
MalSpot: Multi2 Malicious Network Behavior
Patterns Analysis

Ching-Hao Mao1, Chung-Jung Wu1, Evangelos E. Papalexakis2, Christos
Faloutsos2, and Kuo-Chen Lee1

1 Institute for Information Industry, Taipei, Taiwan
{chmao,cklonger,kclee}@iii.org.tw

2 Cargegie Mellon University, Pittsburgh, PA, USA
{epapalex,christos}@cs.cmu.edu

Abstract. What are the patterns that typical network attackers ex-
hibit? For a given malicious network behaviors, are its attacks spread uni-
formly over time? In this work, we develop MalSpot, multi-resolution
and multi-linear (Multi2) network analysis system in order to discover
such malicious patterns, so that we can use them later for attack detec-
tion, when attacks are concurrent with legitimate traffic. We designed
and deployed MalSpot, which employs multi-linear analysis with dif-
ferent time resolutions, running on top of MapReduce (Hadoop), and we
identify patterns across attackers, attacked institutions and variation of
time scales. We collect over a terabyte of proven malicious traces (along
with benign ones), from the Taiwanese government security operation
center (G-SOC) , during the entire year of 2012. We showcase the effec-
tiveness of MalSpot, by discovering interesting patterns and anomalies
on this enormous dataset. We observed static and time-evolving pat-
terns, that a vast majority of the known malicious behavior seem to
follow.

Keywords: multi-resolution, tensor, anmoaly detection, multi-linear, uncorre-
lated levels

1 Introduction

In today’s wide interconnected world, malicious network attacks have a long
incubation period, and as a result, existing state-of-the-art information secu-
rity/data analysis mechanisms find it very challenging to compete against those
attacks in a timely manner. Information security monitoring enterprises have
limited information and, hence, fail to see the big picture of the attacks that are
being orchestrated. However, due to it’s immense scale, the Internet provides us
with a large variety of data, both structured (e.g. logs), as well as unstructured,
that can be used in aid of information security analysis. Thus, today’s Internet’s
scale calls for big data analysis techniques. The main focus of the present work is



to investigate large-scale and stealthy malware behaviour. Our analysis is based
on considerable number of logs from real security information event management
systems.

Detection of stealthy attacks is particularly challenging, since, statistically,
they are hard to distinguish from normal connections. Furthermore, obtaining
attack data (e.g. through a network sniffer or a honeynet) poses challenges in its
own right. Dainotti et al.[1] employ a horizontal scan of the entire IPv4 address
space, in order to detect attacks created by the Sality botnet. Chen et al.[8] pro-
pose a scalable network forensic mechanism for stealthy, self-propagating attack
detection; However, both these state-of-the-art methods are specialized in terms
of the attacks they target. Therefore, there is still need for a tool that is able
to identify attacks without specific assumptions of their characteristics or their
behaviour/propagation pattern.

Key to the discovery of malicious patterns is the summarization of the net-
work behaviour, characteristics, and propagation of a connection. Therefore, we
need a systematic and scalable approach which is able to effectively summarize
large heterogeneous pieces of data that represent different aspects of the network.
Such tools can be drawn from time evolving graph mining and tensor analysis
literature. In particular tensors or multi-dimensional arrays have appeared in nu-
merous interesting application including clustering, trend & anomaly detection
[6], and network forensics [3]. In [13] the authors propose GigaTensor, a scalable,
distributed algorithm for large scale tensor decomposition. In this work, we lever-
age GigaTensor to the end of stealthy malware detection, without assuming prior
knowledge on the malware’s behaviour.

A more formal definition of the problem at hand is as follows

Problem 1. Attack Patterns Discovery in MalSpot

– Given: (1) intrusion detection system (IDS) event logs, recording 〈 event name,
timestamp, target ip 〉 (2) Honeynet firewall logs, recording 〈 source ip, tar-
get ip, timestamp 〉

– Find: (1) the suspicious and common patterns in all three modes/aspects
of the data, (2) provide an intuitive visualization of the above patterns, and
(3) scale up in millions of nodes in our network.

Guided by the format of the data at hand, we propose MalSpot which
choses to formulate the problem as multi-linear solution as well as tensor anal-
ysis. Additionally, we propose to experiment with the granularity of the time
window in our data; hence, we propose a multi-resolution approach, which will
be able to identify different types of anomalies, in uncorrelated levels of temporal
granularity.

Definition 1 (Uncorrelated Levels) Two different levels of temporal gran-
ularity are called uncorrelated, if the network behavior in those levels, for a
particular node, or set of nodes, is significantly different. For instance, a set of
nodes may experience different patterns in network traffic in an hourly scale, as
opposed to a daily scale.



By leveraging multi-level, multi-linear analysis of the aforementioned data,
we are able to conduct scalable and efficient anomaly detection. Our main con-
tributions are the following:

– Design of the MalSpot system: leveraging hadoop, our proposed system
can scale up to arbitrarily big datasets, and it is scales near linearly with
the network trace size (number of non-zero entries).

– Discoveries: we report that attacks come in different flavours: there are, for
example, attacks that are particularly short in time and stop showing after
a period of time, while other attacks are more persistent, or focus only on a
specific port.

The benefit from using MalSpot as opposed to standard techniques is the fact
that by doing so, we are able to detect correlations of entities participating in
a heterogeneous network for a very long term, and additionally detect multi-
aspect correlations of entities (e.g. using the port number as a dimension), the
comparison is as shown in Table 1.

Table 1. Qualitative analysis of commercial SIEM event analysis packages, as com-
pared to our proposed method.

Time Granularity Anomaly Pattern
Detection Discovery

MalSpot Second to Year X X
Splunk Second to Day x x
ArcSight (HP) Second to Min x x

The rest of this paper is organized as follows: related work is outlined in
Section 2. We first elaborate on MalSpot, in Section 3, we then provide ex-
perimental studies in Section 4. Finally, Section 5 concludes the discussion and
highlights future directions.

2 Related Work

For handling huge collections of time-evolving events, [9] proposes a multi-
resolution clustering scheme for time series data using k-means clustering and
progressively renes the clusters. In order to discover the streaming pattern in
multiple time-series, [11] propose SPIRIT (Streaming Pattern dIscoveRy in mul-
tIple Time-series) which can incrementally find correlations and hidden variables
by means of using principal components analysis (PCA) and singular value de-
composition (SVD) to summarize the key trends in the entire stream collection.
In [10] the authors propose TriMine which consider multiple features to provide
hidden topics modeling and forecast future events. In [4] the authors apply SVD



to compress sensor data sequences by decomposing them into local patterns and
weight variables.

Tensors and tensor decompositions have been extensively used in a vari-
ety of fields, including but not limited to Data Mining, Chemometrics, Signal
Processing and Psychology. A concise review of tensor decompositions in the
literature can be found in [5]. In this particular work, we focus on the so called
CP/PARAFAC decomposition, however, [5] provides an overview of the entire
variety of decompositions that have been introduced.

In the immediate field of interest, anomaly detection, there has been a fair
amount of tensor applications. In particular, [2] develop a decomposition model
that is suitable for stream data mining and anomaly detection. The authors of
[6] introduce a scalable anomaly detection framework using tensors. In [12] the
authors perform anomaly detection in a (source IP, destination IP, port number)
dataset, and in [7] the authors operate on (source IP, destination IP, port number,
timestamp) dataset. Finally, in [3] the authors propose a framework for anomaly
detection in multi-aspect data that is based in tensor decompositions.

In terms of scalable tensor decompositions, [12] proposes a fast, sparse and
approximate method that scales very well mostly in multicore environments.
In [13], the authors propose a MapReduce, scalable and distributed algorithm
for CP/PARAFAC; this suits better our purpose, since our data resides in a
distributed file system.

3 MalSpot

In this section, we describe the MalSpot, an approach for finding the pat-
tern in huge data from scalable design. The MalSpot has two modes, i.e.,
single-resolution mode and multi-resolution mode based on multi-linear analysis
process. The notations are shown in Table 2.

Initially, given the data description, provided a few lines above, we are able
to form three mode tensors, whose non-zero entries correspond to the non-zero
entries of the network logs. Since the logs record counts of events, and due to
high data skew, it is often the case that a few set of connections will outnumber
the rest of the connections, in terms of counts. To that end, we have two choices,
in order to alleviate this issue: We may, either, make our data binary, where the
tensor, we may take the logarithm of the counts, so that we compress very big
values.
Tensor formulation of our problem

In order to form a tensor out of the data that we posses, we create a tensor
entry for each (i, j, k) triple of, say (source IP, target IP, timestamp) that exists
in our data log. The choice for the value for each (i, j, k) varies: we can have the
raw counts of connections, we can compress that value (by taking its logarithm),
or we can simply indicate that such a triplet exists in our log, by setting that
value to 1.

Tensor decomposition leverages multi-linear algebra in order to analyze such
high-order data. The canonical polyadic (CP) or PARAFAC decomposition we



Table 2. Table of Symbols

Notations Definitions and Descriptions

D raw data from different types of information security logs with three
different kinds of features

x1,x2,x3 the three features defined in data D
A,B,C tensor factor matrices, associated with x1, x2 and x3

X the 3-mode tensor
C covariance matrix for measuring the prioritizing of investigation from

clusters

R the rank for tensor decomposition
k the number of clusters given for the malicious patterns clustering
λ the threshold of the top-n selected result

k-means(M,k) scalable k-means algorithms given matrix M
GigaTensor(χ) scalable tensor decomposition [13]
⊕ string concatenation
Cov(G+, G∗) covariance measures between clustering groups G+ and G∗

employ can be seen as a generalization of the Singular Value Decomposition
(SVD) for matrices. CP/PARAFAC decomposes a tensor to the weighted sum
of outer products of mode-specific vectors for a 3-order tensor. Formally, for an
M-mode tensor X of size {I1×I2×· · ·×IM}, its CP/PARAFAC decomposition of

rank R yields X ≈
∑R

r=1 λ(a
(1)
r ◦ ... ◦ a

(M)
r ) =

∑R
r=1

∏M
m=1 a

(m)
r where ◦ denotes

the outer product, and
∏

is in the sense of vector outer product multiplication
(and not in the traditional multiplication operation).

3.1 Network Malicious Behavior Decomposition

Given the data description, provided a few lines above, we are able to form three
mode tensors, whose non-zero entries correspond to the non-zero entries of the
network logs. Since the logs record counts of events, and due to high data skew,
it is often the case that a few set of connections will outnumber the rest of the
connections, in terms of counts. To that end, we have two choices, in order to
alleviate this issue: We may, either, make our data binary, where the tensor,
instead of counts, stores 1 or 0, depending on whether a specific triplet exists in
the logs, or, we may take the logarithm of the counts, so that we compress very
big values.
Introduction to tensors

We start by introducing a few definitions. A tensor is essentially a multi-
dimensional extension of a matrix; more precisely, a n-mode tensor is a structure
that is indexed by n indices. For instance, a 1-mode tensor is a vector, a 2-mode
tensor is a matrix, and a 3-mode tensor is a cubic structure. In this work, we
focus on three-mode tensors, however, given the appropriate data, we can readily
extend our techniques to higher modes.



Tensor formulation of our problem

In order to form a tensor out of the data that we posses, we create a tensor
entry for each (i, j, k) triple of, say (source IP, target IP, timestamp) that exists
in our data log. The choice for the value for each (i, j, k) varies: we can have the
raw counts of connections, we can compress that value (by taking its logarithm),
or we can simply indicate that such a triplet exists in our log, by setting that
value to 1.

The X is no longer approximate if R is equal to rank(X), however, we often
want to decompose X to R � rank(X), so that we force similar patterns to
map to the same low rank basis. Forcing R to be small is key to our application,
because in this way, we force connections behaving similarly to map to the same
low rank subspace.

3.2 Single Resolution Mode in MalSpot

We obtain suspicious patterns via scalable tensor decomposition, as mentioned
in previously. In order to find out the groups of similar patterns, we use a scalable
k-means implementation, in MapReduce, so that we cluster different malicious
patterns, produced by the tensor decomposition. For the cluster, we choose to
use the cosine similarity (or rather its inverse) as a distance measure. The cosine
distance we used in this study is shown as similarity(p,q) = cos(θ) = p·q

‖p‖‖q‖
where p and q are pairs of columns of the factor matrices A, B or C, produced
by the decomposition.

Algorithm 1: MalSpot algorithm (single-resolution mode)

Input: Dataset D with x1,x2 and x3, with size of l, m and n, and a
decomposition rank R, clustering number k

Output: Prioritized malicious patterns groups G
/* step 1: Tensor Construction */

MapReduce:1

key ← x1 ⊕ x2 ⊕ x32

Map 〈 key , 1 〉 ← D3

Tensor X ← Reduce 〈 key , count 〉, i=1 to |D|4

/* step 2: Decomposition */

〈A[l×R],B[m×R],C[n×R]〉 ← GigaTensor(X)5

/* step 3: Clustering and Ranking */

ai ∈ columns of A, i = 1...R ← k-means(A, k)6

bi ∈ columns of B, i = 1...R ← k-means(B, k)7

ci ∈ columns of C, i = 1...R ← k-means(C, k)8

{GA | {G1
A,...,Gk

A}} ← PrioritizeCov(a,λ)9

{GB | {G1
B ,...,Gk

B}} ← PrioritizeCov(b,λ)10

{GC | {G1
C ,...,Gk

C}} ← PrioritizeCov(c,λ)11



After clustering, we obtain different groups of connections, as summarized
by decomposing X. Prioritization of each group is helpful for recommending
groups of anomalous connections to domain experts, for further inspection.
The covariance distance between two clusters G+ and G∗ as Cov(G+, G∗) =∑

(G+
i −G+)(G∗

i−G∗)

n−1 .We use the covariance matrix C[k×k] to store all-pairs of clus-

ters ; we then rank the groups according to
∑k

i=1 C(:, i) and choose the top-k∗

to show to a domain expert, for further inspection.

3.3 Multi Resolution Mode in Malspot

As opposed to the single-resolution mode MalSpot, the multi-resolution version
takes significant changes among different temporal granularities into account, in
order to identify pieces of the data that bear the uncorrelated levels characteristic.
In order to introduce the multi-resolution mode of MalSpot, let T1, T2, . . . , Tn
be the different time granularities (i.e., hourly, daily, weekly and so on). For
each Ti, there are k clusters denoted by Gj

i (j = 1 to k). In order to identify
uncorrelated levels among these different temporal levels of resolution, we use
the adjacency matreix of Gi, which we denote by Ai. A detailed outline of the
procedure we follow is shown in Algorithm 2.

Algorithm 2: MalSpot algorithm - (multi-resolution mode)

Input: For each time scale Ti we have a set of k clusters Gi = {Gj
i | j = 1 to k}

where
⋃k

j=1 G
j
i = D and Gm

i

⋂
Gn

i = ∅ ∀m 6= n
Output: data Ni,i+1 that change clusters from Ti to Ti+1 and Ii,i+1(a) the

degree of similarity between Fi(a) and Fi+1(a).
/* step 1: Generating Adjacency matrices Ai = {amn} of Gi */

Calculate amn according to (1)1

/* step 2: Generating reduced adjacency matrices Areduce
i = {a′mn} */

Calculate a′mn according to (2)2

/* step 3: Find data Ni,i+1 that change clusters from Ti to Ti+1 */

Adiff
i = Areduce

i+1 −Areduce
i3

Find the minimum number of lines L = {(p, l)} where l represents row number4

or column number that cross the nonzero rows or columns of Adiff
i , p represents

nonzero row or column entry of I.
Ni,i+1 ← {p|(p, l) ∈ L for some l}5

/* step 4: Calculate the probability of migration of each datum */

Calculate Ii,i+1(a) ∀i and ∀a according to (4)6

In Algorithm 2, we have a set of k clusters Gi = {Gj
i | j = 1 to k} where⋃k

j=1G
j
i = D, which are generated iteratively from different temporal resolu-

tions. In the first step, we use the adjacency matrices Ai = {amn} in order to
record whether a member of a cluster changes its cluster assignment between
different resolutions, as shown in Eq. 1



amn ←

 1,

{
a. if m < n and data m and n are in the same cluster

b. if m = n and data m itself forms a cluster

0, otherwise

(1)

In order to reduce the computational complexity, we summarize the the re-
duced adjacency matrices as Areduce

i = {a′mn}, by employing the characteristics
of transitivity among clusters as shown in Eq. 2.

a′mn ←

{
1, if amn = 1 and apn = 0 ∀p > m

0, otherwise
(2)

Let Fi be a function that maps the data in time scale Ti to its cluster. That
is, Fi : D 7→ Gi s.t. Fi(a) = Gj

i iff a ∈ Gj
i . For any a ∈ D, denote Ci→i+1(a) =

Fi(a)
⋂
Ni,i+1 (C denotes change), Ci←i+1(a) = Fi+1(a)

⋂
Ni,i+1, Ri→i+1(a) =

Fi(a)\Ni,i+1 = Fi(a) − Oi→i+1(a) (R denotes that the assignment remain the
same), Ri←i+1(a) = Fi+1(a)\Ni,i+1, the conditions considering change or no
change are shown in Eq. 3.

Si,i+1(a)←

 Ci→i+1(a)
⋂
Ci←i+1(a), if a ∈ Ni,i+1

Ri→i+1(a)
⋂
Ri←i+1(a), if a /∈ Ni,i+1

(3)

Ii,i+1(a) is the degree of similarity between Fi(a) and Fi+1(a) is as shown in
Equation (4).

Ii,i+1(a) =

∑
a∈Si,i+1(a)

pi,i+1(a)∑
a∈Fi+1(a)

pi,i+1(a)
(4)

where the pi,i+1(a) is given as in Eq. 5.

pi,i+1(a)← |Si,i+1(a)| − 1 (5)

4 Experiments

In this section we show the effectiveness of MalSpot in detecting anomalous
behavior in diverse settings of information security logs, i.e., Security Opera-
tions Center (SOC) event logs and Honeynet firewall logs. We design all the
experiments in order to answer the following questions:

– Q1: Malicious pattern discovery: how can MalSpot effectively identify
malicious events in a variety of sites or for a long term. Especially, how effec-
tive is MalSpot in detecting random scanning, and hit-list scan behavior?

– Q2: Providing insights to domain experts: what is an intuitive and
concise way of presenting the detected anomalies to domain experts and
network administrators, so that they can, in turn, validate our methodology,
as well as further investigate a set of attacks.



4.1 Dataset and Environment

As we mention in the problem definition, we analyze data coming from three
different sources. We use three different types and sources of datasets in our
experiments to demonstrate MalSpot performances. These two datasets are
1) a Honeynet dataset, 2) an intrusion detection system (IDS) events dataset
from Taiwan government; we summarize the datasets in Table 3. The Honeynet
dataset was collected especially for the purposes of this work, using the Honeynet
project system from 10 distributed sites in Taiwan3. The IDS events dataset is
collected from the Security Operation Center of the Taiwanese government, for
the entire year of 2012. This dataset includes the IDS triggered alerts from 61
government institutes with 4,081 types of events. These types of events can be
categorized into 39 classes, Of which 33 classes of attack is defined by Snort IDS,
the other 6 classes are custom by us (including: blacklist, high threat malware
behavior and so on). In total, the SOC dataset contains 828,069,066 events, the
dataset details could be shown as Table 3. .

Table 3. Datasets harvested & analyzed

Dataset Description Dimension Nonzeros

Honeynet Gathered from 10 distributed
Honeynet sensors in Jan. 2013

368K x 64K x 31 3243K

G-SOC
(Type)

Taiwan official institutes IDS
events in 2012

[8187, 361, 52, 12] x 4081 x
61

800M+

G-SOC(Cat) Taiwan official institutes IDS
events in 2012

[8187, 361, 52, 12] x 39 x 61 1742K

We leveraged the scalability of GigaTensor[13] in 16 nodes of a Hadoop cluster
where each machine has 2 quad-core Intel 2.83 GHz CPU, 8 GB RAM, and
2 Terabytes disk. The Apache Mahout(Scalable Machine Learning and Data
Mining)4 version 0.7 is used for supporting clustering algorithms.

4.2 Analysis of the Honeynet data

For this dataset, we set R = 5 as the low rank of the tensor decomposition; after
decomposing the tensor, we obtain three factor matrices each representing one
of the three modes of our data: source IP, target IP and timestamp respectively.
Each column of those factor matrices corresponds to one out of the R latent
groups, in our low rank representation of the data. Based on this low rank
embedding of the data, we compare pairs of columns for each factor matrix, in
order to detect outliers. For example, given the factor matrix A that corresponds
to the source IP, if we plot, say, columns 1 and 2 against each other, we will see

3 Honeynet project, http://www.Honeynet.org/
4 Apache Mahout, http://mahout.apache.org/



a scatterplot that contains one point for each source IP; given this scatterplot,
we are able to detect the outliers. We henceforth refer to the ’score’ for each
source IP (or any other entity associated to a particular mode of a tensor), as
expressed by the values of the columns of the corresponding factor matrix, as
TensorScore. We show our most outstanding results in Figure 1.

(a) (b) (c)

Fig. 1. Scatter plot in Honeynet result from both attackers and victims views. (a) In
1st-2nd concept of source IP view, we observe three different cases, case A is POP3
(port 110) brute force attacks, and case C is port scanning in port 25. Case B contains
a lot of instances but cannot be separated in this plot ; (b) In 2nd3rd concept sof
source IP view, case C and D appear in this plot which is medium scale of scanning
behavior, using ports 22, 23, 135 and 445; (c) In 4th-5th concepts of source IP view,
case E appears which represents another scanning behavior.

According to the scatterplots obtained from tensor analysis, in Figure 1(a)-
(c), we may observe the relative attackers’ relations according to different direc-
tions of the TensorScore. In Figure 1(a), we found two outliers (denoted as A
and C) out of three clusters. After further inspection of the participating of the
attacks, we found out that the attackers in group A are focused on port port 110
and perform POP3 probing. The attackers in group C attempted to use ports
50 79 aiming to perform a large scale port scan. Both attack groups (A and C)
appear only on a single day (January 10th and January 25th respectively). In
Figure 1(b) and (c), we are able to discover a new set of anomalies, as we choose
a different couple of latent factor vectors to obtain the TensorScore from. In
attack group D, we were able to identify an attacker who attempted to trigger
14,652 connections to 236 target Honeynet system IP addresses, with a duration
of 8 days. We present the attacks that belong to group E; those attacks focus
on a particular Microsoft Network security vulnerability that is associated with
ports 139 and 445.

4.3 IDS Event Result

The IDS events consist of an entire year’s worth of data, collected by the G-SOC
of Taiwan in 2012. The single resolution mode of MalSpot use the day scale



granularity to analyze these logs. In Fig. 2(a), we illustrate the two groups that
MalSpot was able to spot in the IDS event logs. The first group is associated
with the Web and native IDS event rules, whereas the second group is related
to the blacklist-based event rules.

We proceed to the second step of our analysis, by setting k = 5 and cluster
the tensor decomposition latent groups as shown in Fig. 2(b). This post-analysis,
forces hosts with similar characteristics to end up in the same cluster. For in-
stance, cluster 1 contains a vast number of hosts that are related to a large scale
government institute. In clusters 4 and 5, we mostly observe service-oriented
information systems tend.

(a) (b)

Fig. 2. IDS alert events scatterplot: (a) In 3rd-4th concept of event view (IDS alerts),
we observe three different cases, part of alerts are triggered more often and part of them
triggered rarely; (b) from the organization’s view, we can see 5 groups are clustered
together.

In order to evaluate the multi-resolution nature of MalSpot, we select 4
different time resolutions, i.e., hour, day, week and month, and seek to identify
the uncorrelated levels. The result is shown as Fig. 4. In fact, hosts A, B and C
are grouped as the same cluster in both hourly and daily levels. MalSpot is able
to select the uncorrelated levels for B and C in weekly and monthly granularities,
respectively.

In Fig. 3, we use event classes with 4 different temporal resolutions to identify
uncorrelated levels of activity, for various institutes. We identify that institute
A has an uncorrelated level of activity between weekly and daily granularity,
as opposed to institutes B and C. From further investigation, institute A has
suffered from a ”system-call detect” event class during the uncorrelated time
period (e.g., B and C have a uniform distribution of activity during the entire
year, but A is skewed towards early 2012). Additionally, MalSpot offers huge
savings in computational time in order to detect the aforementioned attacks,
when compared to competing methods.

Based on the Fig. 4 (a), we plot the scatter-plots from the hour and week (X-
axis) versus the triggered event types (Y-axis). We observed a critical difference



(a) (b)

Fig. 3. Scatter plot of different time resolutions of G-SOC(cat) dataset. Each point in
the scatter-plot denotes an institution. (a) day resolution and (b) week resolution.

between institute A and institutes B, C with respect to attack periodicity. Insti-
tutes B and C suffered so-called ”WEB-MISC TOP10.dll access” attacks 5 while
A did not. Fig. 5 shows detail time-event scatter plots. Therefore, MalSpot
identifies potential malicious behavior between hosts A and B, C employing the
notion of uncorrelated levels. Host A suffered periodic attacks targeted on the
Windows OS (Windows ANI File Parsing Buffer Overflow (MS05-002)), whereas
the periodic attacks of host B and C were concentrated on a malicious relay sta-
tion.

−0.1 −0.05 0 0.05 0.1 0.15
−0.2

0

0.2

0.4

0.6

0.8

1st

2
n
d

hour

−0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.2

0

0.2

0.4

0.6

1st

2
n
d

day

−0.2 0 0.2 0.4 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1st

2
n
d

week

−0.2 0 0.2 0.4 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1st

2
n
d

month

BC
A

BA

A
C

A

B C

C*

B*

Uncorrelated Uncorrelated

6 7 8 9
3

4

Log10(Number of Tensor Size)

L
o

g
1

0
(R

u
n

 T
im

e
 i

n
 S

e
c

o
n

d
)

 

 

Malspot

(a) (b)

Fig. 4. (a) Scatter plot of different time resolutions. Each point in scatterplot denotes
an institution. (b) The scalability of MalSpot, as the input size grows.

5 This event is generated when an attempt is made to exploit a buffer overflow in the
Trend Micro InterScan eManager.



(a) Host A (hour) Host B (hour) Host C (hour)

(a) Host A (week) Host B (week) Host C (week)

Fig. 5. Scatter plot of different time resolutions. (X-axis is time scale and Y-axis is
event types). We can see the difference in the distribution of scatterplots.

5 Conclusion

In this work, we develop a big data analytics system in order to discover mali-
cious patterns in a variety of network/malware propagation settings, so that we
can further use them for attack detection and prevention, when attacks are con-
current with legitimate traffic. By conducting large-scale information security
data analysis, our proposed method, MalSpot, can easily identify the patterns
in massive IDS logs, spamming delivery logs, and Honeynet firewall logs, per-
taining to long-term and stealthy attack behavior.

The contributions of this work are the following:

– Design of the MalSpot system: based on hadoop, it can scale up to
arbitrary-size datasets, and it is nearly linear as the log trace size grows.

– Discoveries: We report very interesting attack patterns, and positively
identified attacks, as detected by MalSpot.

– Scalability: regardless of data scale or data source variety, MalSpot is
able to detect attacks efficiently and effectively.

Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grants No. IIS-1247489 and CNS-1314632 Research was sponsored by the
Defense Threat Reduction Agency and was accomplished under contract No.
HDTRA1-10-1-0120. Also, sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-09-2-0053.
This work is also partially supported by a Google Focused Research Award.
Any opinions, findings, and conclusions or recommendations expressed in this



material are those of the author(s) and do not necessarily reflect the views of
the funding parties.

References

1. Dainotti, A.: Analysis of a ”/0” stealth scan from a botnet. In: IMC’12. (2012)
2. J. Sun, S.P., Yu, P.S.: Window-based tensor analysis on high-dimensional and

multi-aspect streams. In: In ICDM. (2006) 1076–1080
3. K. Maruhashi, F.G., Faloutsos, C.: Multiaspectforensics: Pattern mining on large-

scale heterogeneous networks with tensor analysis. In: ASONAM’11. (2011)
4. Kishino, Y., Sakurai, Y., Yanagisawa, Y., Suyama, T., Naya, F.: Svd-based hier-

archical data gathering for environmental monitoring svd-based hierarchical data
gathering for environmental monitoring. In: Proceedings of the 2013 ACM Confer-
ence on Pervasive and Ubiquitous Computing Adjunct Publication. UbiComp ’13
Adjunct, New York, NY, USA, ACM (2013) 9–12

5. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review
51(3) (2009) 455–500

6. Kolda, T., Sun, J.: Scalable tensor decompositions for multi-aspect data mining.
In: ICDM. (2008)

7. Koutra, D., Papalexakis, E.E., Faloutsos, C.: Tensorsplat: Spotting latent anoma-
lies in time. In: Informatics (PCI), 2012 16th Panhellenic Conference on, IEEE
(2012) 144–149

8. Li-Ming Chen, Meng-Chang Chen, W.L., Sun, Y.S.: A scalable network foren-
sics mechanism for stealthy self-propagating attacks. Computer Communications
(2013)

9. Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative incremental clustering of
time series. In: IN EDBT. (2004) 106–122

10. Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., Yoshikawa, M.: Fast min-
ing and forecasting of complex time-stamped events. In: Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD ’12, New York, NY, USA, ACM (Aug 2012) 271–279

11. Papadimitriou, S., Yu, P.: Optimal multi-scale patterns in time series streams. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, New York, NY, USA, ACM (2006) 647–658

12. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Parcube: sparse paralleliz-
able tensor decompositions. In: Machine Learning and Knowledge Discovery in
Databases. Springer (2012) 521–536

13. U. Kang, E. Papalexakis, A.H., Faloutsos, C.: Gigatensor: scaling tensor analysis
up by 100 times - algorithms and discoveries. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD
’12, New York, NY, USA, ACM (2012) 316–324


