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Abstract—
How does malware propagate? Does it form spikes over time? Does

it resemble the propagation pattern of benign files, such as software
patches? Does it spread uniformly over countries? How long does it take
for a URL that distributes malware to be detected and shut down?

In this work, we answer these questions by analyzing patterns from 22
million malicious (and benign) files, found on 1.6 million hosts worldwide
during the month of June 2011. We conduct this study using the WINE
database available at Symantec Research Labs. Additionally, we explore
the research questions raised by sampling on such large databases of
executables; the importance of studying the implications of sampling is
twofold: First, sampling is a means of reducing the size of the database
hence making it more accessible to researchers; second, because every
such data collection can be perceived as a sample of the real world.

Finally, we discover the SHARKFIN temporal propagation pattern of
executable files, the GEOSPLIT pattern in the geographical spread of
machines that report executables to Symantec’s servers, the Periodic
Power Law (PPL) distribution of the life-time of URLs, and we show
how to efficiently extrapolate crucial properties of the data from a small
sample. To the best of our knowledge, our work represents the largest
study of propagation patterns of executables.

I. INTRODUCTION

What are the main properties of malware propagation? How does
it go about infecting new machines on the Internet? Does its temporal
propagation pattern resemble that of legitimate files, such as software
patches? How long does it take for a malicious URL that distributes
malware to be spotted and shut down?

On a similar pace, for the hosts where we can collect telemetry
on software adoption and propagation, how are they distributed in a
global scale? Are they distributed uniformly across all countries or
do they adhere to a different geographical spreading pattern?

To answer such questions, security researchers and analysts need
comprehensive, field-gathered data that highlights the current trends
in the cyber threat landscape. Understanding whether a data set
used for research is representative of real-world problems is critical,
because the security community is engaged in an arms race with
the cyber criminals, who adapt quickly to the defenses introduced,
creating increasingly specialized cyber attacks [5], [28]. For example,
in 2011, security analysts have identified 403 million new variants of
malware and 55,294 new malicious web domains [28].

One resource available to the research community for studying
security problems at scale is the Worldwide Intelligence Network
Environment (WINE), developed at Symantec Research Labs [23].
WINE includes field data collected by Symantec on millions of hosts
worldwide, and it provides a platform for data intensive experiments
in cyber security. The WINE data sets are updated continuously
with data collected on real hosts that are targeted by cyber attacks,
rather than honeypots or machines in artificial lab environments.
For example, the binary reputation data set includes information on
binary executables downloaded by users who opt in for Symantec’s
reputation-based security program (which assigns a reputation score
to binaries that are not known to be either benign or malicious).

However, the researchers who use WINE must understand the
properties of the data, to assess the selection bias for their experiment

and to draw meaningful conclusions. For example, when analyzing
the patterns of malware propagation around the world, researchers
would want to know that the distribution of executable files over
machines follows a power law (see Figure 1); many files are reported
by few machines, and few files by many machines. Additionally,
the WINE data covers a sampled subset of hosts running Symantec
products; we must understand the effects that this sampling technique
may have on the experimental results. This challenge is not limited
to WINE: every corpus of field data is likely to cover only a subset
of the hosts connected to the Internet, and we must understand how
to extrapolate the results, given the characteristics of the data sets
analyzed.

The first contribution of this paper is a list of 3 of the many
questions that are of interest to security researchers:
• Q1: What is the temporal propagation pattern of executable

files?
• Q2: Where are files downloaded on the Internet?
• Q3: What is the typical URL lifetime?
The remaining contributions form two thrusts: the first is modeling

of the data, so that we can answer the above questions, and the second
is how to extrapolate from samples (since, inevitably, nobody has the
full picture - only a sample of activities).
• Modeling: We propose three new models, one for each of the

motivating questions
– SHARKFIN: It describes the temporal propagation pattern

of high volume executables: exponential growth, followed
by power-law tail, with periodicities.

– GEOSPLIT: It captures the geographical (spatial) spread of
machines that submit executables to the WINE database.

– PPL: The distribution of the lifetime of software disseminat-
ing URLs, follows our “Periodic Power Law” (PPL), with
slope -1.

• Extrapolations: Given a sample, we show how to exploit our
above models, to guess measures of interest (like life-time,
geographical footprint etc) of the full, unknown, dataset. Our
specific contributions are:

– Extrapolation of the propagation pattern of a file, given its
sample.

– Estimation of the footprint loss due to sampling, on the
geographical distribution of machines that report executable
files (malware and legitimate) to Symantec.

The rest of the paper is organized in the typical way: Description of
the data, proposed models, extrapolations from a sample, discussion,
related work, and conclusions.

II. DATA DESCRIPTION

We conduct our study using the Worldwide Intelligence Network
Environment (WINE), a platform for data intensive experiments in
cyber security [23]. WINE was developed at Symantec Research Labs
for sharing comprehensive field data with the research community.



WINE samples and aggregates multiple terabyte-size data sets, which
Symantec uses in its day-to-day operations, with the aim of support-
ing open-ended experiments at scale.

Starting from the raw data available in WINE, we define a reference
data set with the following pieces of information:

• File occurrence counts spanning a whole month (June 2011),
both for legitimate files and malware. This piece of the dataset
essentially consists of time series that capture the propagation
patterns of both types of files. This dataset consists of the
following attributes:
(File SHA2 ID, Occurrences, Timestamp)

• Counts of infected hosts for each country, spanning June 2011.
This piece of data is both in aggregate form and in a daily basis.
The attributes of this dataset are:
(Country ID, count, Timestamp)

• The lifetime of malicious URLs as crawled by human employees
of Symantec for June 2011. This dataset consists of records of
the form:
(URL, First-seen Timestamp, Last-seen
Timestamp)

For each one of the aforementioned datasets, we possess both
before and after sampling versions. As noted before, however, even
the before sampling parts of the dataset may be viewed as a sample
of the real world, since the hosts that use Symantec software are a
subset (or a sample) of all the machines that exist in the Internet.
Details on the WINE database and how sampling is done

The data included in WINE is collected on a representative subset
of the hosts running Symantec products, such as the Norton Antivirus.
These hosts do not represent honeypots or machines in an artificial
lab environment; they are real computers, in active use around the
world, that are targeted by cyber attacks. WINE also enables the
reproduction of prior experimental results, by archiving the reference
data sets that researchers use and by recording information on the data
collection process and on the experimental procedures employed.

The WINE database is updated continuously with data feeds used
in production by Symantec, and the data is sampled on-the-fly as the
files are loaded on the database. Each record includes an anonymous
identifier for the host where the data was collected. The WINE
sampling scheme selects all the records that include a pre-determined
sequence of bits at a pre-determined position in the host identifier,
and discards all the other records. In consequence, WINE includes
either all the events recorded on a host or no data from that host at all.
Because the host identifier is computed using a cryptographic hash,
the distribution of its bits is uniform, regardless of the distribution
of the input data. This sampling strategy was chosen because it
accommodates an intuitive interpretation of the sampled subset: the
WINE data represents a slice of the Internet, just like the original
data set is a (bigger) slice of the Internet.

In this paper, we focus on the binary reputation data set in
WINE. This data set records all the binary executables—whether
benign or malicious—that have been downloaded on end-hosts around
the world. This information is submitted by the users who opt in
for Symantec’s reputation-based security program (which assigns a
reputation score to binaries that are not known to be either benign
or malicious). The binary reputation data has been collected since
February 2008. In addition to the host identifier, each report includes
geolocation information for the host, the download time, the hash
(MD5 and SHA2) of the binary, and the URL from which it was
downloaded. These files may include malicious binaries that were
not detected at the time of their download because the threat was

unknown. To study the effects of sampling, we compare the sampled
data in WINE with the original data set for the month of June 2011.

III. PATTERNS, OBSERVATIONS AND ANALYSIS

In this section, we pose three different questions that are of
particular interest to companies involved in Internet security, such
as Symantec. The spirit of the questions posed is exploratory and
mainly pertains to the spatio-temporal properties of legitimate and
malicious pieces of software.

Even though we mentioned that due to the overwhelming volume
of the original data, the goal of the WINE project is to provide
researchers with a representative sample of the data, in this section,
we do not delve deep into issues such as extrapolation from the
sample. Instead, we follow a qualitative approach in order to describe
these spatio-temporal attributes of such files, and in the process
of accomplishing that, surprising patterns and observations present
themselves, all of which are described in detail in the next few lines.

A note on notation

N is the number of machines that submit executables to Symantec.
T is the number of time-ticks in file occurrence time-series. X(n) is
the file occurrence time-series (n = 1 · · ·T ). ∆I(n) is the number
of "Infected" hosts at time n. U(n) is the number of Un-infected
hosts at time n. S(n) is the external shock/first appearance of an
executable (see Appendix). SHARKFIN is the model that fits the
temporal propagation of high volume executables (see Appendix).
GEOSPLIT is the distribution that describes the geographic spread of
hosts that submit executables. PPL stands for Periodic Power Law
distribution.

A. Q1: What is the temporal propagation pattern of executable files?

A worm that propagates through buffer-overflow exploits (e.g.,
the Blaster worm from 2003) will exhibit a propagation rate differ-
ent from another malware that spread through drive-by-downloads.
Additional patterns of the time series that describes the evolution
of the number of infections provide further clues regarding the
behavior of the malware; for example, a surge of infections hours
after Microsoft’s Patch Tuesday1 may point to the use of automated
techniques for reverse-engineering security patches into working
exploits.

Our proposed analysis and modelling, with respect to the temporal
propagation pattern, works for high volume files, i.e. files that have
enough samples of occurrences such that any form of (meaningful)
modelling is feasible. As "high volume" files we consider all files
with more than 1000 occurrences in distinct machines. In Figure 1
we show that the file popularity (and hence its volume) follows a
power law.

In Figure 2, we illustrate the propagation pattern of six high volume
files coming from several, major software vendors. For instance,
these files can be either patches of already existing software, or new
software binaries; such files (e.g. security patches) tend to become
highly popular very early in their lifetime. In fact, in Figure 2 we
observe, for all those popular files, a steep exponential rise which
follows shortly after they initially appear on the Internet.

This exponential rise is followed by, what appears to be a power-
law drop. Intuitively, this observation makes sense: A few days after
a new security patch by a major software vendor appears, nearly all
users download it right away and only a few people tend to download
it a couple of days after its release date; moreover, nearly nobody

1Each month’s second Tuesday, on which Microsoft releases security
patches.
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Fig. 1. Distribution of file popularity among machines. We observe that the
popularity of a file, which also reflects its volume on the database, follows a
power law.

downloads the file one or two weeks after it has been released. We
henceforth refer to this pattern as the SHARKFIN pattern, due to the
resemblance of the spike to an actual shark fin.

Moreover, Figure 2 also captures a daily periodicity in the files’
propagation pattern. An intuitive explanation for this periodic be-
haviour may be that a large number of these files are security patches,
which are very often downloaded automatically; this would explain
the relative increase of occurrences in a periodic manner, since the
auto-update software usually runs the update at a standard time.
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Fig. 2. Propagation of high volume files, before and after sampling (the
symbol markers correspond to the sampled data, while the lines correspond
to the original data scaled down by the sampling rate). These files all follow
the SHARKFIN pattern that we describe on the main body of the text: A spike
that grows exponentially and drops as a power law.

In order to model the propagation of high volume files, such as
the ones shown in Figure 2, we take into account 1) the exponential
rise and, 2) the power-law drop.

Recently, a model was proposed in [19] that is able to capture both
the exponential rise and the power law drop, as well as periodicity in
the data. This work was focused on meme propagation; however, it
turns out that the SHARKFIN pattern bears a striking resemblance to
the propagation pattern of memes that go viral on the Internet. Based
on that observation, we leverage the work that focuses on meme
propagation [19], and redirect its modelling power for the purposes
of the task at hand.

A simplified version of our model is the following

∆I(n+ 1) =

U(n)

n∑
t=nb

(∆I(t) + S(t)) f(n+ 1− t)


where ∆I(n) is the file occurrences in time-tick n (i.e. the number
of Infected hosts), U(n) is the number of machines that have not
downloaded the file yet, at time-tick n, S(t) is an "external shock"
function that is zero for all n except for the first time that the
file appears (which is denoted by nb), and f emulates the power-
law drop. If we denote as X(n), n = 1 · · ·T the original data,

then we essentially need to minimize: minθ

T∑
n=1

(X(n)−∆I(n))2

where θ is the vector of the model’s parameters. For a more detailed
description of the SHARKFIN model, we refer the reader to the
Appendix.

Figure 3 shows the result of our modelling; the proposed model
almost perfectly captures both rise and fall patterns in the temporal
evolution of a high volume file’s propagation. Both the exponential
rise and the power law drop have been expressed through the
SHARKFIN model, as well as the daily periodicity which we observed
in the propagation pattern. There are a few outliers which do not
follow the SHARKFIN spike, however, the vast majority of the file
occurrences are aligned with the model.

In addition to visual evaluation, we measured the relative squared
error (RSE) between the original file time series X and the one
produced by SHARKFIN, which we call X̂; RSE is defined as
‖X−X̂‖22
‖X‖22

. The median RSE for all the files that we tested was 0.071;
the mean RSE was 0.244± 0.3617 and it is considerably higher due
to a few files having very small number of occurrences, and thus
being modelled poorly (which, in turn, causes the high deviation).
However, for the majority of files, SHARKFIN performs very well,
as it captures vital characteristics of the data.

B. Q2: Where are files downloaded on the Internet?

Understanding the geographical distribution of cyber attacks allows
analysts to determine whether the malware tries to spread indiscrim-
inately or it targets specific organizations. Similarly, understanding
the geographical reach of update-dissemination infrastructures (e.g.,
Microsoft Update, Google Software Update) allows software vendors
to optimize the delivery of critical security patches to their users.
To answer both these questions using WINE, we must be able to
reconstruct the histogram of infection counts for different countries
and ISPs from the sampled data.

We leverage data that record the number of hosts, covered in our
WINE data set, where legitimate or malicious executables have been
downloaded in June 2011, per country. Due to the sensitive nature
of the data, we anonymize each country and we present only its id,
which is merely determined by its ranking with respect to the host
count. The total number of countries in the database is 229.

How are the WINE hosts distributed geographically? In Figure
4, we demonstrate the machine count per country as a function of a
country’s rank; we merely sort the counts in descending order and
we assign a rank to each country according to that order. The figure
shows the distribution both before and after sampling; there is an
obvious displacement of the "sampled" line, which is to be expected.

In terms of the actual distribution that the hosts follow, we claim
that the GEOSPLIT distribution fits the real data very well. In short,
the GEOSPLIT distribution can be seen as a generalization of the 80-
20 distribution, where additional freedom is given for the choice of
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Fig. 3. This Figure illustrates our modeling of the propagation pattern,
compared to the actual file occurrence data, before sampling, for two high
volume executables. Our SHARKFIN model seems to fit the data quite
accurately. The median relative squared error (cf. Sec. III-A) for all the files
that we tested was 0.071

the probabilities, i.e. p (which in the case of the 80-20 distribution
is equal to 0.8) is now a parameter.

The model is closely related to the so-called “multifractals” [10]:
Let N be the total count of machines that carry the executable,
and assume that the count of countries is 2k (using zero-padding,
if necessary). Thus, we can do k levels of bisections of the set of
countries; at each bisection, we give p fraction of the machines to
the “rich” half, and the rest 1-p to the “poor” half. After k levels of
bisections, we have 2k pieces/countries; the “richest’ has pk fraction
of the machines; the next k richest all have pk−1(1 − p), and so
on. Thus we construct a GEOSPLIT distribution, which fits very well
the geographical spread of machines that submit files to the WINE
database.

As we sample the dataset in a per machine basis, it is often
the case that a few countries with very low volume will eventually
disappear from the sample. In other words, if one is observing the
sampled distribution, there is a part of the geographical footprint that

is effectively lost. In the next section, we shall elaborate further on
this footprint loss and will provide an efficient way to obtain an
estimate of how many countries are ignored in the sample.
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Fig. 4. Distribution of machines per country, in log-log scale. We have
anonymized the countries, for privacy purposes, with the total number of
countries in WINE being 229. The distribution follows the GEOSPLIT model,
as we describe it in Section III of the text and the appendix. We observe
that both the sampled and the original data follow the same distribution, with
obvious displacements due to sampling.

C. Q3: What is the typical URL lifetime?

Malware-spreading sites often move, to conceal their presence,
in ways that are not fully understood [6]. Therefore, estimating
the time elapsed between the first and last file downloads from a
malicious URL, as well as the next URL employed to spread the
malware, allows analysts to characterize the attack. The WINE data
set provides a large body of information on URL activity, collected
using a distributed, but non-automated, crawler: the human users who
download executable files around the world. However, the sampling
strategy might distort these measurements by shortening the observed
lifetimes and by omitting some URLs from the chain.

In Figure 5, we show the empirical distribution of the WINE URL
lifetimes, as recorded for an entire month. We observe that sampling
does not significantly alter the shape of the distribution; in fact, both
before and after sampling distributions, for their most part seem
to be aligned. The only part in which they deviate is the tail of
the distribution, where the distribution obtained after sampling has
generally fewer URLs for a given duration, which is not surprising,
since sampling by default should cause this phenomenon.

However, both before and after sampling distributions (excluding
outlying data points due to horizon effect, which is explained in the
next few lines) follow a power-law with slope -1.

Additionally, we observe two rather interesting phenomena:
1) Periodicity: In both distributions, a periodic behavior is pro-

nounced. This daily periodicity, however, is not an inherent
property of the data, but rather a by-product of the data
collection process. As we mentioned earlier, the URLs first and
last appearances are crawled by human users, who manually
download executable files around the world. Therefore, the
periodic fluctuations of the URL lifetimes in Figure 5 are
caused by the periodic pattern that the human crawlers operate
on.



2) Horizon Effect: Since we are operating on a fixed time window
of one month, it is very likely that we don’t see the actual
last appearance of some URLs which continue being on-line
even after the end of the window we focus on. Because of that
fact, the tail of both distributions (before and after sampling)
contains many outliers; more specifically, it contains URLs that,
in reality, have longer durations than the ones we observe.
Furthermore, the horizon effect is even more pronounced on
the distribution after sampling.

Putting everything together, we may characterize the distribution
of the lifetime of URLs as a Periodic Power Law or PPL for short,
with slope -1. It is important to note that both the periodicity and
the slope is retained after sampling, excluding of course the horizon
effect outliers.
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Fig. 5. Distribution of URL lifetimes, before and after sampling, in log-log
scale. The lifetime of URLs follows the PPL model, which is a periodic power
law distribution with slope -1 and daily periodicity. We also show the end of
June 2011, which signifies the end of our measurement period and thus the
start of the horizon effect.

IV. SEEING THROUGH THE SAMPLE

In the previous section we were concerned with both the original
WINE database and a small sample thereof, but merely from an
observatory perspective. In this section, however, we attempt to dive
deeper into the implications of using a (representative) sample of the
WINE database in lieu of the original, enormous dataset. In particular,
we provide means to estimate/extrapolate crucial (from the security
industry and research point of view) attributes of the data, based only
on a sample. For instance, it is important for someone who works on
a sample to be able to reconstruct the original propagation pattern of a
file, given that sample. In the following lines, we pose such questions
pertaining to the extrapolation from the sample and provide effective
algorithms in order to "see through the sample".

A. SQ1: Given a sample, can we extrapolate the propagation pattern
of a file?

Suppose we are given a sampled subset of the occurrences of a
file, each accompanied with a time-stamp, as in Q1 in the previous
section. The sampling procedure is the same as before. How can we
reconstruct the original, before sampling, propagation pattern of that
particular file? Does the reconstruction resemble the original pattern?
What are the inherent limitations imposed by sampling?

As we investigated in Q1 of the previous section, we can suc-
cessfully model the propagation pattern of legitimate files before
sampling, as in Figure 3. In Figure 2 we observe that sampling does
not severely alter the SHARKFIN shape of the time-series, at least
for such popular, high volume files; the sampled time series seems to
have consistently lower values than the before sampling ones, which
is to be expected due to sampling (even though our sampling is per
machine and not per file occurrence).

The main idea of our extrapolation technique lies exactly in the
observation above. Since sampling has displaced the sampled time-
series by a, roughly, constant amount, we follow these two simple
steps:

1) Multiply every point of the sampled time series by the sampling
factor, in order to displace it to, roughly, the same height as
the original time-series.

2) Fit the model that we introduce in Q1 on the multiplied time-
series.

More formally, following the same notation as in Q1, and denoting
the sampling rate by s, we need to minimize the following function:

minθ

T∑
n=1

(sX(n)−∆I(n))2

In Figures 6(b& c), we show the result of the proposed approach,
for two popular, high volume files, by major software vendors. We can
see that our extrapolation is perfectly aligned with the model of the
data before sampling, which renders our simple scheme successful.
On top of that, both models, as we also demonstrated on Figure 3 fit
the original data very well.

As in modelling, here we employ RSE in order to further assess
the quality of our extrapolation (by measuring the RSE between the
original sampled vector of observations, and the extrapolated one).
The median RSE was 0.0741; the mean RSE was 0.2377± 0.3648
(for the same reasons we mentioned in Sec. III). We see that for the
majority of files, the extrapolation quality is very high, demonstrating
that our extrapolation scheme, usingSHARKFIN, is successful for high
density files.

B. SQ2: Given a sample of the geographical distribution of the cyber
attacks, can we estimate the footprint of the original distribution?

The empirical geographical distribution of machines around the
world is shown in Figure 4. As we saw, before sampling, the footprint
of the distribution spans 229 countries. Because of sampling, it is
often the case that some countries in the tail of the distribution, that
have low counts, will inevitable disappear from the sample. In this
particular case, the countries that are left in the sample are 224. We
refer to this problem as the footprint loss, due to sampling, and here
we propose a way to accurately recover the number of countries that
are indeed missing from the sample, i.e. the lost footprint.
Zero-th frequency moment of the GEOSPLIT distribution: In
order to come up with a reliable means of estimating the footprint
prior to sampling, we have to make a few assumptions with respect
to the type of the distribution. As we showed earlier, in Figure 4,
the geographical distribution of machines follows GEOSPLIT model.
Under this assumption, we may leverage the work of [10] in order
to perform our extrapolation.

More specifically, there is an immediate correspondence of the
zero-th frequency moment of the GEOSPLIT distribution, to the
number of countries that it spans. If we denote by mi the count
of machines for each country, then the q-th frequency moment is
defined as Fq =

∑
i

mi
q. If q = 0, then F0 is simply the number

of countries in our distribution. Thus, if we are able to accurately
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Fig. 6. (a) & (b): In these Figures we show i) our extrapolation after sampling, ii) our modelling before sampling, and iii) the original data before sampling,
for two different, popular, legitimate files. We see that the extrapolation and the model before sampling are almost perfectly aligned, justifying our approach.
Additionally, we see that they both fit very well the original data. The median RSE in this case was 0.0741. (c): Estimation of lost footprint due to sampling.
We recover the size of geographical footprint of machines that use Symantec’s software, again starting from a ≈10% sample of the data: (blue: error of our
estimation; red: actual error/footprint loss due to sampling

estimate the F0 given the sample, then we have an estimate of the
lost footprint.

Given the distribution of machines across countries (C1, ..., Cm,
for m countries), we have that N = C1 + . . . + Cm, and we can
estimate k and p: k = dlog2(m)e, and C1 = Npk.

Then, we estimate F0 (see [10] for more details). Specifically, if
the j-th country has estimated count Ĉj < 1, we round down to
zero, and consider that country as having no machines that submit
executables.

In Figure 6(c) we provide a comprehensive look at the performance
of our approach. In particular (in red) we show the actual footprint
loss, in other words the error incurred by sampling, which is 5
countries. With our proposed approach of estimating the zero-th
frequency moment of the distribution, we are able to accurately argue
that 228 countries originally exist in the footprint, resulting in an error
of just 1 country.

V. DISCUSSION - SAMPLING IS UNAVOIDABLE

A. Lessons learned

Should we bother with sampling and extrapolations, given that
major security companies, like Symantec, have huge amounts of data?
The answer is “yes”, for several reasons:

• Nobody sees the full picture: Since only a subset of all the
machines in the Internet are using any security software at all
(and are, thus, monitored for malware infections), and a subset
of this subset uses software by a particular security software
vendor, e.g. Symantec, the following natural issue arises: The
data that each security vendor monitors is but a sample of the
real world. Thus, if Symantec to estimate what is happening
in the whole world, it still needs to use our models and the
extrapolations formulas based on them.

• Big Data is difficult to transfer and analyze: When data sets
reach petabyte scales and they are collected on hundreds of
millions of hosts worldwide, keeping them up-to-date can re-
quire a prohibitive amount of storage and bandwidth. Moreover,
analysis tasks can execute for several hours or even days on
large data sets, which makes it difficult to experiment with new,
unoptimized, data intensive techniques.

• Security telemetry is collected at high rate: In 2011, 403 million
new malware variants were created (more than 1 million each

day) [28], and data sets that grow by several gigabytes per day
are common in the security industry. This problem, also known
as “data velocity,” is present in other industries; for example,
Akamai collects log data at a rate of 10 GB/s [17]. When
faced with such high data collection rates, practitioners either
apply aggressive compression techniques, which can render data
processing difficult, or they store only part of the data set
(i.e., a sample). Representative sampling techniques that can
be applied on-the-fly, as the data is collected (as the sampling
strategy adopted in WINE), can enable open-ended analyses and
experiments on such data sets.

• Restrictions in data access: Because large data sets are often
critical to a company’s operations, the entire corpus of data col-
lected by the company is kept confidential and the systems used
to analyze the data in production are not opened up to research
projects. Under these circumstances, prototypes and models are
developed using sampled data, which further emphasizes the
need for model fitting and extrapolations.

In short, sampling and extrapolations are necessary, for everybody
in this field, including the largest computer security companies.

B. Deployment & Impact

WINE is an operational system, used for experimenting with new
Big Data ideas and for building data analysis prototypes. In 2012,
several engineering teams within Symantec and five academic re-
searchers have used WINE in their projects. The sampling techniques
described and validated in this paper enable open-ended experiments
at scale that often correlate several data sets, collected and sampled
independently.

For example, WINE has provided unique insights into the preva-
lence and duration of zero-day attacks. A zero-day attack exploits
one or more vulnerabilities that have not been disclosed publicly.
Knowledge of such vulnerabilities gives cyber criminals a free pass
to attack any target, from Fortune 500 companies to millions of
consumer PCs around the world, while remaining undetected. WINE
has enabled a systematic study of zero-day attacks that has shown,
among other findings, that these attacks are more common than
previously thought and that they go on undiscovered for 10 months
on average [3]. Quantifying these properties had been a long-standing
open question, because zero-day attacks are rare events that are
unlikely to be observed in honeypots or in lab experiments; for



instance, exploits for most of the zero-day vulnerabilities identified
in the study were detected on fewer that 150 hosts out of the 11
million analyzed. This result was achieved by correlating the binary
reputation data set, analyzed in this paper, with additional types
of security telemetry (anti-virus detections, dynamic analysis traces,
vulnerability databases) and was made possible by the fact that the
WINE sampling algorithm makes consistent decisions: if the data
collected in one data set about a certain host is included in one data
set, then it will be included in all the other data sets as well.

In addition to the technical implications of these results, they
also illustrate the opportunities for employing machine-learning tech-
niques in cyber security (e.g., assessing the reputation of unknown
binaries [7], which singles out rare events such as zero-day attacks).
The SHARKFIN, GEOSPLIT and PPL models, introduced in this
paper, represent another step in this direction. Understanding the basic
properties of security telemetry opens up promising research avenues
into preventing cyber attacks, by distinguishing malicious and benign
software using their propagation patterns and by estimating the
number of hosts and geographies reached by worms and by security
updates.

VI. RELATED WORK

Propagation of Executables In July 2001, the Code Red worm
infected 359,000 hosts on the Internet in less than 14 hours [21]. Code
Red achieved this by probing random IP addresses (using different
seeds for its pseudo-random number generator) and infecting all
hosts vulnerable to an IIS exploit. This incident triggered a wave of
research into the propagation of Internet worms. In 2002, Staniford
et al. analyzed Code Red traces and proposed an analytical model
for its propagation [27]. Based on this model, the researchers also
suggested that a worm can infect one million vulnerable hosts on
the Internet within 30 seconds by replacing random probing with
a combination of hit-list scanning, permutation scanning, and use
of Internet-sized hit-lists [27]. In follow-on work, they showed that
additional optimizations may allow a worm to saturate 95% of one
million vulnerable hosts on the Internet in less than 2 seconds [26].
Such techniques were subsequently employed by worms released in
the wild, such as the the Slammer worm [20] (infected 90% of all
vulnerable hosts within 10 minutes) and the Witty worm [31].

Gkantsidis et al. study the dissemination of software patches
through the Windows Update service and find that approximately
80% of hosts request a patch within a day after it is released; the
number of hosts drops by an order of magnitude during the second
day, and is further reduced by factor of 2 in day three [12].

Influence Propagation Studies on virus and influence propagation
are numerous, with popular books [1] and surveys [13], blog analysis
[15], response times in linked-in invitations [14], spike analysis in
youtube video [8] and the recent SpikeM model [19], which our
SHARKFIN model generalizes. Recent research in malware detection
[7] leverages propagation-based machine learning method (Belief
Propagation) to infer files’ reputations (e.g., malicious or benign).

Power Law Distributions Power laws appear in countless settings
[32], [22], including network topology [11], web topology [2], [4] and
are closely related to fractals and self-similarity (see [18] and [25]
for long lists of settings with power-law distributions). Multifractals
[25] and the multifractal wavelet model [24] are closely related to our
GEOSPLIT model, and have been used to model local area network
traffic, web traffic [9], disk accesses [30] [29].

VII. CONCLUSIONS

In this paper we analyzed one of the largest available security
databases, comprised by both malware and benign executables. We
provide intuitive insights on the data and we identify surprising
patterns therein. Moreover we provide efficient techniques in order
to extrapolate key attributes and properties of the full data, based on
a small, uniform, random sample.

Our key contributions are:
• Spatio temporal models for malware/software propagation.

Specifically:
– Spatial: The GEOSPLIT model for the geographical spread

of infected machines.
– Temporal: The SHARKFIN model for the temporal evolution

of executables.
– Lifetime: The PPL (periodic power law), with slope -1, for

the life-time of software-disseminating URLs.
• Extrapolations from Sample: Thanks to our spatio-temporal

models above, we showed how to extrapolate the spatio-temporal
properties, given a sample of malware propagation.
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APPENDIX

The SHARKFIN model
The SHARKFIN model of executable propagation is a generaliza-

tion of the SpikeM model [19] for the spreading of memes through
blogs. We briefly describe the model in [19], adapting to the task at
hand

The model assumes a total number of N machines that can be
infected. Let U(n) be the number of machines that are not infected
at time n; I(n) be the count of machines that got infected up to
time n − 1; and ∆I(n) be count of machines infected exactly at
time n. Then U(n+ 1) = U(n)−∆I(n+ 1) with initial conditions
∆I(0) = 0 and U(0) = N .

Additionally, we let β as the strength of that executable file. We
assume that the infectiveness of a file on a machine drops as a specific
power law based on the elapsed time since the file infected that
machine (say τ ) i.e. f(τ) = βτ−1.5. Finally, we also have to consider
one more parameter for our model: the ”external shock”, or in other
words, the first appearance of a file: let nb the time that this initial
burst appeared, and let S(nb) be the size of the shock (count of
infected machines).

Finally, to account for periodicity, we define a periodic function
p(n) with three parameters: Pa, as the strength of the periodicity, Pp
as the period and Ps as the phase shift.

Putting it all together, our SHARKFIN model is

∆I(n+1) = p(n+1)

U(n)

n∑
t=nb

(∆I(t) + S(t)) f(n+ 1− t) + ε


where p(n) = 1− 1

2
Pa
(

sin
(

2π
Pp

(n+ Ps)
))

, and ε models external
noise.



No-sampling version: If X(n), n = 1 · · ·T is the sequence of file
occurrences we want to model as a SHARKFIN spike, we want
minimize the following:

min
θ

T∑
n=1

(X(n)−∆I(n))2

where θ =
[
N β Sb Pa Ps

]T is the vector of model param-
eters.
With sampling: If we are dealing with a sample of file occurrences,
with sampling rate s, then we solve the problem:

min
θ

T∑
n=1

(sX(n)−∆I(n))2

In both cases, we use Levenberg-Marquardt [16] to solve for the
parameters of our SHARKFIN model.
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