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ABSTRACT

Recent studies have demonstrated thatmachine learning approaches
like deep learning methods are easily fooled by adversarial attacks.
Recently, a highly-influential study examined the impact of adver-
sarial attacks on graph data and demonstrated that graph embed-
ding techniques are also vulnerable to adversarial attacks. Fake
users on social media and fake product reviews are examples of
perturbations in graph data that are realistic counterparts of the
adversarial models proposed. Graphs are widely used in a variety
of domains and it is highly important to develop graph analysis
techniques that are robust to adversarial attacks. One of the recent
studies on generating adversarial attacks for graph data is Nettack.
The Nettack model has shown to be very successful in deceiv-
ing the Graph Convolutional Network (GCN) model. Nettack is
also transferable to other node classification approaches e.g. node
embeddings. In this paper, we explore the properties of Nettack
perturbations, in search for effective defenses against them. Our
first finding is that Nettack demonstrates a very specific behavior
in the spectrum of the graph: only high-rank (low-valued) singular
components of the graph are affected. Following that insight, we
show that a low-rank approximation of the graph, that uses only the
top singular components for its reconstruction, can greatly reduce
the effects of Nettack and boost the performance of GCN when
facing adversarial attacks. Indicatively, on the CiteSeer dataset, our
proposed defense mechanism is able to reduce the success rate of
Nettack from 98% to 36%. Furthermore, we show that tensor-based
node embeddings, which by default project the graph into a low-
rank subspace, are robust against Nettack perturbations. Lastly,
we propose LowBlow, a low-rank adversarial attack which is able
to affect the classification performance of both GCN and tensor-
based node embeddings and we show that the low-rank attack is
noticeable and making it unnoticeable results in a high-rank attack.
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Figure 1: System Overview: low-rank approximation of graph struc-

ture and feature matrices to vaccinate the node classification

method and discard perturbations.
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1 INTRODUCTION

Graphs are widely used because of their strength in representing
real-world data in many domains, such as social networks, biologi-
cal networks, and citation networks. Due to the ubiquity of graphs,
analyzing them has gained significant attention in recent years. An
important task in analyzing graph data is node classification. Given
a partially labeled (attributed) graph, the goal is to classify the entire
graph and predict the labels of the unknown nodes [4]. Graph rep-
resentation learning [16, 30] and deep learning techniques [19, 32]
have shown outstanding results in addressing the problem of node
classification.

However, machine leaning models often suffer from vulnerabil-
ities to adversarial perturbations [12]. In spite of the popularity
and success of deep learning architectures, they have shown to be
vulnerable to adversarial attacks [36]. Subtle perturbations of the
data can be imperceptible, yet lead to wrong results. Even when
the attacker does not have full knowledge of the network architec-
ture, they are still able to perturb the data and affect the learning
outcome.
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Utilizing machine learning methods which are vulnerable to ad-
versarial attacks have raised many concerns. Recent studies have
addressed this concern and conducted research to analyze vulner-
ability of machine learning algorithms and also develop defense
techniques and methods that are more robust to attacks [5, 13, 29].
However, only a few studies have investigated adversarial attacks
in graph data [7, 11, 35, 38]. Graph Convolutional Networks (GCN)
have shown great success in node classification task because of
their non-linear nature and exploiting relational information of
nodes [19]. Despite their success, they suffer from vulnerabilities
against small perturbations. Changes to one node can lead to mis-
classification of other nodes in the graph [38]. Writing wrong or
biased reviews on websites like Amazon and fake users on social
networks are examples of adversarial attacks on graph data. Such
activities aim to mislead machine learning techniques. Therefore,
adversarial machine learning studies play a crucial role in graph
domain and their goal is to detect and defend attacks and also
introduce techniques that are more robust against perturbations.

One of the most prominent studies on generating adversarial
attacks for graphs is called Nettack [38] proposed by Zügner et
al. Their work shows that the classification performance of GCN
drops significantly when Nettack perturbations target a node. In
this paper, we investigate the properties of poisoning adversarial at-
tacks generated by theNettack algorithm and propose a method to
defend against attacks and “vaccinate” the network. The term “vac-
cinate” was first introduced in [13] to describe a network equipped
with defense mechanism against adversarial attacks.

Our contributions are as follows:
(1) Nettack is a high-rank attack: We explore the charac-

teristics of Nettack perturbations and we show that these
attacks result in changes in high-rank spectrum of the graph,
which corresponds to low singular values.

(2) VaccinatingGCNwith low-rank approximations: Build-
ing on the idea that the Nettack perturbations are high-
rank, we show that the GCN model can significantly resist
the attacks when a low-rank approximation of the graph is
used.

(3) Tensor-basednode embeddings are robust toNettack:
Adversarial attacks generated by Nettack model are trans-
ferable to other node classification approaches. Recently, a
tensor-based node embedding technique has been proposed
[2], which computes a low-rank representation of the graph.
We exploit the effects of these attacks on a tensor-based
node embedding method and we show that tensor-based
node embeddings are very robust to adversarial attacks.

(4) LowBlow: low-rank attack is noticeble: Tensor-based node
embeddings and vaccinated inputs to a GCN are robust
against high-rank attacks. But what happens if the attack
results in low-rank perturbations to the graph?We introduce
the LowBlow attack, which modifies the Nettack perturba-
tions so that it affects low-rank components of the graph
and therefore, the new low-rank attack is able to fool both
GCN and tensor-based embeddings. We show that the degree
sequences of the graph after the proposed low-rank attack
and the input graph are from different power-law distribu-
tions and therefore the attack is noticeable. We also show

that modifying the low-rank attack to preserve the degree
distribution of the graph makes it a high-rank attack.

The rest of this paper is organized as follows. In Section 2 we
discuss related work. Section 3 introduces the necessary concepts
and notations. We introduce our proposed method in Section 4 and
provide experimental results in Section 5. Finally, in section 6 we
offer conclusions and discuss future works.

2 RELATEDWORK

2.1 Graph Representation Learning Methods

Our work focuses on defending adversarial attacks on graphs and
we evaluate the robustness of a node embeddings method against
the attacks. In this section, we briefly explain node embeddings for
the task of node classification.

Recent years have witnessed an explosion in studying the prob-
lem of network representation learning. This interest is stimulated
by the “relatively” new advancements in natural language process-
ing (NLP) domain [22, 25, 26]. Specifically, the SkipGrammodel [25]
that has been largely adopted in developing network representa-
tion learning techniques. DeepWalk [30], node2vec [16], and Walk-
lets [31] are amongst the methods that employ the SkipGram model
for node representation learning after identifying node neighbor-
hoods using the intuition of random walks and they have shown to
be very successful for the task of node classification.

A recent study has proposed a tensor-based node embedding
method that utilizes tensor decomposition to learn network latent
features using the CP decomposition of tensors [2].

2.2 Adversarial Attacks for Graph Data

Research on adversarial attacks in machine learning has received
lots of attention in recent years [6, 24]. Adversarial attacks delib-
erately attempt to attenuate the performance of machine learning
algorithms by performing small and unnoticeable changes to the
input. Most of the researches on adversarial machine learning are
focused on algorithms to fool deep neural networks, mainly for the
task of image classification [21, 27, 36].

Recently, a few work have investigated adversarial attacks on
graph data [7, 11, 35, 38]. Zügner et al. [38] perform structure and
feature perturbations on attributed graphs by an algorithm called
Nettack. They generate unnoticeable perturbations by preserving
graph’s degree distribution and features co-occurrences. The perfor-
mance of Nettack on attacking GCN shows that it can successfully
fool GCN and lead to misclassification of the target node.

In another study, Dai et al. [11] proposed a reinforcement learn-
ing based attack that generates structure perturbations with full or
limited information about the target classifier. Their approach has
shown to be successful for supervised node classification problem.
They also claim that adding adversarial examples during training
can help to defend the attacks.

The other group of studies, investigate the effects of adversarial
attacks on unsupervised node embeddings [7, 35, 38]. In [38], they
transfered their attack model to DeepWalk embeddings [30] and
observed that the performance of DeepWalk drops on a perturbed
graph.

Knowing the fact that graph neural networks and node embed-
dings are highly vulnerable to adversarial attack, there is an urgent



need to design defense mechanism or effective methods that are
more robust against attacks. There are some studies on defense
techniques in tasks like image classification [5, 13]. In [13], JPEG
compression has been used to “vaccinate” deep neural network.
The idea is that adversarial attacks on images add noise to high
frequency spectrum so that the noise is visually imperceptible,
therefore, JPEG compression can greatly destroy them. In another
study, Bhagoji et al. [5], proposed a defense mechanism that utilizes
Principal Component Analysis (PCA) for dimensionality reduction.

When it comes to physical adversaries and the goal is the de-
tection of dense block-like behavior, which points to fraud (e.g.,
fraudulent Twitter followers), [33] leverages Singular Value Decom-
position (SVD) and low-rank approximation of adjacency matrix of
users in Twitter and Amazon to detect suspicious behavior. They
analyze the impacts of evasion attacks in their study, where the ma-
licious data are modified at test time to bypass the result. Another
group of attacks are poisoning attacks which perturb the training
instances and the classification model is retrained on the perturbed
data. In our study, we explore poisoning attacks on graph data and
we propose a mechanism to defend the attacks.

3 PRELIMINARIES

In this section, we describe concepts and notations used in the
paper.

3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most popular
matrix decomposition techniques. SVD is a widely used tool to
decompose a matrix into sum of rank-1 matrices. Let A ∈ RI×J be
a real-valued matrix. The SVD of A is computed as follows:

A = U ΣVT (1)

whereU ∈ RI×I andV ∈ RJ×J are orthogonal matrices. Column of
U are called the left singular vectors and columns ofV are the right
singular vector. Σ ∈ RI×J is a non-negative diagonal matrix such
that Σi ,i = σi where σi is the ith singular value and σ1 ≥ σ2 ≥

... ≥ σmin(I , J ).
The SVD is an elegant tool to compute the best rank-r approxi-

mation of matrix A. The rank-r approximation of A is computed as
follows:

Ar = Ur ΣrV
T
r =

r∑
i=1

uiσiv
T
i (2)

where Ar is the rank-r approximation of A derived from SVD of A.
Ur and Vr are the matrices containing the top r singular vectors
and Σr is the diagonal matrix containing only the r singular values.

According to Eckart-Young-Mirsky theorem [14], Ar is the op-
timal rank-r approximation of matrix A. For any rank-r matrix B,
the following holds:

∥A −Ar ∥F ≤ ∥A − B∥F (3)

3.2 Tensors

A tensor, denoted by X, is a multidimensional matrix. The order
of a tensor is the number of modes/ways which is the number of
indices required to index the tensor [28]. In this paper, we deal with
three-mode tensors. Given a three-mode tensor X ∈ RI×J×K its CP

decomposition (also know as CANDECOMP/PARAFAC) [9, 18] is
defined as a sum of rank-1 tensors and is formulated as follows:

X ≈

R∑
r=1

ar ◦ br ◦ cr (4)

where ar ∈ RI ,br ∈ RJ , cr ∈ RK , and their three-way outer
product is computed as (ar ◦ br ◦ cr )(i, j,k) = ar (i)br (j)cr (k). The
minimal value of R is called the tensor rank. For a more compact
representation, CP decomposition is usually represented by the
factor matrices A ∈ RI×R , B ∈ RJ×R , and C ∈ RK×R where ar , br
and cr are the r th columns of A,B, and C respectively.

X = A ◦ B ◦C (5)

For more details about tensors and tensor decomposition, we
refer the interested reader to [20, 28].

4 PROPOSED METHOD

In this section, we present our low-rank matrix approximation
method to defend adversarial attacks for graph data. In Section 4.1,
we briefly explain the method to generate adversarial attacks for
graph data, known as Nettack [38] and we examine the character-
istics of the attacks generated by this approach. We show that these
attacks impose high-rank changes to the graph which can be greatly
ignored by discarding the high-rank components of the graph. In
Section 4.2, we present two low-rank methods that are robust to
adversarial attacks generated by Nettack. Moreover, in Section
4.3 we propose a low-rank attack and investigate its characteristics
compared to Nettack.

4.1 Nettack: a High-Rank Attack

Recently, Zügner et al. [38] introduced an algorithm to generate
adversarial attacks for attributed graphs to fool Graph Convolu-
tional Networks. Given an attributed graph G = (A,X ), where A ∈

{0, 1}N×N is the undirected adjacency matrix and X ∈ {0, 1}N×D

represents the nodes’ feature matrix, the goal is to perform small
perturbations on the graph G(0) = (A(0),X (0)), so that the result
graph G ′ = (A′,X ′) has lower classification performance and leads
to misclassification of the target node. Structure perturbations refer
to the changes to the adjacency matrix A, while feature pertur-
bations refer to the changes to the feature matrix X . Nettack
produces unnoticeable perturbations by imposing some restrictions
to ensure that the attack preserves graph structure and node fea-
tures. To generate unnoticeable structure perturbations, attacks
that preserve the degree distribution of the graph are considered
unnoticeable. Whereas, to generate unnoticeable feature perturba-
tions, co-occurrence of the features is taken into consideration. We
refer the interested reader to [38] for more details.

Intuition: Nettack perturbations affect small number of
nodes. Thus, the footprint of the spectrum of this attack will
be comparably smaller than the footprint of the regular struc-
ture in the graph, therefore, the attack will likely appear in
small singular values, corresponding to higher ranks in the
singular value spectrum.

To experimentally validate our intuition and understand the charac-



teristics of the perturbations generated by the Nettack model, we
examined the adjacency and feature matrices before and after the
attack. We plotted the singular values of matrices for the clean and
perturbed graphs to visualize the differences. Figure 3 illustrates
the singular values of the adjacency matrix on semi-logarithmic
scale. The singular values shown in Figure 3 correspond to singular
values of the adjacency matrix before and after one single attack on
the target node. Singular values of the clean and attacked matrices
are mainly different at higher ranks. We visualized singular values
of adjacency and feature matrices for multiple attacks and observed
that singular values are very close at lower ranks but vary at higher
ranks.

In Section 4.2, we take advantage of this intuition and present
two low-rank solutions that can effectively resist against Nettack.

4.2 Low-Rank Solutions to Resist Attacks

4.2.1 Vaccinating GCN with Low-Rank Approximation.
To discard the high-rank perturbations generated by Nettack,
we compute the low-rank approximation of the adjacency and fea-
ture matrices derived from their SVD decomposition according to
Equation 2. We then retrain GCN with the low-rank approximation
matrices. With a proper choice of r , the rank-r approximation of
the attacked graph can boost the performance of GCN and achieve
a performance close to the performance of GCN on the clean graph.

LetA andA′ be the adjacency matrices of the clean and attacked
graphs respectively. δA = A′−A is the difference between the clean
and attacked graphs after a series of perturbations. These are the
edges added to the clean graph or removed from it as a result of
the attack. We compute the SVD of A and δA as follows:

A = U ΣVT (6)

δA = Uδ ΣδV
T
δ (7)

Let n be the number of perturbations performed during one
attack on the target node v0. According to [38], n = dv0 + 2, where
dv0 is the degree of the target node. Leveraging the proof from [34],
the leading singular value of δA is computed as follows:

σδ1 =
√
n =

√
dv0 + 2 (8)

In a rank-r approximation of the attacked graph, singular values
smaller than σr are discarded. Therefore, if σδ1 is smaller than σr ,

Figure 2: A quick sketch of our proposed vaccination: Taking the

SVD of the graph reveals the spectrum of the attack and the healthy

parts of the graph. Based on our extensive empirical observations

on the high-rankness of Nettack, we retain a truncated SVD that

contains only the top-k singular values for the graph, and recon-

struct the graph from them. The output is the vaccinated graph.

Figure 3: Singular values of adjacency matrix before and after the

attack in a semi-logarithmic scale

the perturbations will get eliminated. The goal is to pick rank r so
that with a high probability the following holds:

σr > σδ1

σr >
√
dv0 + 2

(9)

dv0 < σ 2
r − 2 (10)

In other words, a rank-r approximation may not detect attacks
on target nodes with degree greater than σ 2

r − 2. Formally, we pose
the following problem:

Problem: Given an input graph adjacency matrix A with r th
largest singular valueσr , find the value of r so that the probability of
the nodes with degree greater than σ 2

r is less than a given threshold
τ :

Pr (X ≥ σ 2
r ) < τ (11)

Degree distribution of graphs in real networks has a power-law
form. We can write the degree distribution of a graph in form of a
discrete power-law with parameter α :

p(d) = Pr (X = d) =
d−α

dmax∑
k=dmin

k−α

=
d−α

dmax−dmin∑
k=0

(k + dmin )−α

=
d−α

ζ (α,dmin ) − ζ (α,dmax + 1)

(12)

where ζ (α, x) =
∑∞
k=0(k + x)

−α is the Hurwitz zeta function. dmin
is the minimum degree of a node required to be considered in the
power-law distribution and dmax is the maximum degree in the
graph. Therefore, for a given graph G, we can write its degree
distribution as follows:

p(d)d ∈DG
≈

d−α

ζ (α,dmin ) − ζ (α,dmax + 1)
(13)

where DG = {dGv |v ∈ V,dGv ≥ dmin } is the list of node degrees
in the graph G. Clauset et al. [10] drived an approximate expres-
sion to estimate the scaling parameter α for a discrete power-law
distribution. For graph G:

α ≈ 1 + |DG |.


∑

di ∈DG

loд
di

dmin − 1
2


−1

(14)



Figure 4: Reverse Cumulative Degree Distribution of CiteSeer

To find the solution for Equation 11, we compute the reverse
cumulative probability of power-law as follows:

Pr (X ≥ d) =

dmax∑
di=d

Pr (X = di )

ζ (α,dmin ) − ζ (α,dmax + 1)

=

dmax∑
di=d

d−αi

ζ (α,dmin ) − ζ (α,dmax + 1)

=
ζ (α,d) − ζ (α,dmax + 1)

ζ (α,dmin ) − ζ (α,dmax + 1)

(15)

And for graph G:

Pr (X ≥ d)d ∈DG ≈
ζ (α,d) − ζ (α,dmax + 1)

ζ (α,dmin ) − ζ (α,dmax + 1)
(16)

From equations 11 and 16, we can formulate the problem as
follows:

Pr (X ≥ σ 2
r )DG ≈

ζ (α,σ 2
r ) − ζ (α,dmax + 1)

ζ (α,dmin ) − ζ (α,dmax + 1)
< τ (17)

Figure 4 shows the actual reverse cumulative degree distribution
of the CiteSeer dataset vs. its approximation using Equation 16. The
behavior on Cora-ML and PoliticalBlogs datasets is very similar to
Figure 4 as well. As illustrated in Figure 4, the reverse cumulative
probability quickly drops to zero. On CiteSeer dataset, the proba-
bility of degrees greater than 20 is less than 1%. Thus, a low-rank
approximation of the graph with high probability can eliminate the
perturbations.

In the experimental evaluations that follows, we evaluate Equa-
tion 11 for different values of rank r on the real-world datasets and
experimentally show that how big r needs to be to successfully
vaccinate GCN against adversarial perturbations.

4.2.2 Robust Tensor-Based Node Embeddings. t-PINE

Recently, Al-Sayouri et al. [2] proposed a tensor-based node em-
bedding method that utilizes tensor’s CP decomposition to capture
the relations between nodes using low-dimensional latent compo-
nents. They examined the performance of t-PINE in the context of
node embeddings, however the robustness of t-PINE has not been
evaluated in an adversarial context. Due to the inherent low-rank
nature of t-PINE, it is a good candidate to defend high-rank pertur-
bations generated by Nettack. Here, we briefly explain t-PINE:

t-PINE jointly encodes explicit1 and implicit2 network struc-
ture [2] using CP decomposition [9], which greatly allows for a
systematic exploration of higher-order proximities. Due to the use
of multi-aspect data, t-PINE forms a three-mode tensor to represent
a network which has two slices: (1) The adjacency matrix, and (2)
K-nearest neighbor matrix computed for the feature matrix. Then,
tensor x ∈ RN×N×2 is decomposed using CP decomposition as
given in Equation 4. The CP model is solved using the Alternating
Least Squares (ALS) algorithm [9]. For a predefined parameter d
which is the embedding dimension, tensor X is decomposed as:

L ≈ min ∥X −A ◦ B ◦C∥2F (18)
where A ∈ RN×d , B ∈ RN×d , and C ∈ R2×d are the factor ma-

trices. When CP decomposition is used in multi-label classification
problem, the tensor rank R denotes the number of classes, however,
in t-PINE, R = d , indicates the embedding dimensionality, as the
CP decomposition is tailored for representation learning purpose.

In contrast to state-of-the-art approaches [16, 17, 30, 31, 37],
t-PINE yields highly predictable representations on different multi-
label classification problems. Further, it generates nicely inter-
pretable embeddings, where we can understand how each view
contributes to the learned representation vectors. For more details,
we refer the reader to [2].

4.3 LowBlow: a Low-Rank Attack

As explained in Section 4.1, Nettack perturbations cause changes
to high-rank singular values which could be defended using a low-
rank approximation of the graph. Now a question that might arise
is that what happens if we have a low-rank attack. Is a low-rank
perturbation able to successfully attack the graph and fool GCN
and if so, are we able to defend it using our proposed low-rank
mechanism? Is the low-rank attack still unnoticeable? We will
answer these questions in the experimental evaluations. In this
section, we will manipulate the Nettack perturbations so that it
results to low-rank attacks that can hinder the performance of both
GCN and t-PINE.

To generate a low-rank attack, we replace some of the most sig-
nificant singular values and vectors of δA with the corresponding
singular values and vectors of A. In other words, singular values
of δA within range [i, j] (σδ i , ...,σδ j ) are replaced by singular val-
ues of A (σi , ...,σj ). i and j are relatively small values so that the
corresponding singular values are significant (e.g. less than 100).
Then we reconstruct the low-rank δA from altered singular values
and vectors. Adding this low-rank δA to the clean adjacency matrix
A will result to a low-rank attack that is able to perturb GCN and
t-PINE.

A′
low−rank = A + δAlow−rank (19)

We compute the low-rank perturbations on the feature matrix
in an analogous way. Let F and F ′ be the feature matrices of the
clean and attacked graphs, respectively. δF = F ′ − F is the matrix
representing features added to/removed from the original feature
matrix F . After computing the SVD of F and δF , we replace some
of the most significant singular values and vectors of δF with the
1Refers to network first-order proximity connections
2Refers to second- or higher-order proximity connections



corresponding singular values and vectors of F . δFlow−rank is re-
constructed using these modified singular values and vectors. To
get the low-rank feature perturbations, we add δFlow−rank to F .

F ′low−rank = F + δFlow−rank (20)
In the experimental evaluation that follows, we verify the ef-

fectiveness of LowBlow, and we also evaluate the extent to which
LowBlow alters the perception of the graph to an observer, in the
form of the node degree distributions.

5 EXPERIMENTS

5.1 Datasets and Experiment Setup

Datasets: In order to compare our results to the adversarial at-
tack paper [38], we use the same datasets in our experiments. The
datasets are CiteSeer [15], Cora-ML[8], and PoliticalBlogs [1]. Cora-
ML is the subset of machine learning papers from the well-know
Cora dataset [23]. Table 1 provides the statistics for each dataset.
All experiments are performed on the largest connected component
(LCC) of the graphs.

Dataset |V| |E| |VLCC | |ELCC | Classes

CiteSeer [15] 3312 4715 2110 3757 6
Cora-ML[8] 2995 8416 2810 7981 7
PoliticalBlogs[1] 1490 19025 1222 16714 2

Table 1: Datasets descriptions

Setup: In section 4.1, we showed that Nettack perturbations
are of high-rank. To further investigate our intuition, we follow
the same procedure as described in the Nettack paper [38]. We
split the network in labeled (20%) and unlabeled nodes(80%). half of
the labeled data is used for training and the other half is used for
validation in the process of training the GCN model. We perform
five iterations where at each iteration a different random splits of
data is generated. We first train the GCN surrogate model on the
labeled data and then we select 40 target nodes from test set with
the following conditions:

• 20 nodes which are correctly classified: 10 of them have the
highest classification margins and 10 of them have the lowest
margin.

• 20 random nodes
According to the algorithm proposed in [38], there are two differ-

ent ways to attack a target node : direct attack called Nettack, and
influence attack called Nettack-In which attacks a node indirectly.
In our experiments we only consider attacking each target node

Figure 5: Fraction of target nodes correctly classified after vaccinat-

ing GCN on CiteSeer

Method CiteSeer Cora-ML PoliticalBlogs

GCN - Clean 0.83 0.82 0.90
GCN - Nettack 0.02 0.01 0.09
Vaccinated - Clean 0.80 0.76 0.84
Vaccinated - Nettack 0.64 0.59 0.62

Table 2: Vaccinating GCN againstNettack. Fraction of target nodes

that are correctly classified is reported.

directly, as it is a stronger attack compared to an indirect attack.
We also combine structure and feature perturbations which leads
to a greater performance loss. To evaluate the effectiveness of the
attack, we compute X = Z ∗

v0,cold −maxc,coldZ
∗
v0,c where Z is the

class probabilities and cold is the ground truth label of the target
node. X is called the classification margin. A successful attack leads
to lower values of X and a negative value means the target node
has been successfully misclassified.

5.2 Vaccinating GCN with Low-Rank

Approximation

In Section 4.2.1, we presented the low-rank approximation to defend
Nettack perturbations. In this section, we analyze the performance
of our defense mechanism. To this end, we examine different values
of rank r = 5, 10, 15, and 50 to compute the approximations. Figure
5 shows that the fraction of target nodes correctly classified after
the attack drops significantly with the full-rank attacked matrices.
However, using the low-rank SVD approximation, this number is
close to the fraction of correctly classified nodes on the clean graph.
Figure 6 and 5 illustrate that using rank-10 approximation of the
adjacency and feature matrices we are able to significantly alleviate
the effects of Nettack. Only 10 singular values/vectors is sufficient
to have a robust approximation of the graph structure and features
and vaccinate GCN against attacks. As we discussed in Section
4.2.1 and Equation 11, if Pr (X ≥ σ 2

10) is less than a threshold τ ,
with a high probability we discard perturbations. Pr (X ≥ σ 2

10) is
0.0013, 0.0019, and 0.0037 on CiteSeer, Cora-ML, and PoliticalBlogs,
respectively. These probabilities are nearly zero which shows that
a rank-10 approximation of the graph ignores perturbations with a
very high probability.

We performed this experiment on all three datasets and observed
that r = 10 produces the best results. Table 2 shows the results.
Here, for brevity, we only report the results for r = 10.

5.3 Transferring Adversarial Attacks to t-PINE

Embeddings

To evaluate the transferability of adversarial attacks to the tensor-
based embeddings, we pursue the experiment as explained in Sec-
tion 5.1 . After every attack, we compute the t-PINE embeddings
where the tensor slices are the attacked adjacency and feature ma-
trices.

We perform the experiment for different values of embedding
dimensions d and K to examine their effects on the robustness
of t-PINE. Figure 7 shows the fraction of target nodes that their
prediction changed after the attack. This does not necessarily mean
that these nodes were correctly classified before the attack, but it
shows that the Nettack perturbations were able to change the
prediction of the target nodes from one class to another. Nettack



(a) Unvaccinated (b) rank-5 approx. (c) rank-10 approx. (d) rank-15 approx. (e) rank-50 approx.

Figure 6: Vaccinating GCN against Nettack

might have even changed a node’s prediction from a wrong class to
the correct one. The plot shows that lower dimensions of t-PINE are
more robust against Nettack. As the embedding dimension gets
larger, more nodes are affected by the attacks. t-PINE performs very
robust against the attacks. Even at dimension 512, less than 40% of
target nodes are affected by the attacks. At lower dimensions, CP-
decomposition can greatly discard affected components of graph
by the attack.

On the other hand, choice of K does not have a significant effect
on the robustness of t-PINE. We evaluated different values of K and
observed that at a fixed dimension, performance slightly improves
for bigger values of K . However, the larger K is, t-PINE’s runtime
increases. The improvement over larger values of K is negligible.
Therefore, for the rest of the experiments, we only report the t-PINE
results for d = 32 and K = 30 that leads to robust results in a better
runtime.

Figure 8 shows the result of transferring Nettack perturbations
to t-PINE for d = 32 and K = 30. The plot shows that t-PINE is very
robust to the attacks and the classification margins before and after
the attack has remained nearly unchanged.

In Table 3, we summarize the results of transferring Nettack
perturbation to t-PINE for different datasets. The values reported in
the table are the fraction of target nodes that get correctly classified.
For t-PINE the values on clean and perturbed graphs are very close
for CiteSeer and Cora-ML datasets. However, on PoliticalBlogs, the
performance of t-PINE has dropped with Nettack perturbations.
The degree of target nodes in PoliticalBlogs dataset are relatively
larger compared to the other datasets. In our experiments, we set
the number of perturbations to a target node relevant to its degree.
Therefore, in the PoliticalBlogs dataset, we perform a larger number

Figure 7: Robustness of t-PINE against Nettack for different em-

bedding dimensions and K on CiteSeer

of perturbation and this could be the reason to why the performance
of t-PINE drops when facing Nettack perturbations.

Method CiteSeer Cora-ML PoliticalBlogs

GCN Clean 0.83 0.82 0.90
Nettack 0.02 0.01 0.06

t-PINE Clean 0.74 0.68 0.87
Nettack 0.72 0.64 0.30

Table 3: Transferring Nettack to t-PINE embeddings. For t-PINE,

fraction of target nodes correctly classified after the attack is very

close to values on the clean graph.

5.4 LowBlow: A Low-Rank Attack

Here, we investigate the influence of the proposed low-rank attack,
LowBlow on GCN and t-PINE. To evaluate the effects of LowBlow,
we compute the perturbed adjacency and feature matrices as in
Equations 19 and 20. Then we retrain GCN model with the per-
turbed matrices. We also compute the t-PINE embeddings for the
perturbed matrices. LowBlow significantly decreases the perfor-
mance of GCN. It is also able to attack t-PINE, however, it is less
successful compared to perturbing GCN.

In addition, we examined our defense mechanism against Low-
Blow. We used a rank-10 approximation of graph to vaccinate it. In
Table 4, we summarize the results for all datasets. Vaccinating GCN
has improved its performance but it decreased the performance of
t-PINE on CiteSeer and Cora. We observed that for a smaller em-
bedding dimension e.g d = 8, vaccinating t-PINE against LowBlow
has no significant impact on the performance of t-PINE.

Due to the low-rank nature of LowBlow, it is more difficult to de-
fend compared to Nettack, and our vaccination method performs
better on Nettack rather than LowBlow.

5.5 Degree Distributions After LowBlow
In the previous subsection we demonstrated the effectiveness of
LowBlow in fooling our proposed low-rank vaccination scheme,
and deteriorating the performance of both GCN and t-PINE. In
addition to the effectiveness of the attack, another important aspect
that we would like to study experimentally is the effect of LowBlow
in “what the graph looks like”. In computer vision attacks, “look”
can be easily defined by how a human perceives the poisoned data
point/image. In graphs, however, such an intuitive metric does not
exist.

Instead, [38] studies a proxy, which is the node degree distribu-
tion and how it is affected by the attack. In [38], the attack only



(a) GCN (b) t-PINE (K = 30) (c) t-PINE (K = 35) (d) t-PINE (K = 40) (e) t-PINE (K = 45)
Figure 8: Poisoning of t-PINE with Nettack on CiteSeer. The embedding dimension is 32.

(a) CiteSeer (b) Cora-ML (c) PoliticalBlogs

Figure 9: Degree distributions of the clean and attacked graphs on log-log scale. LowBlow affects the degree distribution only for the high-

degree nodes, while leaving the majority of the nodes intact.

affects one or a few nodes at a time, and thus, the attack results
in a statistically insignificant alteration of the degree distribution.
LowBlow, on the other hand, by virtue of mixing the attack in high-
valued singular components of the graph, this mixing may affect a
number of nodes, resulting in statistically significant differences in
the distributions, for some nodes.

In Figure 9 we plot the degree distributions of the three real-
world graphs we use, before and after the attack, in log-log scale.
What we uniformly observe is that only the very high-degree nodes
are affected by the attack, while the low and mid-degree nodes,
which constitute the vast majority of this heavy-tailed distribution,
remain intact, as far as their degree distribution is concerned.

To evaluate whether LowBlow perturbations are unnoticeable,
we perform a statistical two-sample test for power-law distribution
[3, 38] to see if the adjacency matrix after LowBlow perturbations
follows similar degree distribution as the input graph. The null hy-
pothesis H0 proposes that the two samples have similar power-law

Method CiteSeer Cora-ML PoliticalBlogs

G
CN

Clean 0.83 0.82 0.90
Nettack 0.02 0.01 0.06
LowBlow 0.05 0.06 0.06
Vaccinated Nettack 0.64 0.59 0.62
Vaccinated LowBlow 0.31 0.35 0.38

t-
PI
N
E

Clean 0.74 0.68 0.87
Nettack 0.72 0.64 0.30
LowBlow 0.55 0.48 0.33
Vaccinated Nettack 0.73 0.65 0.52
Vaccinated LowBlow 0.29 0.27 0.48

Table 4: Results overview.Comparison of poisoning and vaccination

of GCN and t-PINE against Nettack and LowBlow

distributions. Here, we compute the probability of not rejecting the
null hypothesis where the two samples are from different distribu-
tions (Type II error). Similar to [38], we set the p-value to 0.95 which
is a very conservative threshold and two samples from the same
distribution are rejected 95% of the time. Following this conserva-
tive test, degree sequence of the graph after LowBlow perturbations
does not follow the same power-law distribution as the input graph,
i.e. the proposed low-rank attack is noticeable. To make the attack
unnoticeable, we only consider edges that if added or removed
from the graph, degree distribution will not change. After this step,
we plotted the singular values of the graph before and after the
attack and observed that the singular values are mainly different in
higher ranks and the behavior is similar to Nettack. This implies
that an unnoticeable perturbation affects high frequency spectrum
of the graph. Consequently, our proposed vaccination mechanism
successfully defends against unnoticeable adversarial attacks.

6 CONCLUSIONS

In this paper, we examined the characteristics of Nettack perturba-
tions for graphs. Due to the vulnerability of the node classification
approaches to the adversarial attacks, we highlighted the need
for a defense system or robust node classification methods. We
illustrated that Nettack generates high-rank perturbations that
can be discarded using a low-rank approximation of the adjacency
and feature matrices. We showed that a rank-10 approximation
of the matrices is able to defend adversarial attacks with a high
probability and achieve a performance close to the performance
on the clean graph. Furthermore, we examined the robustness of
t-PINE, a tensor-based node embedding against Nettack and we
observed that it is very robust for lower embedding dimensions and
the robustness of the embedding decreases as the dimension gets
bigger. In addition, we proposed an algorithm to generate low-rank



adversarial attacks that could fool both GCN and tensor-based em-
beddings. LowBlow perturbations are noticeable and the attacked
graph does not have the same degree distribution as the input graph.
We also showed that modifying LowBlow to only keep the edges
that preserve the degree distribution makes it a high-rank attack
similar to Nettack. In conclusion, unnoticeable adversarial attacks
on graphs impose high-rank changes in singular values of the input
graph which can be greatly eliminated with our proposed low-rank
defense mechanism.
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