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Tensors and tensor decompositions are very powerful and versatile tools that can model a wide variety of
heterogeneous, multiaspect data. As a result, tensor decompositions, which extract useful latent information
out of multiaspect data tensors, have witnessed increasing popularity and adoption by the data mining
community. In this survey, we present some of the most widely used tensor decompositions, providing the
key insights behind them, and summarizing them from a practitioner’s point of view. We then provide an
overview of a very broad spectrum of applications where tensors have been instrumental in achieving state-
of-the-art performance, ranging from social network analysis to brain data analysis, and from web mining
to healthcare. Subsequently, we present recent algorithmic advances in scaling tensor decompositions up to
today’s big data, outlining the existing systems and summarizing the key ideas behind them. Finally, we
conclude with a list of challenges and open problems that outline exciting future research directions.
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1. INTRODUCTION

Tensors are multidimensional extensions of matrices. Because of their ability to express
multimodal or multiaspect data, they are very powerful tools in applications that
inherently create such data. For instance, in online social networks, people tend to
interact with each other in a variety of ways: they message each other, they post on
each other’s pages, and so on. All these different means of interaction are different
aspects of the same social network of people, and can be modeled as a three-mode
tensor, a “data cube,” of (user, user, means of interaction). Given this tensor, there
exists a rich variety of tools called tensor decompositions or factorizations that are able
to extract meaningful, latent structure in the data.

In data mining, tensor decompositions have been very popular and successful in
achieving state-of-the-art performance. The list of applications where tensors have
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been successful ranges from social network analysis to brain data analysis, and from
web mining and information retrieval to healthcare analytics.

This survey is by no means the first attempt to summarize tensor decompositions.
In fact, the work of Kolda and Bader [2009] is probably the most concise and most
cited survey that contains a very detailed overview of different tensor decompositions.
Subsequently, more survey papers have been published, some of them focusing on the
applications [Acar and Yener 2009] and some on the algorithms [Cichocki et al. 2009;
Lu et al. 2011; Grasedyck et al. 2013; Cichocki et al. 2015]. All the aforementioned
surveys are great summaries of the work in a vast research area that spans the fields
of chemometrics, psychometrics, signal processing, data mining, and machine learning.

However, we feel that the present survey differs from the existing ones in the follow-
ing two ways: (1) we strongly emphasize the implications of the works we summarize
from a practitioner’s point of view, in terms of describing both the decompositions and
the volume and breadth of the applications that this survey contains, and (2) the field
is evolving very fast and many of the advances in applications and scalable algorithms
have been published after the existing surveys.

In this article, we first give a few background definitions and notation in Section 2,
and then present a selection of the most widely used decompositions in the aforemen-
tioned applications in Section 3. We give the essential definitions, provide state-of-
the-art algorithms, and present the essence of each decomposition from a practitioner’s
perspective. In Section 4, we outline the application of tensor decompositions in a broad
variety of real-world applications, outlining the particular ways that tensors have been
used in each case. Subsequently, in Section 5, we provide a concise summary of scal-
able methods for tensor decompositions that have recently witnessed significant growth
and have made tensor decompositions applicable to big data. Finally, in Section 6, we
conclude by highlighting a few open challenges in tensor decompositions that mark
interesting future research directions.

2. PRELIMINARY DEFINITIONS AND NOTATION

In this section, we provide a few necessary definitions and describe our notation. Table I
summarizes our notation throughout this article.

Definition 2.1 (Tensor). A tensor is a multidimensional array, denoted by X. We
usually refer to the dimensions of X as modes. As a result, the order of a tensor is the
number of its modes. For instance, we may refer to a third-order tensor as a three-mode
tensor.

Definition 2.2 (Outer Product). Given two vectors a ∈ R
I and b ∈ R

I , their outer
product is an I × J matrix denoted by a ◦ b. Its (i, j) entry is a(i)b( j). This definition
can be extended to an arbitrary number of vectors.

Definition 2.3 (Kronecker Product). Given two matrices A ∈ R
I×J and B ∈ R

K×L,
their Kronecker product is an IK × JL matrix equal to

A ⊗ B =

⎡
⎢⎢⎢⎢⎢⎣

A(1, 1)B · · · A(1, j)B · · · A(1, J)B
... · · · ... · · · ...

A(i, 1)B · · · A(i, j)B · · · A(i, J)B
... · · · ... · · · ...

A(I, 1)B · · · A(I, j)B · · · A(I, J)B

⎤
⎥⎥⎥⎥⎥⎦.

Definition 2.4 (Khatri-Rao Product). Given two matrices A and B, their Khatri-Rao
product is the column-wise Kronecker product, that is,

A � B = [
A(:, 1) ⊗ B(:, 1) · · · A(:, j) ⊗ B(:, j) · · · A(:, J) ⊗ B(:, J)

]
.
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Table I. Table of Symbols

Symbol Definition
X, X, x, x Tensor, matrix, column vector, scalar

R The set of real numbers
◦ Outer product

vec( ) Vectorization operator
diag(A) Extract diagonal of matrix A
diag(a) Diagonal matrix with a on the diagonal

⊗ Kronecker product
� Khatri-Rao product

∗ � Element-wise multiplication and division
×n n-mode product
X(n) n-mode matricization of tensor X

A−1 Inverse of A
A† Moore-Penrose Pseudoinverse of A

DKL(a‖b) KL-Divergence
‖A‖F Frobenius norm
x(i) ith entry of x (same for matrices and tensors)
x(I) Spans the elements of x corresponding to indices in set I

X(:, i) Spans the entire ith column of X (same for tensors)
X(i, :) Spans the entire ith row of X (same for tensors)

reshape( ) Rearrange the entries of a given matrix or tensor to a given set of dimensions
numel( ) For an I1 × I2 · · · × IN tensor, returns

∏N
n=1 In

MTTKRP Matricized Tensor Times Khatri-Rao Product

Definition 2.5 (N-mode Product). Given an N-mode tensor X ∈ R
I1×I2×···×IN and a

matrix A ∈ R
In×R, the n-mode product of X and A is denoted as Y = X ×n A, where

Y ∈ R
I1×···In−1×R×In+1×···×IN , and

Y(i1, . . . , in−1, r, in+1, . . . , in) =
In∑

j=1

X(i1, . . . , in−1, j, in+1, . . . iN)A( j, r).

Definition 2.6 (Frobenius Norm of a Tensor). The Frobenius norm of a tensor X ∈
R

I1×I2×···×IN is defined as

‖X‖F =
√√√√ I1∑

i1

I2∑
i2

· · ·
IN∑
iN

X(i1, i2, . . . , in)2.

Definition 2.7 (N-mode Matricization). An N-mode tensor can be unfolded or ma-
tricized into a matrix in N ways, one for each mode. The n-mode matricization of
X ∈ R

I1×I2×···×IN is denoted as X(n) ∈ R
In×I1···In−1 In+1···IN and is taken by keeping the nth

mode intact and concatenating the slices of the rest of the modes into a long matrix.
Figure 1 shows an example of a three-mode tensor and its one-mode matricization.
Note that, as mentioned in Kolda and Bader [2009], there exist various definitions of
the order in which the slices are concatenated during the matricization; however, the
end result is the same, as long as the order is consistent across different matricizations.

The following property will be used in Section 3.1.2, where we derive the Alternating
Least Squares Algorithm for the CP decomposition.

PROPERTY 1 (VECTORIZATION AND KHATRI-RAO PRODUCT [BREWER 1978]). Given matrices
A, B with the same number of columns and a diagonal matrix D = diag(d), we have

vec(ADBT ) = (B � A)d.
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Fig. 1. One-mode matricization of X to matrix X(1).

Fig. 2. The PARAFAC decomposition in its two equivalent representations, the sum of rank-one components
and the factor matrices.

3. TENSOR DECOMPOSITIONS

There is a rich variety of tensor decompositions in the literature. In this section, we
provide a comprehensive overview of the most widely used decompositions in data
mining, from a practitioner’s point of view.

3.1. CP Decomposition

3.1.1. Definition. The canonical polyadic (CP) decomposition (also known as PARAFAC
or CANDECOMP) was independently proposed by Hitchcock [1927], Carroll and
Chang [1970], and Harshman [1970]. The CP decomposition of a three-mode tensor
X ∈ R

I×J×K is the sum of three-way outer products, that is,

X ≈
R∑

r=1

ar ◦ br ◦ cr, (1)

where ar ∈ R
I, br ∈ R

J, cr ∈ R
K, and their three-way outer product is given by

(ar ◦ br ◦ cr)(i, j, k) = ar(i)br( j)cr(k) for all i, j, k.

We say R is the number of components. The minimal R, the yield equality in Equa-
tion (1), is called the rank of the tensor. The factor matrices are defined as

A = [a1 a2 · · · aR] ∈ R
I×R

B = [b1 b2 · · · bR] ∈ R
J×R

C = [c1 c2 · · · cR] ∈ R
K×R.

Figure 2 shows a pictorial representation of the decomposition. Often, we may assume
that the columns of A, B, C are normalized, and in this case, each latent component is
accompanied by a scalar λr that absorbs the scaling for ar, br, and cr.
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In the case of an N-mode tensor, we can readily extend the three-way CP decomposi-
tion by adding a new factor matrix for each additional mode. When N > 3, for notational
simplicity we denote the nth factor matrix as A(n), for n = 1, . . . , N, and we write

X ≈
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r .

CP is one of the most popular tensor decompositions, in part due to its ease of inter-
pretation. Each rank-one component of the decomposition serves as a latent “concept”
or cluster in the data. The factor vectors for component r can be interpreted as soft
membership to the rth latent cluster. As Harshman [1970] stated when he introduced
CP, this is an explanatory model. As such, it is suitable for exploratory data mining, as
we will also see when we discuss applications (Section 4).

In addition to admitting a very intuitive interpretation, CP enjoys important theoret-
ical properties. In particular, it is shown that CP is unique, under very mild conditions,
up to scaling and permutation of the R components [Kruskal 1977; Sidiropoulos and
Bro 2000; ten Berge and Sidiropoulos 2002; Jiang and Sidiropoulos 2004; Stegeman
et al. 2006; Chiantini and Ottaviani 2012]. It is beyond the scope of this survey to
delve deeper into the theoretical underpinnings of CP uniqueness; however, we briefly
mention relevant work: Kruskal [1977] gave the first three-way uniqueness result, and
Sidiropoulos and Bro [2000] extended that to higher orders. It was known that the con-
dition of Kruskal [1977] is sufficient but not necessary; in fact, Jiang and Sidiropoulos
[2004] showed that it is not necessary when one factor matrix is full column rank.
Stegeman et al. [2006] used the results of Jiang and Sidiropoulos [2004] to derive an
almost-sure uniqueness result. Recently, Chiantini and Ottaviani [2012] provided the
most relaxed conditions to date, using algebraic geometry.

Intuitively and practically, uniqueness means that the CP decomposition uncovers
the actual latent factors rather than an arbitrarily rotated version. This is in sharp
contrast to matrix factorization , where we generally have

X ≈
R∑

r=1

arbT
r = ABT = AQQ−1BT = ÃB̃T

for any invertible Q; that is, there exist multiple such decompositions of X that yield
the same approximation error. The matrix singular value decomposition (SVD) is only
unique because it adds an orthogonality constraint and only then if all the singular
values are distinct. In practice, this means that in applications where we care not
only about approximating the original data well but also about interpreting the latent
factors, CP has a great advantage compared to matrix decomposition because it is
generally the case that there is no equivalent rotated solution that yields the same fit.

3.1.2. Algorithms. In this section, we will elaborate on the Alternating Least Squares
(ALS) algorithm for CP, which is probably the most widely used algorithm and dates
back to the original papers by Carroll and Chang [1970] and Harshman [1970]. We also
mention in passing all-at-once optimization approaches. For a detailed comparison of
algorithms for CP, Tomasi and Bro [2006] and Kolda and Bader [2009] are excellent
sources.

In order to solve for CP, we minimize the sum of squares of the difference between
the tensor X and the model:

min
A,B,C

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

. (2)

The previous function is nonconvex; however, if we fix two of the factor matrices, the
problem reduces to a linear least squares problem for the third one.
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We show a particular way to derive the ALS algorithm in the three-way case. We can
express CP in Equation (1) in “slab” format, relating each 2D slice of the tensor to the
factor matrices, that is,

X(:, :, k) ≈ ADkBT where Dk = diag(C(k, :)).

Using Property 1, after vectorizing the kth slice of the tensor into a long IJ vector, we
have

vec (X(:, :, k)) ≈ (B � A) C(k, :).

Then, gathering all the slices together yields

[vec (X(:, :, 1)) vec (X(:, :, 2)) · · · vec (X(:, :, K))] ≈ (B � A)[C(1, :) C(2, :) · · · C(K, :)].

Thus, we have

XT
(3) ≈ (B � A) CT ⇒ X(3) ≈ C (B � A)T ,

where X(3) is as defined in Definition 2.7. Similarly, we can write the first- and second-
mode slabs of the tensor in similar ways:

X(1) ≈ A(C � B)T , X(2) ≈ B(C � A)T , X(3) ≈ C(B � A)T .

The previous observation is very crucial because it offers three linear equations that
relate a matricized version of the tensor (which is known) to one of the factor matrices.
Thus, assuming that (B � C) is fixed, we can solve for A as

A = X(1)(C � B)†.

Using a property of the pseudoinverse of the Khatri-Rao product (Eq. 2.2 in Kolda and
Bader [2009]), this can be simplified to

A = X(1)(C � B)(CT C ∗ BT B)†.

For the general N-mode case, where we have factors A1 · · · AN, the ALS solution for
mode n is

A(n) = X(n) (AN � · · · � An+1 � An−1 � · · · � A1)(
AT

NAN ∗ · · · ∗ AT
n+1An+1 ∗ AT

n−1An−1 ∗ · · · ∗ A(1)T A(1))†.
This gives rise to the ALS algorithm for the CP decomposition, which assumes that

two out of the three matrices are fixed and solves for the third, iterating until a conver-
gence criterion is met, for example, when the approximation error stops decreasing or
when a certain number of iterations is reached. The ALS algorithm is a type of block
coordinate descent algorithm and is guaranteed to decrease the approximation error
monotonically. A listing of ALS is in Algorithm 1. In addition to solving for each factor
matrix, in Algorithm 1 we normalize the columns of the factor matrices, which proves
to be very important from an implementation point of view, offering stability to the al-
gorithm. We absorb the norm of each component in the coefficients of an R×1 vector λ.

It is important to note that the kernel

Y = X(1)(C � B) (3)

is also called Matricized Tensor Times Khatri-Rao Product or MTTKRP for short [Bader
and Kolda 2007; Kolda and Bader 2009]. It can be similarly defined for X(2) and X(3)
matricizations, as per the Alternating Least Squares Algorithm. This operation is key
for scalability, as we will discuss in Section 5.1.

In addition to the ALS algorithm, we can also use all-at-once optimization. Paatero
[1997] and Tomasi and Bro [2006] propose formulating the problem as nonlinear least
squares and solving with a damped Gauss-Newton method. Acar et al. [2011] apply
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ALGORITHM 1: Alternating Least Squares for CP
Input: Tensor X ∈ R

I×J×K and rank R.
Output: CP decomposition λ, A ∈ R

I×R, B ∈ R
J×R, C ∈ R

K×R

1: Initialize A, B, C (e.g., at random)
2: while convergence criterion is not met do
3: A ← X(1)(C � B)(CT C ∗ BT B)†
4: Normalize columns of A
5: B ← X(2)(C � A)(CT C ∗ AT A)†
6: Normalize columns of B
7: C ← X(3)(B � A)(BT B ∗ AT A)†
8: Normalize columns of C and store norm in λ
9: end while

first-order gradient optimization methods such as limited-memory BFGS. Phan et al.
[2013] exploit the structure of the Hessian for an efficient second-order optimization
using Newton’s method.

3.1.3. Handling Missing Values. When dealing with real data, there are many reasons we
can expect some elements to be missing. Whether because of corruption, faulty mea-
surements, or incomplete information (e.g., in recommender systems), there is a need
to equip our algorithms with the ability to handle missing data. The traditional way
for doing so is an expectation maximization approach that alternates between estimat-
ing the missing values with the current model and updating the model [Kiers 1997;
Tomasi and Bro 2005]. This can be expensive since it requires repeatedly constructing
the model; additionally, it is only feasible when the amount of missing data is fairly
small. Another approach is to operate only on the observed data, ignoring every entry
that is missing. Mathematically, this translates to

min
A,B,C

∥∥∥∥∥W ∗
(

X −
R∑

r=1

ar ◦ br ◦ cr

)∥∥∥∥∥
2

F

,

where
W(i, j, k) =

{
1 if (i, j, k) element is present,
0 if (i, j, k) element is missing.

The element-wise multiplication of the difference between the data and the model with
this mask tensor W disregards entries that are missing from the optimization process.
The works of Tomasi and Bro [2005] and Acar et al. [2010, 2011] show how this can be
done algorithmically.

3.1.4. Extensions. Due to its popularity, there exist a variety of extensions to the CP
decomposition, inspired by real-world constraints.

Nonnegative Tensor Factorization. In their seminal paper, Lee and Seung [1999]
demonstrate that enforcing nonnegativity constraints on the factors of a matrix fac-
torization can lead to more interpretable and intuitive results. Conceptually, when we
are dealing with data that can be expressed as a “sum of parts,” then incorporating
nonnegativity constraints successfully expresses this property. In tensors, there exist
algorithms that enforce nonnegativity constraints on the values of A, B, C and have
been shown to be more effective in terms of interpretability [Shashua and Hazan 2005;
Cichocki et al. 2009]. We invite the interested reader to also explore the overview paper
of Kolda and Bader [2009], which contains a more in-depth introduction to this subject.

Sparsity on the Latent Factors. Another constraint to enhance interpretability is
sparsity. When the latent factors have only a few nonzero entries, an analyst can focus
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on those, ignoring the zero entries, to understand the result of the decomposition. In
addition to interpretability, Papalexakis et al. [2013] show that sparsity on the latent
factors of CP actually leads to higher-order coclustering, which simultaneously groups
rows, columns, and mode-three fibers (in case of a three-mode tensor) into so-called
coclusters. In order to achieve sparsity on the latent factors, we use the �1 norm,
leading to

min
A,B,C

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

+ λa

∑
i,r

|ar(i)| + λb

∑
j,r

|br( j)| + λc

∑
k,r

|cr(k)|.

Furthermore, Papalexakis et al. [2013] hypothesize that imposing sparsity on the latent
factors may produce nearly orthogonal factors and so allow for a deflation process where
we compute only one rank-one component at a time.

Boolean CP Decomposition. Oftentimes, tensors contain binary relations (e.g., when
we are recording whether two people spoke on the phone or not on a particular day).
Miettinen [2011] proposes a set of Boolean tensor decompositions (CP and Tucker),
where binary tensors are decomposed using models that operate in the Boolean algebra
(e.g., 1 + 1 = 1). The advantage of this approach is that for tensors that contain binary
relations, such representation is more appropriate and respects that nature of the data.

Modeling Sparse Count Data. Chi and Kolda [2012] consider the problem that, in a
wide variety of data mining applications, we are dealing with sparse “count” data. For
instance, a tensor entry (i, j.k) might indicate how many times person i sent a message
to person j on a social network during week k. Traditionally, tensor algorithms seek
to minimize the Frobenius norm of the difference between the data and the model
Equation (2); however, using the Frobenius norm assumes that the data are normally
distributed. In the case of sparse count data, this assumption is not well suited and
may lead to results that misrepresent the data. On the other hand, postulating a
Poisson distribution for the data turns out to be a more realistic assumption, which
implies the use of the KL-Divergence as an objective function. Chi and Kolda [2012]
demonstrate the effectiveness of this assumption, and Hansen et al. [2015] develop
efficient algorithms.

Incremental Decomposition. Finally, in many real-world scenarios, the tensor is not
static but generated dynamically and updated over time. Suppose, for instance, that
the third mode of the tensor is being updated by new slices of data, for example,
new interactions on a time-evolving social network. Instead of recomputing the CP
decomposition of the updated data every time a new slice arrives, Nion and Sidiropoulos
[2009] propose a method that tracks the decomposition, updating the factors given the
new data and avoiding the overhead of rerunning the full-algorithm for every update.

3.2. Tucker Decomposition

3.2.1. Definition. Another extremely popular decomposition is the Tucker decomposi-
tion, originally proposed by Tucker [1966]. In fact, Tucker [1966] proposed three differ-
ent models, but we are going to focus on the third, also known as Tucker-3 (henceforth
referred to as Tucker). Kolda and Bader [2009] provide an excellent overview of Tucker-
1 and Tucker-2. The Tucker decomposition was further popularized by De Lathauwer
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Fig. 3. The Tucker decomposition.

Fig. 4. CP can be seen as restricted Tucker, when the core is super-diagonal.

et al. [2000], wherein they coin the phrase Higher-Order Singular Value Decomposition
(HOSVD) for a particular method for computing the Tucker decomposition.

In contrast to CP, Tucker decomposes a three-mode tensor X ∈ R
I×J×K into three

factor matrices U1 ∈ R
I×R1 , U2 ∈ R

J×R2 , U3 ∈ R
K×R3 , which are also multiplied by a

core tensor G:

X ≈ G ×1 U1 ×2 U3 ×3 U3 (4)

Alternatively, the decomposition can be written element-wise as

X(i, j, k) ≈
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

G(r1, r2, r3)U1(i, r2)U2( j, r2)U3(k, r3).

A pictorial example of Tucker is shown in Figure 3. The core tensor captures interac-
tions between the columns of Ui. Furthermore, we can assume that Ui are orthogonal
and matrices, and as stated in Acar et al. [2007], they reflect the main subspace varia-
tion in each mode assuming a multilinear structure.

Tucker is nonunique, in contrast to CP. As in the matrix factorization case, we can
rotate the factors without affecting the reconstruction error. However, Tucker yields
a good low-rank approximation of a tensor (much like the SVD for matrices), in the
squared error sense. This approximation can also be seen as compression, since the
core tensor G is the best compression of the original tensor with respect to squared
error, a property that we will revisit in Section 5.1 when discussing ways of speeding
up the CP decomposition.

An interesting observation is that CP can be written as a Tucker model where
R1 = R2 = R3 = R, the factor matrices are not orthogonal, and the core only has
entries along the superdiagonal. This is shown pictorially in Figure 4. This observation
is used in estimating the model order of CP, as we will see in Section 3.8.
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3.2.2. Algorithms. There exist two very popular algorithms for computing the Tucker
decomposition. The first one is due to Tucker [1966] and popularized under the name
Higher-Order Singular Value Decomposition [De Lathauwer et al. 2000], and the main
idea behind it is that for each Ui, it computes the Ri leading singular vectors of the
ith matricization of tensor X. Having computed all Ui this way, it then computes the
core tensor G conditioned on those matrices. In order to find the solution for G, we can
rewrite the Tucker model as

vec (X) ≈ (U3 ⊗ U2 ⊗ U1) vec (G).

The least squares solution for vec (G) is

vec (Ĝ) = (U3 ⊗ U2 ⊗ U1)† vec (X),

which due to a property of the Kronecker product becomes

vec (Ĝ) = (
U†

3 ⊗ U†
2 ⊗ U†

1

)
vec (X).

By orthogonality of the columns of Un, it holds that U†
n = UT

n , and therefore,

vec (Ĝ) = (
UT

3 ⊗ UT
2 ⊗ UT

1

)
vec (X),

and by folding back the vectorized tensor to its original form, we have

Ĝ = X ×3 UT
3 ×2 UT

2 ×1 UT
1 .

With the previous equation, we conclude the computation of Tucker using the HOSVD
algorithm. A listing of HOSVD is shown in Algorithm 2. Note that HOSVD is not com-
puting the optimal solution to the decomposition and does not compute joint subspaces
of the tensor. However, it has been widely used due to its simplicity.

ALGORITHM 2: Higher-Order Singular Value Decomposition (HOSVD)
Input: N−mode tensor X ∈ R

I1×···×IN and ranks R1, . . . , RN.
Output: Tucker factors U1 ∈ R

I1×R1 , · · · UN ∈ R
IN×RN and core tensor G ∈ R

R1×···×RN

1: for n = 1 · · · N do
2: [U, �, V] ← SVD(X(n))
3: Un ← U(:, 1 : Rn), i.e., set Un equal to the Rn left singular vectors of X(n)
4: end for
5: G ← X ×N UT

N ×N−1 UT
N−1 · · · ×1 UT

1

The solution of HOSVD can also be used as a starting input for the second algorithm
for Tucker, an ALS method called Higher-Order Orthogonal Iteration (HOOI). In order
to derive HOOI, we need to compute the conditional update of Ui given the rest of the
factor matrices. After manipulating the objective function (a detailed derivation can be
found in Kolda and Bader [2009]), it turns out that in order to solve for U1, we need to
maximize

max
U1

∥∥UT
1

(
X(1) (U3 ⊗ U2)

)︸ ︷︷ ︸
W

∥∥2
F .

The optimal solution to this maximization is the top R1 singular vectors of W =
X(1) (U3 ⊗ U2). By symmetry of the model, in order to solve for U2, we take the top
R2 singular vectors of X(2) (U3 ⊗ U1), and for U3, we take the top R3 singular vectors of
X(3) (U2 ⊗ U1). For the N-mode case, the solution for Un is by taking the top Rn singular
vectors of

X(n)
(
UN ⊗ · · · Un+1 ⊗ Un−1 ⊗ · · · ⊗ U1

)
.
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Combining these updates with the update for G that we showed earlier for HOSVD, we
have HOOI, outlined in Algorithm 3.

ALGORITHM 3: Higher-Order Orthogonal Iteration (HOOI) for Tucker
Input: N−mode tensor X ∈ R

I1×···×IN and ranks R1, . . . , RN.
Output: Tucker factors U1 ∈ R

I1×R1 , . . . UN ∈ R
IN×RN and core tensor G ∈ R

R1×···×RN

1: Initialize U1, . . . Un (e.g., at random or using Algorithm 2).
2: while convergence criterion is not met do
3: for n = 1 · · · N do
4: W ← X ×N UT

N · · · ×n+1 UT
n+1 ×n−1 UT

n+1 · · · ×1 UT
1

5: [U,�, V] ←SVD(W(n))
6: Un ← U(:, 1 : Rn)
7: end for
8: end while
9: G = X ×N UT

N ×N−1 UT
N−1 · · · ×1 UT

1

3.2.3. Handling Missing Values. Tucker can handle missing values the same way as
CP, by introducing the weight tensor W that masks the missing entries from the
optimization. In addition to handling missing values, Tucker has been shown to be
generally more effective at estimating missing values, compared to CP [Karatzoglou
et al. 2010]. The reason for this behavior is the fact that Tucker, by virtue of its core
that models interactions between components, can capture variation in the data that
is not strictly trilinear.

3.2.4. Extensions.

Boolean Tucker Decomposition. As we saw in CP, Miettinen [2011] introduces Boolean
tensor decomposition using the Tucker model as well.

Incremental Decomposition. In cases where the tensor is dynamically created or
viewed as a stream of incoming slices, Sun et al. [2006] introduce an algorithm that
can track the decomposition without recomputing it for every incoming slice.

Handling Time. Finally, the work of Sun et al. [2008] shows how to effectively handle
time as one of the modes of the tensor. Due to the fact that time is treated as any other
categorical attribute in a tensor (and the decompositions work as well if we permute
the time positions), oftentimes time has to be treated carefully, especially when such
permutation freedom violates the assumptions of the application. Sun et al. [2008]
show how to model time using a wavelet decomposition and incorporate that into a
Tucker decomposition.

3.3. DEDICOM and Related Models

3.3.1. Definition. In many real data applications, we have relations between entities
(such as people in a social network) that are inherently asymmetric. For instance,
when we are recording the number of emails that someone sent to a person, this
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Fig. 5. The three-mode DEDICOM decomposition.

Fig. 6. The RESCAL decomposition.

(sender, receiver) relation is asymmetric. In order to analyze such data, there exists a
tensor decomposition called DEDICOM that is able to capture such asymmetries. The
decomposition was first proposed in Harshman [1978] and was later on used in Bader
et al. [2007]. In DEDICOM, we write an I × I × K tensor (note that the first two modes
have the same size) as

X ≈ ADRDAT .

A is the loading or embedding matrix for the rows and columns of X, which correspond
to the same entities. The columns of A correspond to latent components, and as Bader
et al. [2007] state, they can be thought of as roles that an entity in the rows of X
participates in. Each slice of D is an I × I diagonal matrix, giving weights to the
columns of A, and R captures the asymmetric relations, and according to Bader et al.
[2007], it captures the aggregate trends over the third mode (which in that particular
paper is time but can be anything else). The model is shown pictorially in Figure 5.

A more recent variation of DEDICOM is called RESCAL and can be found in Nickel
et al. [2011]. RESCAL was especially proposed for modeling multirelational data. The
RESCAL decomposition is

X ≈ ARAT ,

and the resemblance to DEDICOM is apparent; however, R is not restricted to a
particular form and can capture more complex relations. An interesting observation
here is that RESCAL is a restricted and symmetric Tucker model, where W is the
identity matrix (leaving the corresponding mode uncompressed), and U = V = A;
Tucker models where one of the modes is uncompressed are also known as Tucker-2
[Tucker 1966; Kolda and Bader 2009]. The decomposition is also shown in Figure 6.

According to Nickel et al. [2012], its advantage over other tensor decompositions is
that it can exploit a collective learning effect when applied to relational data. Collective
learning refers to the automatic exploitation of attribute and relationship correlations
across multiple interconnections of entities and relations.
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ALGORITHM 4: ASALSAN Algorithm for DEDICOM
Input: Tensor X ∈ R

I×I×K and latent dimension R.
Output: DEDICOM model A, R, DI×I×K

1: Initialize A, R, D at random (or per Bader et al. [2007]).
2: while convergence criterion is not met do

3: A ←
(

K∑
k=1

(
X(:, :, k)AD(:, :, k)RT D(:, :, k) + X(:, : k)T AD(:, :, k)RD(:, :, k)

))
(

K∑
k=1

(
Bk + Ck

))−1

, where

Bk = D(:, :, k)RD(:, : k)
(
AT A

)
D(:, :, k)RT D(:, :, k)

Ck = D(:, :, k)RT D(:, :, k)
(
AT A

)
D(:, :, k)RD(:, :, k)

4: vec (R) ←
(

K∑
k=1

(D(:, :, k)AT AD(:, :, k)) ⊗ (D(:, :, k)AT AD(:, :, k))

)−1

K∑
k=1

vec
(
D(:, :, k)AT X(:, :, k)AD(:, :, k)

)
5: Solve for D using Newton’s method:

min
D(:,:,k)

‖X(:, :, k) − AD(:, :, k)RD(:, :, k)AT ‖2
F

6: end while

3.3.2. Algorithms. In this section, we will provide the latest ALS algorithm for DEDI-
COM, which is an improvement upon the original ALS algorithm introduced in Kiers
[1993]. Algorithm 4 is called ASALSAN and was proposed in Bader et al. [2007]. As
with all ALS algorithms, ASALSAN consists of conditional updates of A, R, and D,
until convergence. We omit the derivation of the update rules, which can be found in
Bader et al. [2007].

3.4. Hierarchical Tucker Decomposition (H-Tucker)

3.4.1. Definition. So far, we have mostly used three-mode tensors in our examples,
mostly for ease of exhibition. However, in many real-world scenarios (as we will also
see in Section 4), we have tensors of higher order. When the tensor order (i.e., the
number of modes) increases, supposing that we would like to compute a Tucker model,
the number of variables we need to estimate increases exponentially to the number of
modes. For example, assuming an I × I × I × I four-mode tensor, its (R, R, R, R) Tucker
decomposition requires the computation of R4 values for the core tensor G.

This curse of dimensionality, however, can be avoided in a number of ways. The first
way is the so-called Hierarchical Tucker Decomposition (H-Tucker) [Hackbusch and
Kühn 2009; Grasedyck 2010; Kressner and Tobler 2012; Ballani et al. 2013].

The basic idea behind H-Tucker is the following: Suppose we have a binary tree of
hierarchies of the modes of the tensor that can potentially be given to us by the appli-
cation (e.g., see overview of Perros et al. [2015] in Section 4.7). Given this binary tree
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Fig. 7. The H-Tucker decomposition.

hierarchy, H-Tucker creates a set of generalized matricizations of the tensor according
to each internal node of the tree. These matricizations are defined over a set of indices
indicated by the particular node of the tree: for instance, given an I × J × K × L tensor,
if node t splits the modes into two disjoint sets {I, J} and {K, L}, then the generalized
matricization X(t) will create an IJ × KL matrix where slices of the modes that are
compacted into a single mode are stacked in a systematic fashion. Details on how this
matricization is done can be found in Kressner and Tobler [2012].

For each internal node of the tree, it computes a “transfer” core tensor, which requires
the estimation of much fewer values than in the Tucker case. The core tensor Bt is
computed via

Ut = (
Utl ⊗ Utr

)
Bt,

where Bt is an rtlrtr × rt matrix and Ut contains the rt left singular vectors of the X(t)
matricization. Finally, the leaf nodes contain the factor matrices that are similar to the
ones that Tucker would give.

A pictorial example of a binary tree hierarchy and its corresponding H-Tucker de-
composition is shown in Figure 7.

3.4.2. Algorithms. The algorithm for computing H-Tucker is described in Kressner and
Tobler [2012], and here we provide an outline, in Algorithm 5.

3.5. Tensor-Train Decomposition (TT)

3.5.1. Definition. Along the same lines as H-Tucker, there is the Tensor-Train decom-
position proposed in Oseledets [2011], which tackles the curse of dimensionality in
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Fig. 8. Tensor-Train decomposition of a four-mode tensor. The circled variables indicate the reduced dimen-
sion that connects the core tensors.

ALGORITHM 5: H-Tucker Algorithm
Input: N − mode tensor X, ranks R1, . . . , RN, and a binary tree T of the matricizations of X.
Output: H-Tucker Decomposition U1, . . . UN, Bt, where t ∈ N (T ) (i.e., the nonleaf nodes of
binary tree T ).
1: for n = 1 · · · N do
2: [U,�, V] ← SVD(X(n))
3: Un ← U(:, 1 : Rn), i.e., set Un equal to the Rn left singular vectors of X(n)
4: end for
5: Starting from the root of tree T , select a node t.
6: tl is the left child, tr is the right child.
7: Bt ← (UT

tl ⊗ UT
tr )Ut

where Bt is an rtlrtr × rt matrix, and Ut contains the rt left singular vectors of the X(t)
matricization.

8: Reshape Bt into an rtl × rtr × rt tensor.
9: Recurse on tl and tr until tl and tr are singletons.

very high-order tensors by imposing a parsimonious model. In contrast to H-Tucker,
Tensor-Train does not require prior knowledge of a hierarchy of the modes. Tensor-
Train decomposes a given tensor into a matrix, followed by a series of three-mode
“transfer” core tensors (as in the case of the core tensors in H-Tucker), followed by a
matrix. Each one of the core tensors is “connected” with its neighboring core tensor
through a common reduced mode Ri. For a four-mode tensor, the Tensor-Train decom-
position can be written as

X(i, j, k, l) ≈
∑

r1,r2,r3

G1(i, r1)G2(r1, j, r2)G3(r2, k, r3)G4(r3, l).

A pictorial illustration of the four-mode Tensor-Train decomposition is shown in Fig-
ure 8. For the general d-mode case, we have

X(i1, . . . , id) ≈
∑

r1,r2···rd−1

G1(i, r1)G2(r1, j, r2) · · · Gd−1(rd−2, d − 1, rd−1)Gd(rd−1, d).

3.5.2. Algorithms. Algorithm 6 outlines the computation of the Tensor-Train decom-
position, as introduced in Oseledets [2011]. Notice that the user is not required to
explicitly define the reduced dimensions Ri; they are automatically calculated (line 7)
by keeping the singular vectors that respect the approximation tolerance ε defined by
the user. Of course, we can redefine the algorithm where instead of ε, the user explic-
itly provides the Ri dimensions if this is more appropriate for a given application. Also,
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ALGORITHM 6: Tensor-Train Decomposition
Input: N-mode tensor X and approximation tolerance ε.
Output: Tensor-Train decomposition G1,G2 · · · GN−1 · · · GN.
1: Compute δ = ε√

N−1
‖X‖F as the truncation parameter.

2: C ← X(1) (select an arbitrary matricization of X for initialization).
3: r0 = 1
4: for k = 1 · · · N do
5: C ← reshape(C, [rk−1 Ik,

numel(C)
rk−1 Ik

])
6: Compute a truncated SVD [U, �, V] of C such that the approximation error e ≤ δ.
7: rk ← rank of the SVD that achieves the above approximation.
8: Gk ←reshape(U, [rk−1, Ik, rk])
9: C ← �VT

10: end for
11: GN ← C

note that in Algorithm 6, for notational freedom, even if a tensor has one singleton
dimension, we denote it as a tensor.

3.6. Data Fusion and Coupled Matrix/Tensor Models

3.6.1. Definition. In a wide variety of applications, we have data that form a tensor
and have side information or metadata that may form matrices or other tensors. For
instance, suppose we have a (user, product, date) tensor that indicates which user
purchased which product and when. Usually, stores also have some metadata on the
user that can form a (user, features) matrix, as well as metadata on the products
that form a (product, features) matrix. In this case, the tensor and the two matrices
are coupled in the “user” and “product” mode, respectively, since there is a one-to-one
correspondence of users in the tensor and the matrix (and accordingly for the products).

In Chemometrics, this concept was first introduced by Smilde et al. [2000] and Baner-
jee et al. [2007] apply this concept to data mining. There has been significant develop-
ment of such a coupled model, either when matrices are coupled together [Singh and
Gordon 2008; Acar et al. 2012] or when matrices and tensors are coupled (a tensor can
be coupled with another matrix or even another tensor) [Lin et al. 2009; Zheng et al.
2010; Acar et al. 2011, 2012; Narita et al. 2012; Yokota et al. 2012; Wang et al. 2014;
Ermiş et al. 2015]

One of the most popular models is the so-called Coupled Matrix-Tensor Factorization
(CMTF) [Acar et al. 2011], where one or more matrices are coupled with a tensor. In
the case where we have one coupled matrix in the “rows” mode, and we impose a CP
model on the tensor, we have

min
ar ,br ,cr ,dr

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

+
∥∥∥∥∥Y −

R∑
r=1

ardT
r

∥∥∥∥∥
2

F

. (5)

The CMTF decomposition with CP on the tensor consists of matrices A, B, C, D. Notice
that the factor matrix A corresponding to the rows of X and Y is the same. This
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Fig. 9. Coupled Matrix-Tensor Factorization with a CP model on the tensor. Notice that the ar vectors are
the same between the tensor and the matrix factorization.

ensures that the two datasets are decomposed jointly and share the same latent space,
effectively fusing the two datasets.

Instead of a CP model, we can have CMTF that assumes a Tucker model [Ermiş et al.
2015]:

min
U1,U2,U3,G,D

‖X − G ×3 U3 ×2 U2 ×1 U1‖2
F + ‖Y − U1DT ‖2

F . (6)

An important issue when we have two or more heterogeneous pieces of data cou-
pled with each other is the one we informally call “drowning,” that is, when one of
the datasets is vastly denser or larger than the other(s) and thus dominates the ap-
proximation error. In order to alleviate such problems, we have to weigh the different
datasets accordingly [Wilderjans et al. 2009].

3.6.2. Algorithms. As in the case of CP, in CMTF we can also define an ALS algorithm,
where we fix all but one of the matrices we are seeking to estimate. If, say, we seek to
solve for A, it turns out that we need to concatenate the two pieces of data, whose rows
refer to matrix A, that is, the matricized tensor X(1) and matrix Y1, and we can then
solve for A as

A =
[

X(1)

Y1

]T
([

(B � C)
D

]†)T

.

Algorithm 7 shows the ALS algorithm for CMTF when a tensor X is coupled with
three matrices Y1, Y2, Y3. We refer the user to Acar et al. [2011] for a gradient-based
approach.

3.6.3. Shared and Individual Components in Coupled Decompositions. A fairly recent exten-
sion of the CMTF model has to do with shared and individual latent components
between the datasets that are being jointly analyzed. For instance, in the coupled
matrix-tensor case, we may assume that some of the latent components are exclusive
to the tensor, some are exclusive to the matrix, and some of them are shared; this
assumption gives relative freedom to the joint analysis to uncover a useful structure
that is jointly present in both datasets, without falsely imposing structure from one
dataset to the other that perhaps does not exist. Acar et al. [2013, 2014] introduce such
flexible coupled decompositions. In a nutshell, they introduce distinct scalar weights
on the components of the tensor and the matrix and they enforce a sparsity constraint
on those weights, driving some of them to zero. A zero weight for, say, a component of
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ALGORITHM 7: Alternating Least Squares (ALS) Algorithm for CMTF
Input: X of size I × J × K, matrices Yi, i = 1 · · · 3, of size I × I2, J × J2, and K × K2, respectively,
number of factors F.
Output: A of size I × F, B of size J × F, C of size K × F, D of size I2 × F, G of size J2 × F, E of
size K2 × F.
1: Initialize A, B, C using CP of X. Initialize D, G, E as per the model (e.g., D = Y1(A†)T ).
2: while convergence criterion is not met do

3: A =
[
X(1)
Y1

]T
([

(B � C)
D

]†
)T

4: B =
[
X(2)
Y2

]T
([

(C � A)
G

]†
)T

5: C =
[
X(3)
Y3

]T
([

(A � B)
E

]†
)T

6: D = Y1(A†)T , G = Y2(B†)T , E = Y3(C†)T

7: end while

the tensor indicates that this component is not present in the tensor and is individual
to the matrix.

3.7. PARAFAC2 and Decomposition of Multiset Data

3.7.1. Definition. Closely related to the coupled datasets that we talked about in the
previous section is the concept of “multiset” data, which, however, merits its own dis-
cussion because of its prevalence. A multiset dataset is a collection of matrices {Xk} for
k = 1 · · · K that have one mode in common. These matrices can be seen as nearly form-
ing a tensor; however, the nonshared mode has different dimensions, and thus it has to
be handled carefully. The PARAFAC2 decomposition, introduced in Harshman [1972],
is specifically designed for such cases. Given a multiset dataset {Xk}, where the ma-
trices share the columns but have different numbers of rows, PARAFAC2 decomposes
each matrix in the multiset as

Xk ≈ UkHSkVT .

PARAFAC2 acknowledges the differences in the rows, by introducing a set of Uk row
factor matrices, but imposes a joint latent structure on the columns and the third mode,
similar to CP. A pictorial representation of PARAFAC2 is shown in Figure 10.

3.7.2. Algorithms. As in many tensor decompositions, the most popular algorithm for
PARAFAC2 is based on ALS [Kiers 1993]. In Algorithm 8, we present an improvement
upon the algorithm of Kiers [1993], which is proposed by Chew et al. [2007]
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Fig. 10. The PARAFAC2 decomposition.

ALGORITHM 8: ALS Algorithm for PARAFAC2
Input: Multiset {Xk} for k = 1 : K and rank R.
Output: PARAFAC2 Decomposition of {Xk}: {Uk}, H,S, V.
1: Initialize:

V ← R principal eigenvectors of
K∑

k=1

XT
k Xk

H ← I
2: for k = 1 · · · K do
3: S(:, :, k) ← I, for k = 1 · · · K.
4: end for
5: while convergence criterion is not met do
6: for k = 1 · · · K do
7: [Pk, �k, Qk] ← truncated SVD of HSkVT XT

k at rank R
8: Uk ← QkPT

k
9: end for
10: for k = 1 · · · K do
11: Compute Y(:, :, k) = UT

k Xk
12: end for
13: Run a single iteration of CP ALS (Algorithm 1) on Y and compute factors H, V, Ŝ.
14: for k = 1 · · · K do
15: S(:, :, k) ← Diag(Ŝ(k, :))
16: end for
17: end while

3.8. Model Order Selection

An important issue in exploratory data mining using tensors is selecting the order
of the model, in other words the rank of the decomposition in models such as CP, or
the dimensions of the core tensor in Tucker-based models. This is generally a very
hard problem, especially in the presence of noisy data; however, there exist heuristic
methods that work well in practice.

3.8.1. CP. For the CP decomposition, considerations about the quality of the decompo-
sition date as early as 1984 where Harshman [1984] outlines strategies that can reveal
the quality of the decomposition. The most intuitive and popular heuristic for model
order selection is the so-called Core Consistency Diagnostic or CORCONDIA [Bro 1998;
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Bro and Kiers 2003]. CORCONDIA is based on the observation we highlighted in Sec-
tion 3.2 and Figure 4, observing that CP can be written as a restricted Tucker model
with a super-diagonal core. Based on that observation, CORCONDIA, given a tensor
X and its CP decomposition A, B, C, computes a Tucker model where A, B, C are the
factors (which are known) and G is the core tensor (which is unknown). The core tensor
G holds important information: if it is exactly or nearly super-diagonal, then A, B, C is
a “good” CP decomposition (hence the chosen model order is correct); otherwise, there
is some problem either with the chosen rank or with the data lacking a multilinear
structure. After computing G, the Core Consistency diagnostic can be computed as

c = 100

(
1 −

∑F
i=1

∑F
j=1

∑F
k=1(G(i, j, k) − I(i, j, k))2

F

)
,

where I is a super-diagonal tensor with ones on the (i, i, i) entries. For a perfectly super-
diagonal G (i.e., perfect modeling), c will be 100. For rank-one models, the metric will
always be 100, because the rank-one component can produce a single scalar, which is a
trivial super-diagonal core. Therefore, CORCONDIA can be used for ranks higher than
2. da Costa et al. [2008] extend the aforementioned idea, making it more robust in the
presence of noise. For big tensor data, naive computation of CORCONDIA cannot scale.
However, recently, Papalexakis and Faloutsos [2015] proposed a scalable algorithm for
computing the diagnostic, especially for big sparse tensors.

In addition to CORCONDIA, various other methods have been proposed, ranging
from Minimum Description Length (MDL) [Araujo et al. 2014; Metzler and Miettinen
2015] to Bayesian [Mørup and Hansen 2009; Zhao et al. 2015].

3.8.2. Tucker. For the Tucker decomposition, one of the first methods for determining
the model order (i.e., the size of the core tensor) is the so-called DIFFIT (DIFFerence
in FIT) method [Timmerman and Kiers 2000]. In a nutshell, DIFFIT tries different
combinations of the dimensions R1, R2, R3 of the core tensor, such that R1 + R2 +
R3 = s for various values of s ≥ 3. For each given s, DIFFIT finds the combination
of dimensions that gives the best-fit complexity (as measured by the number of fitted
parameters) tradeoff. Subsequently, DIFFIT compares different values of s, choosing
the one sc = R1 + R2 + R3 that yields the best fit. DIFFIT requires the computation
of multiple Tucker decompositions, a fact that may slow down the estimation of the
model order. Kiers and Kinderen [2003] propose a method that computes a single
Tucker decomposition and is shown to perform comparably to DIFFIT. Finally, as in
the CP case, Mørup and Hansen [2009] can also estimate the model order of Tucker
employing a Bayesian framework.

4. DATA MINING APPLICATIONS

Tensors are very powerful and versatile tools, as demonstrated by the long list of
their applications in data mining. In this section, we cover a wide spectrum of such
applications: social and collaboration network analysis, web mining and web search,
knowledge bases, information retrieval, topic modeling, brain data analysis, recom-
mendation systems, urban computing, healthcare and medical applications, computer
networks, speech and image processing, and computer vision. For each application,
we focus on what the problem formulation is, how a tensor is modeled, and which
decomposition is used, and discuss the results.

4.1. Social and Collaboration Network Analysis

Social and collaboration network analysis can benefit from modeling data as tensors
in various ways: when there exist multiple “views” of the network (e.g., who calls
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whom, who texts whom and so on), this can be expressed as a three-mode tensor
with each frontal slice being an adjacency matrix of the network for a particular view.
Furthermore, tensors have been used in modeling time-evolving networks, where each
frontal slice of the tensor is a snapshot of the network for a particular point in time.

Tensor applications in social networks date back to Acar et al. [2005], which is also
one of the earliest tensor applications in data mining. In this particular work, the
authors analyze IRC chat-room data and create a synthetic tensor data generator that
mimics the properties of real chat-room data. The tensors are of the form (user, keyword,
time), and for the purposes of demonstrating the utility of expressing the data as a
tensor, the authors also create (user, keyword) and (user, time) matrices. Subsequently,
they compare SVD (on the matrices), and Tucker and CP for noiseless and noisy data;
Tucker seems to outperform the rest of the tools for noisy data because of its flexibility
to have a different number of latent components per mode. The paper also touches upon
two very important issues: (1) temporal granularity of the data, indicating cases where
the analysis breaks down due to inappropriate resolution in the “time” mode, and (2)
model order selection, highlighting that using solely the approximation error as a guide
to select the number of components does not necessarily imply better interpretation of
the data.

Bader et al. [2007] analyze the Enron email exchange data, creating an (employee,
employee, month) tensor, recording the number of emails sent from one employee to
another. Given the asymmetry of the relation, the authors use DEDICOM to decompose
the tensor and identify latent roles for the employees (with the roles discovered being
labeled as “Executive,” “Government Affairs,” “Legal,” “Pipeline”), as well as the com-
munication pattern between roles. The strength of DEDICOM is its ability to discover
asymmetric communication patters (e.g., executives tend to receive more emails than
they send).

Kolda and Sun [2008] model the DBLP collaboration network as a tensor of (author,
keyword, conference) and use the Tucker decomposition to identify groups of authors
who publish on similar topics and on similar conferences.

In addition to the social interactions, Lin et al. [2009] demonstrate that using the
context behind those interactions can improve the accuracy in discovering communities.
In this work, the authors define a “Metagraph,” a graph that encodes the context
of social interactions, and subsequently propose a Metagraph Factorization, which
essentially boils down to a coupled tensor and matrix factorization, involving all the
various tensors and matrices that capture relations in the Metagraph. They apply
their algorithm to a dataset from Digg, where they record six relations in the data.
They demonstrate that their proposed technique outperforms simple approaches that
use the interaction frequency, as well as tensor methods that ignore the context of the
interaction.

Dunlavy et al. [2011] consider the problem of temporal link prediction, that is, predict-
ing future links based on past data. The problem is formulated as a CP decomposition
of graphs over time. The tensor-based techniques are especially effective in terms of
predicting periodic behaviors in the links. See also Acar et al. [2009].

Papalexakis et al. [2012, 2013] apply the CP decomposition to the Enron email
exchange data, again forming an (employee, employee, month) tensor. They identify
cliques of interaction, which concur with the roles identified by Bader et al. [2007].
Furthermore, Papalexakis et al. [2012] apply the CP decomposition to a Facebook
Wall posts database that forms a (wall owner, wall poster, day) tensor and identify
interesting patterns and their temporal evolution.

Anandkumar et al. [2014] show that orthogonal CP can be used to estimate latent
factor models such as Latent Dirichlet Allocation (LDA) and Mixed Membership Block
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Models (MMBMs) using the method of moments. Huang et al. [2013] use orthogonal CP
for recovering a Mixed Membership Block Model that detects overlapping communities
in social networks and apply it to a Facebook social network dataset (two-mode). This is
a very interesting alternative perspective because the authors use the tensor decompo-
sition to identify a model on a two-mode graph and do not use the tensor decomposition
on the graph itself.

Papalexakis et al. [2013] introduce a CP-based community detection algorithm in
multiview social networks. They analyze two different datasets: (1) “Reality Mining,” a
multiview social network with four views: phone call, text, Bluetooth (indicating prox-
imity), and physical friendship, and (2) a network of researchers in DBLP having three
views: coauthor, using same keywords in publications, and citation of each other’s work.
The algorithm is able to identify communities with better accuracy than approaches
that do not use all the views or do not exploit the higher-order structure of the data.

Araujo et al. [2014] use a CP-based decomposition to identify communities in time-
evolving graphs. They use Minimum Description Language (MDL) for identifying the
number of communities that can be extracted from the data. They apply the algorithm
to a dataset of phone calls over time for a very large city and identify various patterns
of communities. Among the most frequent patterns were (1) “Flickering Stars,” which
are star-like communication patterns that have a varying number of receivers over
time, and (2) “Temporal Bipartite Cores,” which are near-bipartite cores of people
communicating with each other over time.

Jiang et al. [2014] model user behavior over time and have two case studies: (1)
behavior of academic researchers and (2) behavior of “mentions” in tweets. In order to
identify user behavior over time, the authors model the problem as the decomposition
of a series of tensors, each one for a particular point in time. For instance, for the
tweets data, we have a tensor of (source user, target user, keyword), for each time
tick. The authors propose to decompose each one of those tensors using a Tucker-like
model and impose regularization to tackle sparsity. Furthermore, in order to reduce
the computational complexity, the authors propose an algorithm that carries out the
decomposition incrementally, using the model from the previous time point to estimate
the new one. They showcase their algorithm in datasets from Microsoft Academic
Search and Weibo, identifying interesting user behavior patterns over time.

Schein et al. [2015] use dyadic events between countries in order to discover multi-
lateral relations among them. In particular, they propose a Bayesian version of the CP
decomposition, postulating a Poisson distribution on the data, which has been shown
to be more effective when dealing with sparse, count data. They apply their proposed
decomposition to a four-mode tensor of (country A, country B, event type, timestamp)
and evaluate the effectiveness of their approach by identifying well-documented mul-
tilateral country relations in recent history.

4.2. Web Mining and Web Search

Kolda et al. [2005] extend Kleinberg’s HITS algorithm for authoritativeness and hub-
ness scores of webpages, including context information on the link. In particular, for
each link, they use the anchor text as the context. This creates a three-mode tensor
of (webpage, webpage, anchor text), and the CP decomposition gives the authoritative-
ness and hubness scores (A denotes the authorities and B the hubs, and C encodes the
topic of each set of hubs and authorities). This, in contrast to plain HITS (which can be
seen as an SVD of the hyperlink matrix), provides more intuitive interpretation. The
authors demonstrate the superiority of the approach in identifying topically coherent
groups of webpages by applying it to a custom crawl of the web, emulating what a
commercial search engine does.
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Sun et al. [2005] personalize web search by using historic click-through data of
users. They construct a (user, query, page) tensor that records the clicks of a user to
a particular result of a query, and they use HOSVD to take a low-rank factorization
of the click-through tensor. By reconstructing the tensor from its HOSVD, they fill in
missing values, which can then be used as personalized result recommendations for a
particular user.

Agrawal et al. [2015a] model the comparison between the results of different search
engines using tensors. For a set of queries, they create a (query, keyword, date, search
engine) tensor and use the CP decomposition to create latent representations of search
engines in the same space. They apply this tool to compare Google and Bing web
search and find that for popular queries, the two search engines have high overlap.
Subsequently, Agrawal et al. [2015b] apply the same methodology to compare Google
and Twitter-based search, finding that the overlap is lower, showing the potential for
social-media-based web search.

4.3. Knowledge Bases, Information Retrieval, and Topic Modeling

Chew et al. [2007] tackle the problem of Cross-language Information Retrieval, where
we have parallel documents in different languages and we need to identify latent
topics as in Latent Semantic Analysis (LSA) [Deerwester et al. 1990]; in a nutshell,
LSA refers to taking a low-rank Singular Value Decomposition of a (term, document)
matrix and exploiting the low-rank structure to identify synonyms. Doing simply LSA
on the concatenated set of terms for all languages and documents ignores the fact
that parallel documents have the same structure and ought to be clustered similarly
to latent topics. To that end, the authors use the PARAFAC2 decomposition, which is
applied to multiset data on a set of (term, document) matrices (terms can be different
from language to language; that’s why we don’t have a tensor). The authors demonstrate
the superiority of their approach by applying it on a set of translations of the Bible and
achieving better performance than traditional LSA.

Kang et al. [2012] and Papalexakis et al. [2012] apply the CP decomposition to data
coming from the Read the Web [RTW 2016] project. In particular, the data are in the
form (noun-phrase, noun-phrase, context-phrase). Using the CP decomposition, the
authors identify latent topics that are semantically and contextually coherent, coming
from each one of the rank-one components of the decomposition. Furthermore, the
factor matrices of the CP decomposition define latent embeddings of the noun-phrases
to a concept space; the authors find similar noun-phrases in that concept space, which
are essentially “contextual synonyms,” for example, noun-phrases that can be used in
the same semantics/context.

Jeon et al. [2015] apply the Tucker decomposition to a particular snapshot of the
Freebase knowledge base that contains entities and relations about music. The authors
use the factor matrices of Tucker as latent embeddings (as in the case of the CP factor
matrices) and identify semantically coherent latent concept entities and relations (e.g.,
“Classic Music” and “Pop/Rock Music”).

Nickel et al. [2012] model semantic data of type (entity1, entity2, relation) as a
three-mode tensor. They analyze it using the RESCAL model, whose advantage is that
it captures attribute and relationship correlations across multiple interconnections of
entities and relations. They apply it to the YAGO [Suchanek et al. 2007] Knowledge
Base and show better performance in (1) predicting unknown triples, (2) collective
learning (defined as “automatic exploitation of attribute and relationship correlations
across multiple interconnections of entities and relations”), and (3) learning taxonomies
on the knowledge base.

A higher-order extension of LSA can be found in Chang et al. [2013], where the au-
thors integrate multiple relations between words from different information sources.
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They essentially use a Tucker decomposition and they absorb the W factor matrix of
Figure 3 by multiplying it with the core tensor G, creating a different core tensor S,
showing the analogy of this Tucker representation and the SVD (where now they have
two factor matrices and one core tensor). The authors demonstrate the performance of
their proposed LSA extension by identifying antonyms and is-a relations more accu-
rately than the state of the art.

Following the examples of Nickel et al. [2012] and Chang et al. [2014] use a RESCAL-
inspired decomposition to model and analyze knowledge base data. The new additions
to the model are type constraints: each entity of a knowledge base has a known type
(e.g., “person”); therefore, these type constraints are explicitly included in the model by
excluding triples of entity-relation-entity with incompatible types from the optimiza-
tion. This both saves computation and produces a more accurate result.

Finally, in a similar spirit to Huang et al. [2013], Anandkumar et al. [2014], and
Huang et al. [2014] use the CP decomposition to compute the LDA [Blei et al. 2003]
via the method of moments. In addition to showing how LDA is computed using CP,
the authors provide a distributed algorithm on the distributed platform REEF.

4.4. Brain Data Analysis

Acar et al. [2007] analyze electroencephalogram (EEG) data from patients with epilepsy
in order to localize the origin of the seizure. To that end, they model the EEG data using
a three-mode (time samples, scales, electrodes) tensor (after preprocessing the EEG
measurements via a wavelet transformation). In order to analyze the EEG tensor,
they use the CP decomposition: when they identify a potential seizure (which has
signatures on the time and frequency domains), they use the factor vector of the third
mode (the “electrodes” mode) to localize that activity. In some cases, the data contain
artifacts that may shadow the seizures from the CP decomposition (such as activity
caused by the movement of the eyes) and therefore have to be removed. In order to
remove those artifacts, the authors use the Tucker3 decomposition, which can capture
the subspace variation for each mode better than CP (due to its increased degrees of
freedom, which in turn make it harder to interpret). They identify the artifacts in the
Tucker components and they use them to remove the artifacts from the data.

When dealing with brain measurements such as EEG or functional magnetic res-
onance imaging (fMRI), usually researchers average data from multiple trials; EEG
measures different electrodes on the brain and fMRI measures 3D pixels (or voxels in
the literature). If we have access to the measurement data from different trials over
time, instead of averaging, we can model the measurements as a three-mode tensor
(voxel, time, trial). In brain measurements, it is not unusual for time shifts to happen,
due to physical phenomena in the brain. If we analyze the tensor without accounting for
those shifts, the solution may be degenerate and therefore not very useful to interpret.
To solve that, Mørup et al. [2008], following up on Harshman et al. [2003], propose a
modification to the CP model, the shift invariant CP (Shift-CP), which takes the time
shift into account. The model is

X(i, j, k) =
R∑

r=1

A(i, r)B( j − τ (k), r)C(k, r),

where τ is a vector of time shifts that is also learned during the optimization. Mørup
et al. [2008] show that this can recover the latent components of fMRI and EEG data
more accurately, avoiding degenerate solutions.

A generalization of the aforementioned Shift-CP model is given in Mørup et al.
[2011], where the authors propose the Convolutional CP (Conv-CP) model. The idea
behind that model is that, unlike Shift-CP, which allows for a single time delay per
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trial, Conv-CP can accommodate an arbitrary number of such delays per trial, within
the length of the convolutive filter used (T ). The Conv-CP decomposition is

X(i, j, k) =
R∑

r=1

T∑
τ=1

A(i, r)B( j − τ, r)C(k, r, τ ).

In this case, C, which serves as the convolutive filter for each trial, is a tensor. The
authors show that for both simulated and real data, Conv-CP outperforms Shift-CP
since it is a more general and flexible model.

Davidson et al. [2013] have fMRI measurements over time and wish to estimate
regions of the brain and the connections between them. They model the data as a
tensor (x-coordinates, y-coordinates, time) and assume that using a CP decomposition,
each rank-one tensor gives a particular region of the brain (the first two modes in space
and the third in time). In order to guide the decomposition to find the right structure
in the brain, they use linear constraints for the spatial factors of the decomposition
according to groups of voxels in the brain that are known to behave in a coherent
manner. Applying those constraints, the authors are able to detect nodes and the
network between those nodes with higher accuracy.

He et al. [2014] extend supervised learning models such as Support Vector Machines
to operate on tensors as opposed to vectors or points. They leverage the fact that data
such as fMRI brain scans have an inherent tensor structure that should be exploited
and propose a Kernel SVM that uses the CP decomposition of the data points as a
compact representation that preserves the structure. They apply their approach in
classifying fMRI brain scans from patients with Alzheimer’s disease, ADHD, and brain
damage due to HIV, and demonstrate the effectiveness of exploiting the higher-order
structure of the data rather than ignoring it.

Finally, Papalexakis et al. [2014] seek to identify coherent regions of the brain, among
different individuals, that exhibit activity for groups of semantically similar stimuli.
They use fMRI data from nine different people when shown 60 different simple English
nouns (e.g., “dog,” “airplane,” “hammer”) forming a (noun, voxel, person) tensor. They
also use semantic features for those same nouns, represented by a (noun, feature)
matrix, and they use Coupled Matrix-Tensor Factorization to identify latent clusters
of nouns, voxels, people, and noun features. In an unsupervised way, they identify sets
of semantically similar nouns that activate coherent regions of the brain such as the
premotor cortex, which is activated when holding small things or picking things up.

4.5. Recommendation Systems

One of the first attempts to apply tensors to collaborative filtering and recommendation
systems is Xiong et al. [2010]. The authors propose to extend Bayesian Probabilistic
Matrix Factorization (BPMF) [Salakhutdinov and Mnih 2008], which is widely used
in Recommendation Systems in the case where we have temporal information. They
propose a Bayesian Probabilistic Tensor Factorization (BPTF) that is based on the CP
model. In experimental evaluation, they show that BPTF outperforms BPMF, demon-
strating that using temporal information and exploiting the higher-order structure it
induces on the data prove beneficial for recommendation.

In a similar spirit as earlier and around the same time, Karatzoglou et al. [2010]
propose to use context (such as time) in traditional user-item recommendation scenarios
by modeling the data as a tensor. The difference is that they use HOSVD to take a low-
rank decomposition of the data (only on the observed values) and use the reconstructed
values for the missing values. The method beats Matrix Factorization techniques as
well as other Context-Aware Techniques that may (partially) ignore the higher-order
structure of the data that the tensor decomposition exploits.
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Rendle and Schmidt-Thieme [2010] propose the Pairwise Interaction Tensor Factor-
ization (PITF) model as a method for tag recommendation on the web. The scenario
is as follows: users tag items (webpages, pictures, products, etc.) over time, and we
would like to recommend new items they would like to tag. The proposed PITF model
is a special case of both Tucker and CP. It explicitly models the pairwise interactions
between users, tags, and items. In order to follow the original paper’s notation, we
rename the A, B, C CP factor matrices to U, I, T, corresponding to the users, items,
and tags, respectively. To model the pairwise interactions, we divide those factor vec-
tors as U = [U(I) U(T )], where each one of the column blocks of U interacts with the
corresponding columns of I and T. Then, the PITF model is defined as

X(u, i, t) =
R∑

r=1

U(T )(u, r)T(U )(t, r) +
R∑

r=1

I(T )(i, r)T(I)(t, r) +
R∑

r=1

U(I)(u, r)I(U )(i, r).

The authors evaluate the proposed model in comparison to CP and Tucker, where it
obtains higher prediction accuracy faster. Furthermore, PITF won the ECML/PKDD
Discovery Challenge 2009.

Rendle [2010] introduces Factorization Machines, a generalization of Support Vector
Machines that parameterizes the data internally using a factorization model instead
of using the raw data. The Factorization Machine can have degree 2 or higher. In the
case of degree 2, the internal factorization is a bilinear matrix factorization, whereas
for higher degrees, it uses a CP model. Factorization Machines combine the benefits of
SVMs and Factorization Models, especially in scenarios of highly sparse data (such as
in Collaborative Filtering) where simple SVM fails. In experiments, the author shows
that Factorization Machines achieve the same recommendation quality as the PITF
method described earlier.

Peng et al. [2010] work on a similar social tagging scenario to Rendle and Schmidt-
Thieme [2010] where they design a tag recommendation system on a (user, item, tag)
tensor. In this paper, the authors propose an HOSVD-based dimensionality reduction.
They compare their proposed recommendation scheme against methods that do not
fully exploit the inherent higher-order structure and demonstrate better performance.

Zheng et al. [2010, 2012] attack the problem of location-based activity recommenda-
tion to users, using side information for users, activities, and locations. In particular,
the data in the problem include a tensor (user, location, activity), a (user, user) matrix
of user similarities in a social network, a (location, feature), a (user, location) matrix
that encodes information of a user being present at a location without a specified activ-
ity, and an (activity, activity) matrix containing the activities’ similarities. The authors
propose to jointly decompose these datasets using a flavor of Coupled Matrix-Tensor
Factorization, imposing additional proximity constraints of the involved entities in
the latent space. They show that by integrating all these pieces of auxiliary informa-
tion, they outperform recommendation systems that include a part of these additional
sources or none of them.

Finally, Pantraki and Kotropoulos [2015] work on image and tag recommendation
on Flickr. They model the data as a multiset where we have three matrices: (image,
feature), (image, tag keyword), and (image, user). Since the data do not strictly form
a tensor, the authors apply PARAFAC2 to this dataset and demonstrate its ability to
obtain a joint low-rank representation of this dataset, which can provide high-quality
image and tag recommendations.

4.6. Urban Computing

Urban Computing refers to a class of applications that study human activity and
mobility within a city, with the ultimate goal to improve the livability of an urban
environment.
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Mu et al. [2011] use historical data from a metropolitan area in order to forecast
areas with potential future crime activity. They model the data as a four-mode tensor,
where the first three modes are (longitude, latitude, time) and the fourth mode consists
of features such as residential burglary information, social events, and offender data.
They use a form of Tucker decomposition to obtain a low-rank representation of that
tensor, and they use that representation for linear discriminant analysis to predict
future crime activity.

In Wang et al. [2014], the problem the authors solve is the one of estimating the travel
time of a particular trajectory in a city road network. In order to do so, they use real GPS
data of travel times by a set of drivers. The issue that arises with these types of data is
the high degree of sparsity, since many road segments may have not been traversed at
all (or sometimes ever); thus, trying to estimate travel times for all road segments this
way may result in inaccurate measurements. To alleviate this data sparsity, the authors
propose to use historical data for those GPS trajectories, as well as side information
about time slots and road segments, to fill in missing travel time values. In the heart
of their proposed method lies a Coupled Matrix Tensor Factorization: they form a (road
segment, driver, time slot) tensor, with each entry containing the travel time that a
driver did on a particular road segment during a particular time slot; a (time slot,
time slot) matrix capturing the similarities between time slots; and a (road segment,
geographical features) matrix, providing additional information for the road segments.
Interestingly, the proposed Coupled Matrix Tensor Factorization here imposes a Tucker
model on the tensor part (as opposed to the CP model shown in Figure 9), and this is
because the primary purpose of this low-rank decomposition is to complete missing
values, where Tucker can capture more nontrilinear variation in the data. Using this
tensor decomposition scheme to enrich the data, the authors show that their method
outperforms state-of-the-art baselines.

Zheng et al. [2014] analyze noise complaint data from New York City in order to
identify the major sources of noise pollution in the city for different times of the day and
the week. The issue with the human-generated complaints is that they result in very
sparse data where some regions are overrepresented and some are underrepresented
or not present at all. In a similar spirit as Wang et al. [2014], in order to overcome the
data sparsity problem, the authors form a tensor out of the noise complaint data with
modes (region, noise category, time slot) and couple it with matrices with additional
information for regions, noise categories, and time slots. Subsequently, they decompose
it using a Coupled Matrix Tensor Factorization with a Tucker model on the tensor
and complete missing values of noise information in areas and time slots with few or
no complaints at all. The resulting dataset is an accurate representation of New York
City’s noise signature.

Finally, the work of Zhang et al. [2015] addresses the problem of exploring, analyzing,
and estimating drivers’ refueling behavior in an urban setting for better planning (e.g.,
placement of gas stations) and recommendation of nearby gas stations with minimal
wait time. As before, the problem with the existing data created by volunteer drivers is
sparsity, and the authors tackle it through low-rank factorization and reconstruction
of a (gas station, hour, day) tensor. In particular, they propose a flavor of HOSVD
decomposition, which also incorporates context features including features of the gas
station and the weather. The proposed HOSVD extension is

X(i, j, k) =
∑

r1,r2,r3

G(i, r1)H( j, r2)D(k, r3)S(r1, r2, r3) +
L∑

l=1

B(l, cl),

where B(l, cl) captures the effect of feature l under condition cl in the reconstructed
tensor.
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4.7. Healthcare and Medical Applications

Ho et al. [2014] use a tensor-based technique to automatically derive phenotype can-
didates from electronic health records. Intuitively, the problem is to automatically
identify groups of patients who have similar diagnoses and have undergone similar
procedures. In order to do that, they propose a tensor decomposition based on the CP
model, where each phenotype candidate is a rank-one component of the CP decompo-
sition of a (patient, diagnosis, procedure) tensor. Interestingly, the proposed decompo-
sition, MARBLE, has a twist from the traditional CP model. In addition to the sum of
rank-one tensors, the proposed model also contains a rank-one “bias” tensor, as shown
in the following equation:

X =
(

R∑
r=1

λrar ◦ br ◦ cr

)
+ (

u(1) ◦ u(2) ◦ u(3)).
In this model, the ar, br, cr factors are constrained to be sparse, and the bias factor
vectors are normally dense. In that sense, this model can be seen as an (R + 1) rank
CP model, where some of the columns of the factor matrices are constrained. The role
of the rank-one bias tensor is to capture global and constant variation in the data
that is not specific to a particular phenotype. Having this rank-one bias tensor proves
instrumental in identifying good local structure in the data. In addition to the proposed
model, Ho et al. [2014] also propose to fit this model under a KL-divergence loss and
impose nonnegativity constraints, resulting in sparse and nonnegative factors that are
easier to interpret.

The work of Perros et al. [2015] is the first data mining application of the Hierarchical
Tucker (H-Tucker) model of 3.4. In particular, the authors propose a sparse version of
H-Tucker (which is presented in more detail in Section 5.3) and apply it to a disease
phenotyping problem, much like the one addressed by Ho et al. [2014]. The difference
is that here, the authors use co-occurrence data of patients exhibiting the same disease
within a large database of medical records. The need for using H-Tucker, which handles
tensors of very high order more gently than Tucker or CP, is because the number of
disease types for which the authors compute co-occurrences is as high as 18 (which
is the top-level number of disease types as defined by the International Classification
of Diseases hierarchy). Thus, the tensor they operate on is as high order as 18-mode.
Using H-Tucker and interpreting the factor matrices on the leaves, the authors are
able to identify meaningful phenotypes for diseases, concurring with medical experts.

Mohammadi et al. [2016] consider the problem of network alignment with a goal
of preserving triangles across the aligned graphs. This can be expressed as a tensor
eigenvalue problem, and the method of Kolda and Mayo [2011] can be used to solve
it. This has applications in comparative interactomics in biology. For instance, the
problem of aligning the human and yeast interactomes is considered, and the tensor-
based method outperforms competitors in terms of quality. Although this is considered
in the context of biological network alignment, it is a general-purpose method that can
be used in other contexts.

4.8. Computer Networks

Maruhashi et al. [2011] use the CP decomposition to analyze network traffic data from
Lawrence Berkeley National Labs (LBNL) forming a tensor of (source IP, destination
IP, port #, timestamp) where each entry indicates a connection between the two IP
addresses on a given port for a given time tick. Using the factor matrix corresponding
to the “timestamp” mode, the authors propose a spike detection algorithm on the
temporal profile of the latent components of the decomposition, identifying anomalous
connections in the data.
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Subsequently, Papalexakis et al. [2012] analyze the same LBNL dataset as in
Maruhashi et al. [2011], identifying components of normal activity, as well as anoma-
lous components, such as one that indicates a port scanning network attack (where the
attacker serially probes a wide range of ports in a machine, aiming to discover potential
security holes).

Finally, Mao et al. [2014] analyze two types of network data: (1) Honeynet Data of
(source IP, destination IP, timestamp) and (2) Intrusion Detection System (IDS) logs
of (event type, timestamp, target IP). They apply the CP decomposition, and using
clustering methods on the factor matrices, for different temporal resolutions, they are
able to identify anomalous events, outperforming state-of-the-art IDS systems.

4.9. Speech and Image Processing and Computer Vision

Nion et al. [2010] use the CP decomposition to conduct Blind Source Separation (BSS).
BSS is the problem of estimating a set of signals that are mixed by an unknown channel
(hence “blind”), using solely the information on the receiver’s end as measured by a
set of sensors. This problem arises in scenarios such as speech separation, where each
signal refers to an individual’s speech, and sensors refer to microphones. The authors
show that using CP can outperform other baselines, and furthermore, CP’s uniqueness
properties can give guarantees for the harder, underdetermined version of the problem
where we have more speakers (signals) than microphones (sensors).

Liu et al. [2013] propose a tensor-based method for completing missing values in
series of images. In order to do so, they define the trace norm for the tensor case and
extend matrix completion algorithms that use the matrix trace norm. The authors
compare their proposed method against Tucker, CP, and doing SVD on each tensor
slice separately, and they demonstrate that their proposed method achieves superior
performance.

Pioneering the use of tensors in computer vision, Vasilescu and Terzopoulos [2002]
introduce TensorFaces, a methodology that uses tensors to analyze collections of face
images into principal components across many different modes of a picture (e.g., dif-
ferent pose, different illumination, or different facial expression). Twenty-eight male
subjects were photographed in five poses of three illuminations and three expressions,
with 7,943 pixels per image. They apply HOSVD to this ensemble of images and identify
the principal variation of every picture with respect to all the modes of the data.

Finally, Tao et al. [2008] propose a Bayesian version of HOSVD and use it in order
to tackle model 3D face data. In particular, using their proposed decomposition in
ensembles of 3D face images, they compute a parsimonious representation of the 3F
faces in the form of core tensor, which captures the latent characteristics of the 3D faces,
which is sufficient to later reconstruct any particular face with a given expression.

5. SCALING UP TENSOR DECOMPOSITIONS

With the advent of big data, tensor decompositions have faced a set of challenges that
needed to be addressed before tensors could be used for truly big data applications.
In recent years, this particular subfield of designing scalable tensor decompositions
has witnessed remarkable growth and is currently at a sufficiently mature stage,
where tensor decompositions can be deployed in the big data scale. In this section, we
present such advances, mostly in chronological order, and draw high-level abstractions,
summarizing the key ideas and insights behind each method.

At a high level, the algorithms that we survey here can be categorized as using one
or more of the following strategies in order to achieve scalability and speed:

—Compression: Coming up with a compressed version of the tensor and decomposing
it instead of the full data is one of the earliest approaches, which has also been a
recurring theme in recent works.
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—Exploiting Sparsity: In many applications, the tensor is highly sparse (i.e., many
of the values are 0) because of the very nature of the application (e.g., in Facebook,
people are usually friends with a few hundred people, out of the 2 billion people who
use Facebook; therefore, such a graph would have very few connections). Exploiting
this sparsity in various ways, either by redesigning the algorithm so that it carries
out sparse matrix multiplications or using it in conjunction with sampling (which is
the next major category), has been a very popular way of achieving scalability and
efficiency.

—Sampling: Either via drawing a sample of a few entries of the tensor or through
extracting sampled subtensors from the data, sampling has been instrumental in
creating approximate algorithms that achieve good accuracy (often comparable to
exact algorithms) while being much more lightweight in terms of computation.

—Parallel/Distributed Computation: In conjunction with the rest of the tech-
niques, many recent works have taken advantage of parallelization of the algo-
rithms, or the use of existing high-end distributed computation environments (e.g.,
Hadoop/MapReduce), and thus achieve scalability.

In the next few lines, we will summarize the advances for the CP, Tucker, and
H-Tucker decompositions, for which there exist scalable algorithms. Furthermore, Ta-
bles II and III classify the algorithms we summarize with respect to the aforementioned
strategies.

5.1. CP

Perhaps the earliest method that, by using compression, speeds up the CP decomposi-
tion is the one proposed in Bro and Andersson [1998]. The authors use the observation
that for a given CP model of a three-mode tensor, [A, B, C], the factor matrices span the
subspaces of that tensor; if we call [U1, U2, U3] the bases for those subspaces, we can
then write A = U1Ã, B = U2B̃, and C = U2C̃, where Ã, B̃, C̃ are much smaller factor
matrices. This gives rise to the algorithm that first computes a Tucker decomposition
on the original tensor X, obtaining core G and subspace basis matrices [U1, U2, U3]. The
core is a compressed version of X. The algorithm then computes a CP decomposition
on G, obtaining the compressed factors Ã, B̃, C̃, and then using the Tucker matrices, it
projects those factors back to the original subspace of the tensor. This works because
it can be shown that this is a CANDELINC [Carroll et al. 1980] model, essentially
a CP model with linear constraints on the factors, and it can proved that matrices
Ã, B̃, C̃ preserve the variation of the data. Subsequently, Cohen et al. [2015], based on
the same principle, derive a Tucker-compression-based algorithm to speed up CP with
nonnegativity constraints.

Subsequently, Kolda et al. [2005] define a greedy algorithm for CP that is based on
the computation of multiple rank-one components. In order to do so, they define the
following recursive equations:

x(t+1) = X ×2 y(t) ×3 z(t)

y(t+1) = X ×1 x(t+1) ×3 z(t)

z(t+1) = X ×1 x(t+1) ×2 y(t).

The previous recursion is called a higher-order power method and converges to vectors
x∗, y∗, z∗, which can be shown to be equal to the rank-one CP decomposition of X,
assuming that X is rank-one and noise-free. The power method for tensors dates back to
Kofidis and Regalia [2002], wherein the authors propose that method for the symmetric
case of x = y = z. The power method is very advantageous for sparse tensors, since its
complexity is in the order of number of nonzero entries in X.
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This gives us a way of computing a single rank-one component; therefore, Kolda et al.
[2005] adopt a “deflation” technique where they compute a rank-one component at every
iteration, remove it from the data, and continue iterating until all R components are
extracted. This approach is not optimal, since CP factors are not orthogonal; however,
it has been shown that for sparse factors, deflation numerically converges to the same
factors as if they were calculated all at the same time [Papalexakis et al. 2013].

Later, Araujo et al. [2014] used the same principle of rank-one component calculation
via the higher-order power method and deflation, with the addition of a Minimum
Description Length (MDL) cost function, which dictates the termination of the deflation
(and chooses the number of components) automatically.

A significant portion of the literature is devoted to scaling up the ALS algorithm for
CP. In Section 3.1.2 and Equation (3), we define the operation MTTKRP as

Y = X(1)(C � B).

When the dimensions I × J × K of X are big, materializing the Khatri-Rao product
(C � B) and carrying out MTTKRP can be prohibitive. This turns out to be a scalability
problem of the Alternating Least Squares algorithm, which we will henceforth refer to
as “Intermediate Data Blowup” or “Intermediate Data Explosion” (a term first coined
by Kolda and Sun [2008] and later by Kang et al. [2012]), since (C � B) is an interim
piece of data which is a by-product of the algorithm and not the output, which, however,
requires immense storage and computational resources.

The “Intermediate Data Explosion” issue was first identified and addressed by Bader
and Kolda [2007], wherein the authors define a suite of operations for sparse tensors
with a specific focus in Matlab. This later became the widely used Tensor Toolbox for
Matlab [Bader and Kolda 2015], which specializes in the manipulation of sparse ten-
sors. Sparsity is key in order to achieve scalability, since it allows for the manipulation
of the nonzero values of X in operations such as MTTKRP, which leads to far more effi-
cient algorithms. In particular, Bader and Kolda [2007] show how instead of computing
the Khatri-Rao product, this expensive operation can be carried out for every column
of C and B independently. In this column-wise view of the operation, the computation
simply reduces to n-mode products of X and the columns of C and B:

Y(:, r) = X ×3 C(:, r) ×2 B(:, r)

for r = 1 · · · R. The n-mode products of a sparse tensor X with the columns of C and
B can be carried out efficiently, without ever computing (C � B), which makes the
proposed algorithm in Bader and Kolda [2007] very efficient for sparse tensors.

Subsequently, Kang et al. [2012] propose a mathematically equivalent way of avoid-
ing the Intermediate Data Explosion that is more appropriate for distributed compu-
tation, proposing the first CP ALS algorithm for the Map/Reduce framework. Instead
of using n-mode products, the authors decouple the Khatri-Rao product between C and
B, separately compute products of each column C(:, r) and B(:, r) with X(1), and then
combine the results using Hadamard (element-wise) products. The reason Kang et al.
[2012] follows this way is because it is more amenable to the Map/Reduce program-
ming model, which they use in order to distribute the computation of the ALS algorithm
among a cluster of machines. In addition to implementing an efficient MTTKRP oper-
ation, Kang et al. [2012] also introduce Map/Reduce optimizations that further enable
scalability for tensors that do not fit in memory. Recently, they follow up with Jeon et al.
[2015], which is more efficient than Kang et al. [2012] in the Map/Reduce framework.

More recently, Choi and Vishwanathan [2014] provide another efficient algorithm
for computing the MTTKRP operation for sparse tensors. In particular, the authors
show that the MTTKRP of Equation 3 can be equivalently computed in a column-wise
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manner as follows:

M = XT
(2)B(:, r)

Y(:, r) = MC(:, r).

All of the aforementioned operations are very efficient assuming that X is sparse.
Furthermore, the authors implement the ALS algorithm using this version of MTTKRP
in a shared-memory parallel architecture, efficiently scaling up the decomposition.

Ravindran et al. [2014] provide a memory-efficient algorithm for MTTKRP that
exploits sparsity and has memory requirements in the order of the nonzero entries of
the tensor.

The latest work that is improving upon the MTTKRP operation is Smith et al.
[2015], wherein the authors, instead of computing the result of MTTKRP in a column-
wise fashion, as the rest of the existing methods do, compute each row Y(i, :) at a time,
which has the advantage that it requires a single traversal of the elements of the sparse
tensor X, and indeed results in more efficient computation compared to the previous
solutions to MTTKRP.

In a different spirit, Phan and Cichocki [2009] propose a block CP decomposition,
where they partition the original tensor into smaller subtensors, distribute the
computation of the subtensors potentially into different machines in a shared-memory
architecture, and finally merge the factor matrices resulting from each individual
subtensor by introducing multiplicative updates. The idea behind Phan and Cichocki
[2009] tackles the Intermediate Data Explosion by reducing the dimensions of the
tensor in a way that the intermediate data created by the ALS algorithm are no longer
an issue for scalability. A potential issue, however, with Phan and Cichocki [2009] is,
especially in the case of very sparse tensors, that it is very likely that many subtensors
will be almost entirely zero or rank deficient, which may result in degenerate solutions.

A few years later, Papalexakis et al. [2012] introduced a parallel CP decomposition
that uses biased sampling to extract subtensors from the data. Suppose that we have
a sample of rows that is a set of indices I and, accordingly, J and K for the columns
and third-mode fibers. Then, each subtensor Xp is defined as

Xp = X(I,J ,K).

The algorithm extracts many different subtensors Xp, which are in turn decomposed
in parallel. In the end, Papalexakis et al. [2012] merge the individual partial results
from the subtensors by filling in the values in the indices of the factors that have
been sampled in the first step. This has the fortuitous by-product that the resulting
factors will be sparse by construction, which is very desirable both for storage and for
interpretability. Furthermore, Papalexakis et al. [2012] provably guarantee that the
different samples will be merged to the correct corresponding components. The funda-
mental difference from Phan and Cichocki [2009] is that sampling selects subtensors
that are more likely to lead to high-quality solutions. Furthermore, Papalexakis et al.
[2012] process fewer subtensors than Phan and Cichocki [2009], especially when the
tensor is sparse. The idea of Papalexakis et al. [2012] is later on extended in the case of
Coupled Matrix-Tensor Factorization in Papalexakis et al. [2014], showing significant
speedups.

In the realm of Boolean tensor decompositions, Erdos and Miettinen [2013] pro-
pose an algorithm that bears a few similarities with Papalexakis et al. [2012] in the
sense that it uses randomization to select dense blocks within a tensor and decomposes
those blocks. In contrast to Papalexakis et al. [2012] and Erdos and Miettinen [2013]
use random walks to identify dense blocks in a binary tensor. The authors define a graph
where the nodes are the nonzero elements of the tensor, and the edges connect elements
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that share at least two indices (in a three-mode tensor). The blocks that the random
walk finds correspond to rank-one components of a Boolean CP decomposition; thus, the
method returns the Boolean decomposition of the most important blocks in the data.

As we saw, Papalexakis et al. [2012] use sampling to reduce the dimensionality of the
data and parallelize the decomposition. In a follow-up work, Sidiropoulos et al. [2014]
propose an alternative scheme, where instead of sampling, they use random projection
matrices U1, U2, U3 (not to be confused with the Tucker matrices of Bro and Andersson
[1998]) and compress the original tensor X into a smaller tensor Xp as

Xp = X ×1 U1 ×2 U2 ×3 U3.

As in Papalexakis et al. [2012], they create multiple compressed tensors Xp, which are
decomposed in parallel, and at the end, solving a least squares problem, they are able,
under mild conditions, to identify the true factors of X up to column permutations and
scaling, which is a very important theoretical guarantee of correctness. Sidiropoulos
et al. [2014] build upon the result of Sidiropoulos and Kyrillidis [2012], where the
authors show that one can reconstruct the original A, B, C from a single compressed
replica, provided that the latent factors are sparse (requirement that is not posed by
Sidiropoulos et al. [2014]). Subsequent work by Ravindran et al. [2014] shows how the
compression of X into Xp can be done in a memory-efficient fashion.

In De Almeida and Kibangou [2014], we find a parallel approach that builds upon the
idea of breaking down the tensor into a grid, such as in Phan and Cichocki [2009], and
parallelizing the computation. The novelty in De Almeida and Kibangou [2014] is the
fact that the communication between different machines that are working on separate
tensor blocks is very important, especially so that machines that work on blocks that
correspond to the same part of the latent factors can collaborate. Choosing the connec-
tivity correctly, by using multilayer graphs to define connectivity between machines,
can speed up the ALS algorithm and end up in solutions that under assumptions are
identifiable.

Most of the aforementioned methods, with the exception of Papalexakis et al. [2012]
and Cohen et al. [2015], are focused on the “vanilla” CP decomposition, without im-
posing any type of constraints. Liavas and Sidiropoulos [2015] authors propose a par-
allelizable algorithm for CP based on the Alternating Direction of Multipliers Method
(ADMM) [Boyd et al. 2011], which can accommodate a wide variety of constraints
and is particularly well suited for distributing parts of the optimization variables over
different machines.

So far, all the scalable algorithms that we have seen, either explicitly or implicitly, use
the ALS algorithm. The work of Beutel et al. [2014], however, introduces a Map/Reduce
algorithm based on Distributed Stochastic Gradient Descent. The algorithm first splits
the tensor into disjoint blocks, or “strata,” which correspond to disjoint parameters in
the factor matrices. Each stratum is distributed to a different computer, and for each
stratum, the algorithm uses Stochastic Gradient Descent (SGD) updates to estimate
the parameters of the factors corresponding to that stratum. In order to correctly cover
all the data, the algorithm creates different sets of disjoint blocks and iterates over
those block configurations. SGD is a very efficient, stochastic algorithm that uses a
randomly selected data point at every different update instead of using the entire data,
as other gradient based approaches do. As a framework , SGD, and as a result that of
Beutel et al. [2014], is very flexible and can accommodate different objective functions
(e.g., KL-Divergence instead of Frobenius norm) or regularizations such as �1 norm
penalties. One subtle issue to note here is that SGD is sampling from the “observed”
values at random, and there is an inherent assumption that 0 values in the data are
considered “unobserved” or “missing,” a fact that we also touch upon in Section 3.1.3.
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Table II. Classification of Scalable Algorithms for CP with Respect to the Strategies They Employ

Algorithm Compression Exploits Sparsity Sampling Dist. / Parallel
Bro and Andersson [1998] �

Kolda et al. [2005] �
Bader and Kolda [2007] �

Phan and Cichocki [2009] �
Kim and Candan [2012] �

Kang et al. [2012] � �
Papalexakis et al. [2012] � � �

Erdos and Miettinen [2013] � � �
De Almeida and Kibangou [2014] �
Choi and Vishwanathan [2014] � �

Araujo et al. [2014] �
Beutel et al. [2014] � � �

Sidiropoulos et al. [2014] � �
Liavas and Sidiropoulos [2015] �

Shin and Kang [2014] � �
Ravindran et al. [2014] �

Smith et al. [2015] � �
[Cohen et al. 2015] �
Jeon et al. [2015] � �

Subsequently, Shin and Kang [2014] propose two distributed methods for
Map/Reduce, one based on ALS and one based on Coordinate Descent. The ALS-based
method works on sets of columns of the factor matrices and updates entire rows at
a time. Coordinate Descent, on the other hand, updates individual coefficients of the
factor matrices in a column-wise fashion. The authors demonstrate that both methods
scale well, both in terms of tensor dimensionality and number of nonzeros, and show
that their ALS-based method is more efficient in terms of convergence speed, whereas
the Coordinate Descent method offers significant memory gains.

Finally, the work of Kim and Candan [2012] is quite different in flavor and draws
from the domain of Relational Databases. The basic idea behind the proposed method
is as follows: an N-mode tensor can be seen as a “relation” or table in a relational
database, where each mode is a different column. A widely used operation in databases
is the so-called normalization, where one splits up a relation with many columns (or
alternatively a high-order tensor) into smaller relations, where one of those columns
is shared. This is exactly what Kim and Candan [2012] do to split up a large and high-
order tensor into smaller ones, compute the CP decomposition on the “normalized”
relations/tensors, and, in the end, merge the factors using a “joining,” another widely
used database operation, which takes two relations with a column in common and joins
the remaining columns based on matching entries for that common column.

5.2. Tucker

As we mentioned in the previous subsection, the work of Kolda and Sun [2008] was the
first to mention the issue of Intermediate Data Blowup. In the particular case of the
Tucker decomposition, the problem refers to the operation of line 4 of Algorithm 3:

Y ← X ×N UT
N · · · ×n+1 UT

n+1 ×n−1 UT
n+1 · · · ×1 UT

1 .

This operation creates a series of intermediate results, the first of which is X×N UT
N. If

tensor X has large dimensions, then this intermediate piece of data will be dense (since
the Tucker factors are dense matrices) and large, which creates the Intermediate Data
Blowup problem. In order to tackle this problem, the authors propose to handle these
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Table III. Classification of Scalable Algorithms for Tucker with Respect to the Strategies
They Employ (We Omit Compression, Since This Has Been an Overarching Theme for

Scaling Up CP (Often Using Tucker to Obtain Such Compression))

Algorithm Exploits Sparsity Sampling Dist. / Parallel
Kolda and Sun [2008] �

Caiafa and Cichocki [2010] �
Tsourakakis [2010] � �
Jeon et al. [2015] � �

Austin et al. [2016] �

N-mode products of the previous operation element-wise for one or more modes of the
tensor.

Especially in the cases where the tensor is sparse, executing the product element-
wise for a given mode can be done more efficiently, since the computational complexity
depends on the number of nonzero entries in the data. As a result of this, the algo-
rithm in Kolda and Sun [2008] requires much less storage and is able to compute the
Tucker decomposition of very large tensors. A side effect of handling one or more modes
element-wise is that in some cases, this algorithm tends to be slower than Algorithm 3;
however, the gains in terms of memory requirements are up to 1,000-fold.

Subsequently, the work of Tsourakakis [2010] uses sparsification of a tensor in order
to achieve scalability. In particular, the author proves that by randomly sampling
nonzero entries of the tensor and scaling appropriately, the expected approximation
error does not suffer a lot. Thus, by sparsifying the tensor, the author demonstrates that
we can compute the Tucker decomposition (using either Algorithm 2 or Algorithm 3)
much faster while still capturing the variation of the full data.

Caiafa and Cichocki [2010] propose an extension to the matrix CUR decomposition
[Drineas et al. 2006] for tensors, different from and more efficient than the Tensor-
CUR decomposition [Mahoney et al. 2008]; in a nutshell, CUR decomposes a matrix
X ≈ CUR, where C contains sampled columns of the X, R contains sampled rows, and
U is computed such that the squared error is minimized. In this work, the authors
introduce an adaptive algorithm for selecting the rows, columns, and third-mode fibers
of the tensor that can be done efficiently, resulting in the fast computation of a Tucker-
like model.

Fairly recently, Jeon et al. [2015] follow up the work in Kang et al. [2012], which
is CP ALS for Map/Reduce, by introducing a unified decomposition framework with
operations that are applicable both for CP and Tucker decompositions. In particular,
Jeon et al. [2015] introduce a scalable and distributed implementation of the N-mode
product, which is essential to both CP (as Bader and Kolda [2007] demonstrate) and
Tucker computations, by decoupling its steps in a way that is suited for the Map/Reduce
framework. As an extension of Jeon et al. [2015], the same research group provides a
scalable implementation of Coupled Matrix-Tensor Factorization in Jeon et al. [2016].

Finally, the most recent work that is speeding up the Tucker decomposition is by
Austin et al. [2016], who propose the first distributed memory implementation of Algo-
rithms 2 and 3. They identify the basic bottleneck algorithms, essentially the N-mode
product and the computation of the R leading singular vectors of a matricized tensor
(which they do by computing the eigenvectors of a symmetric matrix created from the
matricized tensor). The proposed implementation is very scalable and was able to de-
compose (and ultimately compress, by using Tucker) multiple terabytes of scientific
data expressed as high-order tensors.

5.3. H-Tucker

To the best of our knowledge, Perros et al. [2015] provide the first (and currently
the only) scalable algorithm for the Hierarchical Tucker Decomposition. The main
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computational bottleneck, especially for very high-order tensors, is the fact that the
matricizations that Algorithm 5 is doing will have a prohibitively large dimension,
since it will be the product of the sizes of all but one of the dimensions. This, in turn,
makes the computation of the leading singular vectors per matricization an extremely
hard problem, which makes Algorithm 5 unable to scale for very large and high-order
tensors. The main idea behind Perros et al. [2015] is to use a sampling approach
inspired by CUR, where instead of using the very high-dimensional matricizations,
the authors sample a small number of columns (and make sure that the sampling is
consistent across matricizations). Assuming that the original tensor is very sparse,
the algorithm in Perros et al. [2015] ensures that all the data in the algorithm, both
intermediate and results, are sparse, thus making the computations much faster and
scalable.

6. CONCLUSIONS AND FUTURE CHALLENGES

Tensor decompositions are very versatile and powerful tools, ubiquitous in data mining
applications. As we saw, they have been successfully integrated in a rich variety of real-
world applications, and due to the fact that they can express and exploit higher-order
relations in the data, they tend to outperform approaches that ignore such structure.
Furthermore, recent advances in scaling up tensor decompositions have employed prac-
titioners with a strong arsenal of tools that can be applied to many big multiaspect
data problems.

The success that tensors have experienced in data mining during the last few years
by no means indicates that all challenges and open problems have been addressed.
Quite to the contrary, there exist challenges, some of which we summarize in the next
few lines, which delineate very exciting future research directions:

—Modeling space and time: What is the best way to exploit spatial or temporal
structure that exists in the data? We saw examples in Davidson et al. [2013], where
the authors impose linear constraints that guide the decomposition according to prior
knowledge of the spatial structure; Mørup et al. [2008, 2011], where the authors deal
with temporal issues in brain data; and Sun et al. [2008], where the authors use
a wavelet decomposition to represent time. Is there a generic way to incorporate
such modifications in a tensor model and enable it to handle spatiotemporal data
effectively? Furthermore, another open problem in spatiotemporal data modeling is
selecting the right granularity for the space and time modes.

—Unsupervised model selection: In a wide variety of applications, ground truth is
not easy to obtain; however, we need to have unsupervised means of understanding
which tensor decomposition is more appropriate (e.g., CP vs. Tucker vs. DEDICOM
etc.) and, given a decomposition, what model order is most appropriate for the data.
As we outline in Section 3.8, there exists work in that respect; however, there is
significant room for improvement and innovation.

—Dealing with high-order data: Many real-world applications involve data that
can be represented as very high-order tensors. Works that use H-Tucker [Perros
et al. 2015] have shown the utility of such approaches, and in the future, work on
understanding and improving decompositions such as H-Tucker and Tensor-Train,
in the context of data mining, will be very important.

—Connections with Heterogeneous Information Networks: In data mining,
there exists a very rich line of work on Heterogeneous Information Networks (HINs),
which are graphs between different types of nodes, connected with various types of
edges. An HIN can be represented as a tensor, and in fact, a multiview social net-
work is such an HIN. In the HIN mining literature, there exist concepts such as the
“Meta-path” [Sun et al. 2011], which is a path within the network that traverses
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multiple types of nodes, in the same spirit as a random walk, aiming to find similar
nodes in the network (and it has also been used for clustering). Outlining connections
between such works and tensor decompositions is a very interesting future direction
that aims toward unifying different data mining approaches.
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