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Abstract

This work focuses on the task of finding
latent vector representations of the words
in a corpus. In particular, we address the
issue of what to do when there are multiple
languages in the corpus. Prior work has,
among other techniques, used canonical
correlation analysis to project pre-trained
vectors in two languages into a common
space. We propose a simple and scal-
able method that is inspired by the no-
tion that the learned vector representations
should be invariant to translation between
languages. We show empirically that our
method outperforms prior work on mul-
tilingual tasks, matches the performance
of prior work on monolingual tasks, and
scales linearly with the size of the input
data (and thus the number of languages be-
ing embedded).

1 Introduction

Representing words as vectors in some latent
space has long been a central idea in natural lan-
guage processing. The distributional hypothesis,
perhaps best stated as “You shall know a word by
the company it keeps” (Firth, 1957), has had a long
and productive history, as well as a recent revival
in neural-network-based models (Mikolov et al.,
2013). These methods generally construct a word
by context matrix, then either use the vectors di-
rectly (often weighted by term frequency and in-
verse document frequency), perform some factor-
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ization of the matrix, or use it as input to a neu-
ral network which produces vectors for each word.
The resultant vectors can be used in a wide array of
tasks, from information retrieval to part-of-speech
tagging and parsing.

There has also been some recent work address-
ing how to create these vectors when informa-
tion from multiple languages is available. Two
recent attempts involve using canonical correla-
tion analysis (CCA) to project pre-trained vec-
tors from each of two languages into a common
space (Faruqui and Dyer, 2014b) and using an
alignment matrix to heuristically project the vec-
tors from one language onto the words in another
language (Guo et al., 2015). These methods gener-
ally only work with two languages at a time, how-
ever.

In this paper, we introduce a technique for con-
structing multilingual word embeddings that is in-
spired by the notion of translational invariance.
CCA and the heuristic projection mentioned above
both attempt to construct vectors such that words
that are translations of each other are close in the
vector space, but the method we introduce formal-
izes this as part of the objective function of the
original decomposition. We further show how to
optimize this objective function with a method that
scales linearly in the size of the input data. This
results in a scalable, single-step method that is in-
formed by both the monolingual corpus statistics
and the multilingual alignment data. We show ex-
perimentally that this results in vectors that outper-
form prior work on multilingual tasks and match
the performance of prior work on monolingual
tasks.



The contributions of this paper are the follow-
ing:
• Problem formulation: we formalize the no-

tion of translation-invariance, regardless of
the number of languages, as part of the ob-
jective function of a standard matrix decom-
position;
• Scalable algorithm: we introduce scalable

means of optimizing this augmented objec-
tive functions; and
• Effectiveness: we present state-of-the-art re-

sults on a multilingual task using the vectors
obtained by these methods.

The code and data used in this paper are pub-
licly available at https://sites.google.
com/a/umn.edu/huang663/.

2 Problem Definition

The informal problem definition is the following:

Informal Problem. Given a set of cooccurrence
statistics between words in each of several lan-
guages, and a translation table containing align-
ment counts between words in each of these lan-
guages, Find a latent representation for each word
in each language that (1) captures information
from the cooccurrence statistics and (2) is invari-
ant to translations of the cooccurrence statistics
between languages.

More formally, suppose we have M1 words and
N1 contexts in the first language (“English”), and
M2 and N2 for the second language (“Spanish”).
Then, we are given two matrices of cooccurrence
statistics (one for each language), with dimensions
M1×N1 and M2×N2, and two dictionary matri-
ces containing translations from English to Span-
ish, and from Spanish to English, repesctively. A
more detailed description on how the data is ob-
tained can be found in (Faruqui and Dyer, 2014b).
For simplicity in what follows, we denote these
matrices as
• X: a single multilingual cooccurrence matrix

(with all the M1+M2 words as the rows, and
N1 + N2 contexts as columns). Entries in
this matrix specify the cooccurrence between
a word in any language and a context in any
language.
• D1: a word dictionary matrix (with all the
M1 + M2 English and Spanish words as
both rows and columns). Entries in this ma-
trix specify which words are translations of
which other words, and is generally block-

normalized, so that (e.g.) each Spanish word
has a probability distribution over English
words.
• D2: a context dictionary matrix (with all the
N1+N2 English and Spanish contexts as both
rows and columns). This is similar to D1 in
its construction.

We seek decompositions of X that are invari-
ant to multiplications along each mode by its re-
spective D matrix. Note that, while we only de-
scribed the case where we have two languages, it
is straightforward to extend this to having many
languages in the combined X, D1 and D2 matri-
ces, and we do this in some of the experiments
described below.

3 Translation-invariant LSA

Without the side information provided by the dic-
tionary matrices, the classic method for generat-
ing word vectors finds a low-rank decomposition
of the data matrix X:

min
U,V
‖X−UVT ‖2F .

With proper scaling (see our discussion in §4.2),
the rows of U (or rows of V) are the word embed-
dings (or “context embeddings”). It is well-known
that the solution is given by the principal compo-
nents of the singular value decomposition (SVD)
of X. Generating word embeddings in this way
is known as latent semantic analysis (LSA) (Deer-
wester et al., 1990).

Our method extends LSA to incorporate infor-
mation from many languages at a time, with the
constraint that the decomposition should be invari-
ant to translation between these languages. We
call this method translation-invariant LSA (TI-
LSA).

In order to take the dictionary matrices D1 and
D2 into consideration, we propose to seek a de-
composition that can simultaneously explain the
original matrix X and various translations of it.
We can formalize this in the following objective
function:

min
U,V

‖X−UVT ‖2F + ‖D1X−UVT ‖2F + (1)

‖XDT
2 −UVT ‖2F + ‖D1XDT

2 −UVT ‖2F .

By expanding and combining all four quadratic
terms, we can see that the above problem is equiv-
alent to (up to a constant difference)

min
U,V

‖X̃−UVT ‖2F , (2)
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where

X̃ =
1

4

(
X+D1X+XDT

2 +D1XDT
2

)
=

1

4
(I+D1)X(I+D2)

T .

Taking the SVD of X̃ does not seem numeri-
cally appealing at first glance: even though D1,
D2, and X are all very sparse, forming X̃ explic-
itly will introduce a significant amount of nonze-
ros. However, as we will explain below, it is not
necessary to explicitly form X̃ in order to find a
few principal components of it.

We propose to use the Lanczos algorithm
(Golub and Van Loan, 1996, Chapter 9) to calcu-
late the SVD of X̃. The Lanczos method can be
viewed as a generalization of the power method
for computing an arbitrary number of principal
components, and the basic operation required is
only matrix-vector multiplication. For our prob-
lem specifically, the required matrix-vector multi-
plications X̃µ and X̃Tν can be carried out very
efficiently with three sparse matrix-vector multi-
plications, each with complexity linear in the num-
ber of nonzeros in the sparse matrix involved, so
that any dense intermediate matrix is avoided. As
a result, by using our implementation of the Lanc-
zos method, the time required for calculating the
SVD of X̃ is not much more than that of X, even
though X̃ is significantly denser than X.

4 Experiments

We present three experiments to evaluate the
method introduced in this paper. The first experi-
ment uses our word embeddings in a cross-lingual
dependency parsing task; the second experiment
looks at monolingual (English) performance on a
series of word-similarity tasks; and the final ex-
periment shows the scalability of our method by
applying it to multiple languages.

4.1 Cross-lingual evaluation

Guo et al. (2015) recently introduced a method for
using multilingual word embeddings to perform
cross-lingual dependency parsing. They train a
neural-network-based dependency parsing model
using word vectors from one language, and then
test the model using data and word vectors from
another language. They used the embeddings ob-
tained by Faruqui and Dyer (2014b), along with
a heuristic projection. Because we used the same

Embedding method LAS UAS
CCA (Faruqui & Dyer) 60.7 69.8
Projection (Guo et al.) 61.3 71.1
TI-LSA 62.8 72.5

Table 1: Labeled and unlabeled attachment score
(LAS/UAS) on a cross-lingual dependency task. TI-LSA out-
performs prior work on this task.

data to obtain our embeddings, our method is di-
rectly comparable to the CCA method of Faruqui
and Dyer, and the projection method of Guo et al.

We used code and data graciously provided by
Guo to run experiments, training a dependency
parsing model on their English treebank, and test-
ing it on the Spanish treebank. We report the re-
sults below for the methods used by Guo et al. and
the method introduced in this paper. We could not
exactly reproduce Guo’s result with the code we
were provided, so we report all results from our
use of the provided code, in case some parame-
ter settings are different from those used in Guo’s
paper. The results are shown in Table 1. As can
be seen in the table, our first method for obtain-
ing multilingual embeddings outperforms both the
CCA method of Faruqui and Dyer, and the heuris-
tic projection used by Guo et al.

4.2 Monolingual evaluation

While our focus is on generating embeddings that
are invariant to translations (and thus most suited
to multi- or cross-lingual tasks), we would hope
that the addition of multiple languages would
not hurt performance on monolingual tasks. We
used wordvectors.org (Faruqui and Dyer, 2014a)
to evaluate our learned vectors on a variety of
English-language word similarity tasks. The tasks
are mostly all variations on performing word simi-
larity judgments, finding the correlation between
the system’s output and human responses. We
used the same data as that used by Faruqui and
Dyer (2014b) (English-Spanish only), and thus
our method for obtaining multilingual embeddings
is directly comparable to their technique for do-
ing the same (CCA). We used the first 11 tasks on
wordvectors.org, and obtained Faruqui and Dyer’s
results from that website. Due to space con-
straints, we only report the average performance
across these 11 tasks for each of the methods we
tested. The results are shown in Table 2. To test
statistical significance, we performed a paired per-
mutation test, treating performance on each task as



Method Average Correlation
CCA (Faruqui & Dyer) 0.638
LSA 0.626
TI-LSA 0.628

Table 2: Average correlation with human similarity judg-
ments on 11 word-similarity tasks. The differences between
these methods are not statistically significant, showing that
the gains we see in cross-lingual tasks are not at the expense
of monolingual tasks.

paired data. The important thing to note from the
table is that the differences between the methods
are all quite small, and none of them are statisti-
cally significant.

Note that LSA on just the English data performs
on par with all of the other methods presented;
we have not found a way to improve performance
on this monolingual task from using multilingual
data.1 However, it is also important to note that
our multilingual methods do not hurt performance
on these monolingual tasks, either—we get the
benefits described in our other evaluations without
losing performance on English-only tasks.

4.3 Scalability

We mentioned in Section 3 that our method is lin-
ear in the number of nonzeros in the data, as we
are simply using the Lanczos algorithm to com-
pute a sparse SVD. To show this in practice, we
briefly present how the running time of our algo-
rithm scales with the number of languages used.
Each additional language adds roughly the same
amount of data to the X matrix. Figure 1 shows
that our method does indeed scale linearly with the
number of nonzeros in the matrix, and thus also
with the number of languages used (assuming each
language has roughly the same amount of data).
All the experiments are performed in MATLAB
2013a on a Linux server with 32 Xeon 2.00GHz
cores and 128GB memory.

5 Discussion

We discuss here two points on the flexibility of
the method we have introduced. First, note that
the dictionary matrices we used contained infor-

1This is in contrast to the results reported by Faruqui and
Dyer, who by our evaluation also do not improve perfor-
mance using multilingual data. To obtain word vectors from
our decomposition, we used only the U component of the
SVD; including the singular values, as Faruqui and Dyer did,
gives worse performance. We confirmed this with the au-
thors, and replicated their result for English-only LSA when
using the singular values.
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Figure 1: TI-LSA is linear in the number of nonzeros in the
data matrices, and can easily scale to many languages.

mation about translations between languages. It is
also possible to include information about para-
phrases in this dictionary. For instance, a resource
such as the Paraphrase Database (Ganitkevitch et
al., 2013) could be used to further constrain the
embeddings obtained; this could be useful if the
resource used to obtain a paraphrase dictionary
contained more or different information than the
corpus statistics used in the decomposition.

Second, note that we have two dictionaries, one
for the words and one for the contexts. These
dictionaries correspond to the modes of the ma-
trix; we have one dictionary matrix per mode, and
we always multiply the dictionary along its corre-
sponding mode. It would be easy to extend this
method to a setting where the data is a 3-mode
tensor instead of a matrix, e.g., if the data were
(subject, verb, object) triples, or relation triples in
some knowledge base. In these settings, the dictio-
naries used for each mode might be more different;
in the subject-verb-object example, one of the dic-
tionaries would only have verbs, while the other
two would only have nouns, for instance. Stan-
dard tensor decompositions could be augmented
with a translation-invariance term, similar to what
we have done with matrices in this work.

6 Related Work

The most closely related work is that of Faruqui
and Dyer (2014b), whose CCA-based method we
have already mentioned; however, it is not obvi-
ous how CCA-based methods can be applied to
more than two languages at a time. Our work is
also similar to prior work on multilingual latent
semantic analysis; Bader and Chew (2008) also
include a translation dictionary when decompos-
ing the X matrix, though their formulation uses a
term-document matrix instead of a word-context



matrix, and the way they use the translation dic-
tionary is quite different.

7 Conclusions

We have presented a new technique for gener-
ating word embeddings from multilingual cor-
pora. This technique formalizes the notion of
translation invariance into the objective function
of the matrix decomposition and provides flexi-
ble and scalable means for obtaining word vec-
tors where words that are translations of each other
are close in the learned vector space. Through
three separate evaluations, we showed that our
technique gives superior performance on multilin-
gual tasks, matches prior work on monolingual
tasks, and scales linearly in the size of the input
data. The code and data used in this paper are
available at https://sites.google.com/
a/umn.edu/huang663/.
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