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Abstract
How close can we zoom in to observe brain activity?
Our understanding is limited by the resolution of imag-
ing modalities that exhibit good spatial but poor tempo-
ral resolution, or vice-versa. In this paper, we propose
BRAINZOOM, an efficient imaging algorithm that cross-
leverages multi-modal brain signals. BRAINZOOM (a)
constructs high resolution brain images from multi-modal
signals, (b) is scalable, and (c) is flexible in that it can
easily incorporate various priors on the brain activities,
such as sparsity, low rank, or smoothness. We carefully
formulate the problem to tackle nonlinearity in the mea-
surements (via variable splitting) and auto-scale between
different modal signals, and judiciously design an inexact
alternating optimization-based algorithmic framework to
handle the problem with provable convergence guaran-
tees. Our experiments using a popular realistic brain sig-
nal simulator to generate fMRI and MEG demonstrate that
high spatio-temporal resolution brain imaging is possible
from these two modalities. The experiments also suggest
that smoothness seems to be the best prior, among several
we tried.

1 Introduction
Research in neuroimaging have resulted in the develop-
ment of several techniques, viz., Electroencephalograms
(EEG) [1], functional Magnetic Imaging (fMRI) [16],
Magnetoencephalograms (MEG) [7], etc. These uni-
modal techniques use different mechanisms to measure
human brain activity. While EEG measures electrical ac-
tivity of the brain, MEG measures magnetic fields gen-
erated by electric currents in the brain, and fMRI mea-
sures metabolic response due to neural activation through
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a blood oxygen-level dependent (BOLD) signal. Due to
the diversity in the sources of these measurements, differ-
ent neuroimaging techniques often have complementary
strengths. For instance, while EEG and MEG have low
spatial but high temporal resolution, fMRI posses just the
opposite – high spatial but low temporal resolution.

Combining two or more of such complementary sig-
nals to overcome limitations posed by individual modali-
ties has resulted in the development of several multimodal
neuroimaging techniques — see [3] for a recent review.
Multi-modal neuroimaging techniques have been of great
interest in the brain imaging community — see [3] for a
recent review. They have been used for source localization
and for learning commonalities across multiple modali-
ties, with many of these methods targeted at reducing the
dimension of the brain image data, or studying specific
hypotheses about relationships between imaging modali-
ties.

However, our interest in this paper lies in reconstruct-
ing super-resolution images of activity across the brain
– that is capturing the union of the information derived
from each modality, not their intersection. While super-
resolution algorithms have been applied in uni-modal set-
tings [22], they have not been widely explored for multi-
modal neuroimaging. We fill this gap by introducing
BRAINZOOM, a novel method for super-resolution recon-
struction of brain activity by combining different modal-
ities of brain imaging. A snapshot of BRAINZOOM’s ca-
pabilities is shown in Figure 1. Our long term goal is to
complement the missing information of each modality, to
ultimately construct the richest possible spatial-temporal
summary of the underlying neural activity.

For the experiments in this paper, we employ BRAIN-
ZOOM to produce super-resolution brain images by com-
bining MEG/EEG and fMRI. However, we note that
BRAINZOOM is more widely applicable and may be used
to create super-resolution images from other modalities as
well. We make the following contributions:
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fMRI: High Spatial, Low Temporal Res.

MEG : Low Spatial, High Temporal Res.

BrainZoom Super-resolution Image: 
High Spatial, High Temporal Res.

Ground Truth

As for the update of W , to avoid heavy computa-
tions, we propose to perform just one simple gradient step,
where the gradient with respect to W can be calculated as

rW f = Z⇤
h
(Z⇤W )T sT

T
s

i
�Z⇤(XsT

T
s )(3.9)

+ µ(W �Z).

To ensure decrease of the cost function value, we need
to make sure that the step-size is less than one over the
Lipschitz constant of W conditioned on Z. Our selection
is

(3.10) w = 1

� ⇣
�max(T sT

T
s ) max(|Z|2) + µ

⌘
,

where �max(·) computes the largest eigenvalue of the
argument matrix, and in Appendix A we prove that it
ensures decrease. Notice that �max(T sT

T
s ) only needs

to be computed once, can then saved for subsequent
iterations.

Now we turn to the update of Z, and we again pro-
pose to go just a similar gradient step to avoid heavy com-
putations. However, the regularization terms kHsZkpp,✏+

kZHtkpp,✏ are non-differentiable. To compensate this, we
first invoke the following property for the `p quasi-norm:

kAkpp,✏ 
X

i,j

p

2

�|ãij |2 + ✏
�(p�2)/2 |aij |2 + constant,

for all ˜A, and the equality holds when A =

˜A. Using this
property, we define ¯f(Z; W , ⌧) as

¯f(Z; W , ⌧) =kXt � ⌧T tZk2F + kXs�(Z⇤W )T sk2F
+ ⇢(kDs⇤(HsZ)k2F + kDt⇤(ZHt)k2F )(3.11)

+ µkZ �W k2F ,

where

(3.12)
Ds =

⇣
|Hs

˜Z|2 + ✏
⌘(p�2)/4

,

Dt =

⇣
| ˜ZHt|2 + ✏

⌘(p�2)/4
,

and ˜Z is from the previous iteration. Notice that when
p = 2, i.e., in the smoothness case, the D matrices are
simply the all one matrices, which makes ¯f = f . In the to-
tal variation case when 0 < p  1, function ¯f(Z; W , ⌧)

is a smooth upperbound function for f(Z, W , ⌧) with re-
spect to Z while fixing W and ⌧ . Then we can apply a
similar gradient descent step with gradient calculated as

rZ
¯f =⌧2T T

t T tZ � ⌧T T
t Xt + µ(Z �W )

+ W ⇤
h
(Z⇤W )T sT

T
s

i
�W ⇤(XsT

T
s )(3.13)

+ HT
s

⇥
D2

s⇤(HsZ)

⇤
+

⇥
D2

t ⇤(ZHt)
⇤
HT

t ,

and step size chosen as

z = 1

�⇣
⌧2�max(T

T
t T t) + �max(T sT

T
s ) max(|W |2)

+ µ + ⇢(max(D2
s)c

2
H + max(D2

t )c
2
H)

⌘
,(3.14)

where cH is a sharp upperbound on the maximum singular
value of the H matrices

(3.15) cH =

(
4, for smoothness (3.5),
2, for total variation (3.6).

Again, in Appendix A we prove that this choice of step
size guarantees decrease of the cost function.

Summarizing (3.8)-(3.14), we propose BRAINZOOM
as the following iterative update rule

(3.16)

BRAINZOOM

⌧  tr(XT
t T tZ)/kT tZk2F

W  W � wrW f

Ds  
�|HsZ|2 + ✏

�(p�2)/4

Dt  
�|ZHt|2 + ✏

�(p�2)/4

Z  Z � zrZ
¯f

3.4 Convergence Properties Although BRAINZOOM
is a very simple algorithm that blends alternating opti-
mization with gradient descent, it has very nice conver-
gence properties, as we show here.

Theorem 1 Let {(Z(r), W (r), ⌧ (r)
)}r be the solution se-

quence produced by the proposed BRAINZOOM (3.16).
We have

1) Every limit point of {(Z(r), W (r), ⌧ (r)
)}r is a sta-

tionary point of Problem (3.7).

2) In addition, the optimality gap between
{(Z(r), W (r), ⌧ (r)

)}r and a stationary point is
at most O(1/r); i.e., the algorithm approaches a
stationary point at least sub-linearly.

The proof of Theorem 1 is relegated to Appendix B.

4 Experiments
In this section, we demonstrate the effectiveness of our
BRAINZOOMwith experimental results on both simulated
dataset and real-world dataset, and support our hypotheses
on our formulated optimization problem.

1. Solution: Does our proposed problem formulation
under our hypotheses provide a better solution com-
pared to others? (other regularizers, convergence
properties, etc)

5

Figure 1: BRAINZOOM effectively reconstructs. BRAINZOOM effectively combines different brain measurement modalities
with complementary strengths with respect to temporal and spatial resolution into a super-resolution, whole-brain image.

• Novel Problem Formulation: In Section 3 we for-
mulate and solve the problem of generating a super-
resolution brain image by combining different modali-
ties (e.g., fMRI and MEG/EEG measurements). To the
best of our knowledge, this is the first work to rigor-
ously formulate this task as we have, as an optimiza-
tion problem with this specific optimization objective,
which takes into account the non-linearity in the fMRI
measurements. Our formulation is also flexible in that
it can easily incorporate a variety of priors that can help
enhance the quality of reconstruction – so that one can
seamlessly try out different hypotheses and pick out the
one that gives the best performance.

• Efficient Algorithm: BRAINZOOM, introduced in
Section 3, uses a novel modified alternating optimiza-
tion method to solve the optimization problem men-
tioned above with high scalability. Through variable
splitting, BRAINZOOM is able to handle nonlinear mea-
surements. We also provide rigorous convergence anal-
ysis of the proposed method.

• Evaluation: Since the ground truth, high-resolution
brain activity is not known, we cannot test the perfor-
mance of our method on real brain data. Instead, in
Section 4 we use simulated brain signals in order to test
the ability of our method to recover the true solution.
We generate synthetic brain activity using the Virtual
Brain (TVB) [12] simulator. TVB is an open-source
platform that creates brain activity simulations using bi-
ologically realistic assumptions, relying on well-known
neuroscience models. With TVB, we can simulate syn-
thetic brain signals with similar patterns as real brain
data, as well as generate multi-modality observations
such as fMRI, MEG, or EEG, at different sampling
rates.

• Reproducibility: We will make our methods, code,
and simulator scripts publicly available upon publica-
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Hi-resolution imaging
Scalability

Quadratic modeling
Convergence proof N/A

Auto-scaling
Generality

Table 1: Comparison between BRAINZOOM and other related
methods along various properties. We observe that BRAIN-
ZOOM overcomes limitations of competing methods.

tion of the paper.

2 Background and Related Work
fMRI and MEG: The exact relationship between neural
activity, observed fMRI, and observed MEG signals is not
fully understood. It is known that fMRI measures the ratio
of oxygenated to deoxygenated hemoglobin in the blood,
at a spatial resolution of approximately 1 mm, and it is
widely accepted that this oxygen fluctuation is related to
the convolution of local neural activity with an impulse re-
sponse that lasts for 8- 10 seconds. It is also believed that
fMRI corresponds more closely to local field potentials
in the brain than to actual spiking [14]. In contrast, the
MEG device measures magnetic fields emanating from
the brain, at 1 msec temporal resolution. These mag-
netic fields are generated from neural currents, and are es-
pecially strong when many neurons are spatially aligned
and fire synchronously. MEG signals also depend, unlike
fMRI, on the direction of the neural currents generating
these magnetic fields. There have been several studies of
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the exact relationship between MEG and fMRI measures
of neural activity. For example, Kujala et al. [11] pro-
vide evidence that fMRI correlates with source-localized
MEG activity in many regions of the brain, that the ex-
act nature of this correlation varies somewhat across the
brain, and that fMRI typically correlates best with the high
frequency components of MEG.
Multi-modal Methods: In the literature, there are two
main classes of methods for analyzing multi-modal brain
imaging data: those that aim to localize a few dominant
‘point’ sources of brain activity using inverse imaging or
high-resolution methods; and those that target the recov-
ery of a few dominant ‘latent’ components. The latter
include popular multi-modal fusion techniques that rely
on factor analysis tools, such as Independent Component
Analysis (ICA) which aims to recover statistically inde-
pendent latent sources of brain activation; and Canoni-
cal Correlation Analysis (CCA) which aims to unravel
sources of co-variation in multiple ‘views’ of the brain
stemming from the different modalities. Variants of PCA
[6], ICA [5], and CCA [8] have been studied for multi-
modal fusion of various brain imaging modalities. See
[2,3,9,10,13,20,21] for additional background on existing
localization and common component extraction methods.

The main difference between our approach and the
aforementioned two broad lines of work is that we aim to
reconstruct a high spatio-temporal resolution image of the
entire brain – not just a few point or dominant sources /
components.
Super-resolution in Image Processing: Super-resolution
via fusing multi-modal data is also an active research
area in image processing. Specifically, fusion of re-
motely sensed hyper-spectral and multi-spectral images
is of great interest [15]. Both hyper- and multi-spectral
images are special images whose pixels span many fre-
quency bands and can provide spectral information of
the materials contained in the pixels – which finds many
applications in geoscience, mineral detection, and food
safety. Hyper-spectral images have very high spectral res-
olution but very coarse spatial resolution, and the situation
of the multi-spectral images is exactly the opposite. Much
effort has been spent on fusing these two types images
that captured on the sites, to create super-resolution data
in both space and frequency. The task is very similar to
ours, except that the transformation from the virtual super-
resolution image (i.e., Z) to hyper- and multi-spectral im-
ages are both linear (to be precise, sub-sampling) [19,23].
But in our problem, the transformation from Z to fMRI
is nonlinear – which poses a much more challenging opti-
mization problem.

3 Proposed Method
In this section, we first present assumptions behind our
modeling of entire brain super-resolution image construc-
tion from multi-modal neuroimaging data, and then for-
mulate it as an optimization problem. Subsequently, we
discuss various priors we can add to the optimization ob-
jective. Then we propose BRAINZOOM, a highly scalable
and flexible algorithmic framework that solves the above
optimization problem, while provably converging to a sta-
tionary point at least sub-linearly, despite the fact that the
problem is non-convex and possibly NP-hard.

3.1 Notations & Modeling Assumptions Viewing the
brain as a 3D object, we can imagine its volume parti-
tioned into many small 3D areas called voxels (equiva-
lent to pixels in a 2D image). We are interested to know
the intensity of the neural activity at each of these vox-
els, during a particular time frame. We start by denoting
the complete brain activity as a matrix Z, where each col-
umn of Z is the (vectorized) brain activity at all voxels at
a particular time tick, and each row of Z corresponds to
the brain activity at a particular voxel, at all recorded time
ticks. However, we are not able to observe Z directly, and
resort to fMRI and MEG/EEG images as inputs. The goal
of this paper is to reconstruct the high-resolution brain ac-
tivity matrix Z in both spatial and temporal domain, given
the MEG and fMRI measurements.

Given the different phenomena observed by MEG
and fMRI, what shall we define as the units of our latent
neural activity Z? In this paper, we assume Z is a measure
of the intensity of neural activity that is linearly related to
the MEG or EEG observations. Let Xt denote the high
temporal-resolution image given by MEG or EEG. It is
related to Z through a linear operator T t that operates on
the spatial domain, possibly corrupted with noise.

(3.1) Xt = T tZ

Notice that the temporal resolution of Z is the same as
that of the given MEG/EEG measurements, since there is
no way we can go beyond them in this dimension.

To capture the fact that fMRI is insensitive to the di-
rection of the activity that MEG observes, we model fMRI
as dependent on a linear function of the square of the Z
activity. Although this is at best an approximation of the
unknown, complex relationship between neural spiking,
local field potentials, neural currents, and observed fMRI
and MEG, this model does capture some basic properties,
and it enables us to frame a well-posed problem of solv-
ing for high spatial and temporal resolution measure of
neural activity. The success of our method in a simula-
tor [12] of brain activity suggests that this approximation
is reasonable. Let Xs be the high spatial resolution im-

3
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age captured by fMRI. We model the dependence between
Xs and Z through a linear operator Ts as shown below,
again possibly corrupted with noise.

(3.2) Xs = �|Z|2T s,

Here, �|Z|2 is the element-wise square of Z with an un-
known scaling factor �. We note that he spatial resolution
of Z is the same as that of the given fMRI images.

Reconstructing the high-resolution brain activity ma-
trix Z in both the spatial and temporal domains, given the
fMRI measurements Xs and MEG/EEG measurements
Xt, and their corresponding sensing matrices T s and T t,
is a highly ill-posed inverse problem, since the number of
measurements we are given is much smaller than the num-
ber of unknowns we want to estimate. One has to impose
additional constraints on the neural activity to make the
problem well-defined, which will be discussed in detail
in the next sections. Furthermore, considering the rela-
tionship between the underlying neural activity Z and the
fMRI measurements as a nonlinear transformation makes
the problem even harder.

3.2 Problem formulation According to the physics of
multi-modal brain imaging measurements described in
equations (3.1) and (3.2), the problem of infering the
super-resolution description of neural activity Z can be
formulated naively as the following optimization prob-
lem,

min

Z,�
kXt�T tZk2F +kXs��|Z|2T sk2F +r(Z),(3.3)

where r(Z) is some regularization function we impose on
Z to make the estimation problem well-defined. Before
we dive into different assumptions on the brain activities,
let us first focus on the second term that tries to fit the
fMRI data, which is a sixth-order polynomial with respect
to � and Z together, and makes the problem highly non-
convex and seemingly difficult to tackle.

In terms of �, we notice that it is just an unknown
scaling factor, and we can equivalently put it into the first
term in (3.3)

min

Z,⌧
kXt�⌧T tZk2F +kXs�|Z|2T sk2F +r(Z),

resulting the optimal solution Z to be just a scaled ver-
sion of that of (3.3), which is usually inconsequential in
practice. With respect to the term that involves |Z|2, we
invoke the variable splitting trick by introducing another
variable W , and at the same time try to minimize the dif-
ference between Z and W in the following way

min

Z,W ,⌧
kXt � ⌧T tZk2F + kXs � (Z⇤W )T sk2F
+ µkZ �W k2F + r(Z),(3.4)

where ⇤ denotes Hadamard (element-wise) multiplication.
Although the resulting formulation (3.4) is still non-
convex, the idea is to alternatingly update Z, W , and ⌧ ,
so that the cost decreases monotonically. With careful
design of the algorithm, we can even claim stronger
convergence results, which will be shown.

There exist a lot of commonly used priors that can
be used to reconstruct high-resolution brain signals in our
formulation (3.4). In this work we consider the following
possibilities:

• minimum energy: r(Z)=⇢kZk2F ;

• sparsity: r(Z)=⇢kZk1, the sum of absolute values;

• low rank: r(Z)=⇢kZk⇤, the sum of singular values;

• smoothness: r(Z)=⇢(kHsZk2F + kZHtk2F ),
where matrices Ht and Hs have the form [4]

(3.5)

2

6664

�1 2 �1 0 . . .
0 �1 2 �1 . . .
...

. . .
�1 2 �1

3

7775
,

with appropriate sizes.

• total variation: r(Z) = ⇢(kHsZkpp,✏ + kZHtkpp,✏),
similar to the smoothness regularization, but in this case
the matrices Hs and Ht have the form

(3.6)

2

6664

1 �1 0 . . .
0 1 �1 . . .
...

. . .
1 �1

3

7775
,

with appropriate sizes and k · kpp,✏ denotes the `p quasi-
norm defined as

kAkpp,✏ =

X

i,j

(|aij |2 + ✏)p/2, 0 < p  2.

For p = 2, this norm reduces to the normal `2 norm that
is used in the smoothness regularization; for 0 < p  1,
this regularization encourages the solution to be piece-
wise constant, which is something we want to promote
in this case.

In the rest of this section we will design an algorithm
based on the latter two regularizations, which have similar
forms but only differ in the definitions of the H matrices,
for the following reasons:

1. Because fMRI measures convolutions of |Z|2, there
is an inherent sign ambiguity in the entries of Z that
are not sampled by the T t matrix using the first three
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regularizations, whereas by enforcing elements that
are spatially and temporally close to each other to
have similar values, this inherent sign ambiguity can
be resolved. Therefore, before real validations, our
conjecture is that the latter two regularizations seem
to be better models.

2. Computationally, the first three regularizations can be
handled by very simple proximity operators [17], thus
it will be easy to modify the forth-coming algorithm
to accommodate them. The smoothness and total-
variation regularization, on the other hand, are more
complicated to deal with—this is partly why we choose
to use the `p quasi-norm rather than the more com-
monly used `1 norm to promote the effect that we want
in Z.

Towards this end, we formalize the problem formula-
tion as

min

Z,W ,⌧
kXt � ⌧T tZk2F + kXs � (Z⇤W )T sk2F
+ µkZ �W k2F + ⇢(kHsZkpp,✏ + kZHtkpp,✏),(3.7)

and we denote the cost function in (3.7) as f(Z, W , ⌧).

3.3 Proposed method Based on the formulation, we
propose BRAINZOOM, a highly scalable and flexible al-
gorithmic framework for the brain super-resolution prob-
lem based on alternating optimization.

Let us start with the update of ⌧ , which is independent
of W , and by fixing Z, the conditionally optimal update
of ⌧ is

(3.8) ⌧  tr(XT
t T tZ)/kT tZk2F .

As for the update of W , to avoid heavy computa-
tions, we propose to perform just one simple gradient step,
where the gradient with respect to W can be calculated as

rW f = Z⇤
h
(Z⇤W )T sT

T
s

i
�Z⇤(XsT

T
s )(3.9)

+ µ(W �Z).

To ensure decrease of the cost function value, we need
to make sure that the step-size is less than one over the
Lipschitz constant of W conditioned on Z. Our selection
is

(3.10) w = 1

� ⇣
�max(T sT

T
s ) max(|Z|2) + µ

⌘
,

where �max(·) computes the largest eigenvalue of the
argument matrix, and in Appendix A we prove that it
ensures decrease. Notice that �max(T sT

T
s ) only needs

to be computed once, can then saved for subsequent
iterations.

Now we turn to the update of Z, and we again pro-
pose to go just a similar gradient step to avoid heavy com-
putations. However, the regularization terms kHsZkpp,✏+

kZHtkpp,✏ are non-differentiable. To compensate this, we
first invoke the following property for the `p quasi-norm:

kAkpp,✏ 
X

i,j

p

2

�|ãij |2 + ✏
�(p�2)/2 |aij |2 + constant,

for all ˜A, and the equality holds when A =

˜A. Using this
property, we define ¯f(Z; W , ⌧) as

¯f(Z; W , ⌧) =kXt � ⌧T tZk2F + kXs�(Z⇤W )T sk2F
+ ⇢(kDs⇤(HsZ)k2F + kDt⇤(ZHt)k2F )(3.11)

+ µkZ �W k2F ,

where

(3.12)
Ds =

⇣
|Hs

˜Z|2 + ✏
⌘(p�2)/4

,

Dt =

⇣
| ˜ZHt|2 + ✏

⌘(p�2)/4
,

and ˜Z is from the previous iteration. Notice that when
p = 2, i.e., in the smoothness case, the D matrices are
simply the all one matrices, which makes ¯f = f . In the to-
tal variation case when 0 < p  1, function ¯f(Z; W , ⌧)

is a smooth upperbound function for f(Z, W , ⌧) with re-
spect to Z while fixing W and ⌧ . Then we can apply a
similar gradient descent step with gradient calculated as

rZ
¯f =⌧2T T

t T tZ � ⌧T T
t Xt + µ(Z �W )

+ W ⇤
h
(Z⇤W )T sT

T
s

i
�W ⇤(XsT

T
s )(3.13)

+ HT
s

⇥
D2

s⇤(HsZ)

⇤
+

⇥
D2

t ⇤(ZHt)
⇤
HT

t ,

and step size chosen as

z = 1

�⇣
⌧2�max(T

T
t T t) + �max(T sT

T
s ) max(|W |2)

+ µ + ⇢(max(D2
s)c

2
H + max(D2

t )c
2
H)

⌘
,(3.14)

where cH is a sharp upperbound on the maximum singular
value of the H matrices

(3.15) cH =

(
4, for smoothness (3.5),
2, for total variation (3.6).

Again, in Appendix A we prove that this choice of step
size guarantees decrease of the cost function.
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Summarizing (3.8)-(3.14), we propose BRAINZOOM
as the following iterative update rule

(3.16)

BRAINZOOM

⌧  tr(XT
t T tZ)/kT tZk2F

W  W � wrW f

Ds  
�|HsZ|2 + ✏

�(p�2)/4

Dt  
�|ZHt|2 + ✏

�(p�2)/4

Z  Z � zrZ
¯f

3.4 Convergence Properties Although BRAINZOOM
is a very simple algorithm that blends alternating opti-
mization with gradient descent, it has very nice conver-
gence properties, as we show here.

Theorem 1 Let {(Z(r), W (r), ⌧ (r)
)}r be the solution se-

quence produced by the proposed BRAINZOOM (3.16).
We have
1) Every limit point of {(Z(r), W (r), ⌧ (r)

)}r is a station-
ary point of Problem (3.7).
2) The optimality gap between {(Z(r), W (r), ⌧ (r)

)}r and
a stationary point is at most O(1/r); i.e., the algorithm
approaches a stationary point at least sub-linearly.

The proof of Theorem 1 is relegated to Appendix B.
Remark. The proposed BRAINZOOM is a flexible

combination between alternating optimization and gradi-
ent descent. A clear advantage is that all the variations
that people have been using to modify the algorithm to
accommodate constraints and non-linearities, by simply
putting an additional projection or proximal step. This in-
cludes the first three regularizations that we discussed in
Section 3.2, namely, minimum energy, sparsity, and low
rank. Moreover, if we have the prior knowledge that the
underlying signal Z is non-negative, we could also add a
simple projection step to zero out the negative entries. All
the convergence results can be similarly applied.

4 Experiments
We evaluate BRAINZOOM on simulated brain data. Since
in real neuroscience data we do not have access to the
ground truth super-resolution brain activity, it is difficult
to assess the performance our algorithm. Therefore, in-
stead of using unattainable ground truth brain images,
we generate realistic brain signals using an open source
framework, the Virtual Brain (TVB) [12], which is able
to simulate brain networks with biologically realistic con-
nectivity. TVB implements several well-known neuro-
science models, and can produce brain signals with sim-
ilar patterns as real brain data, as well as generate multi-

modal observations such as fMRI, MEG, or EEG, at dif-
ferent sampling rates.

In the following few lines, we describe details of the
simulation. First, we select a type of stimulus, and apply
it to the brain at a location and time of choice. In this
experiment, we use a 3s pulse stimulus, with 3s delay.
TVB records the response of the brain to this stimulus,
at a very high frequency, with an integration step size of
0.0625ms. From this response we generate our Z as the
temporal average of this raw data, sampled at 200ms.

We show Z in matrix form in Figure 2, where the hor-
izontal axis represents time (we get 300 samples in time,
over a total of 60s), and the vertical axis represents 16384
voxels (vectorized). Next, TVB can create multi-modality
observations of this underlying signal. We sample MEG
data at 200ms, and fMRI data at 1000ms. The MEG data
is produced by TVB by projecting the underlying signal
to the surface of the brain, at the predefined location of
248 MEG sensors. This projection is also encoded in our
Tt matrix. The fMRI data is obtained by convolving the
brain signal with a hemodynamic response function (hrf)
of choice. Here, we chose the Gamma hrf that is given
by f(t) = (

t
⌧ )

(n�1) ⇤ exp(� t
⌧ )

⌧(n�1)! with the default parame-
ters suggested by TVB. We also encode this hrf in our Ts

matrix. Note that TVB applies this convolution directly
on underlying signal Z, resulting in a simple linear trans-
formation. Since in our method we can model a more
complex relationship between fMRI and Z that TVB does
not capture, and we want to test if our algorithm can re-
cover the underlying signal under this condition, we mod-
ify generative process of the fMRI measurements to cap-
ture this non-linearity – i.e., we set the fMRI signal to be
the convolution of |Z|2 and the hrf described above.

Using the fMRI, MEG, Ts and Tt thus constructed,
we apply our algorithm to recover the super-resolution
brain Z. We show Z, MEG, and fMRI as space ⇥
time matrices in Figures 3 and 4, respectively. Figure 2
shows our reconstructed Z, using the smoothing regular-
izer. One can see that the reconstructed Z matches the
ground truth very well, although the recovering problem is
a challenging under-determined non-linear inverse prob-
lem. This suggests that the proposed algorithm combined
with the smoothness regularization is effective in fusing
MEG and fMRI data.

We also map the above space⇥time matrices back to
brain manifolds at different time points and show some
interesting results in Figure 5. Here, we present two
fMRI images as in the right column, which are recorded
at time points 38.0s and 40.0s, respectively. Before 38.0s,
there was no activity in the brain (cf. the upper-left
subfigure). At time point 38.0s, a stimulus is presented
at three regions of the brain, and the activity spans a
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(a) Ground truth.
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(b) Reconstructed.
Figure 2: Reconstructed Z matches the ground truth. Ground truth Z vs reconstructed Z.

MEG

time
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s
e

n
s
o
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200

Figure 3: MEG for 248 sensors ⇥ 300 time points, across 60s
of simulation.

duration starting from 38.0s across 40.0s. Our recovered
Z’s at 37.9s and 39.9s – when fMRI are not recorded
– are presented in the middle column. One can see
that the recovered Z’s match the true Z’s very well.
This indicates that our approach correctly interpolates the
time points by using the information provided by MEG,
thereby achieving temporal super-resolution.

We also show the results obtained by using the min-
imal energy regularization in Figure 6. It can be seen
that the interpolation between 39.0s and 40.0s is not as
clear as we have seen in Figure 5. In addition, at the time
point prior to the stimulus being present, there is an ob-
vious artifact (bright spot) near the right edge of the esti-
mated brain. This suggests that under the considered sig-
nal model, smoothness is a more promising regularizer.

5 Conclusions
Estimating high spatial-temporal neural activity in the
brain from multiple imperfect imaging methods is a key to
studying and understanding brain function. In this paper
we introduce BRAINZOOM, a principled algorithmic tool
to address the brain activity super-resolution problem.

Our contributions are as follows:

• Novel Problem Formulation: We formulate the prob-
lem of recovering a super-resolution image from multi-
modal brain signals. To the best of our knowledge, this

fMRI

time

10 20 30 40 50 60

v
o

x
e

ls

2000

4000

6000

8000

10000

12000

14000

16000

Figure 4: fMRI for 16384 voxels ⇥60 time points, across 60s
of simulation.

work is the first to directly address the reconstruction
of a super-resolution brain image for the whole brain.

• Efficient Algorithm: We propose BRAINZOOM, an
algorithmic framework that

– handles non-linearity through variable splitting
– learns the unknown scaling between multi-modal

signals
– incorporates a large number of regularizations
– admits simple and efficient iterative updates
– provably converges

• Evaluation: Our experimental results on the realis-
tic simulated data matches with intuition. Both the
space⇥time plots of the estimated super-resolution ma-
trices and the brain-manifold illustration show that our
recovered space-time super-resolution brain matches
with the ground-truth very well.

• Reproducibility: We are planning to release our source
code and data upon publication. Furthermore, in order
to foster and encourage reproduction and extension
of our work, we describe in detail how we generate
realistic data using an open source brain simulator
which is widely used by neuroscientists.
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Figure 5: Smoothness regularizer recovers well. True brain activity, predicted brain activity and fMRI at two time points: when
the stimulus is present (top row), and when it is absent (bottom row). Reconstructed Z is by using the smoothness regularizer and
� = 1, 000.

Figure 6: Minimal energy regularizer fails to recover. True brain activity, predicted brain activity and fMRI at two time points:
when the stimulus is present (top row), and when it is absent (bottom row). Reconstructed Z is by using the minimal energy
regularizer.
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Supplementary Materials

A Step size choices.
In this appendix we show that the step sizes chosen for
BRAINZOOM leads to monotonic decrease of the cost
function of (3.7). The idea is to simply show that the
selected step sizes are smaller than the reciprocal of the
respective Liptchitz constants of the conditional functions
while fixing the other variables. We show that for the step
size of Z, and that of W follow similar arguments.

The Liptchitz constant is the supremum of the spec-
tral norm of the Hessian matrix of a function—for
quadratic functions, it boils down to the spectral norm
of Hessian. To derive it, let us first write the Z-
subproblem 3.11 in the vectorized form

¯f(z; w, ⌧) = kxt � ⌧ ¯T tzk2 + kxs � ¯T sDiag(w)zk2
+⇢
�kDiag(ds)

¯Hszk2 + kDiag(dt)
¯Htzk2

�
(A.1)

+µkz �wk2,
where the lowercase letters are vectorized versions of the
matrices denoted by the uppercase letters, and

¯T t = I ⌦ T t, ¯T s = T s ⌦ I,
¯Hs = I ⌦Hs, ¯Ht = Ht ⌦ I.

The Hessian matrix can easily be calculated as

r2
z

¯f = ⌧2
¯T

T
t

¯T t + Diag(w)

¯T
T
s

¯T sDiag(w)(A.2)

+⇢ ¯H
T
s Diag(d2

s)
¯Hs + ⇢ ¯H

T
t Diag(d2

t )
¯Ht + µI,

a summation of several individual matrices. An upper-
bound on the spectral norm of r2

z
¯f is the sum of the in-

dividual spectral norms. Furthermore, we invoke the fol-
lowing properties on the matrix spectral norm:

kABk  kAkkBk,
kA⌦Bk = kAkkBk.

Then we have that

kr2
z

¯fk  ⌧2�max(T
T
t T t) + max(w2

)�max(T
T
t T t)

+⇢
�
max(d2

s)kHsk2 + max(d2
t )kHtk2

�
+ µ.

Finally, we show that kHsk and kHtk are upperbounded
by cH defined in (3.15), by taking the total variation reg-
ularization as an example, assuming its size is(n�1)⇥n.

The definition of matrix spectral norm is

kHk = max

kuk=1
kHuk.

Assume ˆH is obtain by adding one more row into H ,
then we trivially have kHk  k ˆHk. Consider ˆH to be

the following circulant matrix

ˆH =

2

666664

1 �1 0 . . .
0 1 �1 . . .
...

. . .
1 �1

�1 0 . . . 0 1

3

777775
,

it can be diagonalized by the n-point discrete Fourier
transform (DFT) matrix �

ˆH = �Diag(

ˆh)�⇤,

where ˆh is the DFT of first row of ˆH . Because �
has orthogonal columns, by rotating the elements of ˆh
to be non-negative real, this becomes the singular value
decomposition of ˆH , and the largest absolute value of ˆh
is the spectral norm of k ˆHk. By the definition of DFT,

ˆh = 1 + [ 1 e�i/n e�i2/n ... e�i(n�1)/n
]

T ,

therefore we trivially have max(|ˆh|)  2, thus

kHk  2

Similarly, for the smoothness regularization, kHk  4.

B Proof of Theorem 1
Two claims were made in Theorem 1. Here we separate
them into two propositions, and prove them individually.

Proposition 1 Let {(Z(r), W (r), ⌧ (r)
)}r be the solution

sequence produced by the proposed BRAINZOOM (3.16),
then every limit point of {(Z(r), W (r), ⌧ (r)

)}r is a sta-
tionary point of Problem (3.7).

Proof. We prove that BRAINZOOM described in (3.16)
falls into the framework of successive upper-bound mini-
mization (BSUM) [18]. As a result, every limit point is a
stationary point, according to [18, Theorem 2]. To do so,
we re-write the algorithm as

⌧ (r+1)  arg min

⌧
f(Z(r), W (r), ⌧),

W (r+1)  arg min

W
uw(W ; Z(r), W (r), ⌧ (r+1)

),

Z(r+1)  arg min

Z
uz(Z; W (r+1), Z(r), ⌧ (r+1)

),

where the arg min’s are uniquely defined, function uz is
an auxiliary function that satisfies that 8 ˜Z, ˜W , ⌧̃ ,

uz(Z;

˜Z, ˜W , ⌧̃) � f(Z, ˜W , ⌧̃), 8Z
uz(

˜Z;

˜Z, ˜W , ⌧̃) = f(

˜Z, ˜W , ⌧̃),

rZuz(
˜Z;

˜Z, ˜W , ⌧̃) = rZf(

˜Z, ˜W , ⌧̃),
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and similarly for uw.
For the update of ⌧ , it is a scalar least-squares prob-

lem, and the minimizer is unique as long as kT tZk2F 6= 0,
which can be guaranteed as long as the regularization pa-
rameter ⇢ is not too big.

As for the auxiliary function with respect to Z, we
define it as

uz(Z;

˜Z, ˜W , ⌧̃) =

¯f(

˜Z, ˜W , ⌧̃)+

D
rZ

¯f(

˜Z, ˜W , ⌧̃), Z � ˜Z
E

+

1

2z
kZ � ˜Zk2F .

As we have shown in Appendix A, 1/z is larger than the
Lipschitz constant of ¯f when fixing W and ⌧ , therefore

uz(Z;

˜Z, ˜W , ⌧̃) � ¯f(Z;

˜W , ⌧̃) � f(Z, ˜W , ⌧̃).

It is also easy to see that the function value and gradient
also coincides with that of f with respect to ˜Z. Further-
more, uz is strongly convex, implying the minimizer is
unique.

Similarly, and with simpler derivations, we have that
uw also satisfies the sharp upperbound requirements and
the minimizer is unique. Invoking [18, Theorem 2], every
limit point of BRAINZOOM is a stationary point.

Proposition 2 In addition to Proposition 1, the optimality
gap between {(Z(r), W (r), ⌧ (r)

)}r and a stationary point
is at most O(1/r); i.e., the algorithm approaches a
stationary point at least sub-linearly.

Proof. For the ⌧ -subproblem, because

⌧ (r+1)
= tr(XT

t T tZ
(r)

)/kT tZ
(r)k2F ,

we have that

f(Z(r), W (r), ⌧ (r)
)� f(Z(r), W (r), ⌧ (r+1)

)

(B.3)

= kXt � ⌧ (r)T tZ
(r)k2F � kXt � ⌧ (r+1)T tZ

(r)k2F
=

1

kT tZ
(r)k2F

⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2

= t(r)
⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2
,

where we define t(r) = 1/kT tZ
(r)k2F

For the W -subproblem, we have the following in-
equality:

f(Z(r), W (r+1), ⌧ (r+1)
)(B.4)

 f(Z(r), W (r), ⌧ (r+1)
) +

L(r)
w

2

kW (r) �W (r+1)k2F
+

D
rZf(Z(r), W (r), ⌧ (r+1)

), W (r+1) �W (r)
E

.

We also notice that

W (r+1)
= arg min

W

1

2w(r)
kW �W (r)k2F

+

D
rW f(Z(r), W (r), ⌧ (r+1)

), W �W (r)
E

,

(B.5)

which means
D
rW f(Z(r), W (r), ⌧ (r+1)

), W (r+1) �W (r)
E

+

1

2w(r)
kW (r+1) �W (r)k2F  0,(B.6)

therefore

f(Z(r), W (r), ⌧ (r+1)
)� f(Z(r), W (r+1), ⌧ (r+1)

)

�
 

1

2w(r)
� L(r)

w

2

!
kW (r+1) �W (r)k2F .(B.7)

On the other hand, since W (r+1) is the minimizer of
(B.5), by the first order optimality condition, we have

rW f(Z(r), W (r), ⌧ (r+1)
)� 1

w(r)
(W (r+1)�W (r)

) = 0.

In sum,

f(Z(r), W (r), ⌧ (r+1)
)�f(Z(r), W (r+1), ⌧ (r+1)

)(B.8)

�
 

w(r)

2

� L(r)
w

2w(r)2

!
krW f(Z(r), W (r), ⌧ (r+1)

)k2F .

Similarly for Z, we can show that

f(Z(r), W (r+1), ⌧ (r+1)
)�f(Z(r+1), W (r+1), ⌧ (r+1)

)

(B.9)

�
 

z(r)

2

� L(r)
z

2z(r)2

!
krZf(Z(r), W (r+1), ⌧ (r+1)

)k2F .

Combining (B.3), (B.8), and (B.9), we obtain

f(Z(r), W (r), ⌧ (r)
)� f(Z(r+1), W (r+1), ⌧ (r+1)

)

� t(r)
⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2
(B.10)

+

 
w(r)

2

� L(r)
w

2w(r)2

!
krW f(Z(r), W (r), ⌧ (r+1)

)k2F

+

 
z(r)

2

� L(r)
z

2z(r)2

!
krZf(Z(r), W (r+1), ⌧ (r+1)

)k2F .

To show the convergence rate, let us define

�(r)
=

⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2

+ krW f(Z(r), W (r), ⌧ (r+1)
)k2F

+ krZf(Z(r), W (r+1), ⌧ (r+1)
)k2F

11
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One can see that

�(r) ! 0 =)
⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2
! 0

krW f(Z(r), W (r), ⌧ (r+1)
)k2F ! 0

krZf(Z(r), W (r+1), ⌧ (r+1)
)k2F ! 0

which implies a stationary point is attained. Let us assume
that the first time �(r) < " requires T iterations. Then,
summing up (B.10) over r = 1, ..., T , we have

f(Z(1), W (1), ⌧ (1)
)� f(Z(T ), W (T ), ⌧ (T )

)

�
TX

r=1

t(r)
⇣
@⌧f(Z(r), W (r), ⌧ (r)

)

⌘2

+

TX

r=1

 
w(r)

2

� L(r)
w

2w(r)2

!
krW f(Z(r), W (r), ⌧ (r+1)

)k2F

+

TX

r=1

 
z(r)

2

� L(r)
z

2z(r)2

!
krZf(Z(r), W (r+1), ⌧ (r+1)

)k2F .

�
TX

r=1

c�(r)(B.11)

where

c = min

r

(
t(r),

 
w(r)

2

� L(r)
w

2w(r)2

!
,

 
z(r)

2

� L(r)
z

2z(r)2

!)
.

The above implies

f(Z(1), W (1), ⌧ (1)
)� f(Z(T ), W (T ), ⌧ (T )

)

T
� c�(r),

and so

�(r)  1

T

 
f(Z(1), W (1), ⌧ (1)

)� f(Z?, W ?, ⌧?
)

c

!
,

where Z?, W ?, ⌧? denote a global optimal solution of
Problem (3.7). This completes the proof.
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