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ABSTRACT

Communities are essential building blocks of complex networks

enjoying signiicant research attention in terms of modeling and de-

tection algorithms. Common across models is the premise that node

pairs that share communities are likely to interact more strongly.

Moreover, in the most general setting a node may be a member

of multiple communities, and thus, interact with more than one

cohesive group of other nodes. If node interactions are observed

over a long period and aggregated into a single static network,

the communities may be hard to discern due to their in-network

overlap. Alternatively, if interactions are observed over short time

periods, the communities may be only partially observable. How

can we detect communities at an appropriate temporal resolution

that resonates with their natural periods of activity?

We propose LARC, a general framework for joint learning of

the overlapping community structure and the periods of activity of

communities, directly from temporal interaction data. We formulate

the problem as an optimization task coupling community it and

smooth temporal activation over time. To the best of our knowledge,

the tensor version of LARC is the irst tensor-based community

detection method to introduce such smoothness constraints. We

propose eicient algorithms for the problem, achieving a 2.6x qual-

ity improvement over all baselines for high temporal resolution

datasets, and consistently detecting better-quality communities for

diferent levels of data aggregation and varying community overlap.

In addition, LARC elucidates interpretable temporal patterns of

community activity corresponding to botnet attacks, transporta-

tion change points and public forum interaction trends, while be-

ing computationally practicalÐfew minutes on large real datasets.

Finally, LARC provides a comprehensive unsupervised parameter

estimation methodology yielding high accuracy and rendering it

easy-to-use for practitioners.
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1 INTRODUCTION

Mapping the community structure of a network is essential for

understanding its underlying system and processes. Social circles,

gene pathways and cliques of scientiic collaborators are all ex-

amples of functional units in large networks that can be modeled

as overlapping communities. Common approaches for community

detection rely on a static network [22, 49, 50], however, tempo-

ral interaction data is becoming increasingly available and, thus,

holds the potential to inform better community detection methods.

Consider, for instance, a community among professionals in the

workplace, in which communication is likely to occur during work

hours and in week days. If we attempt to detect work groups from

communications within this network, we would have to discover

and take into account this community activation pattern. The prob-

lem becomes even more challenging when a node communicates

with connections in other (non-professional) circles, e.g. family

members and friends, within the same communication medium and

with varying intensity and temporal resolution. How can we exploit

the timings of these interactions by enforcing appropriate smoothness

on their time course to tease apart overlapping communities and their

activity periods?

An illustrative example of communities and their activity de-

tected by our methods in bike trips data from Boston, MA is pre-

sented in Fig. 1(a). Nodes in this network are bike rental stations and

trips between stations (check-out to drop-of) are modeled as tem-

poral interactions. We detect the overlapping structure of groups

of stations with heavy within-group traic in contiguous intervals.

The moving activation average over almost 2 years (top-right in

Fig. 1(a)) reveals an important change point of expanding the bike

rental service from downtown Boston (red) to the outskirts resulting
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Figure 1: (a) A visualization of 3 color-coded groups of bike rental

stations in Boston that observe strong within-group traic in con-

tiguous intervals of time detected by our algorithm LARC. Beyond

the overlapping community structure, we identify interpretable

community activity proiles (visualized top-right) elucidating a

timepoint of the service expansion as well as university break dips.

(b) LARC’s quality in detecting ground truth (GT) communities is

consistently and up to 2.6x superior to baselines (lower divergence

(DIV) is better) when the temporal interactions are heterogeneously

spread in timeÐsimulating data sampled at high temporal resolu-

tion (V=200,T=100. . . 20k).

in two previously inactive communities: greenÐrides within down-

town and popular new stations (Harvard and MIT); and blueÐ rides

including the outskirts. Such an analytic tool can inform activity-

aware improvements by city planners as well as resource provi-

sioning for the the bike rental service provider. Other real-world

applications abound: resource provisioning in computer networks,

botnet detection and activity analysis, and time-aware advertising

within social network communities to name a few. Our methods

are designed to handle the temporal activity heterogeneity, and

thus consistently outperform baselines in detecting ground truth

communities Fig. 1(b) with an increasing gap (up to 2.6x) when

community interaction events are spread randomly over increasing

intervals (high temporal resolution).

Our goal in this paper difers from evolutionary clustering [7, 30]

where the objective is to study the long-term evolution (growth,

splits, merges) of network clusters. Instead, we focus on the short-

term (repeated) activity within relatively stationary communities,

a setting in which the interactions within the communities are

much more common than changes in the overall community struc-

ture. Considering temporal information, however, is a knife that

cuts both ways. If aggregated inadequately, temporal network data

can reveal unrealistic patterns [13, 14, 17, 45]. Furthermore, the

appropriate window for aggregation may not be uniform for the

whole timeline [18]. Hence, in order to capitalize on temporal net-

work information, it is important to jointly learn an appropriate

temporal resolution of the data as well as the actual community

structure. Community detection is notoriously hard under multiple

popular measures including conductance [17], modularity [19] and

ratio cut [47]. Allowing for overlap among communities makes the

search space even larger [49]. Furthermore, employing the dynamic

interaction behaviorÐour goal in this paperÐadds yet another di-

mension to the already computationally challenging problem.

We propose a general framework for Learning Activity-Regularized

Communities (LARC) which detects jointly the overlapping commu-

nity structure and the activity periods of communities, directly from

temporal network data. Our framework simultaneously optimizes

community it and activation proiles that are close to piece-wise

constant functions, thus ensuring interpretability, resilience to noisy

interactions, and temporal oversampling. To quantify community

it we consider both reconstruction and generative models and de-

rive eicient solvers for the resulting optimization problems. In

addition, we derive unsupervised solutions for automatic selection

of the number of communities based on activation-aware core con-

sistency diagnostic as well as for parameter learning based on the

minimum description length (MDL) principle. Our solutions scale

to large real-world instances and can be employed in a variety of

applications.

Our contributions in this work are as follows:

•Novel Problem Formulation: We propose the novel problem of

jointly learning the overlapping community structure and smooth

activation proiles from dynamic interaction data.

• FlexibleOptimization Framework:We develop a general frame-

work LARC for the problem imposing fused lasso regularization on

the activation proiles and demonstrate that it can be coupled with

both generative and reconstruction models for community it.

• Real-World Utility: Our extensive evaluation on synthetic and

real-world data demonstrates LARC’s 2.6x quality improvement

over baselines in high temporal resolution, and superior quality

with temporal aggregation and varying community overlap. LARC

also reveals botnet attack activity and transportation change points.

It remains practicalÐcompletes in minutesÐfor large datasets.

LARC’s implementation, data generator and evaluation datasets

are available at http://www.cs.albany.edu/~petko/lab/code.html.

2 BACKGROUND AND RELATED WORK

Static communities: Our work is diferent from static (overlap-

ping) community detection [21, 22, 34, 49, 51] in that we consider

dynamic interactions to improve the quality and also provide an

interpretable temporal activation proile for each community. Fur-

thermore, our goal is complementary to static community detection

approaches, as objective functions from the static setting can be

generalized within our framework to the dynamic one. We demon-

strate this for the ailiation generative model in [50]. In addition,

we compare to static methods by aggregating the temporal interac-

tions and demonstrate that utilizing the temporal information is

advantageous for recovering ground truth communities.

Temporal communities: Various temporal subgraph detection

methods have also been considered in the literature: communi-

ties [17, 25], dense subgraphs [15, 24, 42, 43], heavy-weight sub-

graphs [8, 37] and persistent subgraphs [3, 36]. Many of these meth-

ods detect one subgraph over one łactive intervalž at a time, as op-

posed to recurring activation of multiple subgraphs [3, 8, 17, 36, 37].

These methods do not consider overlap, cannot ensure stable com-

munity membership if iteratively run to extract multiple communi-

ties, and are sensitive to the temporal resolution (aggregation) of

the interaction data. Other methods enforce user-deined consis-

tency by introducing parameters such as number of occurrences

and time span [43] or some notion of persistence (e.g. time-to-live

http://www.cs.albany.edu/~petko/lab/code.html


interval) for interaction edges [3, 15, 24, 42]. Diferent from all the

above, we detect multiple overlapping communities over time and

let the data deine the natural periods of activity which may vary

with communities, application and across time. Finally, Gauvin

et al. [25] detect both overlapping and data-driven dynamics of

communities using tensor factorization (TF), however, as we show

in our evaluation, employing TF without activity regularization is

sensitive to the temporal resolution, and thus, results in sub-par

quality.

Evolving communities: The goal in evolutionary clustering [7,

30] and evolving community and heavy subgraph detection [16,

38] is diferent from ours as they characterize how community

membership changes in the long term. Insteadwe focus on detecting

the stationary overlapping community structure in a short time

frame in which membership is relatively stable.

Tensor methods: Tensor factorization (TF) has also been em-

ployed to detect communities from temporal [4, 25, 35] and multi-

view [27, 40] network data.To the best of our knowledge, this is the

irst work that enforces temporal smoothness constraints in the

factorization model, in order to uncover more accurate communi-

ties. We demonstrate how tensor-based reconstruction error can

be used as a goodness-of-it metric in our framework and further

extend tensor factorization approaches to handle our activity reg-

ularization objective. We compare LARC-TF experimentally with

popular TF approaches, and demonstrate its superior performance.

3 PROBLEM FORMULATION

We next formalize the problem of joint detection of communities

and their activity proiles. We expect that, as time progresses, com-

munities (i) exhibit relatively stationary membership and (ii) alter-

nate between active (multiple internal interactions) and inactive

states. Thus, interactions in time can be utilized to improve de-

tection as communities will be more discernible at an appropriate

temporal scale as opposed to in a fully-aggregated graph. We rep-

resent the observed symmetric interactions among a inite node

set V , |V | = n over a inite interval of discrete time steps [1,T ] as a

3-way tensorX ∈ Rn×n×T≥0 , where each element is a value modeling

the number of interactions between a pair of nodes at a given time.

The tensor face of observed interactions at time t is denoted as X (t)

and can be viewed as a weighted undirected network snapshot for

that time. Let C ∈ Rn×k≥0 be a community matrix specifying the

strength of ailiation of nodes to each of k communities. Let also

A ∈ Rt×k≥0 be an activation matrix, modeling the activation proiles

of communities over time. A high value of Atk denotes high level

of activity of community k at time t , i.e. many internal interactions.

Let J (X,C,A,k) be an error-of-it function for k communities for

given C and A matrices. Our goal is to minimize J while enforcing

contiguous active and inactive periods for each community. To this

end, we impose a smoothness regularization on the community

activation proiles, i.e. the columns of A. In particular, we incorpo-

rate a fused lasso [46] regularizer, which has been shown efective

for piece-wise constant signal approximations [28]. In our setting

we enforce shrinkage by an L1 penalty on the activation matrix A

and total-variation denoising by an L1 penalty on the diference of

consecutive values inA’s columns. Formally, our regularization has

the following matrix form:

R(A) = λc | |A| |1 + λd | |DA| |1, (1)

where D is a row-wise diference matrix with Di,i = −1,Di,i+1 = 1

and 0 for all other elements, and λc and λd are regularization param-

eters controlling the importance of the regularization objectives.

Deinition 3.1. Dynamic Overlapping Communities: Given

a dataset X, number of communities k , λc and λd , solve:

min
A,C

J (X ,C,A,k) + R(A). (2)

The error it function J can be instantiated based on diferent

models relecting how łgood overlapping comunitiesž should mani-

fest in terms of inter-node interactions. Next, we demonstrate two

possible realizations for J based on (i) tensor factorization (TF) and

(ii) a temporal extension of the ailiation generative model (GM).

3.1 Tensor factorization model (TF)

Since the observed interaction data X in our setting is a tensor,

tensor factorization models are a natural it for learning the com-

munitiesC and temporal proiles A as corresponding tensor factors.

We focus on CANDECOMP/PARAFAC [11], which decomposes

a tensor into a sum of rank-one tensors X ≈
∑

k ck ◦ c
′
k
◦ ak ,

which we also denote in matrix form as X ≈ [[C,C ′,A]], where C ′

is equivalent to our community matrix C and A holds the temporal

dimension factors corresponding to our activation matrix. Note that

since temporal snapshots X (t) are symmetric matrices, solutions

for community factor matrices will be equivalent C ≈ C ′, and thus.

we further simplify the reconstruction notation to X ≈ [[C,A]].

PARAFAC minimizes the factorization reconstruction error for a

ixed number of factors k , which we adopt as error-it function:

JT F (X,C,A,k) = | |X − [[C,A]]| |
2
F . (3)

3.2 Ailiation generative model in time (GM)

Probabilistic ailiation generative models (GM) [10, 32] provide an

alternative to reconstruction (TF) models. In static network GMs,

nodes have ailiations to communities C which drive randomly

observed connections among ailiated nodes [50]. Here, we extend

this model to overlapping communities over time, arriving at an

alternative error-of-it function JGM . Speciically, we deine the

probability of observing an edge (i, j) at time t due to community k

as: Pk (i, j, t) = 1− e−CikAtkCjk . Note, that if the temporal proile of

the community is ixedA:k = 1, the likelihood of interaction reduces

to that in the static ailiation model [50]. The temporal proile A

acts as a selector enabling interactions when the community is

active (Atk > 0) and inhibiting them during periods of inactivity.

The probability of interaction due to any community is then:

P(i, j, t) = 1 −
∏

k

(1 − Pk (i, j, t)) = 1 − e
−CiA(t )C

T
j , (4)

where A(t) = diaд(At :) is a diagonal matrix of community activa-

tion states at time t . Assuming independence of interactions, the

conditional likelihood L(X |C,A) of observing X is then:

L(X |C,A) =
∏

t

∏

X(i, j,t ),0

P(i, j, t)
∏

X(i, j,t )=0

[1 − P(i, j, t)]. (5)



Note that the basic probabilistic ailiation model, unlike the re-

construction model (TF), assumes binary data, i.e. interactions are

either 1 or 0. To make it applicable to non-binary data, one can con-

sider thresholding schemes. We deine the GM error-of-it function

based on the log-likelihood LL(X |C,A) of observed interactions:

JGM (X,C,A,k) = −LL(X |C,A) =

−
∑

t

[

∑

X(i, j,t )=0

log (1 − e
−CiA(t )C

T
j ) −

∑

X(i, j,t ),0

CiA(t)C
T
j

]

.

4 ALGORITHMS

In this section, we propose solvers that minimize the two objectives

corresponding to the error-of-it functions JT F and JGM combined

with the same fused lasso regularization term R(A). As we demon-

strate experimentally, both models show comparable quality in

recovering ground truth communities that is superior to baselines

due to their shared regularization approach which explicitly mod-

els smooth active/inactive community behavior. We further derive

estimators for (i) the optimal number of communities k and (ii) the

regularization parameters λc and λd .

4.1 Regularized Tensor Factorization LARC-TF

The objective for our reconstruction model is as follows:

min
C,A
| |X − [[C,A]]| |2F + λc | |A| |1 + λd | |DA| |1. (6)

It can be viewed as a regularized tensor factorization problem in

which we have imposed a fused lasso penalty R(A) to enforce

piecewise-constant and sparse solution for the time path A:i of

each community. Furthermore, in our solutions for Eq. 6 we seek

to obtain non-negative factors C and A as they model ailiation

and temporal activation respectively, thus ensuring interpretability

within our problem. We extend a commonly-used non-negative fac-

tor method for solving the PARAFAC problem, namely alternating

least squares (ALS) with non-negative factors [11]. An ALS solution

for PARAFAC keeps two factors ixed, and takes advantage of the

convexity and existence of a closed-form analytical solution for the

third. Iterative updates for any factorU1, assuming the remaining

twoU2 andU3 are ixed, have the following form:

U1 ← argmin
U
| |X(1) − (U3 ⊙ U2)U | |

2
F , (7)

where X(1) is the tensor unfolding on the updated dimension, the

factorsUi correspond to our communityC or activationAmatrices,

and ⊙ is the Khatri-Rao product [29]. We cannot use this framework

directly as we need to incorporate the fused lasso regularization

R(A). Our formulation, however, retains some of the advantageous

properties allowing an ALS-like solution, namely simplicity of up-

dates and convexity.

To solve the updates eiciently, we adopt the Alternating Di-

rection Method of Multipliers (ADMM) which has recently been

employed in a number of high-dimensional large-scale problems for

eiciently utilizing batch updates typically occurring in ALS [9]. In

particular, we devise anAlternatingOptimizationADMM (AOADMM)

which combines the alternating least squares and the ADMM frame-

work [29]. Intuitively, the main idea is to divide the problem into

simpler-to-update blocks before reconciling these partial solutions.

Algorithm 1 LARC-TF

Require: Tensor X, number of factors k , regularization parameters λc , λd
Ensure: Community C ≈ C ′ and activation A matrices.
1: Initialize C, C ′, A randomly
2: Initialize residual matrices RC , RC′, RA to 0
3: while The factors C, C ′, A have not converged do
4: for Each factor H in {C, C ′, A} do
5: Let RH and dim(H ) be the residual and tensor dimension of factor H
6: Let H1 and H2 be the other two ixed factors

7: H̆ ← H1 ⊙ H2
8: ρ ← tr (H̆T H̆ )

9: L ← Lower Cholesky decomposition of (H̆T H̆ + ρI )

10: F =MTTKRP(X, H̆, dim(H ))
11: while Not converged do

12: H̃ ← (LT )−1L−1(F + ρ(H + RH )) ▷ Optimized Eq. 9

13: H ← proxOpp(H, H̃, RH , ρ, dim(H ))

14: RH ← RH + H − H̃
T

▷ Eq. 11
15: end while
16: end for
17: end while
18: return C, C ′, A

We enforce a non-negativity constraint on the updates of both com-

munity factors C,C ′ and design a custom update for the activation

factor A that handles the fused lasso penalty and also enforces non-

negativity. The objective in our ADMM update for A is to solve the

following convex sub-problem (adding R(A) maintains convexity):

min
A,Ã
| |X(3) − C̆Ã| |

2
F + λc | |A| |1 + λd | |DA| |1 s.t. A = ÃT ,A ≥ 0, (8)

where X(3) is the tensor unfolding on the third temporal dimension,

C̆ = C ′⊙C is the Khatri-Rao product of the community factors and Ã

is an auxiliary ADMM variable used to updateA. The minimization

can be solved by iterating over the following update sequence:

Ã← (C̆T C̆ + ρI )−1(C̆TX(3) + ρ(A + RA)
T ) (9)

A← argmin
A

λc | |A| |1 + λd | |DA| |1 + ρ/2| |RA +A − Ã
T | |2F (10)

RA ← RA +A − Ã
T , (11)

where ρ = tr (C̆T C̆) is the trace of the Khatri-Rao product of the

community factors and its transpose and RA is a running residual

matrix for factor A. The irst łitž update (Eq. 9) and third łresidualž

update (Eq. 11) are common for all factors (i.e. C and C ′ as well as

A) and there exist fast solutions for them based on Lower Cholesky

decomposition and Matricized Tensor Times Khatri-Rao Product

(MTTKRP) in non-regularized ADMMmethods [29] detailed further

in the Alg. 1. The second łregularization updatež (Eq. 10) is also

referred to as the proximity operator (proxOpp) of the trace-scaled

regularization function 1/ρR(A).While it involvesminimization of a

convex function ofA, there is no closed-form analytic solution for it,

so we employ coordinate descent with a non-negativity constraint

for this step.

Algorithm 1 shows the steps of our AOADMM approach LARC-

TF for fused lasso tensor factorization. After initialization of the

factors and their corresponding residual matrices (Steps 1,2), we

iteratively update the factors one at a time while keeping the other

two ixed (Steps 3-17) until convergence. In the ADMM update step

for each factor H (Steps 4-16) we irst pre-compute several matrices

and scalars that let us speed up the it update from Eq. 9. Namely,

the Khatri-Rao product of the ixed factors H̆ (Step 7); the trace ρ

(Step 8); a lower Cholesky decomposition of the irst inverted matrix

(H̆T H̆ + ρI ) of Eq. 9 (Step 9), and the MTTKRP (Step 10). Note, that



all the above are constant during the repeated updates of H , H̃ ,RH ,

and thus precomputing them only once saves time. In the updates

of H (Step 13) we employ the appropriate proximity operator for

each factor. For factors C,C ′, since we enforce non-negativity the

proximity operator simply replaces negative elements with 0, i.e.

element-wisemax(H , 0). If the update is for the activity factor A,

however, we need to solve the minimization problem in Eq. 10.

To this end, we perform a coordinate descent with line search to

determine an appropriate learning rate β , where the main update

is along the gradients for each timestep:

∂/∂At = λc1 + λd (sдn(At −At−1) − sдn(At+1 −At ))

+ρ(RA +At − Ãt ),

where At is a short hand for the t-th row of A, and sдn() is the

element-wise sign function setting elements to {+1,−1} depending

on their sign. Non-negative projection, similar to those for C and

C ′, is also applied at the end of the gradient descent for A.

The gradient descent in Step 13 has the highest computational

footprint, being nested in two convergence loops and further de-

pending on T to ensure smoothness of A’s columns. However, all

operations preserve sparsity and, thus, are expected to scale almost

linearly with the sizes of the input. Additionally, allowing a ixed

update size instead of a full line search results in signiicant speedup

at minimal quality expense. Our experimental evaluation reveals

that with increasingT the number of iterations forA’s convergence

grows slightly, however, the overall running time remains practical

for our largest instances.

4.2 Ailiation Model Solver LARC-GM

To minimize the objective fGM = JGM (X ,A,C,k) + R(A), we con-

sider block coordinate descent methods. The gradient with respect

to a community membership vector Ci is:

∂ fGM

∂Ci
=

∑

t

(
∑

X(i, j,t )=1

CjA(t)
e
−CiA(t )C

T
j

1 − e
CiA(t )C

T
j

−
∑

X(i, j,t )=0

CjA(t)
)

.

Similarly, diferentiating with respect to Atk , we get:

∂ fGM

∂Atk
=

∑

X(i, j,t )=1

CikCjke
−CiA(t )C

T
j

1 − e
−CiA(t )C

T
j

−
∑

X(i, j,t )=0

CikCjk

−λs − λd (sдn(Atk −A(t+1)k ) − sдn(A(t+1)k −Atk )),

which can be combined into a single update for the blockAt :. Direct

coordinate or gradient descent will not scale for large instances X,

hence we seek to scale our solutions by avoiding re-computation of

the full gradient. Particularly, similar to the static network ailiation

model solutions [50], only a small number of elements are updated

in the unobserved edges component. Hence, one can re-write the

no-edge portion of the update as:
∑

Xi, j,t=0

CjA(t) =
∑

j

CjA(t) −CiA(t) −
∑

j ∈N t
i

CjA(t), (12)

where N t
i is the set of neighbors of i (i.e. nodes with which i in-

teracted) at time t . We can thus, compute and store
∑

j A(t)Cj at

each iteration (over all i), leading to faster updates of Ci over the

much smaller set of neighbors. A similar approach can be adopted

to speed upA’s gradient as well. First, we notice that we can update

Algorithm 2 LARC-CCD: Detect k∗ with Time-Warped CCD

Require: Tensor X, factorization [C, C ′, A] produced by LARC
Ensure: Activity-aware optimal k∗

1: [U , Σ, V ] ← SV D(A)
2: for r=1: k do
3: Πr = U (:, 1 : r ) ∗U (:, 1 : r )

T

4: Xr = X ×3 Πr

5: Ar = Πr ∗ A

6: c(r) = eicient_corcondia(Xr ,C, C
′
, Ar ,1k )

7: end for
8: k∗ = AutoTen(max(c))
9: return k∗

either entire faces (ixed t ) or communities (ixed k) at a time. In the

irst case, the
∑

i, j<X (t )CikCjk term can be similarly decomposed

by storing
∑

j Cjk in vector form for all k , as CΣ =
∑

j Cj . We can

then iterate over i (instead of i, j) and compute:

∂ fGM

∂A(t)
= −λs I − λd ∗ (sдn(A(t) −A(t − 1)) − sдn(A(t + 1) −A(t)))

+diaд
(
∑

i

(

∑

j ∈N t
i

Ci ◦Cje
−CiA(t )Cj

1 − e−ciA(t )Cj
−Ci ⊙ (CΣ −Ci −

∑

j ∈N t
i

Cj )
)

)

,

where ◦ denotes the Hadamard (element-wise) product of the two

matrix rows, and diaд() is the diagonal matrix of the argument

vector. LARC-GM then iterates between coordinate descent steps

on for C and A using also a line search for an appropriate learning

rate. The update optimizations in LARC-GM increase its speed

compared to direct coordinate descent signiicantly, however, as

we show experimentally LARC-TF scales much better than than

LARC-GM, while they both produce better quality communities

compared to baselines.

4.3 Learning the number of communities k

An important question when analyzing a new dataset is how to set

k . We extend TF consistency approaches to our activity regularized

objectives and develop a method LARC-CCD for selecting k which

outperforms regularization-oblivious alternatives. Finding the rank

of a tensor is a NP-hard problem, however, there exist heuristic mod-

els such as the Core Consistency Diagnostic (CCD) algorithm [12, 41].

Given a tensor X and its PARAFAC factorization [C,C ′,A], CCD

provides a number indicative of the factorization quality, thus al-

lowing for selection of maximum number of good-quality commu-

nities [39]. In our case, however, using CCD as a black-box may

lead to bad estimates of k as our solution’s factorization [C,C ′,A]

is a product of an activity smoothness regularization, which as

we demonstrate experimentally, is diferent from no-regularization

PARAFAC factorization.

In order to make CCD amenable to our regularization, we need to

łcompressž the temporal mode of the tensor in a way that respects

the temporal smoothness discovered by LARC. If A yields very

smooth latent factors, we aim to compress the temporal mode

accordingly, so that we adjust the tensor to that smoothness. The

key to that compression is the row space of the activity matrix A: if

there exists a subspace of that row space which, when we project

both the tensor and matrix A, yields a higher core consistency

than simply using the computed factors and the uncompressed

tensor, we choose that subspace to generate the core consistency

that characterizes the quality of our solution.



Statistics k % Deviation LARC-TF TF [25] NMF [33] BigCLAM [50]

Dataset |V| T nnz k LARC-CCD AutoTen[39] DIV NMI time DIV NMI time DIV NMI time DIV NMI time

Synthetic 200 20k 61k 5 32% 71% 0.24 1 62 0.61 0.24 5 0.72 0.13 8 0.58 0.09 2
Football 115 2k 17k 12 13% 42% 0.08 0.91 38 0.14 0.77 28 0.64 0.1 1 0 1 1
Reality Min. 94 8k 0.1m 5 12% 56% 0.62 0.03 30 0.66 0.03 6 0.66 0.03 1 0.80 0.08 1
Reddit-sports 120k 267 1.1m 15 27% 57% 0.53 0.27 57 0.62 0.11 41 0.67 0.19 131 .90 0.02 40
Reddit-news 140k 267 0.7m 5 21% 40% 0.35 0.26 13 0.36 0.21 10 0.48 0.22 54 0.77 0.14 16
Bike Rides 145 628 0.8m - 11%∗ 45%∗ - - 14 - - 14 - - 1 - - 1
Botnet 20k 6k 0.5m - 20%∗ 20%∗ - - 10 - - 1 - - 1 - - 3

Table 1: Dataset statistics (cols 1-5) and success in the estimation of k in datasets with ground truth (GT) communities (cols 6-7). Comparison

of quality (DIV and NMI) and running time in seconds for all competing methods and datasets (cols 8-19). Note that, due to the lack of GT

communities in the Bike Rides and Botnet datasets, only running time and variance in the estimation of k is reported.

Algorithm 2 summarizes our method for learning k called LARC-

CCD. Given X and a candidate decomposition [C,C ′,A], we irst

compute the the Singular Value Decomposition (SVD) ofA = U ΣVT ,

whereU is a basis for A’s row space. Then we quantify the activity-

aware CCD c(r ) for all r ≤ k (Steps 2-8) and maintain the r that

maximizes c(r ). For each r we create a projector matrix Πr for the

subspace deined by the dominant r singular values of A. We use

Πr to compress the tensor X by taking its 3-mode product ×3 with

Πr (Step 4). The n-mode product multiplies a tensor and a matrix

that match on the n-th mode of the tensor, in the same fashion as

matrix-matrix multiplication. We similarly compressA to obtainAr
(Step 5) and compute the core consistency of Xr using [C,C

′,Ar ],

employing eicient_corcondia [41] (Step 7). The highest core con-

sistency value c(r ) is supplied to AutoTen [39] which estimates the

rank k∗, which reveals the number of communities in the data (Step

9). While the optimal k detection is tensor-oriented, one can easily

adopt it for GM and other error-of-it models, relying on a ixed

natural number of communities in the data.

4.4 Learning λc and λd using MDL

The regularization parameters λc , λd control the relative impor-

tance of the fused lasso regularization in our objective functions.

Thus, it is important to set them appropriately to balance the con-

tributions of J and R(A). We propose to set λc and λd based on

the Minimum Description Length (MDL), where we aim to mini-

mize the number of bits needed to encode errors due to the it and

the number of łswitchesž between active and inactive community

states in A. Intuitively, the higher the deviation of each element of

X(i, j, t) from its reconstruction, the more bits are needed to encode

this error in a lossless compression employing the characterization.

For the case of LARC-TF, we formalize the average bits to encode

the the error of reconstruction as:

B
{λc ,λd }
T F

= − log
(

| |X −X {λc ,λd } | |
2
F

)

/|X |, (13)

whereX {λc ,λd } is the reconstruction obtained by employing LARC-

TF with parameters set to λc and λd , and |X | is the number of

elements of the tensor. Similarly we deine the average bits to

encode error due to LARC-GM as:

B
{λc ,λd }
GM

= − log
(

∑

i, j,t

[X(i, j, t) − P{λc ,λd }(i, j, t)]
2)/|X |, (14)

where P{λc ,λd }(i, j, t) is the probability of observing an edge ac-

cording to the model learned by LARC-GM using λc and λd .

The second part of ourMDL encoding is the number of łswitchesž

between active and inactive community states which we quantify

as ∆{λc ,λd } = − log(| |DA{λc ,λd } | |
2
F
)/|A{λc ,λd } |, where A{λc ,λd }

is the community activation matrix learned using the correspond-

ing regularization parameters by either of the models. To ind the

parameters, we then minimize the total number of bits:

{λc , λd } = argminB {λc ,λd } + ∆{λc ,λd }, (15)

where B {λc ,λd } ∈ {B
{λc ,λd }
GM

,B
{λc ,λd }
T F

}. Minimizing the objective

depends on invoking LARC-TF or LARC-GM, thus, we perform a

grid search over possible values and pick the coniguration that

minimizes MDL. We demonstrate that in a variety of synthetic and

real datasets setting the parameters according to the MDL principle

results in optimal quality of detecting ground truth communities.

A similar heuristic can be utilized to learn a variety of parameters,

including our rank. In that case, however, we would need a more

complex encoding to account for the additional information held

by an increased rank; we therefore prefer the more established rank

method above.

5 EXPERIMENTAL EVALUATION

We evaluate the quality, scalability, and real-world utility of LARC

on both real and synthetic datasets. All experiments are for single

core execution of our methods implemented in Matlab. For tensor

manipulations we use the Tensor Toolbox for Matlab [5, 6].

5.1 Data

We summarize the datasets used for evaluation in Table 1.

Synthetic: We generate the community structure and a smooth

temporal activation. |V | nodes are randomly assigned to k overlap-

ping communities C while ixing the average community overlap

(Jaccard similarity). Piece-wise constant activation proiles A:k are

sampled from a Markov chain with active 1 and inactive 0 states for

length T and state-change probability of p = 0.2. We next generate

temporal interactions for each snapshot X (t) using A,C and based

on the GM speciied in Sec 3.2. We also łstretchž the temporal di-

mension of instances in a controlled fashion to simulate temporal

oversampling and varying rates of interactions within communities

across time. We map each original time step t to s ∼ Poisson(λst )

time steps, where the the interactions in X (t) are uniformly dis-

tributed across the s new snapshots. This makes recovering the

original proile and communities increasingly challenging.

Real-world:We employ several real-world datasets from diferent

domains: Football [44]; Reality Min. [20] captures the temporal inter-

actions (calls, texts, BT proximity) among students and faculty with

self-reported friendship relations which we use to get ground truth

communities employing BigCLAM [50]; Reddit datasets contain

exchanges between users (posts and replies) on reddit.com, where
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Figure 2: Comparison of LARC-TF’s quality with that of competing techniques for varying levels of temporal aggregation on synthetic

(V=200,T=20000)(a), and Reality Min. (b) datasets. Quality comparison for increasing community overlap (measured in Jacccard Similarity)

on synthetic data (V=200,T=2500) (c). Comparison of scalability with increasing V and ixed nnz=const (T=50) (d), increasing V and nnz=1%

(T=50) (e), and increasing T (V=100) (f). Quality of estimating the GT number of communities k for increasing average stretch on synthetic

(T=1k,V=100) (g). DIV and MDLfrom Eq. 15 as a function of the regularization parameters λc and λd (h).

the ground truth communities are based on subset of sports and

news subreddits and their participants [2]; Bike Rides consists of

rides between bike rental stations in Boston, MA over 2 years [1];

and Botnet contains inter-IP lows of university normal and bot-

net machines and includes several time-annotated DDoS attacks

involving traic of 10 bot and 1 victim IP [23].

5.2 Experimental Setup

Baselines: We evaluate our methods’ quality in retrieving ground

truth (GT) overlapping communities and running time in compari-

son to three baselines. TF is a tensor factorization method proposed

for overlapping temporal community detection by Gauvin et al. [25]

and can also be viewed as a special case of our LARC-TF, where

regularization in time is turned of. BigCLAM is the state-of-the-

art method for overlapping community detection based on the

ailiation generative model, which we extend to time to obtain

LARC-GM [50]. Non-negative matrix factorization (NMF) is another

popular approach for overlapping communities [33]. Since they

operate on static graphs, we employ both BigCLAM and NMF on

an aggregated temporal interactions static graph.

Metrics: For datasets with GT, we compare the level of agreement

between GT and learned communities by all competing techniques.

The KullbackÐLeibler divergence (KL-Div) has been previously used

to evaluate overlapping cluster solutions [26], where both GT and

learned communities are treated as distributions over the nodes

and the measure quantiies the diferences between them. KL-Div is,

however, not symmetric and also not deined when the distributions

have regions of 0 density. Hence, we apply a metric alternative

Jansen-Shannon divergence (DIV) [48] that handles 0 probabilities

and varies between 0 (no divergence) and 1. We also adopt the

normalized mutual information (NMI) [31] to compare learned and

GT communities, where higher NMI corresponds to better detection

of GT. This measure requires 0/1 membership, hence, we threshold

community vectors using values ranging in [10−3, 1] in order to

obtain the best NMI score for each method.

5.3 Quality, scalability, and parameter selection

Quality. The main advantage of LARC is in its treatment of time:

enforcing solutions in which communities alternate between ac-

tive/inactive in contiguous periods. To test this experimentally, we

simulate temporal oversampling by stretching a smooth instance

with expected on/of behavior by łstretchingž it in time and spread-

ing a given time slice’s temporal interactions to several new time

slices controlled by an average stretch parameter. Fig. 1(b) (Sec. 1)

shows a quality comparison in terms of Divergence (DIV) from GT

communities of all competing techniques for increasing average

stretch of a Synthetic dataset. For small stretch, i.e. a well-behaved

smooth instance, LARC-TF and LARC-GM outperform TF by a

small margin and static methods (NMF and BigCLAM) by a factor

of 3 in DIV. For increasing stretch, LARC-TF maintains a near con-

stant quality, while TF deteriorates to the quality level of BigCLAM

(2.6x deterioration). This behaviour is due to regularization forcing



LARC-TF to continue considering a temporal segmentation of time

at which communities are most discernible, while TF is afected by

only observing partially the interactions of a community in indi-

vidual timeslices and not employing any smoothness in time. At

the same time, static methods sufer from an opposite extreme -

over-aggregation in which the communities become also hard to

discern. While LARC-GM performs very well in terms of quality, it

does not scale to long timelines due to its reliance on coordinate

descent methods for both A and C .

Since communities are elusive to the baseline methods, at both

high and low (full aggregation) temporal resolution, we next inves-

tigate the feasibility of varying regular aggregations to get better

communities in a synthetic Fig. 2(a) and the Reality Mining Fig. 2(b)

datasets. The trends in both igures reveal the aforementioned chal-

lenges at both ends of aggregation and a slightly better performance

for TF for medium aggregation. LARC, however, maintains a con-

sistently better quality than the baselines at high resolutions (on

synthetic) and as the aggregation coarsens deteriorates to the per-

formance of TF as at these levels the useful temporal information is

lost. Note, that in Reality mining (Fig. 2(b)), at the highest resolution

even LARC sufers from fragmented communities in time and reg-

ularization cannot really attain the best quality at some reasonable

small aggregation level. Note also that the GT in Reality mining

relies on BigCLAM-extracted overlapping communities from the

user-reported friendship graph and thus may not be ideal, resulting

in relatively high DIV values. Comparison to LARC-GM is again

omitted due to limited scalability for high temporal resolutions and

similar to LARC-TF’s performance for low-resolutions.

Naturally, the quality of community detection deteriorates with

the amount of overlap among communities as evident in Fig. 2(c).

However, thanks to the timing of interactions coupled with smooth-

ness regularization LARC-TF consistently outperforms all baselines.

Interestingly, the temporal information loses its utility when there

is very small overlap and BigCLAM performs on par with LARC-

TF although using fully aggregated as opposed to temporal data.

As demonstrated in previous studies, NMF performs consistently

worse than BigCLAM and thus all other competing methods.

Scalability.While exhibiting good quality on small instances LARC-

GM does not scale well with both V : Figs. 2(d), 2(e) and T : Fig. 2(f)

due to its reliance on coordinate methods for both A and C . LARC-

TF, on the other hand, scales similar to TF and both of them slightly

slower than the static baselines for increasing V while keeping the

number of non-zeroes (nnz) in the input constant Fig. 2(d). NMF and

BigCLAM’s time increases on par with the TF methods when the

nnz is kept at 1% of the tensor size for increasing V Fig. 2(e), since

the resulting aggregate graphs densify with the nnz. As expected,

since LARC-TF performs smoothing via a descent method on the

activation proiles A, its running time increases faster than that

of TFÐcomputational time invested to enable its superior quality

performance. It, nevertheless, completes within a few minutes on

our largest real-world and synthetic datasets Tbl 1 and Fig. 2(f). It

is worth to note that since it is an AOADDMmethod, it is amenable

to parallel and distributed implementations, which can enable its

feasible adoption for analysis of even larger timelines.

Parameter selection. We evaluate the ability of our estimation

approach LARC-CCD to recover the GT number of communities

kGT and compare it to a regularization-oblivious approach from the

literature AutoTen [39]. Since both approaches require a maximum

kmax to probe, we set this value to 2kGT for both methods in

synthetic data and kmax = 20 for all real-world datasets. Fig. 2(g)

shows the comparison of the two competing methods, where the

quality measure on the vertical axis is the percent deviation of

the estimated kEST from the GT one:
|kEST −kGT |

kGT
. We report the

average of 10 increasing average stretch of a synthetic dataset.

LARC-CCD outperforms AutoTen consistently by at least a factor

of 2 in terms deviation. The reason for this performance is the

regularization-enabled compression we perform on the input tensor

detailed in Alg. 4.3. This superior performance in estimating the

number of communities is also evident in real-world datasets as

reported in columns 6 and 7 of Tbl. 1.

We also evaluate the utility of our MDL approach for automati-

cally selecting the regularization parameters λc and λd Fig. 2(h). In

this experiment, we vary the two parameters in exponential steps

and compare the shape of the DIV surface and that for MDL cost,

employing the TF bit cost B
{λc ,λd }
T F

. Since the global minima of both

functions are attained for the same region of values of the parame-

ters, MDL can successfully be employed as a proxy for parameter

estimation in conjunction with calls to LARC. We observe similar

behavior on other datasets as well. It is worth noting that while

DIV has multiple local minima, MDL is much more smooth, hence

line-search approaches can be adopted to speed-up the estimation

without covering the full grid of parameters.

Overall evaluation and discussion. A comparison of the quality

and running time for all datasets is presented in Tbl. 1. Here we

show two measures of quality: DIV and NMI, and report all run-

ning times in seconds. In terms of LS divergence (DIV), LARC-TF

outperforms baselines on all datasets with ground truth except for

the Football dataset on which BigCLAM and NMC perform slightly

better. The reason for this behavior is the very low overlap between

communities in this dataset rendering temporal interactions dis-

advantageous compared to a full aggregation. Similar behavior is

observed in our quality with increasing overlap experiment Fig. 2(c)

where for the minimum overlap BigCLAM similarly performs on

par with LARC-TF. The pattern is similar for NMI with the excep-

tion of the Reality mining dataset, where BigCLAM has a slightly

higher, though very close to 0 NMI. As we discussed earlier, the

ground truth for this dataset is based on static overlapping friend-

ship communities detected by BigCLAM, which may not align well

with the multi-mode user interactions observed in the data, thus

resulting in relatively low quality on all datasets.

In terms of running time, while LARC-TF is slower than alter-

natives, its running time exceeds 1 min only on the long (T = 20k)

synthetic instance, making it practical to employ on large real-world

datasets. An important observation here is that while the aggre-

gate methods are typically much faster than TF and LARC-TF, their

running time increases even beyond that of the temporal methods

on the Reddit datasets due to the aggregate matrix they operate on

being signiicantly denser than the individual time snapshots on

which TF and LARC-TF operate.

LARC-GM’s running time increases faster with the input size

(Figs. 2(d),2(e),2(f)) due to the more expensive gradient solver. How-

ever, its quality on small instances is promising (see irst two points

in Fig. 1(b)) due to the same temporal regularization we employ in
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Figure 3: An activation proile of a Reality Mining community

LARC-TF. Better solvers (e.g. stochastic alternatives) for JGM may

render it a better it for some datasets in practice. In addition, alter-

native error-of-it functions for communities (i.e., beyond JT F and

JGM ) may also be advantageous within our general regularization

framework. We plan to investigate the above questions in future

research.

5.4 LARC at work

Beyond our analysis of the temporal changes in the Bike Rides

dataset in Fig. 1(a), we also consider a sample community activity

proile from the Reality mining dataset in Fig. 3. Weekday mid-

nights are marked by grey lines, while the weekend is enclosed

between red vertical lines. Outside of a Saturday morning spike,

variance in activity seems lower overall during theweekend, though

interpretation of this pattern may require more thorough commu-

nity information. The diversity of potential options for ground

truth and interaction types in the Reality Mining data (friendships,

work, and external contacts; proximity and calls) makes assigning

deinitive communities and behaviors diicult, which may explain

relatively higher DIV values. While these patterns are more or less

expected, the activity proiles may be employed to detect abnor-

mal activity movements, thus enabling anomaly detection at the

community level. We detected such a big change in the bike service

data in Fig. 1(a) which coincided with the geographical expansion

of the service. The activity proiles can also be used to inform ap-

propriate temporal aggregations of network data which can then be

employed for other tasks: e.g. temporal link prediction, partitioning

and others.

While we do not have an exact GT community structure for

the Botnet data, the meta-data speciies the set of bot IPs and that

of the victim which is looded by packets several times during

the trace in coordinated DDoS attacks. We employ LARC-TF on

this dataset, setting k = 3, (based on the recommendation from

our k estimation approach LARC-CCD) and examine the resulting

communities. The entire botnet and the victim are consistently

included in one of the reported communities. While in terms of

total number of network lows, the botnet traic does not stand out

in this trace, the coordinated timings of the attack allow LARC-TF

to group participants in the attack, demonstrating its potential as a

network traic analysis tool for security professionals.

6 CONCLUSION

We proposed LARC, a novel dynamic overlapping community de-

tection framework to learn jointly the community structure and

the temporal community activity proile. It enforces interpretable

piece-wise constant activity proiles via a temporal smoothness

regularization. We demonstrated that our framework can success-

fully accommodate diferent measures of community it. Our pro-

posed algorithms, by virtue of efectively leveraging the temporal

aspect of the data, demonstrate 2.6× quality improvement over

state-of-the-art baselines on data with ground truth communities.

We demonstrate the importance of regularizing time when dealing

with dynamic networks, and suggest that similar or alternative

regularizations can be implemented on top of other community

detection methods. Furthermore, LARC produced interpretable and

intuitive results when applied łin thewildž, to a variety of real-world

scenarios (botnet attacks, change points in urban transportation

patterns, and public forum interaction trends), demonstrating its

wide applicability and practicality as a data mining tool. In addi-

tion to our optimization techniques, we provided a comprehensive

set of tools for choosing estimating all method parameters in an

unsupervised manner, rendering LARC useful for researchers and

practitioners alike.
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