycle

2

1

0

(d) Store-set schedule

<computation 2>

LD R1,addr1

<use of R1>

ST R1,addr1

<computation 1>

(a) Sample Spill Code

ST R1,addr1

ST R1,addr1

LD R1,addr1

LD R1,addr1

Iteration

Iteration

1

0

(c) Ideal dependence graph

ST R1,addr1

LD R1,addr1

Iteration
2

ST R1,addr1

LD R1,addr1

Iteration
3

ST R1,addr1

ST R1,addr1

LD R1,addr1

LD R1,addr1

Iteration

Iteration

1

0

(b) Store-set dependence graph

ST R1,addr1

LD R1,addr1

Iteration
2

ST R1,addr1

LD R1,addr1

Iteration
3

(e) Ideal scheduleFigure 7.3: Example spill code and its scheduleLet us now examine in detail how the algorithm executes such loops. In Figure 7.3(a), anexample loop that contains spill code is illustrated. When such a code sequence is executed usingsu�cient resources to issue more than one load operation per cycle, it takes only a few iterations tobe unrolled before a memory order violation occurs. This is because, when there is no dependencyinformation stored in the tables, any of the loads can issue once they compute their addresses. Asa result, any load which is truly dependent on the store at the same iteration may issue before thatstore. Once this happens, a memory order violation is detected and the store set entries are allocated.From this point on, following instances of these loads and stores share the information stored in SSITand LFST which yields the dependence graph shown in Figure 7.3(b). The algorithm correctly makesa load dependent on the proper store by means of the LFST table. However, since the algorithmforces stores within the same store set to issue in order, for the given set of loads and stores thegenerated schedule allows at most one load instruction to execute per cycle (see Figure 7.3(d)). Incontrast, an ideal disambiguator would allow fully parallel operation of the multiple instances of theloop body, given su�cient resources (see Figure 7.3(e)).

60 In order to measure the e�ect of the serialization on the load latency, additional experimentshave been conducted that studied the dynamic load latency and degree of load serialization. Theresults of these experiments are as follows:

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

Ideal disambiguator
Store set disambiguator 64K
store set disambiguator 4K

(a) Floating Point Benchmarks 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

Ideal disambiguator
Store set disambiguator 64K
store set disambiguator 4K

(b) Integer BenchmarksFigure 7.4: Normalized Average Dynamic Load LatenciesDynamic load latency. Dynamic load latency measurement measures the number of cycles ittakes from the moment a load instruction is ready to issue to the moment it has the loaded value.Dynamic load latency is a function of the dependencies imposed upon load instructions. Therefore,it is a cumulative quantity that includes both the true dependencies of the program as well asscheduling/disambiguation imposed dependencies. To obtain the contribution of the falsely imposeddependencies, the dynamic load latency values have been normalized by dividing it with the dynamicload latency value obtained using an ideal memory disambiguator (see Figure 7.4). In addition tothe normalized dynamic load latencies, the standard deviation of dynamic load latency across allload instructions executed by the benchmark programs have been computed both for the store setalgorithm and the ideal memory disambiguator. The standard deviation values for the store setalgorithm were then normalized by dividing it with the corresponding value of the ideal memorydisambiguator (see Figure 7.5).As shown in Figure 7.4, the measurements of the normalized dynamic load latencies ex-hibit large values for those benchmarks which perform poorly whereas benchmarks which performwell have very small values. Similar behavior is observed in the standard deviation values shown inFigure 7.5. These results are indicative of long chains of dependent instructions that create largeuctuations in the average load latency. It has also been observed that the harmonic mean valuesof the load latencies are uniform across the benchmark spectrum and quite close to the ideal dis-ambiguator. On the other hand, the arithmetic means show great degrees of uctuation, and theyhave the worst values for those benchmarks whose performance does not scale.

61

0.0 1.0 2.0 3.0 4.0 5.0 6.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

Ideal disambiguator
Store set disambiguator 64K
store set disambiguator 4K

(a) Floating Point Benchmarks 0.0 1.0 2.0 3.0 4.0 5.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

Ideal disambiguator
store set disambiguator 64K
store set disambiguator 4K

(b) Integer BenchmarksFigure 7.5: Normalized Standard Deviation Values for Dynamic Load LatenciesLoad serialization. The degree of the serialization of load instructions through load-store-storedependency chains has also been studied. The amount of serialization of load instructions has beenmeasured by identifying the dynamic load instructions which are blocked from issuing for one ormore cycles although their predicted provider store instruction is ready to issue. In Figure 7.6, thepercentage of total dynamically executed load instructions which have been serialized are shown.

0.0 20.0 40.0 60.0 80.0 100.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

Store set disambiguator 64K
store set disambiguator 4K

(a) Floating Point Benchmarks 0.0 20.0 40.0 60.0 80.0 100.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

Store set disambiguator 64K
store set disambiguator 4K

(b) Integer BenchmarksFigure 7.6: Percentage of Serialized Load InstructionsMeasurements of the dynamic percentage of serialized load instructions also consistentlysupport the previous observations. As it can be seen from the experimental results shown in Fig-ure 7.6, the three benchmarks, namely, 107.mgrid, 125.turb3d, and 130.li which perform well as theissue width is increased have very low percentages of serialized load instructions. All the remain-

62ing benchmarks which perform poorly at high issue widths have signi�cant percentage of the loadinstructions serialized.7.4 Concluding RemarksIt has been shown that the store set algorithm as originally proposed by Chrysos and Emer[10] performs well at low issue widths but does not scale to higher issue widths because of store-store induced memory dependencies. Introducing these dependencies is not an oversight, but is arequirement to simplify the memory order violation detection which would simply be unmanageablewithout this ordering.In the next chapter, a novel memory order violation detection algorithm is presented whichcan be utilized to correctly detect the memory order violations even when the store instructions areallowed to issue completely out-of-order. The memory order violation detection algorithm is simpleand does not need to be on the processor's critical path. With this algorithm, the original storeset algorithm can be modi�ed to remove the requirement that store instructions within a store setexecute in-order, yielding very high performance at all issue widths.

Chapter 8Memory Disambiguation withOut-of-order StoresIn Chapter 7, we have seen through a detailed analysis that for high performance we needto allow full out-of-order issuing of store instructions so that dependent load instructions can alsoissue fully out-of-order. Unfortunately, without at least a partial ordering of store instructions in theinstruction window, the algorithm would have su�ered much more signi�cant levels of performancelosses because of false memory order violations. This is because, a simple mechanism for memoryorder violation detection checks load addresses of the speculatively issued load instructions when astore instruction is issued and upon an address match raises a memory order violation condition. Inthis approach false memory order violations occur because this mechanism cannot decisively �gureout the set of store instructions which should participate in the memory order violation detectionprocess for a given load. Therefore, we need a mechanism that can detect memory order violationsprecisely even when the store instructions are allowed to issue fully out-of-order. Once such amechanism is available, the original store set algorithm can be modi�ed to allow full out-of-orderissuing of store instructions.In this chapter, such a mechanism is developed and its performance is fully analyzed byintroducing the necessary changes into the original store set algorithm. In the remainder of thischapter, in Section 8.1, false memory order violations and why they occur with simple memoryorder violation detection mechanisms are discussed. Next in Section 8.2, requirements for detectingmemory order violations correctly are analyzed. The novel solution of delaying exceptions andusing values in addition to load/store addresses as opposed to using addresses alone to check formemory order violations is presented in Section 8.3 and Section 8.4. Section 8.5 presents a detailedperformance evaluation of the technique. Finally, in Section 8.7 the chapter is concluded with abrief summary of results.8.1 False Memory Order ViolationsTo illustrate why false memory order violations occur with simple memory order violationdetection mechanisms, when store instructions are allowed to issue fully out-of-order, let us reconsider63

64
ST R1,addr1

ST R1,addr1

LD R1,addr1

LD R1,addr1

Iteration

Iteration

1

0

ST R1,addr1

LD R1,addr1

Iteration
2

ST R1,addr1

LD R1,addr1

Iteration
3Figure 8.1: Removing the Store-Store Dependenciesthe example shown in Figure 8.1. Assume that the dependence edges between the store instructionsare absent when the store set disambiguator is being used. As a result, the store instructions wouldbe allowed to issue fully out-of-order. In this case, a store instruction belonging to an earlier iterationmay be blocked whereas a store belonging to a later iteration may have a chance to proceed. Forexample, in Figure 8.1 the store from the second iteration, ST-2, may proceed before ST-1 whichbelongs to the �rst iteration. When ST-2 issues it makes its dependent load LD-2 eligible to issue inthe next cycle. When LD-2 issues, it gets the correct value from the forwarding bu�er. The processorhowever remembers that the load has been issued speculatively and makes an entry regarding thisload in the speculative loads table. When the store ST-1 issues, it �nds that a load with a sequencenumber greater than its own that computed the same address has issued before the store. In thiscase, an exception is agged which is in fact a false memory order violation. In other words,removing the store ordering in the instruction window would convert all store orderinginduced false memory dependencies to false memory order violations. On the other hand,when the memory disambiguator imposes an ordering on those stores which may have the samee�ective address, false memory order violations will not be observed since a load instruction whichis dependent on a later store instruction would not issue before all store instructions preceding thestore instruction it is made dependent upon.8.2 Precisely Detecting Memory Order ViolationsIn order to detect memory order violations correctly when store instructions are allowed toissue freely, it is necessary to identify precisely the set of store instructions which should participatein the memory order violation detection process. If an issuing store instruction is not the member of

65this set with respect to a given speculatively issued load instruction, we should not let this particularstore instruction raise a memory order violation for the load instruction in question.
ST-1

ST-2

ST-3
.
. .
. . .

. .

Seq

1

2

Ready

No

Yes

No

3

p Yes ST-p

p+1 Yes

p+2 No

ST-p+1

ST-p+2

p+3 Yes LD-s

(a) Dynamic code sequence

ST
-3

ST
-2

ST
-1

A
ddr/V

alue
V0101

Seq

(b) Forwarding Buffer Contents

p+
3

L
D

-s

Seq
A

ddr

(c) Speculative Loads Table

ST
-p

p+
1

ST
-p+

1

p 3 2 1

0 1

p+
2

ST
-p+

2prior
uncompleted
stores

Provider store

stores
relevant
to detection

Figure 8.2: Speculative issuing of loadsIn order to see how we can identify the set of store instructions which must participatein the decision process, let us consider the sequence of store instructions and the load instructionshown in Figure 8.2(a). Given this dynamic sequence of instructions, assume that the load LD-sis predicted to be dependent on the store ST-p which is indicated through the dependence edge.In this con�guration, store instructions which are above the provider store instruction ST-p shouldnot participate in the memory order violation detection process for the speculatively issued loadinstruction LD-s assuming that the addresses of ST-p and LD-s match. Only store instructionswhich follow the provider store instruction, namely, ST-p+1 and ST-p+2 should raise an exceptionif they compute an e�ective address that is the same as the load LD-s. In other words, the providerstore instruction splits the set of uncompleted stores into two sets, and only the ones that followthe provider store instruction should participate in the decision process. In the case that the loadinstruction obtains its value from the memory, all the prior stores should be involved for checkingthe memory order violations with respect to the speculatively issued load LD-s.One possible solution in this case is to include the sequence number of the provider store(or a special identi�er if it is memory) in the speculative loads table. In this case, issuing storeinstructions may check their sequence numbers against the sequence number of the provider as wellas the sequence number of the load instruction to determine that if they fall into the shaded regionin Figure 8.2(a). If that is the case, and the address generated by the store instruction matches tothat of the load, an exception may be raised.A straightforward implementation of the above mechanism leads to a complex piece of hard-ware due to the following reasons. First of all, maintaining explicit temporal information throughsequence counters is not a trivial task because counters must be of �nite size and when they over-

66ow, the boundary conditions must be properly handled. Second, for any given store instructionthe processor must execute the above algorithm in parallel against all the speculatively issued loadinstructions, which means that the required hardware must be replicated. Finally, executing theabove algorithm on the critical path of the processor is very likely to slow down the processor clock.In the next section, a much simpler yet more e�ective solution is presented.8.3 Delayed Exception Handling and Value MatchingThe solution to the detection problem builds on the following observations.(1) The temporal information needed is implicitly available during the retire phase of theinstruction execution. In other words, if we can delay the detection of the memory order violationsto the retire phase, we do not need to maintain the temporal information explicitly. Since theprocessor experiences very few exceptions due to memory order violations when equipped with agood memory dependence predictor, the additional penalty of late restart is not high. Once we movethe detection logic to the retire phase, memory violation detection entails deciding whether or notthe provider store has retired. If that is the case, subsequent store instructions are from the shadedregion and they should check for memory exceptions. Of course, if the provider is the memory, theprovider store has already retired, and in this case all retiring store instructions will be involved inthe checking.(2) For correctness, we do not need to identify the exact store instruction that provided thevalue. We only need to verify that given a set of store instructions, the load has obtained the samevalue as the value stored by the last store instruction to the same memory address. This techniqueeliminates the need for special handling of the case where memory is the provider. Furthermore, asit will be seen shortly that this method can take advantage of the value redundancy available in theprograms.Given the above observations, we can now devise the following scheme that works quite well:� The checking for exceptions in case of memory references is delayed until the store instructionretires.� The speculative loads table is expanded to contain a value �eld where the value the loadinstruction has obtained is stored.� An exception bit associated with the load instructions stored in the reorder bu�er or in spec-ulative loads table is allowed to be set or reset by store instructions as they retire. In otherwords, each retiring store instruction compares the value it has stored, as well as the addressinto which the data has been stored, to with that of the speculative loads:If the addresses match and values di�er, it sets the exception bit associated with the loadinstruction.

67If the addresses match and values match, it resets the exception bit associated with the loadinstruction.If the addresses do not match, no action is taken.� Once the load instruction is ready to retire, it checks its exception bit. If the bit is set, aroll-back is initiated and the fetch starts with the excepting load instruction. Otherwise, theload instruction's entry is deallocated from the speculative loads table.Please note that setting and canceling of exception bits as store instructions retire in thismanner handles the problem of identifying the provider store instruction automatically. Whenthe actual provider store instruction retires, both the address and the values will match, and theexception bit is reset. In other words, this instruction will serve as a sentinel signaling the beginningof the group of store instructions which should participate, nullifying the e�ects of all unrelatedprior store instructions.Now let us reconsider the example shown in Figure 8.2. Suppose that load LD-s has alreadybeen speculatively issued and obtained its value from the store ST-p. Further assume that the storeST-1 has now been issued and has computed the same address as LD-s. Since ST-1 retires �rstin program order, it will raise the exception bit associated with the load LD-s. Any of the storesbetween store ST-1 and store ST-p may take the same action upon an address match and a valuemismatch. However, when �nally store ST-p retires, it will have both an address and a value matchand will reset the exception. When the store ST-p+1 retires, if it computes the same address butthe value is di�erent, this is a true exception. The exception will be taken when the load instructionretires. Please note that if any of the store instructions ST-p+1 or ST-p+2 in the shaded regionhave the same address as well as the same value, no exception will be raised and the machine willtake advantage of the available data redundancy. The same observation holds for the values comingthrough memory.Given the above solution that e�ectively handles the problem of false memory order vio-lations, the false memory dependencies arising from store-store induced dependencies can now becompletely eliminated. To achieve this goal, only a small change to the original store set algorithmis needed. The load instructions are made dependent on the store instruction they �nd in the LFSTtable entry, but the store instructions which are members of the same store set are not chained,allowing all the store instructions to issue fully out-of-order constrained only by their own registerdependencies. Load instructions however wait for the store instruction that they have been predictedto be dependent on. Thus no load instructions are serialized unnecessarily. Although the memorydependence prediction mechanism still relies only on the load and store program counter values, theabove method can e�ectively handle the problems arising from multiple instances of the same loador store instruction.

688.4 Taking Advantage of Value RedundancyIn the previous section, a simple technique has been presented that correctly indicates ifa memory order violation has occurred by matching the value each retiring store instruction storeswith that of the speculatively issued loads. Although there is nothing novel about the common-sensetechnique of determining correctness of speculated instructions by matching actual data values,the use of this approach in the context of the store set disambiguator is unique and yields highperformance beyond what is achievable by an ideal disambiguator that faithfully observes the truememory dependencies. A review of the workings of the store set algorithm should explain why.During the initial start-up, there is no information in the SSIT and LFST tables to guidethe scheduling. Because of the blind speculation of loads, loads acquire values either from theforwarding bu�er or directly from the memory. When the actual store instruction that the loadis truly dependent on retires with a value that is the same as the load instruction's value, thespeculation is successful and no new entries are created in the SSIT and LFST tables. In other words,the load speculates and executes successfully before the store it is actually dependenton. The machine will continue to speculate the same load instruction until a violation occurs.Once a violation occurs, the load instruction will not be speculated further since it will wait forits producer store. In other words, the machine takes advantage of the value redundancy as longas it is bene�cial to do so. By speculating in this manner no performance overhead is incurred incomparison to an address only approach. Instead, those load instructions that can take advantageof the data redundancy are automatically selected by the algorithm. Although this process is notdirected intelligently as in [9], similar bene�ts are obtained by not paying the penalties associatedwith a technique that speculates indiscriminately. The net e�ect of the technique is reduced loadaccess latency.In the next section, it is demonstrated quantitatively that for most benchmarks, the tech-nique indeed reduces the load access latency below what is possible with an ideal disambiguator thatfaithfully observes the true dependencies.
8.5 Performance EvaluationIn order to assess the performance potential of store set memory disambiguator with themodi�ed back-end series of experiments have been designed. The algorithm has been fully im-plemented and SPEC95 benchmarks have been executed with their training or test inputs. Theprocessor parameters have been kept as before. In these experiments, the performance of the out-of-order memory disambiguator is compared with both the ideal disambiguator as well as the originalstore set algorithm when it is appropriate.

698.5.1 Dynamic Load Latencies.Normalized average dynamic load latencies for out-of-order disambiguator is shown in Fig-ure 8.3. It is interesting to note that with the exception of 110.applu and 107.mgrid, all normalizeddynamic load latencies for oating point benchmarks are below 1.0. In other words, out-of-orderdisambiguator yields better dynamic load latencies than the ideal memory disambiguator. This isexpected, especially with those programs that have signi�cant degrees of value redundancy. Suchvalue redundancy occurs when the actual store instruction a load is truly dependent on is valueredundant with respect to the stale value in the memory, or other issued but not yet committedstore instructions. Since the ideal disambiguator makes a load wait for precisely the exact producerstore instruction, in those cases where the store instruction is value redundant it makes the loadinstruction wait much longer. Although not to the same level of uniformity, a similar behavior isobserved also among integer benchmarks.

0.0 1.0 2.0 3.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

ideal disambiguator
out−of−order disambiguator 4K
out−of−order disambiguator 64K

(a) Floating Point Benchmarks 0.0 1.0 2.0 3.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

Ideal disambiguator
out−of−order disambiguator 4K
Out−of−order disambiguator 64K

(b) Integer BenchmarksFigure 8.3: Normalized Average Dynamic Load LatenciesThe technique results in a signi�cantly longer dynamic load latency only in case of 129.com-press. Nevertheless, the �gure is still well below of the original store set algorithm (2.23 versus 1.79).124.mk88ksim shows an outstanding performance providing a dynamic load latency which is only afraction of the ideal disambiguator (0.355). Normalized standard deviation values follow a similartrend as shown in Figure 8.4 indicating that the success of the technique is uniform throughout thebenchmark's execution.8.5.2 Instructions Per Cycle.For the measurement of the instructions per cycle �gures, the harmonic means of the IPCvalues observed for the oating point and integer benchmarks are compared for di�erent algorithms.When the instructions per cycle �gures are analyzed, the bene�ts of using the approach become

70

0.0 1.0 2.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

Ideal disambiguator
out−of−disambiguator 4K
Out−of−order disambiguator 64K

(a) Floating Point Benchmarks 0.0 1.0 2.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

ideal disambiguator
out−of−order disambiguator 4K
out−of−order disambiguator 64K

(b) Integer BenchmarksFigure 8.4: Normalized Standard Deviation Values for Dynamic Load Latenciesincreasingly clear as the issue width is increased. At an issue width of 8, the out-of-order algorithmslightly out-performs the ideal memory disambiguator. With oating point benchmarks, out-of-orderdisambiguator is better than the ideal memory disambiguator by 0.01% and with integer benchmarksit is better than the ideal disambiguator by about 1.8%. The out-of-order algorithm shows betterperformance than the original store set algorithm by 4% with both the oating point and integerbenchmarks. In case of 124.m88ksim, out-of-order algorithm is better than both techniques by about18% (see Figures 8.5(a) and 8.5(b)).When the issue width is increased to 16, the out-of-order algorithm out-performs the orig-inal store set algorithm by as much as 18% with integer benchmarks, and 22% with oating pointbenchmarks (see Figures 8.5(c) and 8.5(d)). The performance di�erence further widens to 42% and52% with oating point and integer benchmarks when the issue width is increased to 32 instructions(see Figures 8.5(e) and 8.5(f)). In both cases, highly value redundant 124.m88ksim continues toout-perform the ideal disambiguator and the out-of-order disambiguator closely follows the idealdisambiguator for other benchmarks, even at very high issue widths.8.5.3 Scalability With Di�erent Table SizesIn order to further compare the performance of the out-of-order store approach to that ofthe original algorithm, both algorithms have been executed at predictor table sizes of 4K, 8K, 16K,32K and 64K entries. It has been observed experimentally that the size of the LFST table is notcritical and in these runs it was left to be su�ciently large.As it can be seen from the graphs in Figure 8.6 and Figure 8.7, the original store setalgorithm can out-perform the out-of-order algorithm only when the original store set algorithmhas a 32K entry table and the out-of-order disambiguator has a 4K entry table. For both integerand oating point benchmarks, with 8K entries the out-of-order algorithm always out-performs the

71

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0 ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(a) 8 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0
ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(b) 8 Issue - Floating point Benchmarks

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0
ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(c) 16 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(d) 16 Issue - Floating point Benchmarks

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0
34.0

ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(e) 32 Issue - Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

ideal disambiguator
store set disambiguator 64K
Out−of−order disambiguator 64K

(f) 32 Issue - Floating point BenchmarksFigure 8.5: IPC values Out-of-order Store Set, Store Set and Ideal cases

72

8 16 32
Issue Width

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

ideal disambiguator
out−of−order 64K
out−of−order 32K
out−of−order 16K
out−of−order 8K
out−of−order 4K
store set 64K
store set 32K
store set 16K
store set 8K
store set 4K

Figure 8.6: Scalability of Out-of-order Algorithm - Integer Benchmarks

8 16 32
Issue Width

2.0

7.0

12.0

17.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

ideal disambiguator
out−of−order 64K
out−of−order 32K
out−of−order 16K
out−of−order 8K
out−of−order 4K
store set 64K
store set 32K
store set 16K
store set 8K
store set 4K

Figure 8.7: Scalability of Out-of-order Algorithm - Integer Benchmarks

73original algorithm even when the latter has 64K entry tables. When the out-of-order algorithmis given a large predictor space, it matches the performance of the ideal disambiguator up to theissue width of 16, and very closely follows the ideal curve with slight performance loss. This smallperformance loss (about 10 % at an issue width of 32) originates from the cost of restarts. Thecost of restarts are largely paid for by the gains that are obtained through the exploitation of thevalue redundancy. Unfortunately, at these high issue widths the exploited value redundancy is notsu�cient to compensate for all the restart costs. Nevertheless, it is natural to expect that the al-gorithm will out-perform the ideal disambiguator at all issue widths if the cost of restarts can bereduced by employing a mechanism which selectively reissues e�ected instructions instead of squash-ing a window-full of instructions. Such re-execution recovery is quite feasible with memory orderviolations. In case of memory order violations, the validity of the instructions are not questioned.Therefore, only a few instructions which uses the wrong value can be reissued instead of throwingaway a window-full of instructions.8.5.4 Reduction of False Memory DependenciesIt has also been observed that when smaller predictor tables are employed, the performancegap between the out-of-order disambiguator and the original store set algorithm widens further,indicating the success of the technique in reducing the false memory dependencies. The false memorydependencies were also measured directly and the comparison of the original store set and ouralgorithm is given in Figure 8.8.

0.0 1.0 2.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

store set disambiguator
out−of−order 4K/store set 4K
out−of−order 64K/store set 64K

(a) Floating Point Benchmarks 0.0 1.0 2.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

store set disambiguator
out−of−order 4K/store set 4K
out−of−order 64K/store set 64K

(b) Integer BenchmarksFigure 8.8: Normalized False Memory DependenciesThe false memory dependencies are reduced because of two reasons. The �rst reason is thepreciseness of the novel memory order violation detection algorithm in creating the store sets. Whena conventional approach is used to detect the memory order violations, it may take some numberof iterations and a number of false memory order violations before the true store instruction that

74a load is dependent on is discovered. In case of the new technique, this happens the �rst time aviolation is encountered. Second, because the approach also takes advantage of value redundancy,it creates fewer number of table entries. In order to verify that this is indeed the case, the numberof dynamic instances of load and store instructions for which there is a matching SSIT entry hasbeen measured. This number was normalized by dividing it with the values produced by the originalstore set algorithm. The results of these experiments are shown in Figure 8.9.

0.0 1.0 2.0

101.to
mcatv

102.swim

103.su2cor

104.hydro2d

107.m
grid

110.applu

125.tu
rb3d

141.apsi

145.fp
ppp

146.wave5

A−Mean

H−Mean

out−of−order disambiguator
store set disambiguator

(a) Floating Point Benchmarks 0.0 1.0 2.0

099.go

124.m
88ksim

126.gcc

129.compress

130.li

132.ijp
eg

134.perl

147.vorte
x

A−Mean

H−Mean

out−of−order disambiguator
store set disambiguator

(b) Integer BenchmarksFigure 8.9: Normalized Counts of Load/Store Instructions Synchronized Through SSIT Table8.6 Bypassing Memory OperationsLoad and store instructions are communication instructions which by themselves do notcontribute to computation. They are the means through which values are communicated from theproducer instructions to the memory and back to the consumer instructions. A superscalar processorcan take advantage of this fact and make the producer of the value communicate directly with theconsumer when they co-exist in the instruction window. In this manner, the critical path length isreduced and higher degrees of instruction level parallelism is achieved because of reduced latency ofcomputation involving dependent instructions through memory.Bypassing of memory operations have been studied by Moshovos and Sohi [39]. It has beenindicated that by keeping a history of memory dependencies, producer instructions may communi-cate directly with the consumers speculatively. Because the critical path through the dependenciesis reduced, the technique is called memory dependency collapsing. In this technique load instructionsare allowed to access the memory and verify that they indeed get the correct value from the memory.This process is illustrated in Figure 8.10. Solution proposed by Moshovos and Sohi can be improvedbasically in two aspects: (a) proposed solution employs relatively complicated micro-architecturalstructures. These structures can be replaced with structures that are scalable and capable of pro-

75
Producer Instruction

Store

Load

Consumer Instruction

Via registers

Via memory

Via registers

Producer Instruction

Consumer Instruction

Via registers

Store

Load

Via registers

Via memory

Validate

Figure 8.10: Memory Dependency Collapsing [39]viding the same functionality; (b) access to the memory for veri�cation is indeed unnecessary. Itis su�cient to verify that the addresses computed by the load and the store instruction match andthere are no intervening stores writing to the same memory location.Elimination of memory accesses is essential for high performance superscalar processors.Memory ports are expensive and for high performance a large number of memory ports are needed.Furthermore, it is only logical to expect that with larger issue widths and a large instruction windowthere will be many candidates that can participate in memory dependency collapsing since both theproducer and the consumer instruction will co-exist in the instruction window. In fact, more than20 percent of the load instructions are candidates for memory dependency collapsing in a processorthat has a window size of 32. This number rises to more than 45 percent with an instruction windowof 256 [39]. Therefore, a mechanism which can provide the veri�cation without a memory accessmay greatly reduce the memory port requirements and enhance the performance.Recently, Jourdan et al. presented a modi�ed solution using a combined renaming scheme[28]. The new solution essentially addressed the complexity issue related with the original proposalmentioned above. This piece of work illustrated that dependency establishment (i.e., establishingthe value ow from the producer to the consumer) can be easily achieved using a modi�ed registerrenaming scheme. What is left still unresolved is how to implement the veri�cation process that hasto ensure all store instructions encountered between the couple access di�erent memory addresses.While for a small number of load and store instructions the process of making sure that no interveningstore writes to the same memory location may be manageable, for large instruction windows wherehundreds of loads are in-ight at once and a signi�cant percentage of them are involved in memorydependency collapsing process, it is unlikely that a brute force mechanism such as the ones appliedin existing processors can be extended to handle this task.In this section, a new mechanism is presented which extends both the store set algorithmand the developed memory order violation detection mechanism so that memory dependence col-lapsing can be achieved in a scalable manner without accessing the memory.

76Establishing the communication. For establishing the communication, the LFST table is ex-tended to include the physical register number of the store instruction. Upon encountering a loadinstruction the following steps are performed:(a) The load instruction accesses the SSIT table and then to the LFST table as usual. If there is anentry, the load is made dependent on the store.(b) The load instruction is converted to a sentinel load. In other words it is marked so that it can bedistinguished from other load instructions.(c) Instead of obtaining a new physical register that will hold the result of the load instruction, therename table for the current logical register is changed to point to the register number found inthe LFST table.(d) The load instruction is made register dependent on the register that the producer instruction willbe writing to and the store instruction will be reading from. Thus, when the load instruction isready to issue, it can be entered to the speculative loads table as if it has been issued speculativelywith an available load value. Please note that the load instruction still has to wait for its addresscomputation register dependencies as usual.At the end of the process, all subsequent uses of the load instruction will now wait for theresult of the producer instruction. In other words, the dependency links from the producer to allthe consumers have been established.Veri�cation Process. As it has been discussed, the veri�cation process involves making sure thatthe load and the store instruction that were involved in dependency collapsing compute the sameaddress and there is no intervening store to the same memory address between the two. This meansboth the load and store instruction should have a chance to perform the comparison.The solution builds on a simple scheme. For the veri�cation process to be successfulwithout accessing the memory, we need to be able precisely identify the store instruction involvedin the process. Furthermore, we need to be aware of the fact that before the load has a chanceto resolve its register dependencies involving the address computation (i.e., it is entered to thespeculative loads table so that the comparison takes place), the store involved in the dependencycollapsing may retire. These observations lead to a simple solution which extends the speculativeloads table with a visited ag and the reorder bu�er slot reserved for the load instruction with aprovider store instruction identi�er. This identi�er can simply be the reorder bu�er index of thestore instruction which is stored in the LFST table by the store instruction and retrieved by the loadinstruction during the communication establishment step discussed above.When a store instruction is retiring, it checks its address against the addresses in thespeculative loads table as before. We have the following possibilities:

77(a) The retiring store instruction is the collapsed instruction. In this case, values will always match.However, if addresses are di�erent then the dependency has been incorrectly predicted. The ex-ception bit is set. In either case, the visited bit is also set.(b) The retiring store instruction is a store between the provider store instruction and the load. In thiscase, if the addresses match and values are di�erent, the exception bit is set. If addresses matchbut values are the same, the exception is reset. Although the dependency has been mispredicted,the actual store instruction is value redundant and collapsing of the dependency did not causeharm.When the load instruction is retiring, it now checks the visited �eld in the speculative loadstable. If it is not set, then the store instruction which has been involved in dependency collapsinghas retired before an address comparison could be made. In this case, a memory access has to beperformed and the value obtained from the memory has to be compared against the value load isholding. If these values are di�erent the machine state must be repaired.Veri�cation with Zero Memory Access. Veri�cation with zero memory access can be achievedusing a simple mechanism at the expense of increased complexity in the instruction window's depen-dency checking mechanism. This is achieved by forwarding the store address when it is computedto the load instruction which is involved in the dependency collapsing. In order to implement thismechanism, the store instruction is split into two micro operations, namely, address computationand value storing. The address computation part obtains a physical register and stores the registernumber in the LFST table. Upon establishing the communication link, the load instruction is maderegister dependent on: (a) the producer instruction's result register; (b) its own base address regis-ter; (c) store instruction's address computation register. With this establishment, there is no needto have the visited ag. Instead, when a sentinel load is ready to issue, it compares the address ithas calculated against the address it has received from the store instruction. If there is a mismatch,the load instruction sets its own exception bit. Please note that the exception bit may be reset asusual by the intervening stores if their addresses as well as values match.8.7 Concluding RemarksIn this chapter, an e�ective mechanism for reducing false memory dependencies when usinga memory dependence predictor has been presented. It has been shown that full out-of-order issuingof store instructions in the instruction window can be allowed using the new memory order violationdetection mechanism. In addition to allowing out-of-order issuing of the store instructions, thepresented mechanism takes advantage of the value redundancy present in programs. There aretwo types of value redundancy that the mechanism exploits: (a) Value redundancy through a stalevalue in memory; (b) Value redundancy that is present among store instructions which co-exist inthe instruction window and store a value to the same memory location. The �rst type of value

78redundancy can also be exploited by the value prediction mechanism, whereas the second one canbe exploited by load-store pairing mechanisms. In either case, the proposed mechanism does notneed additional hardware to take advantage of the value redundancy.Developed solution is an orthogonal solution that can be utilized with other types of mem-ory dependence predictors as well. For example, the scheme proposed by Moshovos and Sohi basedon MDPT/MDST associative structures [39] either forces a load to wait for all dependences pre-dicted, or, MDPT entries are augmented to contain control ow information for each load/storepair. Using the new scheme, there would not be any need to force a load to wait for all dependencespredicted or any need for augmenting predictor entries with control ow information. Similarly, theproposed back-end can also be used together with value prediction techniques [34, 36, 28, 9]. Specif-ically, a machine may employ selective value prediction to a subset of loads, whereas the remainingones can synchronize through the dependence predictor employing the new back-end. The veri�-cation mechanism the scheme uses would work properly with value prediction mechanisms withoutmodi�cations.Finally, it is important to note how the performance of the scheme would compare withother predictive techniques. A recent study by Reinman and Calder studies the performance gainsthat can be obtained using various predictive techniques for load value speculation including thestore set as well as value predictors [60]. This study reports that value prediction can out-performthe store set mechanism by about 20 %. Given that in their store-set study store instructions are notallowed to issue out-of-order and out-of-order disambiguator presented in this thesis out-performsboth the original store set algorithm as well as an ideal memory dependence predictor by takingadvantage of the value redundancy present in programs, further studies are needed to verify theirconclusion that the value prediction out-performs all other techniques.

Chapter 9Architecture Description Language - ADLThe evaluation of previous processor architectures and new microarchitectural techniquesdescribed in the previous chapters required detailed implementations of cycle accurate simulatorsfor this purpose. These simulators need to be executed millions of machine cycles that generalconclusions can be drawn regarding the performance of the technique being evaluated. As a result,tools are required to enable rapid development of cycle level simulators that are fast enough to carryout extensive simulation studies.A commonly used approach for developing simulators is their hand coding in a generalpurpose language such as C. Examples of some popular simulators which were developed using thisapproach include the SPIM simulator for the MIPS architecture [32], the SimpleScalar simulator[7], and the SuperDLX simulator [41]. The hand coding of simulators is a substantial task whichtypically takes between 12 to 24 man months. Once developed, such simulators are di�cult toretarget to a modi�ed microarchitecture or an instruction set architecture without a signi�cantamount of e�ort. Another problem that one encounters is the di�culty in porting these simulatorsto di�erent platforms. The portability issue arises due to the need for handling of external systemcalls that are made by the benchmarks being run. Solutions that either disallow such calls or allowexternal calls but sacri�ce portability by allowing the simulator to run only on a speci�c platform(e.g., SPIM) are undesirable.An alternative to hand coding a simulator is to generate it automatically from a machinespeci�cation written in a domain speci�c language. Automatic generation not only signi�cantlyshortens the development cycle, it also allows retargeting since modi�cations in the architecturecan be made at the speci�cation level and the new simulator can then be automatically generated.Although a number of hardware description languages [1, 38, 54, 65] are available, these languagesare not suitable for developing cycle level simulators. These languages are capable of de�ning thehardware to the smallest detail and result in simulators that are orders of magnitude slower thancycle level simulators. The retargeting of simulators requires signi�cant e�ort and no solution to theportability problem is o�ered by these languages.In order to allow rapid prototyping of required simulators, a domain speci�c language forspecifying processor microarchitectures called the Architecture Description Language (ADL) has beendesigned and its compiler and run-time environment has been implemented in a system called the79

80Flexible Architecture Simulation Tool (FAST). Required simulators for this dissertation have all beengenerated automatically using the FAST system from architecture descriptions encoded in ADL.ADL supports an execution model that is suitable for expressing a broad class of processorarchitectures. It provides constructs for specifying the microarchitecture elements such as pipelines,control, and the memory hierarchy including instruction and data caches as well as constructs forthe speci�cation of the instruction set architecture (ISA), the assembly language syntax and thebinary representation. In order to provide portable operation, the language also incorporates amapping between the calling convention of the simulated architecture and the machine that hoststhe simulator. In this way, the simulator can perform external calls on behalf of the simulatedprogram to achieve greater portability.The language also incorporates built-in constructs for statistics collection as well as alanguage interface to a debugger so that the debugger can be invoked automatically when errorconditions are encountered.In the remainder of this chapter, in section 9.1, an overview of the Architecture DescriptionLanguage is presented. In Section 9.2, language constructs which are designed for specifying themicroarchitecture of the simulated architecture are described. In Section 9.3, the constructs whichare used to de�ne the instruction set architecture, general assembly syntax and the binary repre-sentation are presented. Next in Section 9.4, the calling convention speci�cation which allows theautomatically generated simulators perform system calls on behalf of the simulated program are out-lined. In Section 9.5, examples of statistics collection and debugging related features are presented.Finally, in Section 9.6 the chapter is concluded with a brief discussion of unique characteristics ofthe ADL language.9.1 Language OverviewAn ADL program primarily consists of the description of a processor architecture whichincludes the speci�cation of the instruction set architecture as well as the organization of the com-ponents of the microarchitecture. Before we discuss ADL in detail, let us �rst consider the model ofexecution used by ADL to express the operation of an architecture and highlight some of its designcharacteristics:Explicit Instruction Flow and Instruction Context: In ADL the ow of instructionsthrough the architectural components is explicit. The data associated with an instruction underexecution is called the instruction context. The context is passed from one component to the nextand is operated upon by the components till the execution of the instruction is complete. Thecontext is allocated when the instruction enters the pipeline and is deallocated when the instructionretires. The Machine Clock: The notion of machine clock is built into the language and theoperation of the architectural components is described with respect to this clock. The machine clockis viewed as a series of pulses. Each discrete pulse is called a minor cycle, and a number of minor

81cycles are grouped together to form a machine cycle. The minor cycles in ADL are represented bya series of labels. The �rst and the last minor cycles of a machine cycle are labeled as the prologueand the epilogue and those in between are labeled as intermissions. The actions of each componentin the system during a machine cycle are divided into the operations that it performs in each ofthe minor cycles. During the prologue a component receives an instruction context from anothercomponent for processing, during the intermissions it operates upon the instruction context, andduring the epilogue it sends the modi�ed context to another component. Figure 9.1 shows the clockof a machine in which the major cycle is composed of � minor cycles.
Minor Cycle

1
(Prologue) (Intermission 1)

2
Minor Cycle Minor Cycle

λ−1
(Epilogue)

λ
Minor Cycle

Major Cycle

(Intermission)λ−2Figure 9.1: ADL Clock LabelingArtifacts and Processing Stages: The architectural components are divided into twocategories: artifacts are components with standard well known semantics that are directly supportedby the language and stages are components whose semantics must be explicitly speci�ed as part ofthe ADL program.Examples of artifacts include caches, memory units, and register �les. Since they aredirectly supported by ADL as built-in types, the programmer can use them by simply declaringobjects of these types in an ADL program. Access to artifacts takes the form of assignments to andfrom the artifact variables. Di�erent implementations of these components can be used by specifyingdi�erent attribute values for the artifacts. The interaction of an artifact with the machine clock isalso speci�ed as a list of attributes.Processing stages are architectural components that exhibit a signi�cant functional vari-ety. Their operation is dependent on the microarchitecture as well as the current instruction beingprocessed. Furthermore, the function such an element performs is tightly coupled with the systemclock and the status of other components in the system. Thus, it is not feasible to follow a declara-tive approach for stages but instead the user must explicitly specify their semantics using RegisterTransfer Level (RTL) statements.Separation of Instruction Set Architecture and Microarchitecture Speci�cation:The ISA speci�cation is separated from the microarchitecture speci�cation to facilitate the develop-ment of di�erent microarchitecture implementations for the same ISA or extend an ISA by addingnew instructions without altering the microarchitecture. The above separation has the followingconsequence on the speci�cation of stage semantics. The RTL statements describing the semanticsof stages are divided into two components: the general component that is common to all instruc-

82tions and the ISA-component which depends upon the speci�c instruction being processed. Theformer is speci�ed in the microarchitecture description while the latter is included as part of theISA speci�cation.Time Annotated Actions and Parallelism in the Microarchitecture: The speci�-cation of the actions associated with the execution of speci�c instructions as well as the actionsassociated with various architectural components are annotated with timing information so that itcan be determined when they are to be performed.The procedures that implement the general component of actions associated with a process-ing stage carry the name of the stage and the label of the minor clock cycle during which they are tobe executed. Such procedures are referred to as time annotated procedures (TAPs). Since there are� minor cycles, there may be up to � TAPs for a given stage. The ISA-component associated withan instruction is labeled with the name of the processing stage and optionally with the label of theminor cycle during which it must be executed. These statements are referred to as labeled registertransfer level (LRTL) segments.Parallelism at the architecture level is achieved by executing in each machine cycle theactions associated with each component during that cycle as well as actions associated with aninstruction that are annotated with the current cycle. The machine execution is realized by invokingeach TAP corresponding to a minor cycle as the clock generates the corresponding label and theparallel operation of individual components is modeled by concurrently executing all TAPs whichhave the same annotation. During this process, LRTL segments corresponding to the currentlyprocessed instruction are fused together with the corresponding TAP. The operation of a machinecan be described as follows:do foreverfor clock.label := prologue, intermission 1, ... intermission (�� 2), epilogue do8 TAP, TAP.annotation = clock.label dof process fTAP; TAP.instruction.LRTL g gend
9.2 Microarchitecture Speci�cationThe speci�cation of the microarchitecture consists of describing the artifacts of the ar-chitecture, declaring pipelines involved and their stages, specifying instruction contexts, and �nallyde�ning TAPs for each of the stages. In the following sections, a simple pipelined architecture shownin Figure 9.2 will be used to discuss each of these steps. In this architecture, the instruction fetchstage (IF) fetches instructions from the instruction cache and ships them to the instruction decode(ID) stage. ID stage decodes the instructions it receives, fetches their operands from the register�le, and sends them to the execution unit (EX). The memory access (MEM) stage performs a datamemory access for the load and the store instructions, but other instructions pass through this stage

83unchanged. Finally, the write back (WB) stage writes the results back to the register �le. In order toeliminate pipeline stalls that would otherwise result, data values are forwarded through forwardingpaths to the earlier stages.

Artifact

Pipeline stage

Pipeline register

(L1)

Data
Cache

IF ID MEM WBEX

Forwarding paths
clock

Cache

Instruction

File

Register

(L2)

Data
Cache

Port 0
MEMORY Port 1Figure 9.2: A Simple Pipelined ProcessorArtifacts: Artifacts are hardware objects with well-established operational semantics andthey are supported as built-in types by the language. A declaration of an artifact supplies the valuesof the attributes of the artifact to derive a speci�c implementation of the artifact. For an artifact,it is also speci�ed how long does it take to process a single request in terms of clock cycles (i.e., thelatency), the rate at which new requests can be issued to the artifact (i.e., the repeat rate), and themaximum number of requests that can be outstanding in a clock cycle (i.e., the number of ports).The list of the di�erent types of artifacts supported by the language is given below.artifact-declaration) register-declarationj register-�le-declarationj memory-port-declarationj cache-declarationj bu�er-declarationj token-declarationA register declaration declares an artifact of type simple register while a register �le decla-ration declares an array of registers. Registers and register �les may be given the attribute shadowwhich makes them invisible to the instruction set. ADL allows de�nition of one or more aliases forthe individual register �le entries. A memory declaration de�nes a memory port with a given accesslatency in units of machine cycles and a data path width in units of bits. For the cache artifact,

84attribute values include degree of set associativity, the kind of replacement strategy, and whether itis a write-back or write-through cache. Memories, caches and bu�ers have an important propertyof being stackable. This property is required for building memory hierarchies. When an artifactis declared, the name of the artifact immediately lower in the hierarchy is mentioned using the ofclause, e�ectively placing the new artifact higher in the hierarchy.shadow register temp 16; # A 16 bit temporary register.register �le gpr [32,32] # 32 registers,32 bits each.$zero 0, # $zero is another alias for gpr[0]$at 1, # $at is another alias for gpr[1]$v0 2,.....$sp 29,$fp 30,$ra 31;memory mport0 latency 12 width 64, # 64 bit path to memory.mport1 latency 12 width 64; # 64 bit path to memory.instruction cache icache of mport0 directmapped 64 kb 4 wpl;data cache l2 of mport1 directmapped 64 kb 4 wpl,l1 of l2 4 way 8 kb 4 wpl;Figure 9.3: Example artifact declarationsA sequence of artifact declarations for the example pipelined architecture of Figure 9.2 isshown in Figure 9.3. The �rst declaration declares a temporary register invisible from the instructionset. Next a register �le gpr is declared and individual registers in the �le are assigned aliases. Thenames $0, $sp, etc, are ISA visible since the register �le itself is ISA visible. RTL statements mayuse either form of access (i.e., gpr[31] or $ra). The declaration speci�es two memory ports with12 cycles of access latency and 64 bit data paths. The memory port mport0 hosts a direct mappedinstruction cache of 64 kilobytes with 4 words per cache line. Memory port mport1 hosts a directmapped cache of similar attributes and this direct mapped cache in turn services a four way setassociative cache of size 8 kilobytes. Thus, the cache L1 is at the highest level in the hierarchy andthe memory ports are at the lowest level.Once declared, artifacts are accessed just like variables by the RTL statements in thespeci�cation. For complicated structures, such as data caches, passing of additional parameters maybe required. For example, in order to store a single byte to the L1 cache, and retrieve a halfword,the following sequence of RTL statements could be used:

85l1.(BYTE) [addr] = data value;data value = l1.(HALFWORD) [addr];When an artifact is accessed, the status of the result is queried using the access-completestatement. This statement returns a true value if the operation has been completed successfully, anda false value otherwise. A false value may be returned because the artifact is slow, such as in thecase of memory-ports, or because there is a structural hazard. In these cases the request must berepeated. Further details of why the operation was not successful may be queried using additionalstatements.Processing Stages and Instruction Context Declarations: The primary means ofdeclaring stages of the microarchitecture is the pipeline declaration. A pipeline declaration speci�esan ordering among pipeline stages such that each stage receives an instruction context from thepreceding stage and sends the processed context to a later stage. There may be more than onepipeline declaration in an ADL program but the stage names must be unique. Once a stage isdeclared using a pipeline construct, TAPs may be speci�ed for each of the stages and semanticsections of instruction declarations may utilize the stage names as LRTL labels. The followingdeclaration de�nes the pipeline for the example architecture:pipeline ipipe (IF, ID, EX, MEM, WB);In ADL, the set of data values carried along with pipeline stages are grouped togetherin a structure called controldata. There is only one such declaration, which means all stageshave the same type of context, and the instruction context is the union of the data required by allthe pipeline stages in the system. While in a hardware implementation pipeline stages may carrydi�erent types of contexts, de�nition of instruction context in this way simpli�es the transfer andhandling of instruction contexts in the simulator. Since there is a uniform single instruction contextfor all pipeline stages, each pipeline stage name is also an object of type controldata. The followingis a simple controldata declaration for a pipelined machine:controldata registermy pc 32, # Instruction pointer for the instruction.simm 32, # Sign extended immediate.....dest 32, # dest holds the value to be written.lop 32, # lop holds the left operand value.rop 32; # rop holds the right operand value.Elements of the controldata structure may be accessed from TAPs and by the semanticparts of instruction declarations (i.e., LRTLs). Access to the elements of the structure may bequali�ed or unquali�ed. When they are not quali�ed, the pipeline stage is the stage of the TAP that

86performs the reference or the label associated with the LRTL segment that performs the reference. Inits quali�ed form, the syntax controldata-element[stage-name] is used to access the instructioncontext of another stage. This form is primarily used to implement internal data forwarding byeither the source stage writing into the context of the sink stage or the sink stage reading the datafrom the context of the source stage.Specifying Control and TAPs: The machine control is responsible for checking theconditions for moving the pipeline forward, forwarding the instruction context from one stage to thenext, controlling the ow of data to and from the artifacts, and introducing stalls for resolving data,control, and structural hazards. In ADL, the semantics of the control part of the architecture isspeci�ed in a distributed fashion as parts of TAPs by indicating how and when instruction contextsare transferred from one stage to another.The movement of an instruction context through the pipeline, from one stage to the next,is accomplished through the send statement. The send is successful if the destination stage is in theidle state or it is also executing a send statement in the same cycle. All pipeline stages execute thesend statement during the epilogue minor cycle. In the normal pipeline operation, an instructioncontext is allocated by the �rst pipeline stage using the ADL statement new-context. This contextis then �lled in with an instruction loaded to the instruction register. When this stage �nishes itsprocessing, it executes the send statement to send the context to the downstream pipeline stage.When a context reaches the last pipeline stage it is deallocated using the ADL statement retire. Ifany of the pipeline stages does not execute a send, send operations of the preceding stages fail. In thiscase, they repeat their send operations at the end of next cycle. For decoding the instructions, ADLprovides a decode statement. The decode statement does not take any arguments and establishes amapping from the current context to an instruction name. This mapping is fully computable fromthe binary section of instruction declarations. Once decoded, all the attributes of the instructionbecome read-only controldata variables and are accessed accordingly.The conditions for internal data forwarding can be easily checked by the stage that needsthe data. For example, the TAP for the ID stage in the example pipelined machine may check ifany of the stages EX and MEM has computed a value that is needed by the current instruction bycomparing their destination registers with the source registers of the instruction currently in the IDstage. If that is the case, the stage reads the data from the respective stages instead of the register�le. For the handling of artifact data-ow and the handling of various hazards, ADL providesthe stall statement through which a stage may stall itself. The stall statement terminates theprocessing of the current TAP and the remaining TAPs that handle the rest of the machine cycle.The net e�ect of the stall statement is that no send statement is executed by the stage executingthe stall in that machine cycle.In addition to the stall statement, ADL also provides statements to reserve a stage,release a stage, and freeze/unfreeze the whole pipeline. When a stage is reserved, only theinstruction that reserved it may perform a send operation to that stage, and only this instructioncan release it regardless of where in the pipeline the instruction is at. When a stage executes a

87instruction register ir;stall category mem ic,ld d dep,pool full;(a) procedure ID epiloguebegin if i type[EX]== load type &(dest r[EX]==lop r j dest r[EX]==rop r) thenstall ld d dep;end ID;(b) procedure IF prologuebegin ir=icache[pc];if access complete thenbegin unfreeze; pc=pc+4 endelsebegin freeze; stall mem icl end;end IF;(c) pipeline RSPOOL(RSTA[64]);procedure ID epiloguebegin reserve unit RSTA my pc;if ! access complete then stall pool full;end ID; Figure 9.4: Handling of Hazards.freeze, all stages except the stage that executed the freeze statement will stall and only the stagethat executed the freeze statement may later execute an unfreeze statement.Examples of hazard handling using these statements are shown in Figure 9.4. Figure 9.4(a)indicates the case where the result of a load instruction may be used immediately by the next in-struction. Such data hazards cannot be overcome by forwarding alone and therefore require insertionof pipeline bubbles. The stage in this case checks for the condition by examining the context of theEX stage and its destination register and stalls appropriately. Because of the stall, the ID stage doesnot execute a send in this cycle. Since the send operations of following stages are not e�ected by thestall of prior stages, the EX stage enters the next cycle in an idle state which is equivalent to intro-ducing a pipeline bubble. An instruction cache miss in a pipelined architecture is usually handled byfreezing the machine state. In Figure 9.4(b), the instruction fetch stage executes a freeze statementwhenever there is a cache miss. A stall is also executed so that the epilogue will not attempt toexecute the send statement. Note that an unfreeze is always executed whenever the cache accessis successful. Executing an unfreeze on a pipeline which is not frozen is a null operation. In thisway, the stage code does not have to be history sensitive. Finally in Figure 9.4(c), a structuralhazard and its handling is illustrated. The example shows one possible way to implement a uni�edpool of 64 reservation stations using an array of stages for the Tomasulo's algorithm [68]. The IDstage attempts to reserve a unit from the pool of reservation stations. If the reserve statement isunsuccessful, the stage executes the stall statement.

889.3 ISA Speci�cationThe ISA is speci�ed by means of instruction declarations which describe the syntax andsemantics of both the machine instructions and the macro instructions using a uniform syntax givenbelow: instruction-declaration) machine-instruction-declarationj macro-instruction-declarationmachine-instruction-declaration) syntax-part emitbinary-part semantic-partmacro-instruction-declaration) syntax-part macrosemantic-partThere are three major components of the instruction speci�cation. These are the syntax-part, thebinary-part and the semantic part. The syntax part and the binary part together de�ne how theassembler should parse instructions and generate the appropriate binary encoding of them. Thebinary part is also used to automatically generate the decoder for the implementation of the decodestatement discussed earlier. The semantic part of a machine instruction description is a list of LRTLsegments describing what each stage should compute when the instruction is processed by the stage,whereas the semantic part of a macro instruction description speci�es how the assembler shouldgenerate machine instructions from the macro speci�cation.Generation of a binary encoding of an assembly instruction involves three steps. Theseare the parsing of the assembly instruction, extracting the values of any instruction �elds whichare derived from the assembly instruction, and packing these values in an instruction format. Theinstruction format for an instruction is a sequence of �elds making up the instruction word. Someof the instruction formats for the MIPS architecture are shown in Figure 9.5(a).ADL de�nes instruction �elds by associating a start bit and �eld width pair with a name.The same pair may be de�ned multiple times using di�erent names since the same pair may havea di�erent purpose in a di�erent instruction format. If a �eld has a constant value for all theinstructions in the instruction set, it is declared to be a constant �eld. Otherwise, it is declaredto be one of the ADL types register, integer or signed integer. Such �elds are considered to bevariable �elds. Variable �elds typically get their values from the assembly instruction when suchan instruction is parsed by the assembler. The instruction �elds are speci�ed using the declareconstruct. declare-construct) declare declarationsdeclarations) �eld-declarationj variable-declarationj temporary-declaration�eld-declaration) �eld-name(constant j integer j register j signed)field start-bit �eld-width

89
31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd shamt funct R-FORMAT

op target J-FORMAT

31 26 25 0

31 26 25 21 20 16

op rs rt immediate I-FORMAT(a) MIPS formatsdeclare op constant �eld 31 6,rs register �eld 25 5,rt register �eld 20 5,rd register �eld 15 5,shamt integer �eld 10 5,funct integer �eld 5 6,target integer �eld 25 26,immediate integer �eld 15 16,(b) Field DeclarationsFigure 9.5: Instruction format speci�cationExamples of �eld declarations for the MIPS instruction formats are given in Figure 9.5(b).Field declarations alone are not su�cient to describe the binary encoding of an instruction. Wealso need to de�ne which �elds make up the instruction (i.e., the instruction format) as well ashow their values are computed. Instead of de�ning separate instruction formats and then mappinginstructions to these formats [12], ADL chooses to specify the instruction format as part of theinstruction's binary part. The binary part of each instruction is represented as a sequence of �eldexpressions. A �eld expression is the assignment of a value to a �eld of the instruction. The valueassigned to a �eld may be a constant, a constant expression, or, it may reference a value to bederived from the assembly instruction by the syntax-part. The ADL syntax for the syntax-part andthe binary-parts of an instruction declaration are given below:syntax-part) instruction-mnemonics argument-listargument-list) argument j argument argument-listargument) label-variable j �eldbinary-part) �eld-expressionj �eld-expression binary-part�eld-expression) �eld j �eld = constant j �eld = <fog-list>

90 fog-list) fog-predeclared j fog-list.pure-functionfog-predeclared) label-variable.basej label-variable.offsetj label-variable.absolutej label-variable.deltaj label-variable.segoffsetThe syntax part of an instruction declaration is a list of arguments de�ned to be eitherlabel variables or �elds. A �eld in the argument list means that the assembler should expect to �ndan object of the corresponding type such as a register or an integer constant at the correspondingposition of the assembly instruction. A label variable represents an address primary. Examplesof address primaries include labels, base/o�set pairs, and any constant arithmetic on labels. Fieldexpressions given in the binary-part may query the values of the arguments of the instruction usingpre-declared functions such as base, o�set, absolute, or delta, or substitute them directly. Thesevalues may also be transformed by using pure functions which are functions which have a singleparameter and return a single transformation of this parameter.Let us now see how the assembler could parse an instruction using the speci�cation shownin Figure 9.6 and generate the appropriate binary. In the example, the argument part consistsof a register �eld (rt), and a label variable (address). Therefore, the assembler expects to �nda register name followed by a sequence of tokens which can be reduced to an address primarywhen a lw mnemonic is detected in the input stream. The �eld expressions in the binary partindicate that the opcode �eld must be set to the constant value of 35, rs �eld must be given thebase register number representing the address, and the immediate portion must be given the o�setrepresenting the address. Since the rt �eld appears in the argument list, it gets a register numberfrom the parsed instruction. ADL representation of binary encoding is a concise representation andis natural. Similar encoding techniques have been employed in the SLED approach [57, 58].Specifying Instruction Semantics: The semantic-part of an instruction speci�cationserves two purposes. These are the speci�cation of what each stage computes when such an instruc-tion is received and instruction classi�cation so that stages may apply operations speci�c to a classof instructions. For example, branch instructions may be handled by a speci�c stage which requiresthat the type of an instruction be known so that proper instruction steering can be performed.The instruction speci�c operations of stages are speci�ed using LRTL segments. A LRTLsegment is a program segment that consists of register transfer level statements where each blockof such statements are labeled using a stage name. The syntax of the LRTL segment is depictedbelow. LRTL-segment) begin labeled-RTL-list endlabeled-RTL-list) labeled-RTL j ; labeled-RTL-listlabeled-RTL) case stage-name RTL-statement-list end

91The classi�cation of instructions is achieved using an optional instruction attributes sectionwhere the attributes of the instruction are speci�ed. These attributes can be queried by pipelinestages upon receiving the instruction. An instruction attribute is a member of the global enumerationde�ned by the attribute declaration given below:attribute-declaration) identi�er:attribute-listattribute-list) name-list j integername-list) identi�er j identi�er , name-listSince an attribute of an instruction classi�es an instruction, values of attributes must bespeci�ed for all the instructions. An example attribute declaration section that classi�es instructionsaccording to their operation types is shown below:attributesi type : alu type,conditional direct,conditional direct link,unconditional direct,unconditional direct link,unconditional indirect,unconditional indirect link,load type,store type;Let us examine the semantic part of the lw instruction declaration shown in Figure 9.6.This instruction has the i_type attribute load_type, and LRTL segments ID, EX, and MEM de�nethe operations each of the corresponding stages. The LRTL segment ID performs a sign extensionusing powerful ADL bit operations. The sign extension is achieved by repeating the bit 15 of theimmediate �eld (|< operator) for 16 bits and then concatenating (|| operator) it with the �elditself. The result is then stored into the variable simm. The LRTL segment EX performs an addresscomputation by adding the contents of the variable lop with the sign extended value computed bythe ID stage. Similarly, the LRTL segment MEM performs a data cache access using the valuecomputed in the EX stage and stores the returned value into the variable dest. Since writing backthe results of instructions into the register �le is common for all instructions, this task is handledby TAPs.The address space of a TAP consists of the global address space implemented by the artifactsand the local address space de�ned by the instruction being currently processed. In Figure 9.6, thevariables simm, dest r, lop are part of the local address space or the instruction context. When theexecution of a TAP is completed, the local address space is transferred to another TAP instead ofbeing deallocated. Typically, the next TAP that executes in the same context is the TAP belongingto the same stage that has the next clock label. When the TAP that has the label epilogue isexecuted, the context is either transferred to the prologue TAP of the same stage or to the prologueTAP of another stage.

92 lw rt addressemit opcode= lw rs=<address.base> rt immediate=<address.offset>attributes(i type: load type, dest reg: rt)begincase s IDsimm=sign extend 16(immediate);end;case s EXlmar=lop + simm;end;case s MEMdest=ncache [lmar];end;end, Figure 9.6: MIPS Load Word InstructionMacro Instructions: Most compilers available today (e.g., gcc) make use of macro instruc-tions in code generation. The task of converting these instructions into actual machine instructionsis left up to the assembler. ADL handles macro instructions in a manner similar to machine instruc-tions. The syntax part of the instruction has the same syntax, but no �eld variables are allowed inthe argument part. Therefore, all of the instruction arguments are variables. Since macro instruc-tions themselves do not directly lead to a binary representation, there is no binary generation part.The macro speci�cation can be visualized as a procedure where the procedure arguments correspondto the instruction arguments and the semantic part corresponds to the body of the procedure. Theprocedure de�nes what instruction(s) should be generated given a particular instance of arguments.Instructions to be generated are speci�ed using an instruction call statement that generates a ma-chine instruction by passing the values of the �elds of the instruction as parameters. The syntax forthe instruction call statement is shown below.instruction-call) instruction-mnemonics :�eld-assignment-listAn example macro declaration for the MIPS load immediate instruction is shown in Fig-ure 9.7. This macro generates either a single instruction (ori) or a pair of instructions (lui, ori)depending on the size of the immediate �eld.9.4 Calling Convention Speci�cationThe purpose of the calling convention speci�cation is to enable the simulator to performexternal system calls on behalf of the simulated program so that operating system services can beprovided through the operating system of the host machine. For this purpose ADL provides a callingconvention section where the calling convention of the simulated architecture and the prototypes of

93declare rdest register variable,src2 integer variable,tx integer temporary,ty integer temporary;instruction li rdest src2 macrobegin tx=src2.[31:16];ty=src2.[15:16];if (src2.[31:17] == 0x1��) j (src2.[31:17] == 0) thenori:rt=rdest rs=0 immediate=tyelsebegin lui:rt=rdest immediate=tx;ori:rt=rdest rs=rdest immediate=ty;end;end; Figure 9.7: Macro Instruction Example.external references are speci�ed. From this speci�cation, an engine is generated that can executean external procedure by passing the values of the parameters from the simulated architecture andreturning the results back into the simulator. This approach allows the language user to specifyexternal references of a program and treat them as if they are single instructions.The calling convention speci�cation is based on the formal model and speci�cation languagefor procedure calling conventions by Bailey and Davidson [5]. Their language has been modi�ed sothat it �ts the general structure of the ADL language. The speci�cation provides a mapping to aregister or a memory location, given an argument's position and type in the procedure call. Sincean argument's value may not have been written to the memory cell or to the register �le at thetime of the call, the mapping has been modi�ed so that each register identi�er that may be usedto pass arguments to the callee and each stack alignment are associated with a supplier procedure.Supplier procedures are microarchitecture speci�c procedures that return the value of the argumentat the time of the call. In a pipelined architecture, the supplier procedure may return the valuefrom an artifact if there are no instructions in the pipeline that are computing the value, or thevalue may be returned from a stage if the value has been computed, but did not yet reach the write-back phase. If the value is available and is being returned, the procedure sets the built-in variableaccess-complete to true. In the case that more cycles are necessary before the value becomesavailable, the access-complete variable is set to false. An example calling convention speci�cationfor the MIPS architecture is given in Figure 9.8.The calling convention speci�cation consists of two sections, namely a data transfer sectionwhich describes how arguments are allocated into the registers and the stack locations, and a pro-totypes section, where prototypes of external procedures and names of external data addresses aresupplied. The data transfer section consists of argument declarations, set declarations and a mapdeclaration. Argument declarations associate either a register name with a supplier procedure name,or a stack alignment name with a supplier procedure. For example, in Figure 9.8, argument register

94 calling convention beginargument $4:int p1, $5:int p2, $6:int p3, $7:int p3;$f12:t p1,$f13:t p2,$f14:t p3,$f15:t p4;unbounded stk4: stk p4, stk8: stk p8;set intregs($4,$5,$6,$7,stk4),intfpregs(<$4,$5>,<$6,$7>,<stk8,st4>),fpfpregs (<$f12,$f13>,<$f14,$f15>,<stk8,stk4>);equivalence ($4,$f12), ($5,$f12), ($6,$f14), ($7,$f14);typeset singleword(int, void *, ...), doubleword(double, ...);map argument.type beginsingleword : intregs;doubleword : map argument[1].type beginsingleword: intfpregs;doubleword: fpfpregs;end map;end map;prototypes beginreference errno, sys errlist ...double cosh(double); int printf(int,...);end;end calling convention;procedure int p1()beginint p1=gpr[4];access complete=(has context EX jhas context MEM j has context WB)==0;end int p1;Figure 9.8: MIPS Calling Convention Speci�cation$4 is associated with the supplier procedure int_p1. Stack alignment names are declared using theunbounded keyword and correspond to an unlimited pool of argument values starting at a givenalignment of the frame pointer for the architecture. Supplier procedures for stack alignment namesdo the required alignment �rst and return the �rst word at the indicated location. The registernames and stack alignment names given as part of the argument declarations are called argumentlocations.Set declarations create ordered pools of arguments based on types. In our example, the setintregs creates a pool of argument values which consists of four integer registers and an unboundedpool of stack locations. Thus, a call site that requires six integer arguments would �nd the valuesof its �rst four arguments in the registers $4, $5, $6, $7, and the remaining two on the stack.In some architectures, if one register is used, some other registers can no longer be used for thefollowing arguments. For example, in the MIPS architecture, if the oating point register $12 isallocated, integer registers $4 and $5 cannot be used to pass the following integer arguments. Thespeci�cation handles this problem by creating equivalence sets given by the equivalence declaration.

95Register pairs listed in an equivalence declaration are removed together from the respective setswhen one of them is allocated.Typeset declarations group variable types that map to the same sized objects. Once thesets and typesets are de�ned, a map declaration creates a mapping from typesets to sets. For eachargument type, �rst the typesets are consulted to �nd the corresponding typeset. Next the typeset issupplied to the map construct to �nd the set from which the argument value(s) should be obtained.These sets are consumed one by one for each argument value that is needed. The map declaration inthe example in Figure 9.8 speci�es that any arguments which have a type listed in the singlewordtypeset will consume the set intregs while those which are members of the doubleword set selectthe set based on the type of the �rst argument.The prototypes section is an ADL extension to the calling convention speci�cation which isnecessary to call external procedures. This section consists of a list of external procedure prototypesand data reference names used by the benchmark programs. Both procedures and data referencescan be renamed to match the names of the architecture so that greater portability is achieved.The calling convention speci�cation when complied, provides an interface that returns alist of supplier procedures given a call site. This interface is used by the simulator to assemble theargument values, perform the external call on behalf of the simulated program and return the values.9.5 Statistics Collection and DebuggingADL provides support for assisting the user in collection of statistics that may be requiredto evaluate the speci�ed architecture. An instruction category declaration is supported using whichthe user can classify instructions into di�erent categories. The counts for the number of retiredinstructions in each of these categories are provided to the user by the generated simulator. Thestall statement may be followed by an optional stall category name. In this form, the stall isregistered under the mentioned category for the current instruction and the stall statistics for eachof the categories are reported to the user. This can be helpful in identifying performance bottlenecks.More advanced customized statistic collection is also possible. The ADL programmer caninsert statements into the ADL program to collect special purpose statistics. For this purpose, ADLprovides a statistics declaration which accepts a register name and a format speci�er string. Atthe end of execution, the value of the register is printed using the supplied format. The examplein Figure 9.9 shows how one could count the number of branch-delay slots which are not �lledwith useful instructions by the compiler. In this example, the TAP for the EX stage checks if theinstruction in EX is a branch instruction and the instruction in the ID stage is a null operationwhich has an opcode �eld of zero.Interaction with the debugger can also be speci�ed in an ADL program. The debugger canbe entered through the ISA speci�cation by using the ADL statement pause. In general, when anunexpected condition is detected, this statement may be used to enter the debugger. For example,a divide instruction may check for a zero operand and execute pause statement as part of an LRTL

96 statistics "Total number of branches %d:",branch count,"Empty slots %d:",empty slots;procedure EX epiloguebegin if i type == branch type1 j i type == branch type0 thenbegin branch count=branch count+1;if op[ID] == 0 thenempty slots=empty slots+1;end;.......end;Figure 9.9: Language Support for Gathering Statisticssegment. The registers whose contents are desired by the user to be displayed when the debugger isentered can also be speci�ed in the ADL program through the monitor declaration.9.6 Concluding RemarksIn this chapter, an overview of the basic properties of ADL has been presented. ADL is aunique language in many aspects, including the simple domain model it uses as well as the compre-hensive solution it presents where a signi�cant portion of the system software is also automaticallygenerated from ADL speci�cations. The language embodies su�cient information to enable auto-matic generation of the compiler back-ends as well, although this aspect of the language has notbeen explored yet. Because of these properties, it is expected that ADL is going to be a very usefullanguage for advancing microarchitecture research in the future as well.In the next chapter, an implementation of the language called the Flexible ArchitectureSimulation Tool (FAST) is presented along with engineering details that had to be overcome beforea running compiler for the language could be implemented.

Chapter 10FAST - Flexible Architecture SimulationTool
In this chapter an implementation of ADL which includes a compiler as well as the necessaryrun-time environment is presented. This integrated system has been named the Flexible Architec-ture Simulation Tool (FAST). The system provides: (a) an implementation of a compiler for ADLthrough which a cycle level simulator is generated automatically from an ADL processor description;(b) automatic generation of support software tools including the assembler, disassembler and theloader/linker for the architecture; (c) a cycle level assembly language debugger that assists in tracingof program behavior; and (d) support software for displaying statistics and monitored information.The system has been used extensively for the implementation of the microarchitecturesdescribed in this dissertation as well as for other projects by graduate students. Implemented simu-lators ranged from simple functional simulators and pipelined RISC machines to very sophisticatedspeculative superscalar processors. Although the language is capable of describing almost any in-struction set, the experience with this aspect of the system has been limited to the MIPS ISA [56, 22].The resulting software can be used to compile and simulate very large benchmark programs. Forinstance, Spec95 integer and oating point benchmarks on a variety of architecture speci�cations aswell as many other programs ranging from few hundred lines to 10,000 lines of C code have beensimulated successfully. Upon the completion of the system, the �rst three simulators took a shortperiod of 3 months to develop, demonstrating the ability of the system for rapid prototyping. Thespeci�cations of the architectures varied from 5000 to 6000 lines of ADL code while the sizes ofautomatically generated software varied from 20,000 to 30,000 lines of C++ code.This chapter has been divided into the following sections. In Section 10.1 an overviewof the FAST implementation is given. In Section 10.2, basic implementation of the ADL compileris described. Section 10.3 presents the debugger facility which is an integral part of the system.Experience acquired using the system is discussed in Sections 10.4 and 10.5. Finally, in Section10.6the chapter is concluded with a brief discussion.97

9810.1 OverviewThe main components of FAST is illustrated in Figure 10.1. The core of the system is theADL compiler, which is a single pass monolithic compiler that uses program specialization techniquesto generate the desired software.The generated software is synthesized using prototype modules called templates. A tem-plate is a prototype module of software that consists of only architecture independent components.For example, the assembler template contains a complete assembler with the exception of instructionset speci�c portions such as the mnemonics tables and speci�c rules to parse individual instructionsand code that converts symbolic addresses to machine addresses. All these portions of an assemblerare ISA speci�c and they are compiled in from the ADL program and �lled in by the compiler.Similarly, artifacts have been implemented in another template �le. For each instance of artifactdeclaration, the ADL compiler obtains the corresponding artifact declaration from the template �leand generates the desired artifact implementation.
Template

DisassemblerAssembler

Template

Artifacts
Template Template

Simulator

Assembler

(C++,bison,lex)

Makefile

Simulator

(C++)

Disassembler
(C++)

 Compiler(ADL)

ADLDescription

Machine

Figure 10.1: FAST Main ComponentsGeneration of the software is accomplished by compiling the architecture description usingthe ADL compiler. Once the compilation is successful, the resulting software can be compiled byinvoking the generated Make�le by the user so that the binaries for the simulator, assembler andthe disassembler for the architecture are obtained.Simulation of the benchmark programs is accomplished by �rst compiling them into theassembly language with the aid of a high level language (HLL)compiler as shown in Figure 10.2(a).The assembly modules are then assembled using the automatically generated assembler to generatethe benchmark binaries as shown in Figure 10.2(b). Finally, these binaries are loaded by the auto-matically generated simulator and interpreted under the simulated architecture (see Figure 10.2(c)).The simulator can be passed a number of command line arguments to direct its operation.Speci�cally, the simulations can be carried out until a desired number of simulation cycles. Once thedesired cycles are reached the simulation may be terminated, or optionally the integrated debuggercan be entered to single step through the simulated program while observing the status change in

99
Assembly
Language
Program

FAST
Generated
Simulator

HLL
 Compiler

(a) Compilation into assembly language

FAST
Generated

Assembler/Linker

(b) Compilation into FAST binary format

Code file
Binary

Program outputs

Execution
Statistics

Address/Data
Traces

(c) Executing the benchmark program

Benchmark
program

HLL Program

Assembly
Language

Code file
Binary

Program
Data file (s)Figure 10.2: Three Steps of Program Simulationthe artifact values. The simulation environment directs the output from the simulated programto the window where the simulator is executed. In this manner, the simulations give the feelingof executing the simulated benchmark program in native mode, albeit slower. This approach alsoallows executing benchmarks in native mode and then under the simulator and comparing the twooutputs by redirecting outputs to disk �les.10.2 The ADL CompilerThe ADL compiler uses separate representations to describe the ISA and the microarchi-tecture. Imperative code such as TAPs, general procedures and LRTL segments are each representedby a separate syntax tree and these trees emanate from the internal representation of componentsof the architecture. In case of ISA, LRTL syntax trees emanate from instruction descriptions whichrepresent the assembly syntax, binary representation, and macro implementations. In case of mi-croarchitecture representation, syntax trees emanate from pipeline descriptions.The generation of the simulator system is accomplished by copying a template until adescriptor marker, indicating the position at which a component should be generated and placed, isencountered. The compiler generates a table, a procedure, or a C++ class described by the marker.

100Once the required software element is generated, the scanning continues until another marker isfound, or the end of �le is reached.10.2.1 Generating the AssemblerADL generates a two-pass conventional assembler. During the �rst pass, the symbolicaddresses are resolved. During the second pass, actual binary generation is performed. Generationof the assembler embodies the following steps: (a) generation of the mnemonics tables; (b) generationof the parsing rules; (c) generation of the semantic actions associated with the rules.add, op add, 0, 4,addi, op addi, 0, 4,addiu, op addiu, 0, 4,addu, op addu, 0, 4,and, op and, 0, 4,andi, op andi, 0, 4,bc1f, op bc1f, 0, 0,bc1f , op bc1f , 0, 4,bc1t, op bc1t, 0, 0,bc1t , op bc1t , 0, 4,beq, op beq, 0, 0,Figure 10.3: A Portion of Mnemonics TableGeneration of the Mnemonics Tables. By saving the instruction names encountered as partof the instruction declarations and eliminating the duplicate names, ADL generates simple tables tobe implemented by GNU gperf tool. This tool generates the necessary hash functions automatically.Mnemonic tables return a simple enumerated value, given an assembler mnemonic. An example tablegenerated by the compiler is illustrated in Figure 10.3. Constructs op <mnemonic> are enumerationsgenerated by the compiler and inserted into the resulting assembler.Generation of the Parsing Rules and Semantic Actions The parsing rules necessary forparsing the assembly language program is generated in a straight-forward manner from the ADLinstruction speci�cations. For this purpose, the compiler uses the type of the corresponding �elddeclarations to each of the parameters of the instruction speci�cation and generates the appropriaterule entry. For example in Figure 10.4(a), the instruction declaration of the assembly part has threeidenti�ers, namely, rd, rs and rt all of which are declared to be register �elds. The ADL compilertherefore uses the meta-symbol register id which corresponds to this type to generate each of theregister id meta-symbols that appear on the rule. The output is a yacc input �le that is processedby the parser generator yacc. A sample rule that is generated automatically from the instructiondeclaration shown in Figure 10.4(a) is illustrated in in Figure 10.4(b). It is easy to see that thevalues to be bound to the meta symbols are used to generate the corresponding binary.

101add rd rs rtemit opcode= special rs rt rd shamt=0 funct= add.......... (a) ADL Instruction Declaration.....enter rule add : op add fany identi�er=true;genter rule addi : op addi fany identi�er=true;g.....rule add : enter rule add register id ',' register id ',' register idf $$=$1;invoked macro=0;instruction type=2;if (pass2) thenbeginbitsy.emit LE(0, 6); // w.[31:06] opcode = 0bitsy.emit LE(int val($4), 5); // w.[25:05] rs = int val($4)bitsy.emit LE(int val($6), 5); // w.[20:05] rt = int val($6)bitsy.emit LE(int val($2), 5); // w.[15:05] rd = int val($2)bitsy.emit LE(0, 5); // w.[10:05] shamt = 0bitsy.emit LE(32, 6); // w.[05:06] funct = 32if (invoked macro) thenbitsy.Boundary(macro write instruction,yysline);elsebitsy.Boundary(write instruction,yysline);endany identi�er=false;g (b) Generated Yacc RulesFigure 10.4: Sample ADL Instruction Declaration and Generated Rule
Not all parsing rules can be generated in such a straight-forward manner. In those caseswhich involve fog constructs, function applications may result in the generation of additional in-structions. For example, an instruction may need a base register/o�set form of an address primary,which must be obtained from a label. Depending on the architecture, the process may involve gen-eration of one or more instructions which would place the address into a register at run-time. Theseinstructions must be processed by the assembler before the processing of the current instruction iscompleted. This is accomplished by saving the generated instructions in a queue as they are gener-ated, and then generating a processed form of the current instruction and placing it at the end of thequeue. The scanner is then told to switch its head to this queue and scan the queue instead of the

102usual input. This process may be applied recursively (i.e. instructions which were so generated maygenerate additional instructions) until the scanner may return to scanning to usual input stream.10.2.2 Generating the DecoderOne of the most important steps in the generation process is the generation of the decoder.Decoder generation involves two major steps. The �rst is the assignment of opcodes to individualinstructions. The opcode in question is not an opcode assigned by the instruction set architecture,but a unique number that can be used to identify instructions internally both for disassembling andsimulation purposes. Assignment of opcodes is carried out in a straight-forward way by assigningintegers to instructions as they are encountered. Once the complete set of instructions are compiled,the compiler generates the decoder by following the algorithm outlined below:(a) Create a set S which contains all the instructions. Assign the set the name decoder.Append the set S to the list of sets U.(b) Remove a set P from U. Create the procedure heading where the procedure nameis set to the name of P.(c) Identify an unvisited instruction �eld which is constant valued among all themembers of the set P. There must be at least one such �eld. Mark the �eld asvisited.(d) Sort the instructions based on the value of this �eld. For each subset of instructionsQ which has the same value for this �eld, create a procedure name and assignthe subset Q this name. Append the subset Q to U.(e) Generate a switch statement for the �eld identi�ed in step (c). For each uniquevalue generate a return statement that returns the assigned opcode for that in-struction. Values for which a subset Q had been created in step (d), generate areturn statement that returns the value of procedure name assigned to Q. Writethe procedure closing.(f) Repeat steps (b) through (e) as long as U has members.Please note that the actual copying of the generated code does not start until all the setsare processed. Generated switch statements as well as the procedure heading are kept togetherwith the sets until they are completely processed. Once completed, the compiler has successfullygenerated a decoder which returns the integer value assigned to an instruction, given the binarycode for the instruction. The generated decoder is used to implement the disassembler as well asthe ADL statement decode.

10310.2.3 Generating the DisassemblerGenerating the disassembler entails the following steps: (a) generating code to load theprogram binary into the memory; (b) copying the decoder onto the symbol �le being generated;(c) generating code to assign the value of the program counter to the beginning of the programarea; (d) generating code to invoke procedures which disassemble the data segments; (e) generatinga procedure per instruction which can disassemble a given instruction; (f) generating a loop thatcalls decoder, calls appropriate procedure to disassemble the detected instruction and increment theprogram counter by the size of the instruction.The generated disassembler tries to match the disassembled assembly program line withthat of the original source program so that the disassembled output will have the macro instructionsand what is generated from them aligned to increase readability.10.2.4 Generating the SimulatorGenerating the simulator involves the following basic steps: (a) generating code to loadthe program binary into the memory; (b) inserting the decoder into the appropriate position in thesimulator template; (c) generating structures necessary to hold instruction contexts; (d) generatingcode to assign the value of the program counter to the beginning of the program area; (e) generatingTAPs; (f) generating the simulator main loop.The simulator main loop is generated by processing the pipeline declarations in declarationorder, and individual pipeline stages in reverse declaration order. For each minor cycle, code isgenerated so that the corresponding time annotated procedure and the LRTL segment will be invoked.In this way, instruction ow in the pipelines is handled by polling from the sink stages towards thesource stages. This mechanism allows modeling of ow of instructions through the pipeline by pollingeach stage once per minor cycle.10.3 The DebuggerThe debugger is entered through command line arguments or automatically upon detectingan error condition. Command line arguments may specify that the debugger must be entered aftera speci�ed number of cycles, or immediately. If a deadlock is suspected, that is, no instructionis retired for a large number of cycles, the simulator invokes the debugger automatically. Uponan internal fault in the simulator the system's standard debugger along with the FAST debuggerare �red. Finally the debugger may be invoked when the pause statement in an ADL program isencountered which is used when an unexpected condition occurs. The debugger when entered �resup two windows. The �rst window displays a disassembled memory image where the line numberof the assembly language program, the memory location, binary encoding of the instruction, themachine instructions and the original assembly language program are shown in that order on eachline. The second window displays the contents of registers speci�ed in the monitor declarations and

104the contents of the pipeline stages of the machine architecture. In addition, the current number ofmachine cycles, the number of useful cycles and the number of stall cycles are also displayed. Asample output is shown in Figure 10.5.

Figure 10.5: Sample Debugger ScreensOnce in the debugger, the user can single-step the execution, continue the execution untila certain number of additional cycles are executed, or simply resume the execution. In case morepowerful debugging is needed, the user may �re the regular system debugger, such as gdb, andperform further analysis. Since ADL compiler preserves ADL program names when generating thesimulator, the user may inquire the values of variables using the ADL program names.In some cases, problems surface after large numbers of simulation cycles although the exactcause of the problem may actually be hundreds of cycles prior to the point it is detected. Solvingthese kinds of problems requires the knowledge of how a speci�c point in the program executionis reached. For example, a label may be the destination of a number of branch instructions andit is virtually impossible to know which path had been taken to arrive at this point. In order toaddress these problems, the debugger provides a unique reverse execution mode. In order to usethis mode, the user speci�es a range of cycles during which the simulator saves register and thepipeline contents. When the debugger is entered upon the occurrence of the problem, the programcan be traced in reverse using the backstep command. In this mode, it is possible to backstep thenforward step, within the window of saved cycles. This mode is slow and saves signi�cant amounts of

105data. However, it has proven to be very valuable during the development of many ADL architecturedescriptions.10.4 Evaluation of FAST ImplementationThe implementation of the FAST system took over 24 months. This is a large softwareproject totaling over 34,000 lines of code (see Table 10.1). Although it took a relatively long periodof time to develop, once completed, three simulators have been developed during a course of anadditional three months. All the simulators were based on the MIPS ISA consisting of 84 machineinstructions and 53 macro instructions. These simulators are: (a) a standard �ve stage pipelinedMIPS architecture (PIPE); (b) an implementation of the Tomasulo's algorithm applied to MIPS ISA(TOM); and �nally (c) an initial version of the data forwarding architecture (FWD) that has beenused to collect the statistics reported in Chapter 5.Software Component LinesADL Compiler 19675Artifacts 1682Assembler template 4953Shared modules 535Linker template 970Disassembler template 531Simulator template 4259Library Support 1200Debugger 487Total 34292Table 10.1: Software Sizes.For each of these architectures, relative percentages and the sizes of various sections ofADL descriptions are illustrated in Table. 10.2(a). One immediate observation is the larger share ofthe ISA speci�cation. This is a direct result of the ADL approach to the problem. ADL approachis an instruction oriented approach and in this respect, a signi�cant portion of the semantics ofthe machine execution is de�ned as part of the ISA speci�cation. Another important point is thesmall size of the artifacts section. Although artifacts make up a signi�cant portion of the actualhardware, they can be speci�ed with ease by means of powerful ADL abstractions in a few hundredlines. Finally, while the sizes of the architecture speci�cations are around 6000 lines of ADL code,the sizes of the simulators vary from approximately 20,000 to 30,000 lines of C++ code. This clearlyshows the merit of automatic generation.Developing the ISA portion has been relatively straight-forward. Few software bugs havebeen traced to the ISA section. Most of these errors resulted either because of typing errors orambiguity in the architecture manuals that were used. Although ISA section is fairly large and themicroarchitecture section is relatively small, the development times for the ISA component and the

106 Component PIPE % TOM % FWD %ISA spec 4549 78.6 4549 73.8 4549 76.6Artifacts 210 3.6 230 3.7 230 3.9�-arch 554 9.6 890 14.4 673 11.3Other 459 8.2 497 8.1 485 8.2Total 5782 6166 5937(a) ADL lines of codeComponent PIPE % TOM % FWD %Assembler 6775 30.7 6775 21.9 6775 35.8Disassm. 1508 6.8 1508 4.9 1508 8.0Simulator 10942 49.6 19834 64.1 7803 41.2Linker-etc 2838 12.9 2842 9.1 2842 15.0Total 22063 30959 18928(b) Generated C++ lines of codeTable 10.2: ADL programs and generated softwaremicroarchitecture sections were roughly equal. This is expected as the microarchitecture sectioninvolves a high degree of parallel operation. These results demonstrate that the separation of ISAfrom the microarchitecture is a powerful approach since developing three fully functional simulatorsin three months would not have been possible without this separation.The size of the ADL generated software for each of the architectures are given in Ta-ble 10.2(b). When the size of the ADL generated software is compared to hand coded simulatorswhich implement comparable architectures, surprising similarities are observed. For example, thepipelined MIPS architecture implements essentially the same architecture as SPIM. The automat-ically generated PIPE simulator consisting of 22,063 lines compares quite well with SPIM thatconsists of 20,441 lines of C code. Comparison of MIPS-Tomasulo (an out-of-order architecture)implementation with SimpleScalar yields similar results. SimpleScalar package contains a total of26,500 lines (excluding the library and the provided gcc compiler) and includes three simulators.Considering only the out-of-order simulator would correspond roughly to 25,000 lines, as these sim-ulators are relatively small and share enormous amount of code. Thus, the automatically generatedTOM simulator consisting of 30,959 lines compares well the size of SimpleScalar simulator. Finally,the data-forwarding architecture has an intermediate complexity, for which there is no hand codedsimulator that it can be compared with.Simulation speeds are very reasonable and compare well with hand coded simulators. Thepipelined version executes at an average speed of 200,000 simulator cycles/second on a 200 MHZPentium Pro and the Tomasulo's algorithm executes at an average speed of 100,000 cycles/second.The Tomasulo's algorithm is comparable in complexity to the out-of-order SimpleScalar simulator [7]which reports a simulation speed of 150,000 cycles/second on a 200 MHZ Pentium Pro. Comparing

107these �gures with the SimpleScalar numbers yields that ADL generated simulators are less than 2times slower than the hand coded counterparts.10.5 Advanced Machine DescriptionsOnce the initial descriptions have been successfully implemented and used to test andimprove the reliability of the implementation, a large number of descriptions have been writtenfor the techniques presented in this dissertation. These implementations includes the scalabilitystudy presented in Chapter 3, as well as the DBMA and DWMA. During this process, it has beenobserved that it is di�cult to maintain various processor descriptions coherent as new additionsare performed on them. This observation gave rise to the notion of processor descriptions whichcan host multiple implementations of a given hardware component. Based on this observation,ADL speci�cation has been extended with the notion of tagging various procedures with a compiletime evaluatable expression. The compiler would still compile a given component as usual, but theresulting code would not be inserted into the generated simulator if the compile time expressionevaluates to false. Since conditional skipping of modules is done by the compiler and not by thepreprocessor, the undesirable outcome of a change introduced for a given implementation e�ectingother implementations is minimized.Component ADL Lines of CodeCentral window 1000DBMA 800DWMA 1300Branch Predictors 700Store set algorithm and variants 680Ideal Memory disambiguator 300Speculative restart handling 1200Common code 2050Total 8030Table 10.3: Components of the Uni�ed DescriptionUsing the introduced conditional compilation facilities, various processor descriptions havebeen merged into a single processor description which contains multiple implementations of branchpredictors, issue window and memory disambiguation techniques. With this merged description, itbecame possible to obtain any combination of the implemented techniques by setting the appropriatecompile time constants. The break-down of this large processor description which has more than8000 lines excluding the ISA speci�cation is illustrated in Table 10.3.Generated simulators for the various combinations ranged between 18,000 to 35,000 linesof C++ code. Depending on the issue width and the window size which is being studied, theperformance of the simulator showed a slowdown of a factor 2.5 to 10 compared to the simpler

108 Technique PerformanceCentral window 10,000-23,000 cycles/secDBMA 25,000-40,000 cycles/secDWMA 13,000-30,000 cycles/secTable 10.4: Performance of Various Techniquesimplementations discussed before. The performance of various combinations are summarized inTable 10.4 using a 200 MHZ Pentium Pro machine. In these numbers, the lower �gures are observedwith 32 issue processors and the higher �gures are observed with 8 issue processors. This is expectedas the speed of the simulator is directly proportional to the hardware complexity that is beingsimulated.10.6 Concluding RemarksIn this chapter an overview of the implementation of the ADL language, namely, the FASTsystem has been presented. Because of the enormous size and complexity of the software as well asirrelevance of many details, only aspects which were considered to be signi�cant have been covered.Being one the �rst in the area of automatically generating simulators from speci�cations,FAST system has proven to be very e�ective with its unique properties such as the presentation of acomplete solution to the microarchitecture simulation problem. FAST does not only generate a cycleaccurate simulator from a machine description but it also generates the required system softwareincluding the assembler, linker and a debugger. As such, it is expected that it is going to be quiteuseful for future microarchitecture research.Given that the development time for SimpleScalar simulator was 18 man-months [7], andthe number of simulators developed for this dissertation, it can be comfortably stated that automaticgeneration using a domain speci�c language is a cost-e�ective approach.

Chapter 11ConclusionsThis thesis has been about the scalability of superscalar processing. Each of the evaluatedand developed techniques have been examined with an emphasis on their scalability demonstratingthat there is a need for techniques that scale better. This observation motivated the developmentof alternative techniques which were then thoroughly evaluated to verify that the contributed algo-rithms greatly enhance the scalability of the superscalar paradigm. In the experiments presentedthroughout the dissertation a robust methodology has been applied which calls for evaluating in-dividual algorithms in settings where only the algorithm being studied is the bottleneck. In thissection, the two techniques, namely DWMA architecture and the out-of-order store set algorithmare combined in an architecture to demonstrate that proposed techniques work well together andadvance the state-of-the-art.The �rst section of this chapter therefore has been reserved for evaluations of the proposedtechniques where these techniques are evaluated together. Section 11.2 presents an itemized listof contributions of this thesis. Finally, the dissertation is concluded with a brief discussion of thefuture research directions in Section 11.3.11.1 Improvement in the State-of-the-artIn this section, the performance of the DWMA-OOS processor that employs the best previ-ously known techniques (i.e., store set disambiguator and DBMA) is compared with the DBMA-SSETprocessor that employs the newly developed techniques (i.e., out-of-order store set and DWMA). Thecomparison essentially shows the improvement in the state-of-the-art superscalar processing tech-niques. As a reference line, the ideal central window processor (CW) which employs an ideal memorydisambiguator is also plotted. All the processor con�gurations employ identical fetchers.The resulting IPCs for all the benchmarks are shown in Figures 11.1, 11.2 and 11.3. An8-issue DWMA-OOS architecture performs 60% and 46% better than the DBMA-SSET processor forinteger and oating point benchmarks respectively. At an issue width of 16, DWMA-OOS architec-ture achieves 64 % and 50 % better than the DBMA-SSET processor for integer and oating pointbenchmarks respectively. Finally, for 32-issue DWMA-OOS architecture performs 57% and 45% bet-109

110

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(c) Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(d) Floating point BenchmarksFigure 11.1: IPC values for 8-issue CW, DWMA-OOS and DBMA-SSET

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(a) Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(b) Floating point BenchmarksFigure 11.2: IPC values for 16-issue CW, DWMA-OOS and DBMA-SSET

111

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(a) Integer Benchmarks 101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Central window
Dbma−sset
Dwma−oos

(b) Floating point BenchmarksFigure 11.3: IPC values for 32-issue CW, DWMA-OOS and DBMA-SSET

8 16 32
Issue Width

0.0

5.0

10.0

15.0

20.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Cw integer
Dbma−sset integer
Dwma−oos integer

(a) Harmonic Means for Integer Benchmarks 8 16 32
Issue Width

0.0

5.0

10.0

15.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

Cw floating point
Dbma−sset floating point
Dwma−oos floating point

(b) Harmonic Means for Floating point Bench-marksFigure 11.4: Performance of CW, DBMA-SSET and DWMA-OOS

112ter than the DBMA-SSET processor for integer and oating point benchmarks respectively. Thereforeit has been demonstrated that the proposed techniques signi�cantly improve the state-of-the-art.Now let us observe the performance of DWMA-OOS with respect to the ideal central windowprocessor. An 8-issue DWMA-OOS architecture attains 84% and 81% of the 8-issue ideal centralwindow processor performance for integer and oating point benchmarks respectively. At an issuewidth of 16, DWMA-OOS architecture achieves 76 % of the performance of the ideal central windowprocessor for integer benchmarks and 72 % for oating point benchmarks.At an issue width of 32, DWMA-OOS achieves 66 % of the performance of the centralwindow processor for integer benchmarks. With oating point benchmarks, DWMA-OOS loses moreperformance, achieving about 50 % of the performance of the ideal processor. This performance losshas been traced to the sensitivity of the 32 issue processor to instruction schedule ordering as well asthe degree of forwarding. Therefore the performance of the DWMA-OOS can be further improved byincreasing the degree of forwarding and employing additional heuristics in the descriptor selection.The average IPCs obtained by the three algorithms are summarized in Figure 11.4.11.2 ContributionsThe contributions of this thesis are:(a) Development of an e�ective methodology for the evaluation of superscalar processors with anemphasis on scalability;(b) Empirical demonstration that for high performance large instruction windows are needed whichgrow quadratically as a function of the issue width;(c) A unique superscalar out-of-order processing paradigm which relies on run-time generation ofa special dataow graph called Direct Data Forwarding Graph (DDFG) from ordinary RISCcode.(d) The Direct Wake-up Microarchitecture (DWMA) which uses principles of DDFG generation toimplement large instruction windows, outperforming the best non-broadcasting based instruc-tion window implementations;(e) A novel memory order violation detection algorithm that greatly enhances the performance ofmemory dependence prediction based dynamic memory disambiguators by eliminating falsememory order violations as well as a signi�cant percentage of false memory dependencies;(f) A powerful domain speci�c language for the microarchitecture simulation domain called the Ar-chitecture Description Language (ADL) which can be used to specify a broad class of instructionset architectures as well as microarchitectures;(g) A complete implementation of ADL in an integrated system called Flexible Architecture Simu-lation Tool (FAST).

11311.3 Future Research DirectionsFuture research related with the basic principles laid out in this dissertation carries greatpotential. In the area of micro architecture research for improving the scalability of out-of-order issueprocessors there are many trails which can be pursued. Especially, in the areas of instruction fetchand instruction issue logic, there is still a lot that can be done to further improve the performance.Techniques which can greatly out-perform even ideal mechanisms are possible with a change of mind-set. Contrary to the conventional notion of treating these two areas as two distinct and unrelatedareas, we must start thinking about the problem as a whole. Once we remove the arti�cial barriers onthe superscalar processors which are imposed by the application of brute force hardware techniquesand start using techniques which are dependency aware such as the direct wake-up technique, newopportunities will arise which cannot be seen with a conventional mind-set.Instruction Fetch and Instruction Wake-up. As it has already been stated in this disserta-tion, the trace cache approach is quite promising. A processor that implements a trace cache willbene�t from its use when it is using the techniques such as direct wake-up and out-of-order store setalgorithms developed in this dissertation. However, much greater gains can be obtained by integrat-ing the trace cache with the reorder bu�er itself. Because of the reorganization of the wake-up graphas the program executes, the �nal form of the wake-up graph is a better schedule than the initialone. By caching completed portions of the reorder bu�er, it is possible to cache the dependenciesas well as the execution trace that the program has followed. Upon a hit in this cache, instructionsmay start �ring immediately without going through the initial stages of the program execution.This is a very promising technique since it has the potential to out-perform even a completely idealconventional superscalar processor setting.Multi-threaded Program Execution. Direct wake-up and direct data forwarding techniquescan be e�ectively employed for exploiting thread-level parallelism. As it has been illustrated in[45] these techniques can be employed in a multi-threaded setting for direct communication andthe synchronization of threads. Such use of the techniques represent an area of the spectrum ofdataow-Von Neumann hybrid architectures which has not been explored fully. Since there aremany applications which lend themselves directly to e�cient execution on multi-threaded machinemodels, this avenue of research should be explored as well.Instruction Issue and Direct Wake-up. Presented design of the direct wake-up architectureis only one design among several which had been tried. The design space is huge and it is onlynatural to expect that better implementations of the idea may exist. Since Chapter 5 decisivelyillustrated that the DDFG is not the limiting factor for high performance, future research for bettermicro architectures that rely on the notion of direct wake-up should also be sought.

114Memory Disambiguation. One of the important bottlenecks in the current processor implemen-tations is the number of memory ports. Memory ports are quite expensive to implement and forhigh performance many memory ports are needed. However, large instruction windows also presentbetter opportunities for bypassing values between load instructions and store instructions as wellas the bypassing of values directly between the producer of a value and its consumer without goingthrough the memory. Although existing techniques addressed this question in a number of cases[39], e�ect of large windows in this manner has not been studied.Automatic Generation of Simulators. The �rst design of ADL has been quite successful. How-ever, the language can be enhanced in many ways, the most important aspect being the imperativenature of the microarchitecture speci�cation. The imperative approach has been selected becausethe current state of knowledge is not mature enough to obtain fully functional and e�cient simula-tors from declarative microarchitecture speci�cations. Research in this respect may greatly speed-upboth the development and the run-time performance of the resulting simulators.

Appendices

Appendix ASample ADL Micro ArchitectureDescriptionprocessor processor_0 highbit 31beginMachineid "simple";lilliput little_endian;shadow registercode_start 32,ex_trace 32,_hi 32, # Division operation HI value._lo 33, # Division operation LO value.linebreak 32,#dest_r 32,check_ex 1,check_mem 1,check_wb 1,ex_has_it 1,mem_has_it 1,wb_has_it 1,target 32, # Used in the branch target computation.data_tmp 32, # Used in data transfers.ptemp 32, # A temporary value register.dummy 32, # SAA (Same as above)which 2, # For passing parameters to cop branch units.equal 1,less 1,unordered 1;shadow register file dtemp[2,32];shadow register file scratch[2,32];constant generate_trace 0;constant machine_drained 1;constant cpc_register_number 32;constant lo_hi_register_number 32;# This is the instruction pipeline.#pipeline IPIPE (s_ID);source s_ID;latchexception 1,new_pc 32,branch_input 1,branch_target 32; 116

117# Next, each machine register mnemonic is presented together with their# actual register number. For MIPS $zero and $0 are aliases, so are many# others. From the perspective of the machine-gen, only the association# of names with numbers is important. Therefore, as many aliases as# necessary can be described.register file fpr [33,32] # [34 regs,32 bits each].$f0 0, $f1 1, $f2 2, $f3 3, $f4 4,$f5 5, $f6 6, $f7 7, $f8 8, $f9 9,$f10 10, $f11 11, $f12 12, $f13 13, $f14 14,$f15 15, $f16 16, $f17 17, $f18 18, $f19 19,$f20 20, $f21 21, $f22 22, $f23 23, $f24 24,$f25 25, $f26 26, $f27 27, $f28 28, $f29 29,$f30 30, $f31 31, $CpC 32;register file gpr [34,32] # [34 regs,32 bits each].$0 0, $1 1, $2 2, $3 3, $4 4,$5 5, $6 6, $7 7, $8 8, $9 9,$10 10, $11 11, $12 12, $13 13, $14 14,$15 15, $16 16, $17 17, $18 18, $19 19,$20 20, $21 21, $22 22, $23 23, $24 24,$25 25, $26 26, $27 27, $28 28, $29 29,$30 30, $31 31,$zero 0, $at 1, $v0 2, $v1 3, $a0 4,$a1 5, $a2 6, $a3 7, $t0 8, $t1 9,$t2 10, $t3 11, $t4 12, $t5 13, $t6 14,$t7 15, $s0 16, $s1 17, $s2 18, $s3 19,$s4 20, $s5 21, $s6 22, $s7 23, $t8 24,$t9 25, $k0 26, $k1 27, $gp 28, $sp 29,$fp 30, $ra 31;shadow registerhi_val 32,lo_val 32;# We have to specify the name of the instruction register. The instruction# register is treated as a special register to allow less typing. That is,# ir.rt is equivalent to rt iff ir is the instruction register.instruction register ir 32;instruction pointer pc 32;memory mem_0 latency 0 width 32;memory ncache latency 0 width 32;controldata registermy_pc 32;shadow registerls_bypass 1,mem_stat 1,access_type 32,byte 2,lop_r 6, # lop_r indicates the register number for the lop.rop_r 6, # rop_r indicates the register number for the rop.simm 32, # Sign extended immediate.zimm 32, # Zero extended immediate.smdr 32,store_v 32, # Store Memory data register.lmar 32, # load memory address register.smar 32, # store memory address register.dest 32, # dest holds the value to be written.dest2 32, # dest holds the value to be written.lop 32, # lop holds the left operand value.lop2 32, #rop 32, # rop holds the right operand value.rop2 32; #

118bitconstant_BYTE 0 0,_HALFWORD 0 1,_TRIPLEBYTE 1 0,_WORD 1 1;$include mips-instruction-set-simple.adl$include ../mips-calling-convention.adl#- Instruction Decode -## ## ##- #procedure s_ID prologuebeginmy_pc = pc; #- Required by jal.ir = mem_0[pc];if (branch_input) thenbeginbranch_input=0;pc=branch_target;endelsepc=pc + 4;# Fetch input registers. Sign extend the immediate portion.#decode;dest_r = ordinal(dest_reg);# Read operands.case lop_type ofbegincpc_register:lop_r = cpc_register_number;lop = fpr[lop_r];integer_register:lop_r=rs;lop=gpr[lop_r];float_register :lop_r=fs;lop =fpr[lop_r];double_register :lop_r=fs;lop =fpr[lop_r];lop2=fpr[lop_r+1];special_input :lop_r = 2;lop = gpr[2];lo_hi_register:lop_r = lo_hi_register_number;lop=gpr[lop_r];lop2=gpr[lop_r+1];end;case rop_type of

119begincpc_register:rop = tf;integer_register:rop_r=rt;rop=gpr[rop_r];float_register :rop_r=ft;rop =fpr[rop_r];double_register:rop_r=ft;rop =fpr[rop_r];rop2=fpr[rop_r+1];end;if (i_class == branch_class) thencondition_code(lop,rop);end s_ID;procedure s_ID epiloguebegincase dest_type ofbeginlo_hi_register:gpr[dest_r]=dest;gpr[dest_r+1]=dest2;integer_register :gpr[dest_r]=dest;cpc_register :float_register :fpr[dest_r]=dest;double_register :fpr[dest_r]=dest;fpr[dest_r+1]=dest2;else : if ordinal(dest_type) thenbuiltin printf("skip skip %d\n");end;builtin sprintf(pointer(scratch),"%6d\n",my_pc - code_start);if generate_trace thenif builtin upfast_write_file(ex_trace,7,scratch) ^= 7 thenbeginbuiltin perror("Store ex trace");builtin simulation_exit(-1);end;retire stat;newcontext;end s_ID;procedure boot_up untypedbeginforall gpr = 0;code_start = builtin fast_text_begin;if generate_trace then

120 ex_trace = builtin fast_open_file("execution-trace","output");end boot_up;initialization boot_up;# These are the registers we monitor duxecution.##monitor$0, $1, $2, $3, $4, $5, $6, $7, $8, $9, $10,$11, $12, $13, $14, $15, $16, $17, $18, $19, $20, $21,$22, $23, $24, $25, $26, $27, $28, $29, $30, $31,linebreak,linebreak,$f0 , $f1 , $f2 , $f3 , $f4 , $f5 , $f6 , $f7 ,$f8 , $f9 , $f10 , $f11 , $f12 , $f13 , $f14 , $f15 ,$f16 , $f17 , $f18 , $f19 , $f20 , $f21 , $f22 , $f23 ,$f24 , $f25 , $f26 , $f27 , $f28 , $f29 , $f30 , $f31 ,linebreak,linebreak,pc;end; # processor#- C and C++ supplements. Initialize machine must be provided. - - - - - -## ## ## Simulator supplements. ##- -#simulator begin%%integer pseudo_procedure_call;integer pseudo_pipeline_flush;integer nop_line[4];integer nop_flush[4];void procedure initialize_machine(code_file_header& H,int arg_count,char **args,integer lim)beginchar * p;while (lim & 0x7) lim--;$sp=(lim-8);pseudo_procedure_call=(integer)&nop_line;nop_line[0]=0;nop_line[1]=0;nop_line[2]=0;nop_line[3]=0;pseudo_pipeline_flush=(integer)&nop_flush;nop_flush[0]=0;nop_flush[1]=0;nop_flush[2]=0;nop_flush[3]=0;for (integer i=0; i < upfast_ext_count; i++)beginif (strcmp(externals[i].name,"exit")==0) thenbegin$31=e_ref_table_start + ((integer)&externals[i]-(integer)&externals);break;endend// cout << "Args are : ";// for (integer i=0; i < arg_count; i++)

121// cout << args[i] << " ";// cout << "\n";$4=arg_count;$5=(integer)args;$28=H.sbss_segment_start;end // initialize_machine //%%end simulator;

Appendix BSample ADL ISA Description# Any instruction fields which are accessed BEFORE the instruction is# decoded must be declared fixedfields. For example, the values of# the rs & rt fields from the instruction register are# available immediately after the instruction register is# loaded with a new instruction. This information is used# for 'fixed field decoding' during simulator code generation.typeopcode constant field 31 6,rs register fixedfield 25 5,rt register fixedfield 20 5,rd register field 15 5,shamt integer field 10 5,funct constant field 5 6,functco constant field 4 5,immediate signed field 15 16,uimmediate integer field 15 16,code integer field 25 20,cofun1 integer field 24 25,cofun2 integer field 24 20,cof integer field 25 1,b_offset signed field 15 16,j_offset integer field 25 26,copf1 integer field 24 4,copf2 integer field 20 5,copf3 integer field 10 11,ccf integer field 20 3,nd integer field 17 1,tf integer field 16 1,call_n integer field 15 16,ft register fixedfield 20 5,fs register fixedfield 15 5,fd register fixedfield 10 5,format integer field 24 4,uccf integer field 10 3, # unused zero field.ufzf integer field 7 2, # unused zero field.ufc integer field 5 2, # unused zero field.cond integer field 3 4, # unused zero field.address label variable,rdest register variable,rsrc1 register variable,rsrc2 register variable,rsrc3 register variable,src2 integer variable,fsrc2 float variable,tx integer temporary,l1 label temporary, 122

123ty integer temporary;attributesi_class : float_class,integer_class,branch_class,long_integer_class; #- Multi-cycle integer ops.i_cycles : single_cycle,multiple_cycles;i_type : number_of_i_types,alu_type,system_type,conditional_direct,conditional_direct_link,unconditional_direct,unconditional_direct_link,unconditional_indirect,unconditional_indirect_link,load_type,store_type;exu : load_unit,store_unit,integer_unit,call_unit,divide_unit,f_add_unit,f_mul_unit;c_what : condition_equal,condition_gez,condition_gtz,condition_lez,condition_ltz,condition_neq,condition_u,condition_z;dest_type : float_register,integer_register,double_register,special_input,cpc_register,lo_hi_register;dest_reg : integer;lop_type : dest_type;rop_type : dest_type;t_count : general; # Total instructions of this instruction.t_cycles : general; # Total cycles for this instruction.t_min : general; # Minimum cycles for this instruction.t_max : general; # Maximum cycles for this instruction.end;assertion#- All single cycle operations are executed by the integer unit.#1 : i_cycles == single_cycle : (exu == integer_unit) |(exu == call_unit) ;#- If any operands of the instruction is integer, then it must be# executed by either the integer unit or the load store unit.

1242 : (lop_type == integer_register) |(rop_type == integer_register) : (exu == integer_unit) |(exu == call_unit) |(exu == divide_unit) |(exu == load_unit) |(exu == store_unit);end;procedure condition_code(x:32,y:32) untypedbeginif c_what == condition_equal thenbranch_input=(x == y)elseif c_what == condition_gez thenbranch_input=((x.[31:1])==0)elseif c_what == condition_gtz thenbranch_input=(x > 0)elseif c_what == condition_lez thenbranch_input=(x.[31:1] | (x == 0))elseif c_what == condition_ltz thenbranch_input=(x.[31:1])elseif c_what == condition_neq thenbranch_input=(x ^= y)elseif c_what == condition_u thenbeginbranch_input=1;branch_target=x;endelseif c_what == condition_z thenbeginbranch_input=1;end;end condition_code;# These procedures are applied by the assembler to compute various# offsets.#procedure add4(x) computationbeginadd4=(x) + 4 ;end add4;procedure add1(x) computationbeginadd1=(x) + 1;end add1;procedure jump_address(x) computationbeginjump_address=(x) >> 2;end jump_address;procedure upper(x) computationbeginupper=x.[31:16];end upper;procedure lowerc(x) computationbeginlowerc=x.[15:16];

125end lowerc;# Utility procedures save on typing and eliminate some errors that# would otherwise may result.#procedure sign_extend_24 (x:8)beginsign_extend_24=(x.[7:1] |< 24) || x;end sign_extend_24;procedure sign_extend_16 (x:16)beginsign_extend_16=(x.[15:1] |< 16) || x;end sign_extend_16;procedure zero_extend_16 (x:16)beginzero_extend_16=x & 0xffff;end zero_extend_16;procedure sign_extend_14 (x:16)beginsign_extend_14=(x.[15:1] |< 14) || x || (0 |< 2);end sign_extend_14;bitconstant # FMT field encodings.#_single_float 0 0 0 0, # s_double_float 0 0 0 1, # d_reserved_1 0 0 1 0, #_reserved_2 0 0 1 1, #_single_fixed 0 1 0 0; # w#- ## Opcode bits: For simplicity these bits are goruped together and ## they are asssigned as a single constant to the opcode field. ## An alternative strategy could create two opcode fields, opcode1 ## and opcode2. ##- #bitconstant## 31..29 28..26 31..29 28..26 31..29 28..26# ------ ------_special 0 0 0 0 0 0 , _addi 0 0 1 0 0 0 , _cop0 0 1 0 0 0 0 ,#unused 0 1 1 0 0 0 , _lb 1 0 0 0 0 0 , _sb 1 0 1 0 0 0 ,_lwc0 1 1 0 0 0 0 , _swc0 1 1 1 0 0 0 , _bcond 0 0 0 0 0 1 ,_addiu 0 0 1 0 0 1 , _cop1 0 1 0 0 0 1 , _swc1_set 0 1 1 0 0 1 , # was unused._lh 1 0 0 0 0 1 , _sh 1 0 1 0 0 1 , _lwc1 1 1 0 0 0 1 ,_swc1 1 1 1 0 0 1 , _j 0 0 0 0 1 0 , _slti 0 0 1 0 1 0 ,_cop2 0 1 0 0 1 0 , #unused 0 1 1 0 1 0 , _lwl 1 0 0 0 1 0 ,_swl 1 0 1 0 1 0 , _lwc2 1 1 0 0 1 0 , _swc2 1 1 1 0 1 0 ,_jal 0 0 0 0 1 1 , _sltiu 0 0 1 0 1 1 , _cop3 0 1 0 0 1 1 ,_sw_set 0 1 1 0 1 1 , _lw 1 0 0 0 1 1 , _sw 1 0 1 0 1 1 ,_lwc3 1 1 0 0 1 1 , _swc3 1 1 1 0 1 1 , _beq 0 0 0 1 0 0 ,_andi 0 0 1 1 0 0 , #unused 0 1 0 1 0 0 , #unused 0 1 1 1 0 0 ,_lbu 1 0 0 1 0 0 , #unused 1 0 1 1 0 0 , #unused 1 1 0 1 0 0 ,#unused 1 1 1 1 0 0 , _bne 0 0 0 1 0 1 , _ori 0 0 1 1 0 1 ,#unused 0 1 0 1 0 1 , #unused 0 1 1 1 0 1 , _lhu 1 0 0 1 0 1 ,#unused 1 0 1 1 0 1 , #unused 1 1 0 1 0 1 , #unused 1 1 1 1 0 1 ,_blez 0 0 0 1 1 0 , _xori 0 0 1 1 1 0 , #unused 0 1 0 1 1 0 ,#unused 0 1 1 1 1 0 , _lwr 1 0 0 1 1 0 , _swr 1 0 1 1 1 0 ,#unused 1 1 0 1 1 0 , #unused 1 1 1 1 1 0 , _bgtz 0 0 0 1 1 1 ,_lui 0 0 1 1 1 1 , #unused 0 1 0 1 1 1 , #unused 0 1 1 1 1 1 ,#unused 1 0 0 1 1 1 , #unused 1 0 1 1 1 1 , #unused 1 1 0 1 1 1 ,#unused 1 1 1 1 1 1

126# Special field.## This field extends 5..0 and is assigned to the funct# field.## Bits: 5 4 3 2 1 0# ------ ------_sll 0 0 0 0 0 0 , _jr 0 0 1 0 0 0 , _mfhi 0 1 0 0 0 0 ,_mult 0 1 1 0 0 0 , _add 1 0 0 0 0 0 , #unused 1 0 1 0 0 0 ,#unused 1 1 0 0 0 0 , #unused 1 1 1 0 0 0 , #unused 0 0 0 0 0 1 ,_jalr 0 0 1 0 0 1 , _mthi 0 1 0 0 0 1 , _multu 0 1 1 0 0 1 ,_addu 1 0 0 0 0 1 , #unused 1 0 1 0 0 1 , #unused 1 1 0 0 0 1 ,#unused 1 1 1 0 0 1 , _srl 0 0 0 0 1 0 , #unused 0 0 1 0 1 0 ,_mflo 0 1 0 0 1 0 , _div 0 1 1 0 1 0 , _sub 1 0 0 0 1 0 ,_slt 1 0 1 0 1 0 , #unused 1 1 0 0 1 0 , #unused 1 1 1 0 1 0 ,_sra 0 0 0 0 1 1 , #unused 0 0 1 0 1 1 , _mtlo 0 1 0 0 1 1 ,_divu 0 1 1 0 1 1 , _subu 1 0 0 0 1 1 , _sltu 1 0 1 0 1 1 ,#unused 1 1 0 0 1 1 , #unused 1 1 1 0 1 1 , _sllv 0 0 0 1 0 0 ,_syscall 0 0 1 1 0 0 , _syscall2 0 1 0 1 0 0 , #unused 0 1 1 1 0 0 ,_and 1 0 0 1 0 0 , #unused 1 0 1 1 0 0 , #unused 1 1 0 1 0 0 ,#unused 1 1 1 1 0 0 , #unused 0 0 0 1 0 1 , _break 0 0 1 1 0 1 ,_call 0 1 0 1 0 1 , #unused 0 1 1 1 0 1 , _or 1 0 0 1 0 1 ,#unused 1 0 1 1 0 1 , #unused 1 1 0 1 0 1 , #unused 1 1 1 1 0 1 ,_srlv 0 0 0 1 1 0 , #unused 0 0 1 1 1 0 , #unused 0 1 0 1 1 0 ,#unused 0 1 1 1 1 0 , _xor 1 0 0 1 1 0 , #unused 1 0 1 1 1 0 ,#unused 1 1 0 1 1 0 , #unused 1 1 1 1 1 0 , _srav 0 0 0 1 1 1 ,#unused 0 0 1 1 1 1 , #unused 0 1 0 1 1 1 , #unused 0 1 1 1 1 1 ,_nor 1 0 0 1 1 1 , #unused 1 0 1 1 1 1 , #unused 1 1 0 1 1 1 ,#unused 1 1 1 1 1 1# BCond field.## This field extends 20..16 and is normally the rt field.## Bits: 20..19 18..16# ------ ------_bltz 0 0 0 0 0 , #unused 0 1 0 0 0 , _bltzal 1 0 0 0 0 ,#unused 1 1 0 0 0 , _bgez 0 0 0 0 1 , #unused 0 1 0 0 1 ,_bgezal 1 0 0 0 1 , #unused 1 1 0 0 1 ,# Copf1 field.## This field extends 25..21 and used by coprocessor instructions.## Bits: 24..23 22 21# ------ -----_mf 0 0 0 0 , #unused 0 0 0 1 , _cf 0 0 1 0 ,#unused 0 0 1 1 , _mt 0 1 0 0 , #unused 0 1 0 1 ,_ct 0 1 1 0 , #unused 0 1 1 1 , _bc 1 0 0 0 ,#unused 1 0 0 1 , #unused 1 0 1 0 , #unused 1 0 1 1 ,# Copf2 field.## This field extends 20..16 and used by coprocessor instructions.## Bits: 20 19 18 17 16# --------------_f 0 0 0 0 0 0 ,_t 0 0 0 0 0 1 ,# Cop0# -----# Co processor0 operations.#

127# Bits : 4 3 2 1 0# --- -----#unused 0 0 0 0 0 ,_tlbp 0 1 0 0 0 ,_rfe 1 0 0 0 0 ,_tlbr 0 0 0 0 1 ,_tlbwi 0 0 0 1 0 ,_tlbwr 0 0 1 1 0 ,_zero 0 0 0 0 0 0 ;#- -## Floating point compares. Each predicate and its negation# use the same cond bits.#- -#bitconstant_fcond_f 0 0 0 0, # False / True._fcond_un 0 0 0 1, # Unordered/ordered (OR)_fcond_eq 0 0 1 0, # Equal / Not equal (NEQ)_fcond_ueq 0 0 1 1, # Unordered or equal /_fcond_olt 0 1 0 0, # Ordered or less than /# Unordered or greater than or equal (UGE)_fcond_ult 0 1 0 1, # Unordered or less than /# Ordered or greater than or equal (OGE)_fcond_ole 0 1 1 0, # Ordered or less than or equal /# Unordered or greater than (UGT)_fcond_ule 0 1 1 1, # Unordered or less than or equal /# Ordered or greater than (OGT)_fcond_sf 1 0 0 0, # Signaling false / Signaling true (ST)_fcond_ngle 1 0 0 1, # Not greater than or less than or equal /# Greater than or less than or equal (GLE)_fcond_seq 1 0 1 0, # Signaling equal / Signaling not equal (SNE)_fcond_ngl 1 0 1 1, # NOt greater or less than /# Greater than or less than (GL)_fcond_lt 1 1 0 0, # Less than / Not less than (NLT)_fcond_nge 1 1 0 1, # Not greater than or equal /# Greater than or equal (GE)_fcond_le 1 1 1 0, # Less than or equal / Not less than or equal (NLE)_fcond_ngt 1 1 1 1; # Not greater than / Greater than (GT)bitconstant_add_fmt 0 0 0 0, _sub_fmt 0 0 0 1, _mul_fmt 0 0 1 0,_div_fmt 0 0 1 1, _abs_fmt 0 1 0 1, _mov_fmt 0 1 1 0,_neg_fmt 0 1 1 1, _cvt_s_fmt 0 0 0 0, _cvt_d_fmt 0 0 0 1, # 33,_cvt_w_fmt 0 1 0 0, _c_fmt 0 0 0 0, _trunc_w 1 1 0 1;bitconstantfc_arithmetic 0 0,fc_cvt 1 0, # 33,fc_c_fmt 1 1;bitconstant_fmul 0 0 1 0,_fdiv 1 0 1 0,_fadd 1 0 0 0,_fsub 0 0 0 1,_fneg 0 1 1 1;instruction#- SYSCALL : System call -## ## MIPS I. ## ## This instruction is used to simulate external calls as if it is a #

128# single instruction. This instruction uses $4 as its left operand and ## returns the result in $2. ##- -#syscall codeemit opcode=_special code funct=_syscallattributes(i_class : integer_class,i_cycles : multiple_cycles,exu : call_unit,c_what : none,dest_type : special_input,lop_type : special_input,rop_type : special_input,i_type : alu_type,dest_reg : none)begincase calludest=builtin do_mips_syscall(lop,lop2,rop,rop2,0);dest2=0;end;end,syscall macrobeginsyscall : code=0;end,#- SLL : Shift word left logical -## ## MIPS I. ##- -#sll rd rt shamtemit opcode=_special rs=0 rt rd shamt funct=_sllattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : none,rop_type : integer_register,i_type : alu_type,dest_reg : rd)begincase s_EXdest=(+rop) << (+shamt);end;end,#- ADD : Add word -## ## MIPS I. ##- -#add rd rs rtemit opcode=_special rs rt rd shamt=0 funct=_addattributes(i_class : integer_class,i_cycles : single_cycle,

129exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : integer_register,i_type : alu_type,dest_reg : rd)begincase s_EXdest=lop + rop;end;end,#- ADDI : Add immediate word - ## ## MIPS I. ##- -#addi rt rs immediateemit opcode=_addi rs rt immediateattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : alu_type,dest_reg : rt)begincase s_IDsimm=sign_extend_16(immediate);end;case s_EXrop=simm;dest=lop + rop;end;end,#- ADDIU : Add immediate unsigned word - - - - - - - - - - - - - - - - - - - ## ## MIPS I. ##- -#addiu rt rs uimmediateemit opcode=_addiu rs rt uimmediateattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : alu_type,dest_reg : rt)begincase s_IDsimm=sign_extend_16(immediate);end;

130 case s_EXdest=lop + simm;end;end,#- ADDU : add unsigned word -## ## MIPS I. ##- -#addu rd rs rtemit opcode=_special rs rt rd shamt=0 funct=_adduattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : integer_register,i_type : alu_type,dest_reg : rd)begincase s_EXdest=lop + rop;end;end,#- AND : And -## ## MIPS I. ##- -#and rd rs rtemit opcode=_special rs rt rd shamt=0 funct=_andattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : integer_register,i_type : alu_type,dest_reg : rd)begincase s_EXdest=lop & rop;end;end,#- ANDI : And immediate - ## ## MIPS I. ##- -#andi rt rs immediateemit opcode=_andi rs rt immediateattributes(

131i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : alu_type,dest_reg : rt)begincase s_IDzimm=zero_extend_16(immediate);end;case s_EXdest=lop & zimm;end;end,#- BEQ : branch on equal -## ## MIPS I. ##- -#beq__ rs rt immediateemit opcode=_beq rs rt immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_equal,dest_type : none,lop_type : integer_register,rop_type : integer_register,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,#- BGEZ : Branch on greater than or equal to zero - - - - - - - - - - - - - - ## ## MIPS I. ##- -#bgez__ rs immediateemit opcode=_bcond rs rt=_bgez immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_gez,dest_type : none,lop_type : integer_register,rop_type : none,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;

132 end,#- BGEZAL : Branch on greater than or equal to zero and link - - - - - - - - ## ## MIPS I. ##- -#bgezal__ rs immediateemit opcode=_bcond rs rt=_bgezal immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_gez,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : conditional_direct_link,dest_reg : 31)begincase s_EXdest=my_pc + 8;end;end,#- BGTZ : Branch on greater than zero - ## ## MIPS I. ##- -#bgtz__ rs immediateemit opcode=_bgtz rs rt=0 immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_gtz,dest_type : none,lop_type : integer_register,rop_type : none,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,#- BLEZ : Branch on less than or equal to zero - - - - - - - - - - - - - - - ## ## MIPS I. ##- -#blez__ rs immediateemit opcode=_blez rs rt=0 immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_lez,dest_type : none,lop_type : integer_register,rop_type : none,

133i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,#- BLTZ : Branch on less zero -## ## MIPS I. ##- -#bltz__ rs immediateemit opcode=_bcond rs rt=_bltz immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_ltz,dest_type : none,lop_type : integer_register,rop_type : none,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,#- BLTZAL : Branch on less zero and link - - - - - - - - - - - - - - - - - - -## ## MIPS I. ##- -#bltzal__ rs immediateemit opcode=_bcond rs rt=_bltzal immediateattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_ltz,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : conditional_direct_link,dest_reg : 31)begincase s_EXdest=my_pc + 8;end;end,#- BNE : Branch on not equal -## ## MIPS I. ##- -#bne__ rs rt immediateemit opcode=_bne rs rt immediateattributes(i_class : branch_class,i_cycles : single_cycle,

134 exu : integer_unit,c_what : condition_neq,dest_type : none,lop_type : integer_register,rop_type : integer_register,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,bne__ rs rt addressemit opcode=_bne rs rt immediate=<address.delta.jump_address>attributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_neq,dest_type : none,lop_type : integer_register,rop_type : integer_register,i_type : conditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc + sign_extend_14(immediate);end;end,#- Break : Breakpoint - ## ## MIPS I. ##- -## Description. ## ## We should list any variations of instructions with a constant field ## after the main instruction so that the decoder will correctly print ## out the decoded instruction. For example, the parameterless variant ## of the break instruction sets the code field to zero. By putting ## the one with the parameter first we make sure that its representation ## goes to the decoder. ##- -#break codeemit opcode=_special code funct=_breakattributes(i_class : integer_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : none,lop_type : none,rop_type : none,i_type : system_type,dest_reg : none),break macrobeginbreak : code=0;end,

135#- CTC1 : -## ## MIPS I. ##- -## Description. ##- -#ctc1 rt fsemit opcode=_cop1 cof=0 copf1=_ct rt fs copf3=0attributes(i_class : float_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : none,lop_type : float_register,rop_type : integer_register,i_type : alu_type,dest_reg : rt)begincase s_EXdest=lop;end;end,cfc1 rt fsemit opcode=_cop1 cof=0 copf1=_cf rt fs copf3=0attributes(i_class : float_class,i_cycles : single_cycle,exu : integer_unit,c_what : none,dest_type : none,lop_type : float_register,rop_type : integer_register,i_type : alu_type,dest_reg : rt)begincase s_EXdest=lop;end;end,#- DIV : Divide word - ## ## MIPS I. ##- -#div rs rtemit opcode=_special rs rt rd=0 shamt=0 funct=_divattributes(i_class : long_integer_class,i_cycles : multiple_cycles,exu : divide_unit,c_what : none,dest_type : lo_hi_register,lop_type : integer_register,rop_type : integer_register,i_type : alu_type,dest_reg : lo_hi_register_number)begincase s_ID

136 latency 7;end;case s_EXDif rop == 0 thenexception = 1elsebegindest2 = lop / rop;dest = lop % rop;end;end;end,#- J : Jump - ## ## MIPS I. ##- -#j__ j_offsetemit opcode=_j j_offsetattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_z,dest_type : none,lop_type : none,rop_type : none,i_type : unconditional_direct,dest_reg : none)begincase s_IDbranch_target=my_pc.[31:4] || j_offset || 0 |< 2;end;end,#- JAL : Jump and link - ## ## MIPS I. ##- -#jal__ j_offsetemit opcode=_jal j_offsetattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_z,dest_type : integer_register,lop_type : none,rop_type : none,i_type : unconditional_direct_link,dest_reg : 31)begincase s_IDbranch_target=my_pc.[31:4] || j_offset || 0 |< 2;end;case s_EXdest=my_pc + 8;end;end,

137
#- JALR : Jump and link register -## ## MIPS I. ##- -#jalr__ rd rs emit opcode=_special rs rt=0 rd shamt=0 funct=_jalrattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_u,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : unconditional_indirect_link,dest_reg : rd)begincase s_EXdest=my_pc + 8;end;end,#- JR : Jump register - ## ## MIPS I. ##- -#jr__ rsemit opcode=_special rs rt=0 rd=0 shamt=0 funct=_jrattributes(i_class : branch_class,i_cycles : single_cycle,exu : integer_unit,c_what : condition_u,dest_type : none,lop_type : integer_register,rop_type : none,i_type : unconditional_indirect,dest_reg : none),#- LB : Load byte - ## ## MIPS I. ##- -#lb rt addressemit opcode=_lb rs=<address.base> rt immediate=<address.offset>attributes(i_class : integer_class,i_cycles : multiple_cycles,exu : load_unit,c_what : none,dest_type : integer_register,lop_type : integer_register,rop_type : none,i_type : load_type,dest_reg : rt)begin

138 case s_IDsimm=sign_extend_16(immediate);end;case s_EXlmar=lop + simm;byte=lmar.[1:2];end;case s_MEMif ls_bypass thendest=dest2elsebegindest=ncache [lmar];mem_stat=access_complete;end;lmdr=dest;if mem_stat | ls_bypass thenbeginif byte == 0 thendest = dest.[07:08]elseif byte == 1 thendest = dest.[15:08]elseif byte == 2 thendest = dest.[23:08]elsedest = dest.[31:08];dest=sign_extend_24(dest);end;end;end,..................;controlflowbc1f__, beq__, bgez__, bgezal__, bgtz__, blez__, bltz__, bltzal__,bne__, j__, jal__, jalr__, jr__;instruction category integer_arithmeticadd, addi, addiu, addu, and, andi, div, divu, lui, mfhi, mflo, mult,multu, nor, or, ori, sll, sllv, slt, slti, sltiu, sltu, sra, srav, srl,srlv, sub, subu, xor, xori;instruction category conditional_branchbeq__, bgez__, bgezal__, bgtz__, blez__, bltz__, bltzal__, bne__;instruction category otherbreak;instruction category unconditional_branchj__, jal__, jalr__, jr__;instruction category loadlb, lbu, lh, lhu, lw, lwl, lwr, lwc1__;instruction category storesb, sh, sw, swl, swr, swc1__;instruction category float_arithmetic"cvt.d.w", "cvt.d.s", "cvt.s.w", "cvt.s.d", "div.d", "div.s", "mul.s",

139"mul.d", "add.s", "add.d", "neg.s", "neg.d", "sub.s", "sub.d", mfc1,mtc1, "c.cond.d", "c.cond.s", "abs.s", "abs.d", "mov.s", "mov.d","trunc.w.s", "trunc.w.d";instruction category float_conditionalbc1f__,bc1t__;

Bibliography

Bibliography[1] Armstrong, J. R. and Gray, F. G. Structured Logic Design with VHDL. New Jersey: PrenticeHall, 1993.[2] Arvind and Iannucci, R. Two fundamental issues in multiprocessing. Computation StructuresGroup Memo 26, Laboratory for Computer Science, MIT, 1987.[3] Arvind, Kathail, V., and Pingali, K. A dataow architecture with tagged tokens. TechnicalReport 174, MIT, 1980.[4] Austin, T. M. and Sohi, G. S. Dynamic dependency analysis of ordinary programs. In Proceed-ings of the 19th International Conference on Computer Architecture, pages 342{351, 1992.[5] Bailey, M. W. and Davidson, J. W. A formal model and speci�cation language for procedurecalling conventions. In The 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principlesof Programming Languages, pages 298{310, 1995.[6] Black, B., Rychlik, B., and Shen, J. P. The block-based trace cache. In Proceedings of the 26thInternational Conference on Computer Architecture, pages 196{207, May 1999.[7] Burger, D. C. and Austin, T. M. The SimpleScalar Tool Set, Version 2.0. Technical ReportCS-TR-97-1342, Computer Science Department, University of Wisconsin Madison, 1997.[8] Butler, M., Yeh, T., Patt, Y., Alsup, M., Scales, H., and Shebanow, M. Single instructionstream parallelism is greater than two. In Proceedings of the 18th International Conference onComputer Architecture, pages 276{286, 1991.[9] Calder, B., Reinman, G., and Tullsen, D. M. Selective value prediction. In Proceedings of the26th International Conference on Computer Architecture, pages 64{74, May 1999.[10] Chrysos, G. Z. and Emer, J. S. Memory dependence prediction using store sets. In Proceedingsof the 25th International Conference on Computer Architecture, pages 142{153, June 1998.[11] Cook, T. A. Instruction set architecture speci�cation. PhD thesis, Norrh Carolina State Uni-versity, 1993.[12] Cook, T. A. and Harcourt, E. A. A functional speci�cation language for instruction set archi-tectures. In Proceedings of the 1994 International Conference on Computer Languages, pages11{19, 1994.[13] Dennis, J. B. The evolution of "static" data-ow architecture. In Gaudiot, J. and Bic, L.,editors, Advanced Topics in Data-Flow Computing, pages 35{91. New Jersey: Prentice Hall,1991.[14] Dennis, J. B. and Gao, G. R. An e�cient pipelined dataow processor architecture. In Pro-ceedings of the IEEE and ACM SIGARCH Conf. on Supercomputing, pages 368{373, 1988.141

142[15] Dennis, J. B. and Misunas, D. P. A preliminary architecture for a basic data ow computer.In Proceedings of the 2nd Annual Symposium on Computer Architecture, 1975.[16] Diep, T. A. A visualization-based microarchitecture workbench. PhD thesis, Carnegie MellonUniversity, Pittsburgh, USA, 1995.[17] Friendly, D. H., Patel, S. J., and Patt, Y. N. Alternative fetch and issue policies for thetrace cache fetch mechanism. In The 30th Annual IEEE-ACM International Symposium onMicroarchitecture, pages 24{33, December 1997.[18] Gao, G. R., Tio, R., and Hum, H. Design of an e�cient dataow architecture without dataow. Technical Report TR-SOCS-88.14, School of Computer Science, McGill University, 1988.[19] Grafe, V., Davidson, G., Hoch, J., and Holmes, V. The �psilon dataow processor. In Proceed-ings of the 16th International Conference on Computer Architecture, pages 36{45, 1989.[20] Hennessy, J. L. and Patterson, D. A. Computer Architecture: A Quantitative Approach. MorganKaufmann Publishers, Inc., 1990.[21] Hesson, J., LeBlanc, J., and Ciavaglia, S. Apparatus to dynamically control the Out-Of-Orderexecution of Load-Store instructions. US. Patent 5,615,350, Filed Dec. 1995, Issued Mar. 1997.[22] Hu�man, L. and Graves, D. MIPSpro Assembly Language Programmers Manual. Silicon Graph-ics Corporation, Document number 007-2418-002, 1996.[23] Hum, H. and Gao, G. E�cient support of concurrent threads in a hybrid dataow/von Neumannarchitecture. In Proceedings of the IEEE Symposium and Parallel and Distributed Processing,pages 190{193, 1991.[24] Iannucci, R. Toward a dataow/von Neumann hybrid architecture. In Proceedings of the 15thInternational Conference on Computer Architecture, pages 131{140, 1988.[25] Johnson, M. Superscalar Microprocessor Design. Prentice Hall, 1991.[26] Jouppi, N. P. and Wall, D. W. Available instruction-level parallelism for superscalar andsuperpipelined machines. In Proceedings of the 3rd International Conference on ArchitecturalSupport for Programming Languages and Operating Systems (ASPLOS-III), pages 272{282,1989.[27] Jouppi, N. P. The non-uniform distribution of instruction-level and machine level parallelismand its e�ect on performance. IEEE Transactions on Computers, C-38(12):1645{1658, Decem-ber 1989.[28] Jourdan, S., Ronen, R., Bekerman, M., Shomar, B., and Yoaz, A. A novel renaming schemeto exploit value temporal locality through physical register reuse and uni�cation. In The 31stAnnual IEEE-ACM International Symposium on Microarchitecture, pages 216{225, December1998.[29] Keller, R. M. Look-ahead processors. ACM Computing Surveys, 7(4):177{195, December 1975.[30] Kemp, G. A. and Franklin, M. A decentralized dynamic scheduler for ilp processing. InProceedings of the International Conference on Parallel Processing, volume 1, pages 239{246,1996.[31] Larsson, F. Generating e�cient simulators from a speci�cation language. Technical Report1997-01-29, Computing Science Department, Uppsala University, Uppsala, Sweden, 1997.

143[32] Larus, J. R. SPIM S20: A MIPS R2000 Simulator. Technical Report CS-TR-90-966, ComputerScience Department, University of Wisconsin Madison, 1990.[33] Leupers, R., Elste, J., and Landwehr, B. Generation of interpretive and compiled instructionset simulators. In ASP-DAC, January 1999.[34] Lipasti, M. H. and Shen, J. P. Exceeding the dataow limit via value prediction. In Proceedingsof the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pages 226{237,1996.[35] Lipasti, M. H. and Shen, J. P. Superspeculative microarchitecture for beyond ad 2000. IEEEComputer, 30(9):59{66, 1997.[36] Lipasti, M. H., Wilkerson, C. B., and Shen, J. P. Value locality and load value prediction.In Proceedings of the 6th International Conference on Architectural Support for ProgrammingLanguages and Operating Systems (ASPLOS-VII), pages 138{147, October 1996.[37] McFarling, S. Combining branch predictors. Technical Report WRL-TN-36, Digital WesternResearch Laboratory, 1993.[38] Morison, J. and Clarke, A. S. ELLA2000 A language for Electronic System Design. McGraw-Hill, Inc., 1993.[39] Moshovos, A. I. Memory Dependence Prediction. PhD thesis, University of Wisconsin - Madison,1998.[40] Moshovos, A. I., Breach, S. E., Vijaykumar, T. N., and Sohi, G. S. Dynamic speculation andsynchronization of data dependences. In Proceedings of the 24th International Conference onComputer Architecture, pages 181{193, June 1997.[41] Moura, C. SuperDLX a generic superscalar simulator. Technical Report ACAPS TechnicalMemo 64, School of Computer Science, McGill University, 1993.[42] Nikhil, R. and Arvind. Can dataow subsume von neumann computing? In Proceedings of the16th International Conference on Computer Architecture, pages 262{272, 1989.[43] Nikhil, R. S., Papadopoulos, G., and Arvind. *T:a multithreaded massively parallel architecture.In Proceedings of the 19th International Conference on Computer Architecture, pages 156{167,1992.[44] Noonburg, D. B. and Shen, J. P. Theoretical modeling of superscalar processor performance.In The 27th Annual IEEE-ACM International Symposium on Microarchitecture, pages 52{62,November 1994.[45] �Onder, S. and Gupta, R. SINAN: An argument forwarding multithreaded architecture. InInternational Conference on High Performance Computing, pages 347{354, New Delhi, India,December 1995.[46] �Onder, S. and Gupta, R. Automatic generation of microarchitecture simulators. In IEEEInternational Conference on Computer Languages, pages 80{89, Chicago, May 1998.[47] �Onder, S. and Gupta, R. Superscalar execution with dynamic data forwarding. In Interna-tional Conference on Parallel Architectures and Compilation Techniques, pages 130{135, Octo-ber 1998.[48] �Onder, S. and Gupta, R. Caching and predicting branch sequences for improved fetch e�ec-tiveness. To appear in International Conference on Parallel Architectures and CompilationTechniques, October 1999.

144[49] Palacharla, S., Jouppi, N. P., and Smith, J. E. Quantifying the complexity of superscalarprocessors. Technical Report CS-TR-96-1328, University of Wisconsin Technical Report, 1996.[50] Palacharla, S., Jouppi, N. P., and Smith, J. Complexity-e�ective superscalar processors. InProceedings of the 24th International Conference on Computer Architecture, pages 206{218,June 1997.[51] Papadopoulos, G. M. Implementation of a general purpose dataow multiprocessor. TechnicalReport TR{432, MIT, 1988.[52] Papadopoulos, G. and Culler, D. Monsoon: An explicit token-store architecture. In Proceedingsof the 17th International Conference on Computer Architecture, pages 82{91, 1990.[53] Patt, Y. N., Patel, S. J., Evers, M., Friendly, D. H., and Stark, J. One billion transistors, oneuniprocessor, one chip. IEEE Computer, 30(9):51{57, 1997.[54] Perry, D. L. VHDL. McGraw-Hill, Inc., 1991.[55] Posti�, M. A., Greene, D., Tyson, G., and Mudge, T. The limits of instruction level parallelismin spec95 benchmarks. In INTERACT-3 : The third workshop on interaction between compilersand computer architectures, San Jose, CA, October 1998.[56] Price, C. MIPS IV Instruction Set Revision 3.2. MIPS Technologies Inc., September 1995.[57] Ramsey, N. and Fernandez, M. F. The new jersey machine-code toolkit. In Proceedings of the1995 USENIX Technical Conference, New Orleans, LA, pages 289{302, January 1995.[58] Ramsey, N. and Fernandez, M. F. Specifying representations of machine instructions. ACMTransactions on Programming Languages and Systems, 19(3):492{524, May 1997.[59] Reinman, G., Austin, T., and Calder, B. A scalable front-end architecture for fast instructiondelivery. In Proceedings of the 26th International Conference on Computer Architecture, pages234{245, May 1999.[60] Reinman, G. and Calder, B. Predictive techniques for aggressive load speculation. In The 31stAnnual IEEE-ACM International Symposium on Microarchitecture, pages 127{137, December1998.[61] Rotenberg, E., Bennett, S., and Smith, J. E. Trace cache: a low latency approach to highbandwidth instruction fetching. In Proceedings of the 29th Annual International Symposium onMicroarchitecture, pages 24{34, December 1996.[62] Smith, J. E. and Vajapeyam, S. Trace processors: Moving to fourth generation microarchitec-tures. IEEE Computer, 30(9):68{70, 1997.[63] Sohi, G. S., Breach, S., and Vijaykumar, T. N. Multiscalar processors. In Proceedings of the22th International Conference on Computer Architecture, pages 414{425, 1995.[64] Theobald, K. B., Gao, G. R., and Hendren, L. J. On the limits of program parallelism and itssmoothability. In The 25th Annual IEEE-ACM International Symposium on Microarchitecture,pages 10{19, December 1992.[65] Thomas, D. E. and Moorby, P. R. The Verilog Hardware Description Language. Kluwer Aca-demic Publishers, 1991.[66] Thornton, J. E. Design of a computer : the Control Data 6600. Glenview, Ill.: Scott, Foresman,1970.

145[67] Todd, K. W. High level VAL constructs in a static data ow machine. Technical ReportMIT/LCS/TR-262, Massachusetts Institute of Technology, Laboratory for Computer Science,1981.[68] Tomasulo, R. M. An e�cient algorithm for exploiting multiple arithmetic units. IBM Journalof Research and Development, 11:25{33, 1967.[69] Tullsen, D. M. and Seng, J. S. Storageless value prediction using prior register values. InProceedings of the 26th International Conference on Computer Architecture, pages 270{279,May 1999.[70] Vajapeyam, S., Joseph, P. J., and Mitra, T. Dynamic vectorization: a mechanism for exploitingfar-ung ilp in ordinary programs. In Proceedings of the 26th International Conference onComputer Architecture, pages 16{27, May 1999.[71] Vajapeyam, S. and Mitra, T. Improving superscalar instruction dispatch and issue by exploitingdynamic code sequences. In Proceedings of the 24th International Conference on ComputerArchitecture, pages 1{12, June 1997.[72] Wall, D. W. Limits of instruction level parallelism. In Proceedings of the 4th International Con-ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-IV), pages 176{189, 1991.[73] Wall, D. W. Limits of instruction level parallelism. Technical Report WRL-TR-93-6, DigitalEquipment Corporation Western Research Laboratory, 1993.[74] Weiss, S. and Smith, J. E. Instruction issue logic in pipelined supercomputers. IEEE Transac-tions on Computers, C-33:1013{1022, November 1984.

