
SamBaTen: Sampling-based Batch Incremental Tensor Decomposition

Ekta Gujral
UC Riverside

egujr001@ucr.edu

Ravdeep Pasricha
UC Riverside

rpasr001@ucr.edu

Evangelos E. Papalexakis
UC Riverside

epapalex@cs.ucr.edu

Abstract

Tensor decompositions are invaluable tools in analyz-
ing multimodal datasets. In many real-world scenarios,
such datasets are far from being static, to the contrary
they tend to grow over time. For instance, in an online
social network setting, as we observe new interactions
over time, our dataset gets updated in its “time” mode.
How can we maintain a valid and accurate tensor de-
composition of such a dynamically evolving multimodal
dataset, without having to re-compute the entire de-
composition after every single update? In this paper
we introduce SamBaTen, a Sampling-based Batch In-
cremental Tensor Decomposition algorithm, which in-
crementally maintains the decomposition given new up-
dates to the tensor dataset. SamBaTen is able to scale
to datasets that the state-of-the-art in incremental ten-
sor decomposition is unable to operate on, due to its
ability to effectively summarize the existing tensor and
the incoming updates, and perform all computations
in the reduced summary space. We extensively eval-
uate SamBaTen using synthetic and real datasets. In-
dicatively, SamBaTen achieves comparable accuracy to
state-of-the-art incremental and non-incremental tech-
niques, while being up to 25-30 times faster. Fur-
thermore, SamBaTen scales to very large sparse and
dense dynamically evolving tensors of dimensions up to
100K×100K×100K where state-of-the-art incremental
approaches were not able to operate.

1 Introduction

Tensor decomposition is a very powerful tool for many
problems in data mining [11, 16]. The success of tensor
decomposition lies in its capability of finding complex
patterns in multi-way settings, by leveraging higher-
order structure and correlations within the data. The
dominant tensor decompositions are CP/PARAFAC
(henceforth referred to as CP), which extracts inter-
pretable latent factors from the data, and Tucker, which
estimates the joint subspaces of the tensor. In this
work we focus on the CP decomposition, which has been
shown to be extremely effective in exploratory data min-
ing time and time again [16].

CPU utilization time for

multiple datasets

Relative Error±0.02

I=J=K 100 500 1000 3000

CPALS 0.109 0.101 0.103 0.130

SDT 0.151 0.217 0.296 0.206

RSLT 0.173 0.217 0.287 0.190

OnlineCP 0.107 0.102 0.103 0.108

SAMBATEN 0.115 0.102 0.102 0.119

10x

5-8x

2-3x

25-30x

Figure 1: SamBaTen outperforms state-of-the-art base-

lines while maintaining competitive accuracy.

In a wide array of modern real-world applications,
data are far from being static. To the contrary, data get
updated dynamically. For instance, in an online social
network, new interactions occur every second and new
friendships are formed at a similar pace. In the tensor
realm, we may view a large proportion of these dynamic
updates as an introduction of new “slices” in the ten-
sor: in the social network example, new interactions
that happen as time evolves imply the introduction of
new snapshots of the network, which grow the tensor in
the “time” mode. A tensor decomposition in that ten-
sor can discover communities and their evolution over
time. How can we handle such updates in the data with-
out having to re-compute the decomposition whenever
an update arrives, but incrementally update the existing
results given the new data? In the community detection
example, how can we track the evolution of the exist-
ing communities, and discover new ones, for the new
updates that continuously arrive?

Computing the decomposition for a dynamically
updated tensor is challenging, with the challenges lying,
primarily, on two of the three V’s in the traditional
definition of Big Data: Volume and Velocity. As a tensor
dataset is updated dynamically, its volume increases to
the point that techniques which are not equipped to
handle those updates incrementally, inevitably fail to
execute due to the sheer size of the data. Furthermore,

even though the applications that tensors have been
successful so far do not require real-time execution per
se, the decomposition algorithm must, nevertheless, be
able to ingest the updates to the data at a rate that will
not result in the computation being “drowned” by the
incoming updates.

The majority of prior work has focused on the
Tucker Decomposition of incrementing tensors [15, 19,
7], however very limited amount of work has been
done on the CP. Nion and Sidiropoulos [14] pro-
posed two methods namely Simultaneous Diagonal-
ization Tracking (SDT) and Recursive Least Squares
Tracking (RLST) and most recently, [21] introduced the
OnlineCP decomposition for higher order online tensors.
Even though prior work in incremental CP decomposi-
tion, by virtue of allowing for incremental updates to the
already computed model, is able to deal with Velocity,
when compared to the naive approach of re-executing
the entire decomposition on the updated data, every
time a new update arrives, it falls short when the Vol-
ume of the data grows.

In this paper we propose a novel large scale in-
cremental CP tensor decomposition that leverages
(potential) sparsity of the data, and achieves faster
and more scalable performance than state-of-the-
art baselines, while maintaining comparable accu-
racy.

We show a snapshot of our results in Figure 1: Sam-
BaTen is faster than all state-of-the-art methods on
data that the baselines were able to operate on. Fur-
thermore, SamBaTen was able to scale to, both dense
and sparse, dynamically updated tensors, where none
of the baselines was able to run. Finally, SamBaTen
achieves comparable accuracy to existing incremental
and non-incremental methods. Our contributions are
summarized as follows:
• Novel scalable algorithm: The advantage

of SamBaTen stems from the fact that it only
operates on small summaries of the data at all
times, thereby being able to maintain its efficiency
regardless of the size of the full data. To the best of
our knowledge, this is the first incremental tensor
decomposition which effectively leverages sparsity
in the data.

• Extensive experimental evaluation: Through
experimental evaluation on six real-world datasets
with sizes that range up to 70GB, and synthetic
tensors that range up to 100K × 100K × 100K, we
show thatSamBaTen can incrementally maintain
very accurate decompositions, faster and in a more
efficient and scalable manner than state-of-the-art
methods.

Reproducibility: We make our Matlab implemen-
tation publicly available at link 1. Furthermore, all the
datasets we use for evaluation are publicly available.

2 Problem Formulation

2.1 Preliminary Definitions Tensor : A tensor
is a higher order generalization of a matrix. In order
to avoid overloading the term “dimension”, we call an
I×J×K tensor a three “mode” tensor, where “modes”
are the numbers of indices used to index the tensor. The
number of modes is also called “order”. Table 1 contains
the symbols used throughout the paper. We refer the
interested reader to several surveys that provide more
details and a wide variety of tensor applications [10, 16].
In the interest of space, we also refer the reader to
[16] for the definitions of Kronecker and Khatri-Rao
products which are not essential for following the basic
derivation of our approach.

Slice : A slice is a (m-1)-
dimension partition of tensor where

(a) (b) (c)

Figure 2: Slices of 3-order

tensor (a) horizontal X(i, :, :)
(b) lateral X(:, j, :), (c) frontal

X(:, j, :).

an index is varied in
one mode and the in-
dices fixed in the other
modes. There are three
categories of slices :
horizontal (X(i,:,:)) ,
lateral (X(:,j,:)), and
frontal (X(:,:,k)) for

third-order tensor X as shown in Figure 2.

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar
R Set of Real Numbers
◦ Outer product

‖A‖F , ‖a‖2 Frobenius norm, `2 norm
x(I) Spanning the elements of x in indices ∈ I
x(:) Spanning all elements of x

X(:, r) rth column of X

X(r, :) rth row of X
⊗ Kronecker product
� Khatri-Rao product (column-wise Kronecker product [16])

Table 1: Table of symbols and their description

Canonical Polyadic Decomposition : One of
the most popular and widely used tensor decompo-
sitions is the Canonical Polyadic (CP) or CANDE-
COMP/PARAFAC decomposition [3, 9]. We hence-
forth refer to this decomposition as CP. In CP., the
tensor is decomposed into a sum of rank-one tensors,
i.e., a sum of outer products of three vectors (for three-

mode tensors): X ≈
∑R

r=1 A(:, r)◦B(:, r)◦C(:, r) where
A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, and the outer
product is given by (A(:, r) ◦B(:, r) ◦C(:, r))(i, j, k) =

1http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/

SAMBATEN.zip

 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SAMBATEN.zip
 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SAMBATEN.zip

A(i, r)B(j, r)C(k, r) for all i, j, k. In order to compute
the decomposition we typically need to minimize the
squared differences (i.e., Frobenius norm) between the
original tensor and the model There exist other mod-
eling approaches in the literature [4] which minimize
the KL-Divergence, however, Frobenius norm-based ap-
proaches are still to this day the most well studied. We
reserve investigation of other loss functions as future
work.

2.2 Problem Definition In many real-world appli-
cations, data grow dynamically . In a time-evolving
social network, we observe user interactions every few
seconds, which can be translated to new tensor slices,
after fixing the temporal granularity (a problem which,
on its own merit, is very hard to solve optimally, and we
do not address in this paper). This incremental property
of data gives rise to the need for an on-the-fly update of
the existing decomposition, which we name incremental
tensor decomposition. Notice that the literature (and
thereby this paper) uses the terms “incremental”, “dy-
namic”, and “online” interchangeably. In such scenar-
ios, data updates happen very fast which make tradi-
tional (non-incremental) methods to collapse because
they need to recompute the decomposition for the entire
dataset. We focus on a 3-mode tensor one of whose di-
mensions are growing with time. However, the problem
definition (and our proposed method) extends to any
number of modes. Let us consider X(t)=RI×J×K1(t) at
time t. The CP decomposition of X(t) is given as :

X(1)(t) ≈ (A(t)�B(t))CT (t) ≈ L(t)CT (t)

where L(t) = (A(t) � B(t)) of dimension IJ × R and
CT (t) is of dimension K1 × R. When new incoming

slice X(t
′
)=RI×J×K2(t

′
) is added in mode 3, required

decomposition at time t
′

is :

X(1)(t + t
′
) ≈ L(t + t

′
)CT (t + t

′
)

where L(t + t
′
) = (A(t + t

′
) � B(t + t

′
)) of dimen-

sion IJ×R and CT (t+t
′
) is of dimension (K1+K2)×R.

The problem that we solve is the following:

Problem Definition. Given (a) an existing set
of decomposition results A(t),B(t) and C(t) of R
components, which approximate tensor Xold of size
I × J ×K1 at time t , (b) new incoming batch of
slices in form of tensor Xnew of size I × J × K2

at any time t
′
, find updates of A(t

′
),B(t

′
) and

C(t
′
) incrementally to approximate tensor X of

dimension I × J × K, where K =K1 + K2 after
appending new slice or tensor to 3rd mode while

maintaining a comparable accuracy with running
the full CP decompositon on the entire updated
tensor X.

To simplify notation, we will interchangeably refer
to A(t) as Aold (when we need to refer to specific indices
of that matrix), and similarly for A(t′) we shall refer to
it as A

′
.

3 Proposed Method: SamBaTen

As we mention in the introduction, there exists a body
of work in the literature that is able to efficiently and
incrementally update the CP decomposition in the pres-
ence of incoming tensor slices [14, 21]. However, those
methods fall short when the size of of the dynamically
growing tensor increases, and eventually are not able to
scale to very large dynamic tensors. The reason why
this happens is because these methods operate on the
full data, and thus, even though they incrementally up-
date the decomposition (avoiding to re-compute it from
scratch), inevitably, as the size of the full data grows, it
takes a toll on the run-time and scalability.

In this paper we propose SamBaTen, which takes a
different view of the solution, where instead of operating
on the full data, it operates on a summary of the
data. Suppose that the “complete” tensor (i.e., the
one that we will eventually get when we finish receiving
updates) is denoted by X. Any given incoming slice
(or even a batch of slice updates) can be, thus, seen
as a sample of that tensor, X where the sampled
indices in the third mode (which we assume is the one
receiving the updates) are the indices of the incoming
slice(s). Suppose, further, that given a set of sample
tensors (which are drawn by randomly selecting indices
from all the modes of the tensor) we can approximate
the original tensor with high-accuracy (which, in fact,
the literature has shown that it is possible [6, 5]).
Therefore, when we receive a new batch of slices as an
update, if we update those samples with the new indices,
then we should be able to compute a decomposition
very efficiently which incorporates the slice updates,
and approximates the updated tensor well. A visual
summary of SamBaTen is shown in Figure 3.

3.1 The heart of SamBaTen The algorithmic
framework we propose is shown in Figure 3 and is de-
scribed below: We assume that we have an existing set
of decomposition results, as well as a set of summaries
of the tensor, before the update. Summaries are in the
form of sampled sub-tensors, as described in the text
below. For simplicity of description, we assume that we
are receiving updated slices on the third mode, which
in turn have to add new rows to the C matrix (that

X

1) Sample
incoming slice

2) Decompose
in parallel

3) Project back
from summary space

4) Update
C

r
vectors with new entry

Existing Samples

…

…

+…+

+…+

+…+

Figure 3: SamBaTen: Sampling-based Batch Incremen-
tal Tensor Decomposition: 1) Sample incoming tensor

into sub-tensors, 2) run parallel decompositions on the

samples, 3) project back the results into the original
space, and, finally, 4) update the incrementally growing

factor matrix C.

corresponds to the third mode). We, further, assume
that the updates come in batches of new slices, which,
in turn, ensures that we see a mature-enough update to
the tensor, which contains useful structure. Trivially,
however, SamBaTen can operate on singleton batches.
In the following lines, X is the tensor prior to the up-
date and Xnew is the batch of incoming slices. Given
an update, SamBaTen performs the following steps:

Sample: The rationale behind SamBaTen is that
each batch Xnew can be seen as a sample of third-mode
indices of (what is going to be) the full tensor. In
this step, we are going to merge these incoming indices
with an already existing set of sampled tensors. In
order to obtain those pre-existing samples, we follow
a similar approach to [6]. Namely, we sample indices
from the tensor X based on a measure of importance.
To determine the importance for each mode m and then
sample the indices using this measure as a sampling
weight divided by its probability. An appropriate
measure of importance (MoI) is the sum-of-squares
of the tensor for each mode. For the first mode , MoI is
defined as: xa(i) =

∑J
j=1

∑K
k=1 X(i, j, k)2 for i ∈ (1,I).

Similarly, we can define the MoI for modes 2 and 3.
We sample each mode of X without replacement,

using the above MoI to bias the sampling probabilities.
With s as sampling factor, i.e. if X has size I × J ×K,
then Xs will be of size I

s ,
J
s ,

K
s . Sampling rate for

each mode is independent from each other, and in fact,
different rates can be used for imbalanced modes. In
the case of sparse tensors, the sample will focus on the
dense regions of the tensor which contains most of the
useful structure. In the case of dense tensors, the sample
will give priority to the regions of the tensor with the
highest variation.

After forming the sample summary Xs for X, we
merge it with the samples obtained from the intersection
of the third-mode indices of Xnew and the already sam-
pled indices in the remaining modes, so that the final

sample is equal to Xs=X(Is, Js,Ks ∪ [K + 1 · · ·Knew]),
where K + 1 · · ·Knew are the third-mode indices of
Xnew.

Due to the randomized nature of this summariza-
tion, we need to draw multiple samples, in order to ob-
tain a reliable set of summaries. Each such independent
sample is denoted as X(r)

s . In the case of dense tensors,
obtaining multiple, independent random samples helps
summarize as much of the useful variation as possible.
In fact, we will see in the experimental evaluation that
increasing the number of samples, especially for dense
tensors, improves accuracy.

In [6] the authors note that in order for their method
to work, a set of anchor indices must be common be-
tween all samples, so that, later on, we can establish
the correct correspondence of latent factors. However,
in SamBaTen we do not have to actively fix a set of
indices across sampling repetitions. When we sample
Is, Js,Ks each time, those indices correspond to a por-
tion of the decomposition that is already computed.
Therefore, the entire set of indices Is, Js,Ks can serve as
the set of anchors. This is a major advantage compared
to [6], since SamBaTen 1) does not need to commit
to a set of fixed indices for all samples a-priori, which,
due to randomization may happen to represent a badly
structured portion of the tensor, 2) does not need to
be restricted in a “small” set of fixed common indices
(which is required in [6] in order to ensure that suffi-
ciently enough new indices are sampled across repeti-
tions), but to the contrary, is able to use a larger num-
ber of anchor indices to establish correspondence more
reliably, and 3) does not require any synchronization
between different sampling repetitions, which results in
higher parallelism potential.

Decompose: Having obtained Xs, from the previous
step, SamBaTen decomposes the summary using any
state-of-the-art algorithm, obtaining factor matrices
[A
′

i,B
′

i,C
′

i]. For the purposes of this paper, we use the
Alternating Least Squares (ALS) algorithm for the CP
decomposition, which is probably the most well studied
algorithm for CP.

Project back: The CP decomposition is unique
(under mild conditions) up to permutation and scaling
of the components [16]. This means that, even though
the existing decomposition [Aold,Bold,Cold] may have
established an order of the components, the decompo-
sition [A

′

i,B
′

i,C
′

i] we obtained in the previous step is
very likely to introduce a different ordering and scal-
ing, as a result of the aforementioned permutation and
scaling ambiguity. Formally, the sampled portion of the
existing factors and the currently computed factors are

Algorithm 1: SamBaTen
Input: Tensor Xnew of size I × J ×Knew , Factor matrices

Aold,Bold,Cold of size I × R, J × R and Kold × R respectively,
sampling factor s and number of repetitions r.

Output: Factor matrices A,B,C of size I × R, J × R and
(Knew +Kold)× R, λ.

1: for i = 1 to r do
2: Compute xa,xb and xc.
3: Sample a set of indices Is, Js, Ks from X without replacement

using xa(i)/
I∑

i=1
xa(i) as probability (accordingly for the rest).

4: Xs=X(Is, Js, Ks ∪ [K + 1 · · ·Knew])

5: [A
′
i,B
′
i,C
′
i] = CP

(
Xs, R

)
.

6: Normalize A
′
i,B
′
i,C
′
i (as in the text) and absorb scaling in λ.

7: Compute optimal matching between the columns of

Aold,Bold,Cold and A
′
i,B
′
i,C
′
i as in the text

8: Update only zero entries of A,B,C that correspond to sampled

entries of A
′
i,B
′
i,C
′
i

9: Obtain Cnew of size Knew × R by taking last Knew rows of C
′
.

10: Use a shared copy of Cnew and average out its entries in a
column-wise fashion across different sampling repetitions.

11: end for

12: Update C of size (Knew +Kold)× R as : C =

[
Cold
Cnew

]
13: Update scaling λ as the average of the previous and new value.
14: return A,B,C,λ

connected through the following relation:

[Aold(Is, :),Bold(Js, :),Cold(Ks, :)] =

[A
′

i(Is, :)ΛΠ,B
′

i(Js, :)Π,C(Ks, :)
′

iΠ]

where Λ is a diagonal scaling matrix (which without
loss of generality we absorb on the first factor), and Π
is a permutation matrix that permutes the order of the
components (columns of the factors).

In order to tackle the scaling ambiguity, we need
to normalize the results in a consistent manner. In
particular, we normalize such that each column of the
newly computed factors which spans the indices that are
shared with [Aold,Bold,Cold] has unit norm: A

′

i(:, f) =
A
′
i

||A′i(Is,f)||2
, and accordingly for the remaining factors.

Note that for A
′

i, trivially holds that A
′

i(Is, f) = A
′

i(:

, f) and similarly for B
′

i. After normalizing, the rela-
tion between the existing factors and the currently com-
puted is Aold(Is, :) = A

′

iΠ (and similarly for the rest).
Each iteration retains a copy of [Aold(Is, :),Bold(Js, :
),Cold(Ks, :)] which will serve as the anchor for disam-
biguating the permutation of components. We normal-
ize [Aold(Is, :),Bold(Js, :),Cold(Ks, :)] to unit norm as
well, and the reason behind that lies in Lemma 3.1:

Lemma 3.1. Consider a = A
′

i(:, f1) and b = Aold(:
, f2). If f1 and f2 correspond to the same latent CP
factor, in the noiseless case, then aTb = 1 otherwise
aTb < 1.

Proof. From Cauchy-Schwartz inequality aTb ≤
‖a‖2‖b‖2. The above inequality is maximized when
a = b and for unit norm a,b, aTb ≤ 1. Therefore,

if a = b, which happens when f1 and f2 correspond to
the same latent CP factor, aTb = 1.

Lemma 3.1 is a guide for identifying the permuta-
tion matrix Π: For every column of A

′

i we compute
the inner product with every column of Aold(Is, :) and
compute a matching when the inner product is equal
(or close) to 1. Given a large-enough number of rows
for A

′

i (which is usually the case, since we require a
large-enough sample of the tensor in order to augment
it with the update and compute the factor updates ac-
curately), this matching can be computed reliably even
in noisy real-world data, as we show in the experimental
evaluation.

Update results: After appropriately permuting
the columns of A

′

i,B
′

i,C
′

i, we have all the information
needed to update our model. Returning to the problem
definition of Section 2, A

′

i contains the updates to
the rows within Is for A(t) (and similarly for B and
C). Even though A,B do not increase their number
of rows over time, the incoming slices may contribute
valuable new estimates to the already estimated factors.
Thus, for the already existing portions of A,B,C
we only update the zero entries that fall within the
range of Is, Js, and Ks respectively. Finally, C

′

i([K +
1 · · ·Knew], :) contains the factors for the newly arrived
slices, which need to be merged to the already existing
columns of C. After properly permuting the columns
of C

′

i, we accumulate the lower portion of the C
′

i

(corresponding to the new slices) into Cnew and we take
the column-wise average of the rows to-be-appended
to C, across repetitions. Finally, we update C(t′) =[

Cold

Cnew

]
.

Guarantees for Correctness Lemma 3.1 is essen-
tially providing a guarantee for the correctness of Sam-
BaTen. In particular, Lemma 3.1 ensures that, under
mild conditions that make the CP decomposition unique
and identifiable, SamBaTen will discover the correct
latent factors, disambiguate the permutation and scal-
ing ambiguity, and update the correct columns of the
factor matrix that is to be augmented. As we will also
empirically demonstrate in the experimental evaluation,
indeed, SamBaTen is able to produce correct results
that are on par with state-of-the-art methods.

4 Experimental Evaluation

In this section we extensively evaluate the performance
of SamBaTen on multiple synthetic and real datasets,
and compare its performance with state-of-the-art ap-
proaches. We experiment on the different parameters
of SamBaTen and the baselines, and how that affects
performance. We implemented SamBaTen in Matlab

using the functionality of the Tensor Toolbox for Matlab
[1] which supports very efficient computations for sparse
tensors. Our implementation is available at link 2. We
used Intel(R) Xeon(R), CPU E5-2680 v3 @ 2.50GHz
machine with 48 CPU cores and 378GB RAM.

4.1 Data-set description Below, we describe the
process for generating synthetic data and the real
datasets we used.

4.1.1 Synthetic data generation We generate ran-
dom tensors of dimension I = J = K with increasing I.
Those tensors are created from a known set of randomly
generated factors, so that we have full control over the
ground truth of the full decomposition. We dynamically
calculate the size of batch or slice for our all experiments
to fit the data into memory. The machine used in this
experiments has ≈380GB of memory. For example, in
case of I = J = K = 50000, batch size is up to 5, the
dense incoming slice requires memory space equivalent
to ≈80 GB and the rest of memory space is used for
the computations. The specifications of each synthetic
dataset are given in Table 2.

Dimension Density- Density- Batch Sampling
(I = J = K) dense sparse size factor

100 100% 65% 50 2
500 100% 65% 150 2
1000 100% 55% 150 2
3000 100% 55% 100 5
5000 100% 55% 100 5
10000 100% 55% 10 2
50000 100% 35% 5 2
100000 100% 35% 5 2

Table 2: Table of Datasets analyzed

4.1.2 Real Data Description In order to truly
evaluate the effectiveness of SamBaTen, we test its
performance against six real datasets that have been
used in the literature. Those datasets are summarized
in Table 3 and are publicly available at [17] .

4.2 Evaluation Measures We evaluate Sam-
BaTen and the baselines using three criteria: Relative
Error, Wall-Clock time and Fitness. These measures
provide a quantitative way to compare the performance
of our method. More Specifically, Relative Error is
effectiveness measurement and defined as :

RelativeError =
||Xoriginal −Xpredicted||

||Xoriginal||

where, the lower the value, the better.

2http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/

SAMBATEN.zip

CPU time (sec): The average running time denoted
by Ttot for processing all slices for given tensor, mea-
sured in seconds, and is used to validate the time effi-
ciency of an algorithm.
Relative Fitness: Relative Fitness is defined as:

RelativeF itness =
||Xoriginal −XSamBaTen||
||Xoriginal −XBaseLine||

where, again, lower is better.

4.3 Baselines for Comparison Here we briefly
present the state-of-the-art baselines we used for com-
parison. Note that for each baseline we use the re-
ported parameters that yielded the best performance in
the respective publications. For fairness, we compare
against the parameter configuration for SamBaTen
that yielded the best performance in terms of low wall-
clock timing, low relative error and fitness. Note that
all comparisons were carried out over 10 iterations each,
and each number reported is an average with a standard
deviation attached to it.
CP ALS [1]: is considered the most standard and well
optimized algorithm for CP. We use the implementation
of the Tensor Toolbox for Matlab [1]. Here, we simply
re-compute CP using CP ALS after every update.
SDT [14]: Simultaneous Diagonalization Tracking
(SDT) is based on incrementally tracking the Singu-
lar Value Decomposition (SVD) of the unfolded ten-
sor X(3) = U

∑
V T . RLST [14]: Recursive Least

Squares Tracking (RLST) is another online approach in
which recursive updates are computed to minimize the
Mean Squared Error (MSE) on incoming slice. Onil-
neCP [21]: This is the most recent and state-of-the-art
method in online computation of CP.

We conduct our experiments on multiple synthetic
datasets and six real-world tensors datasets. We set
the tolerance rate for convergence between consecutive
iterations to 10−5 and the maximum number of iteration
to 1000 for all the algorithms. The batch size and
sampling factor is selected based on dimensions of first
mode i.e. I, provided in Table 2 and 3 for synthetic and
real dataset respectively. We use the publicly available
implementations for the baselines, as provided by the
authors. We only modified the interface of the baselines,
so that it is consistent across all methods with respect
to the way that they receive the incoming slices. No
other functionality has been changed.

4.4 Experimental Results The following major
three aspects are analyzed.
Q1. Effectiveness and Accuracy: How effective is
SamBaTen as compared to the baselines on different
synthetic and real world datasets?

 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SAMBATEN.zip
 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SAMBATEN.zip

Name Description Dimensions NNZ Batch Sampling Dataset
size factor File Size

NIPS [8] (Paper,Author,Word) 2,482 x 2862 x 14036 3,101,609 500 10 57MB
NELL [2] (Entity,Relation,Entity) 12092 x 9184 x 28818 76,879,419 500 10 1.4GB

Facebook-wall [20] (Wall owner, Poster, day) 62,891 x 62,891 x 1,070 78,067,090 100 5 2.1GB
Facebook-links [20] (User, Links, Day) 62,891 x 62,891 x 650 263,544,295 50 2 3.8GB

Patents[17] (Term ,Term, Year) 239,172 x 239,172 x 46 3,596,640,708 10 2 73GB
Amazon[13] (User, Product ,Word) 4,821,207 x 1,774,269 x 1,805,187 1,741,809,018 50000 20 43GB

Table 3: Real datasets analyzed

Q2. Speed & Scalability: How fast is SamBaTen
when compared to the state-of-the-art methods on very
large sized datasets?
Q3. Parameter Sensitivity: What is the influence
of sampling factor s and sampling repetitions r?

4.4.1 Baselines for Comparison For all datasets
we compute Relative Error,CPU time (sec) and Fit-
ness. For SamBaTen, CP ALS , OnlineCP, RSLT and
SDT we use 10% of the data in each dataset as exist-
ing dataset. We experimented for both dense as well as
sparse tensor to check the performance of our method.
The results for the dense and sparse synthetic data are
shown in Table 4 - 5. For each of datasets , the best
result is shown in bold. OnlineCP, SDT and RLST ad-
dress the issue very well. Compared with CP ALS, SDT
and RLST reduce the mean running time by up to 2x
times and OnlineCP reduce mean time by up to 3× for
small dataset (I up to 3000). Performance of RLST was
better than SDT algorithm on 8 out of 8 third-order syn-
thetic tensor datasets. In fact, the efficiency (in terms
of CPU time (sec)) of SDT is quite close to RLST. How-
ever, the main issue of SDT and RLST is their estima-
tion of relative error and fitness. For some datasets,
such as I = 100 and I = 3000, they perform well, while
for some others, they exhibit poor fitness and relative
error, achieving only nearly half of the fitness of other
methods. For small size datasets, OnlineCP’s efficiency
and accuracy is better than all methods. As the di-
mension grows, however, the performance of OnlineCP
method reduces,and particularly for datasets of dimen-
sion larger than 5000 × 5000 × 5000. Same behavior is
observed for sparse tensors. SamBaTen is compara-
ble to baselines for small dataset and outperformed the
baselines for large dataset. CP ALS is the only baseline
able to run on datasets up to size 3000 × 3000 × 3000.
These results answer Q1 as the SamBaTen have com-
parable accuracy to other baseline methods.

SamBaTen is efficiently able to compute 100K ×
100K×100K sized tensor with batch size of 5 and sam-
pling factor 2. It took 58095.72s and 47232.2s to com-
pute online decomposition for dense and sparse tensor,
respectively. On other hand, state-of-art methods are
unable to handle such large scaled incoming data.

Table 6 shows the comparison between meth-
ods. SamBaTen outperforms other state-of-the-art ap-

102 103 104 105

I=J=K

0

0.5

1

1.5

2

2.5

C
P

U
 T

im
e

(s
ec

)

104

CP-ALS
SDT
RLST
OnlineCP
SamBaTen

102 103 104 105

I=J=K

0

0.5

1

1.5

2

2.5

C
P

U
 T

im
e

(s
ec

)

104

CP-ALS
SDT
RLST
OnlineCP
SamBaTen

Figure 4: Experimental results for CPU time (sec) for
(a) dense tensor (b) sparse tensor

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Fi
tn

es
s

Im
pr

ov
em

en
t (

%
)

I=J=K

SAMBATEN Vs ALS
SAMBATEN Vs ParaFac-SDT
SAMBATEN Vs ParaFac-RSLT
SAMBATEN Vs OnlineCP

N
o

ba
se

lin
e

m
et

ho
d

av
ai

la
bl

e

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Fi
tn

es
s

Im
pr

ov
em

en
t(

%
)

I=J=K

SAMBATEN Vs ALS
SAMBATEN Vs ParaFac-SDT
SAMBATEN Vs ParaFac-RSLT
SAMBATEN Vs OnlineCP

N
o

ba
se

lin
e

m
et

ho
d

av
ai

la
bl

e

Figure 5: Experimental results for Relative Fitness

Improvement for (a) dense tensor (b) sparse tensor

proaches in most of the real dataset. In the case of
NIPS datset, SamBaTen gives better results compared
to the baselines, specifically in terms of CPU Time
(faster up to 20 times) and Fitness (better up to 15-
20%). SamBaTen outperforms for NELL, Facebook-
Wall and Facebook-Links dataset in terms of efficiency
comparable to CP ALS. For the NIPS dataset, Sam-
BaTen is 25-30 times faster than OnlineCP method.
Due to high dimensions of dataset, RSLT and SDT are
unable to execute further. Note that all the real datasets
we use are highly sparse, however, no baselines except
CP ALS actually take advantage of that sparsity, there-
fore, repeated CP ALS tends to be faster because the
baselines have to deal with dense computations which
tend to be slower, when the data contain a lot of ze-
ros. Most importantly, however, SamBaTen performed
very well on Amazon and Patent datasets, arguably the
hardest of the six real datasets we examined and have
been analyzed in the literature, where none of the base-
lines was able to run. These result answer Q1 and Q2
and show that SamBaTen is able to handle large di-
mensions and sparsity.

4.4.2 Sensitivity of Sampling Factor s The sam-
pling factor plays an important role in SamBaTen. We

I=J=K CPALS OnlineCP SDT RLST SamBaTen
100 0.109 ± 0.01 0.107± 0.02 0.173± 0.02 0.151± 0.02 0.115± 0.02
500 0.102 ± 0.09 0.102± 0.09 0.217± 0.06 0.217± 0.06 0.102± 0.09
1000 0.103± 0.01 0.103± 0.01 0.287± 0.01 0.296± 0.01 0.102± 0.01
3000 0.119± 0.01 0.108± 0.01 0.189± 0.01 0.206± 0.01 0.109± 0.01
5000 N/A 0.122± 0.002 0.201± 0.002 0.196± 0.04 0.115± 0.009
10000 N/A 0.173± 0.04 0.225± 0.04 0.252± 0.06 0.162± 0.01
50000 N/A 0.215± 0.03 0.229± 0.03 0.26± 0.01 0.169± 0.01
100000 N/A N/A N/A N/A 0.275 ± 0.00

Table 4: Experimental results for relative error for synthetic dense tensor. We see that SamBaTen gives comparable

accuracy to baseline.
I=J=K CPALS OnlineCP SDT RSLT SamBaTen

100 0.169± 0.01 0.154± 0.02 0.306± 0.01 0.313± 0.01 0.178± 0.01
500 0.175± 0.01 0.188± 0.01 0.43± 0.01 0.421± 0.01 0.184± 0.01
1000 0.179± 0.01 0.185± 0.01 0.613± 0.01 0.813± 0.01 0.178± 0.01
3000 0.177± 0.02 0.171± 0.04 0.446± 0.03 0.513± 0.02 0.176± 0.03
5000 N/A 0.192± 0.02 0.494± 0.09 0.535± 0.13 0.187± 0.04
10000 N/A 0.173± 0.01 0.212± 0.01 0.224± 0.11 0.198± 0.12
50000 N/A 0.222± 0.00 0.262± 0.00 0.259± 0.00 0.200± 0.00
100000 N/A N/A N/A N/A 0.283± 0.00

Table 5: Experimental results for relative error for synthetic sparse tensor. We see that SamBaTen works better

in very large scale dataset such as 50000 × 50000 × 50000.
Dataset CPU Time (sec) Fitness SamBaTen w.r.t

CPALS OnlineCP SDT RSLT SamBaTen CPALS OnlineCP SDT RSLT

NIPS 177.46± 2.9 372.03± 8.9 1608.23± 37.5 1596.07± 15.2 43.98± 0.6 0.96± 0.01 0.98± 0.01 0.78± 0.02 0.82± 0.01

NELL 8783.27± 11.2 42325.22± 70.0 65325.22± 25.2 63485.98± 10.6 983.83± 30.7 0.95±0.02 0.81± 0.01 0.76± 0.02 0.81± 0.01

Facebook-wall 3041.98±3.8 N/A N/A N/A 736.07±4.1 0.97±0.01 N/A N/A N/A

Facebook-links 2689.69±7.9 N/A N/A N/A 343.32±6.3 0.96±0.06 N/A N/A N/A

Amazon N/A N/A N/A N/A 4892.07±61.8 N/A N/A N/A N/A

Patent N/A N/A N/A N/A 8068.27±55.4 N/A N/A N/A N/A

Table 6: SamBaTen performance for real datasets. SamBaTen outperforms the baselines for all the large tensors.

performed experiments to evaluate the impact of chang-
ing sampling factor on SamBaTen. For these experi-
ments , we fixed batch size to 50 for all datasets. We
see in figure 6 that increasing sampling factor results in
reduction of CPU time (as sparsity of sub sampled ten-
sor increased) and it reduces the fitness of output up-to
2-3%. In sum, these observations demonstrate that: 1)
a suitable sampling factor on sub-sampled tensor could
improve the fitness and result in better tensor decom-
position, and 2) the higher sampling factor is, the lower
the CPU time. This result partially answers Q3.

2 4 6 8 10 12 14 16 18 20
Sampling Factor 's'

101

102

103

C
P

U
 T

im
e

(s
ec

)

I=3000
I=1000
I=500

2 4 6 8 10 12 14 16 18 20
Sampling Factor 's'

0.8

0.82

0.84

0.86

0.88
0.9

0.92
0.94
0.96
0.98

1

F
itn

es
s

I=3000
I=1000
I=500

Figure 6: SamBaTen CPU Time (sec) and Relative

Fitness vs. Sampling Factor s on different datasets (lower
is better).

4.4.3 Sensitivity of Repetition Factor r We eval-
uate the performance for parameter setting r i.e the
number of parallel decompositions. For these experi-
ments, we choose batch size and sampling rate for syn-
thetic 500 × 500 × 500 dataset and NIPS real world
dataset as provided in table 2 and 3, respectively. We
can see that with higher values of the repetition factor r,
Relative Fitness (SamBaTen vs CP ALS) is improved
as shown in Figure 7(a). We experiment on varying

repetition factor r with Sampling factor s on NIPS real
world dataset to check the performance of our method
as shown in Figure 7(b). The lower the relative fitness
score, the better the decomposition. This result com-
pletes the answer to Q3.

1 2 3 4 5 6 7 8 9 10

Repetetion Factor 'r'

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

F
itn

es
s

Synthetic Data I=J=K=500
NIPS Data

1 2 3 4 5 6 7 8 9 10

Repetetion Factor 'r'

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

F
itn

es
s

s=2
s=5
s=10
s=15
s=20

Figure 7: SamBaTen Relative Fitness vs. repetition
factor r on synthetic and NIPS datasets (lower is better).

5 Related Work

Incremental tensor methods in the literature can be cat-
egorized into three main categories: 1) Tucker decom-
position, 2) CP decomposition, 3) Tensor completion
Tucker Decomposition: Online tensor decomposition
was first proposed by Sun el at.[19] as ITA (Incremental
Tensor Analysis), describing the three variants of Incre-
mental Tensor Analysis. Liu el at.[15] proposed an effi-
cient method to diagonalize the core tensor to overcome
this problem. Hadi el at. [7] proposed the multi-aspect-
streaming tensor analysis (MASTA) method that and
allows the tensor to simultaneously grow in all modes.
CP Decomposition: There is very limited study on
online CP decomposition methods. Phan el at. Nion
el at.[14], proposed two algorithms that focus on CP

decomposition namely SDT (Simultaneous Diagonaliza-
tion Tracking) and RLST (Recursive Least Squares
Tracking). The latest related work is OnlineCP, pro-
posed by Zhou, el at. [21].
Tensor Completion: The main difference between
completion and decomposition techniques is that in
completion “zero” values are considered “missing” and
are not part of the model, and the goal is to impute those
missing values accurately, rather than extracting latent
factors from the observed data. The earliest work on
incremental tensor completion traces back to [12], and
recently, Qingquan el at.[18], proposed streaming tensor
completion based on block partitioning.

6 Conclusions

We introduce SamBaTen, a novel sample-based incre-
mental CP tensor decomposition. We show its effective-
ness with respect to approximation quality, with its per-
formance being on par with state-of-the-art incremental
and non-incremental algorithms, and we demonstrate
its efficiency and scalability by outperforming state-of-
the-art approaches (25-30 times faster) and being able
to run very large incremental tensors where none of the
baselines was able to produce results.

7 Acknowledgments
Research was supported by the Department of the Navy, Naval
Engineering Education Consortium under Award no. N00174-17-
1-0005, by the National Science Foundation Grant no. EAGER
1746031, and an Adobe Data Science Research Faculty Award. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the funding parties. We would also like to thank Xia Ben
Hu for fruitful discussions on the problem.

References

[1] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox
version 2.6, available online, february 2015, 2015.

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr., and T. M. Mitchell. Toward an archi-
tecture for never-ending language learning. In AAAI,
volume 5, page 3, 2010.

[3] J. D. Carroll and J.-J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of eckart-young decomposition. Psy-
chometrika, 35(3):283–319, 1970.

[4] E. C. Chi and T. G. Kolda. On tensors, sparsity, and
nonnegative factorizations. SIAM Journal on Matrix
Analysis and Applications, 33(4):1272–1299, 2012.

[5] D. Erdos and P. Miettinen. Walk’n’merge: A scalable
algorithm for boolean tensor factorization. In Data
Mining (ICDM), 2013 IEEE 13th International Con-
ference on, pages 1037–1042. IEEE, 2013.

[6] Evangelos E. Papalexakis, C. Faloutsos, and N. D.
Sidiropoulos. Parcube: Sparse parallelizable tensor
decompositions. In ECML-PKDD’12.

[7] H. Fanaee-T and J. Gama. Multi-aspect-streaming

tensor analysis. Knowledge-Based Systems, 89:332–
345, 2015.

[8] A. Globerson, G. Chechik, F. Pereira, and N. Tishby.
Euclidean Embedding of Co-occurrence Data. The
Journal of Machine Learning Research, 8:2265–2295,
2007.

[9] R. Harshman. Foundations of the parafac procedure:
Models and conditions for an” explanatory” multi-
modal factor analysis. 1970.

[10] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM review, 51(3), 2009.

[11] T. G. Kolda, B. W. Bader, and J. P. Kenny. Higher-
order web link analysis using multilinear algebra. In
Data Mining, Fifth IEEE International Conference on,
pages 8–pp. IEEE, 2005.

[12] M. Mardani, G. Mateos, and G. B. Giannakis. Sub-
space learning and imputation for streaming big data
matrices and tensors. IEEE Transactions on Signal
Processing, 63(10):2663–2677, 2015.

[13] J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Proceedings of the 7th ACM conference
on Recommender systems, pages 165–172. ACM, 2013.

[14] D. Nion and N. Sidiropoulos. Adaptive algorithms to
track the parafac decomposition of a third-order tensor.
Signal Processing, IEEE Transactions on, 57(6):2299–
2310, 2009.

[15] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In Proceed-
ings of the 31st international conference on Very large
data bases, pages 697–708. VLDB Endowment, 2005.

[16] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropou-
los. Tensors for data mining and data fusion: Models,
applications, and scalable algorithms. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
8(2):16, 2016.

[17] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu,
and G. Karypis. FROSTT: The formidable repository
of open sparse tensors and tools, 2017.

[18] Q. Song, H. G. Xiao Huang, J. Caverlee, and X. Hu.
Multi-aspect streaming tensor completion. In Proceed-
ings of the 23th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM,
2017.

[19] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and
C. Faloutsos. Incremental tensor analysis: Theory
and applications. ACM Trans. Knowl. Discov. Data,
2(3):11:1–11:37, Oct. 2008.

[20] B. Viswanath, A. Mislove, M. Cha, and K. P. Gum-
madi. On the evolution of user interaction in facebook.
In Proceedings of the 2nd ACM workshop on Online so-
cial networks, pages 37–42. ACM, 2009.

[21] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson.
Accelerating online cp decompositions for higher order
tensors. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1375–1384. ACM, 2016.

	Introduction
	Problem Formulation
	Preliminary Definitions
	Problem Definition

	Proposed Method: SamBaTen
	The heart of SamBaTen

	Experimental Evaluation
	Data-set description
	Synthetic data generation
	Real Data Description

	Evaluation Measures
	Baselines for Comparison
	Experimental Results
	Baselines for Comparison
	Sensitivity of Sampling Factor s
	Sensitivity of Repetition Factor r

	Related Work
	Conclusions
	Acknowledgments

