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PArallel RAndomly COMPressed Cubes (PARACOMP):
A Scalable Distributed Architecture for Big Tensor Decomposition

Nicholas D. Sidiropoulos, Fellow, IEEE, Evangelos E. Papalexakis, and Christos Faloutsos

This article combines a tutorial on state-of-art tensor decompo-
sition as it relates to big data analytics, with original research on
parallel and distributed computation of low-rank decomposition for
big tensors, and a concise primer on Hadoop-MapReduce. A novel
architecture for parallel and distributed computation of low-rank
tensor decomposition that is especially well-suited for big tensors
is proposed. The new architecture is based on parallel processing
of a set of randomly compressed, reduced-size ‘replicas’ of the big
tensor. Each replica is independently decomposed, and the results are
joined via a master linear equation per tensor mode. The approach
enables massive parallelism with guaranteed identifiability properties:
if the big tensor is indeed of low rank and the system parameters
are appropriately chosen, then the rank-one factors of the big tensor
will indeed be recovered from the analysis of the reduced-size
replicas. Furthermore, the architecture affords memory / storage and
complexity gains of order IJ

F
for a big tensor of size I × J × K

of rank F with F ≤ I ≤ J ≤ K. No sparsity is required in the
tensor or the underlying latent factors, although such sparsity can be
exploited to improve memory, storage and computational savings.

I. INTRODUCTION

Tensors are data structures indexed by three or more indices, say
(i, j, k, · · · ) - a generalization of matrices, which are data structures
indexed by two indices, say (r, c) for (row,column). The term tensor
has a different meaning in Physics, however it has been widely
adopted across various disciplines in recent years to refer to what
was previously known as a multi-way array. Matrices are two-way
arrays, and there are three- and higher-way (or higher-order) tensors.

Tensor algebra has many similarities but also many striking differ-
ences with matrix algebra - e.g., determining tensor rank is NP-hard,
and low-rank tensor factorization is unique under mild conditions.
Tensor factorizations have already found many applications in signal
processing (speech, audio, communications, radar, signal intelligence,
machine learning) and well beyond. For example, tensor factorization
can be used to blindly separate unknown mixtures of speech signals in
reverberant environments [2]; ‘untangle’ audio sources in the spectro-
gram domain [3]; unravel mixtures of code-division communication
signals without knowledge of their spreading codes [4]; localize
emitters in radar and communication applications [5]; detect cliques
in social networks [6]; and analyze fluorescence spectroscopy data
[7], to name a few - see also [8] for additional machine learning
applications.

Tensors are becoming increasingly important, especially for ana-
lyzing big data, and tensors easily turn really big, e.g., 1000×1000×
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1000 = 1 billion entries. Memory issues related to tensor compu-
tations with large but sparse tensors have been considered in [9],
[10], and incorporated in the sparse tensor toolbox http://www.sandia.
gov/∼tgkolda/TensorToolbox. The main idea in those references is to
avoid intermediate product ‘explosion’ when computing sequential
tensor - matrix (‘mode’) products, but the assumption is that the
entire tensor fits in memory (in ‘coordinate-wise’ representation),
and the mode products expand (as opposed to reduce) the size
of the ‘core’ array that they are multiplied with. Adaptive tensor
decomposition algorithms for cases where the data is serially acquired
(or ‘elongated’) along one mode have been developed in [11], but
these assume that the other two modes are relatively modest in size.
More recently, a divide-and-conquer approach for decomposing big
tensors has been proposed in [12]. The idea of [12] is to break the
data in smaller ‘boxes’ which can be factored independently, and
the results subsequently concatenated using an iterative process. This
assumes that each smaller box admits a unique factorization (which
cannot be guaranteed from ‘global’ uniqueness conditions alone),
requires reconciling the different column permutations and scalings
of the different blocks, and entails significant communication and
signaling overhead.

All of the aforementioned techniques require that the full data be
stored in (possibly distributed) memory. Realizing that this is a show-
stopper for truly big tensors, [6] proposed a random sampling ap-
proach, wherein judiciously sampled ‘significant’ parts of the tensor
are independently analyzed, and a common piece of data is used to
anchor the different permutations and scalings. The downside of [6]
is that it only works for sparse tensors, and it offers no identifiability
guarantees - although it usually works well for sparse tensors. A
different approach was taken in [13], which proposed randomly
compressing a big tensor down to a far smaller one. Assuming that the
big tensor admits a low-rank decomposition with sparse latent factors,
such a random compression guarantees identifiability of the low-rank
decomposition of the big tensor from the low-rank decomposition of
the small tensor. This result can be viewed as a generalization of
compressed sensing ideas from the linear to the multi-linear case.
Still, this approach works only when the latent low-rank factors of
the big tensor are known to be sparse - and this is often not the case.

This article considers appropriate compression strategies for big
(sparse or dense) tensors that admit a low-rank decomposition /
approximation, whose latent factors need not be sparse. Latent
sparsity is usually associated with membership problems such as
clustering and co-clustering [14]. A novel architecture for parallel
and distributed computation of low-rank tensor decomposition that is
especially well-suited for big tensors is proposed. The new architec-
ture is based on parallel processing of a set of randomly compressed,
reduced-size ‘replicas’ or the big tensor. Each replica is independently
decomposed, and the results are joined via a master linear equation
per tensor mode. The approach enables massive parallelism with
guaranteed identifiability properties: if the big tensor is indeed of
low rank and the system parameters are appropriately chosen, then
the rank-one factors of the big tensor will indeed be recovered from
the analysis of the reduced-size replicas. Furthermore, the architecture
affords memory / storage and complexity gains of order IJ

F
for a big
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tensor of size I × J × K of rank F with F ≤ I ≤ J ≤ K. No
sparsity is required in the tensor or the underlying latent factors,
although such sparsity can be exploited to improve memory, storage
and computational savings.

This article combines i) a short tutorial on state-of-art tensor
decomposition as it relates to big data analytics; ii) novel research
results on tensor compression and parallel and distributed tensor
decomposition; and iii) a concise primer on Hadoop-MapReduce,
starting from a toy signal processing problem, and going up to
sketching a Hadoop implementation of a proposed algorithm for
‘tensor decomposition in the cloud’. The combination is timely and
well-motivated given the emerging interest in (and relative scarcity of
literature on) signal processing for big data analytics, and in porting /
translating and developing new signal processing algorithms for cloud
computing platforms.
Notation: A scalar is denoted by an italic letter, e.g. a. A column
vector is denoted by a bold lowercase letter, e.g. a whose i-th entry
is a(i). A matrix is denoted by a bold uppercase letter, e.g., A with
(i, j)-th entry A(i, j); A(:, j) (A(i, :)) denotes the j-th column
(resp. i-th row) of A. A tensor (three-way array) is denoted by
an underlined bold uppercase letter, e.g., X, with (i, j, k)-th entry
X(i, j, k). X(:, :, k) denotes the k-th frontal I×J matrix ‘slab’ of X,
and similarly for the slabs along the other two modes. Vector, matrix
and three-way array size parameters (mode lengths) are denoted by
uppercase letters, e.g. I . ◦ stands for the vector outer product; i.e., for
two vectors a (I×1) and b (J×1), a◦b is an I×J matrix with (i, j)-
th element a(i)b(j); i.e., a ◦b = abT . For three vectors, a (I × 1),
b (J × 1), c (K × 1), a ◦ b ◦ c is an I × J × K three-way array
with (i, j, k)-th element a(i)b(j)c(k). The vec(·) operator stacks
the columns of its matrix argument in one tall column; ⊗ stands for
the Kronecker product; ⊙ stands for the Khatri-Rao (column-wise
Kronecker) product: given A (I ×F ) and B (J ×F ), A⊙B is the
JI × F matrix

A⊙B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, F )⊗B(:, F )

]
For a square matrix S, Tr(S) denotes its trace, i.e., the sum of
elements on its main diagonal. ||x||22 is the Euclidean norm squared,
and ||A||2F , ||X||2F the Frobenious norm squared - the sum of squares
of all elements of the given vector, matrix, or tensor.

II. TENSOR DECOMPOSITION PRELIMINARIES

There is no comprehensive tutorial on tensor decompositions and
applications from a signal processing point of view as of this writing,
albeit there are several signal processing papers dealing with topics in
tensor decomposition that have significant tutorial value. The concise
introduction in [15] is still useful, albeit outdated. An upcoming
Signal Processing Magazine tutorial [8] covers the basic concepts
and models well, and touches upon numerous applications. We also
refer the reader to [16] and [17], [18] for gentle introductions to tensor
decompositions and applications from the viewpoint of computational
linear algebra, chemistry, and the social sciences, respectively. Due to
space limitations, here we only review essential concepts and results
that directly relate to the core of our article.
Rank decomposition: The rank of an I×J matrix X is the smallest
number of rank-one matrices (vector outer products of the form a◦b)
needed to synthesize X as

X =

F∑
f=1

af ◦ bf = ABT ,

where A := [a1, · · · ,aF ], and B := [b1, · · · ,bF ]. This relation

can be expressed element-wise as

X(i, j) =

F∑
f=1

af (i)bf (j).

The rank of an I×J ×K three-way array X is the smallest number
of outer products needed to synthesize X as

X =
F∑

f=1

af ◦ bf ◦ cf .

This relation can be expressed element-wise as

X(i, j, k) =

F∑
f=1

af (i)bf (j)cf (k).

In the sequel we will assume that F is minimal, i.e., F =
rank(X), unless otherwise noted. The tensor X comprises K ‘frontal’
slabs of size I × J ; denote them {Xk}Kk=1, with Xk := X(:
, :, k). Re-arranging the elements of X in a tall matrix X :=
[vec(X1), · · · , vec(XK)], it can be shown that

X = (B⊙A)CT ⇐⇒ x := vec(X) = (C⊙B⊙A)1,

where, A, B are as defined for the matrix case, C := [c1, · · · , cF ],
1 is a vector of all 1’s, and we have used the vectorization property of
the Khatri-Rao product vec(AD(d)BT ) = (B⊙A)d, where D(d)
is a diagonal matrix with the vector d as its diagonal.
CANDECOMP-PARAFAC: The above rank decomposition model
for tensors is known as parallel factor analysis (PARAFAC) [19],
[20] or canonical decomposition (CANDECOMP) [21], or CP (and
CPD) for CANDECOMP-PARAFAC (Decomposition), or canonical
polyadic decomposition (CPD, again). CP is usually fitted using an
alternating least squares procedure based on the model equation X =
(B ⊙ A)CT . In practice we will have X ≈ (B ⊙ A)CT , due to
measurement noise and other imperfections, or simply because we
wish to approximate a higher-rank model with a lower-rank one.
Fixing A and B, we solve

min
C

||X− (B⊙A)CT ||2F ,

which is a linear least squares problem. We can bring any of
the matrix factors to the right by reshuffling the data, yielding
corresponding conditional updates for A and B. We can revisit each
matrix in a circular fashion until convergence of the cost function, and
this is the most commonly adopted aproach to fitting the CP model,
in good part because of its conceptual and programming simplicity,
plus the ease with which one can incorporate additional constraints
on the columns of A, B, C [7].
Tucker3: CP is in a way the most basic tensor model, because
of its direct relationship to tensor rank and the concept of rank
decomposition; but other algebraic tensor models exist, and the most
notable one is known as Tucker3. Like CP, Tucker3 is a sum of
outer products model, involving outer products of columns of three
matrices, A, B, C. Unlike CP however, which restricts interactions to
corresponding columns (so that the first column of A only appears
in one outer product involving the first column of B and the first
column of C), Tucker3 includes all outer products of every column
of A with every column of B and every column of C. Each such
outer product is further weighted by the corresponding entry of a
so-called core tensor, whose dimensions are equal to the number of
columns of A, B, C.

Consider again the I × J × K three-way array X comprising
K matrix slabs {Xk}Kk=1, arranged into the tall matrix X :=
[vec(X1), · · · , vec(XK)]. The Tucker3 model can be written in
matrix form as

X ≈ (B⊗A)GCT ,
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where G is the core tensor in matrix form, and A, B, C can
be assumed orthogonal without loss of generality, because linear
transformations of A, B, C can be absorbed in G. The non-
zero elements of the core tensor determine the interactions between
columns of A, B, C. The associated model-fitting problem is

min
A,B,C,G

||X− (B⊗A)GCT ||2F ,

which is usually solved using an alternating least squares proce-
dure. The Tucker3 model can be fully vectorized as vec(X) ≈
(C⊗B⊗A) vec(G).
Identifiability: The distinguishing feature of the CP model is its
essential uniqueness: under certain conditions, A, B, and C can
be identified from X up to a common permutation and scaling /
counter-scaling of columns [19]–[26]. In contrast, Tucker3 is highly
non-unique; the inclusion of all possible outer products of columns of
A, B, C results in over-parametrization that renders it unidentifiable
in most cases of practical interest. Still, Tucker3 is useful as an
exploratory tool and for data compression / interpolation; we will
return to this shortly.

Consider an I × J ×K tensor X of rank F . In vectorized form,
it can be written as the IJK × 1 vector x = (A⊙B⊙C)1, for
some A (I × F ), B (J × F ), and C (K × F ) - a CP model of size
I × J × K and order F parameterized by (A,B,C). (Notice the
slight abuse of notation: we switched from x = (C⊙B⊙A)1 to
x = (A⊙B⊙C)1. The two are related via a row permutation, or
by switching the roles of A, B, C.) The Kruskal-rank of A, denoted
kA, is the maximum k such that any k columns of A are linearly
independent (kA ≤ rA := rank(A)).

Theorem 1: [22] Given X (⇔ x), (A,B,C) are unique up to
a common column permutation and scaling (e.g., scaling the first
column of A and counter-scaling the first column of B and/or C, so
long as their product remains the same), provided that kA + kB +
kC ≥ 2F + 2. An equivalent and perhaps more intuitive way to
express this is that the outer products af ◦bf ◦cf (i.e., the rank-one
factors of X) are unique.
Note that we can always reshuffle the order of these rank-one factors
(e.g., swap a1 ◦ b1 ◦ c1 and a2 ◦ b2 ◦ c2) without changing their
sum X =

∑F
f=1 af ◦ bf ◦ cf , but this is a trivial and inherently

unresolvable ambiguity that we will ignore in the sequel. Theorem
1 is Kruskal’s celebrated uniqueness result [22], see also follow-up
work in [23]–[25]. Kruskal’s result applies to given (A,B,C), i.e.,
it can establish uniqueness of a given decomposition. Recently, more
relaxed uniqueness conditions have been obtained, which only depend
on the size and rank of the tensor - albeit they cover almost all tensors
of the given size and rank, i.e., except for a set of measure zero. Two
such conditions are summarized next.

Theorem 2: [27] (see also [24]) Consider an I×J ×K tensor X
of rank F . If

rC = F (which implies K ≥ F )

and

I(I − 1)J(J − 1) ≥ 2F (F − 1),

then the rank-one factors of X are almost surely unique.
Theorem 3: [26] Consider an I × J × K tensor X of rank F .

Order the dimensions so that I ≤ J ≤ K. Let i be maximal such that
2i ≤ I , and likewise j maximal such that 2j ≤ J . If F ≤ 2i+j−2,
then the rank-one factors of X are almost surely unique. For I, J
powers of 2, the condition simplifies to F ≤ IJ

4
. More generally,

the condition implies that if F ≤ (I+1)(J+1)
16

, then X has a unique
decomposition almost surely.

Before we proceed to discuss big data and cloud computing aspects
of tensor decomposition, we state two lemmas from [13] which we
will need in the sequel.

Lemma 1: [13] Consider Ã := UTA, where A is I ×F , and let
the I×L matrix U be randomly drawn from an absolutely continuous
distribution (e.g., multivariate Gaussian with a non-singular covari-
ance matrix). Then kÃ = min(L, kA) almost surely (with probability
1).

Lemma 2: [13] Consider Ã = UTA, where A (I × F ) is
deterministic, tall/square (I ≥ F ) and full column rank rA = F ,
and the elements of U (I × L) are i.i.d. Gaussian zero mean, unit
variance random variables. Then the distribution of Ã is absolutely
continuous (nonsingular multivariate Gaussian).

III. TENSOR COMPRESSION
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Fig. 1. Schematic illustration of tensor compression: going from an I×J×K
tensor X to a much smaller Lp×Mp×Np tensor Yp via multiplying (every
slab of) X from the I-mode with UT

p , from the J-mode with VT
p , and from

the K-mode with WT
p , where Up is I × Lp, Vp is J × Mp, and Wp is

K ×Np.

When dealing with big tensors X that do not fit in main memory,
a reasonable idea is to try to compress X to a much smaller tensor
that somehow captures most of the systematic variation in X. The
commonly used compression method is to fit a low-dimensional
orthogonal Tucker3 model (with low mode-ranks) [17], [18], then
regress the data onto the fitted mode-bases. This idea has been
exploited in existing CP model-fitting software, such as COMFAC
[28], as a useful quick-and-dirty way to initialize alternating least
squares computations in the uncompressed domain, thus accelerating
convergence. A key issue with Tucker3 compression of big tensors
is that it requires computing singular value decompositions of the
various matrix unfoldings of the full data, in an alternating fashion.
This is a serious bottleneck for big data. Another issue is that Tucker3
compression is lossy, and it cannot guarantee that identifiability
properties will be preserved. Finally, fitting a CP model to the
compressed data can only yield an approximate model for the original
uncompressed data, and eventually decompression and iterations with
the full data are required to obtain fine estimates.

Consider compressing x into y = Sx, where S is d × IJK,
d ≪ IJK. Sidiropoulos & Kyrillidis [13] proposed using a specially
structured compression matrix S = UT ⊗ VT ⊗ WT , which
corresponds to multiplying (every slab of) X from the I-mode with
UT , from the J-mode with VT , and from the K-mode with WT ,
where U is I×L, V is J×M , and W is K×N , with L ≤ I , M ≤ J ,
N ≤ K and LMN ≪ IJK; see Fig. 1. Such an S corresponds to
compressing each mode individually, which is often natural, and the
associated multiplications can be efficiently implemented - see call-
outs #1 and #2. Due to a fortuitous property of the Kronecker product
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[29], (
UT ⊗VT ⊗WT

)
(A⊙B⊙C) =(

(UTA)⊙ (VTB)⊙ (WTC)
)
,

from which it follows that

y =
(
(UTA)⊙ (VTB)⊙ (WTC)

)
1 =

(
Ã⊙ B̃⊙ C̃

)
1.

i.e., the compressed data follow a CP model of size L×M ×N and
order F parameterized by (Ã, B̃, C̃), with Ã := UTA, B̃ := VTB,
C̃ := WTC.

This is nice to know, but we are really - naturally - interested in
obtaining answers to the following two questions:

1) Under what conditions on A, B, C and U, V, W are
(Ã, B̃, C̃) identifiable from y?

2) Under what conditions, if any, are A, B, C identifiable from
(Ã, B̃, C̃)?

We start by answering the first question in the next section.

Call-out #1: Complexity of multi-way compression? Multiplying
a dense L × I matrix UT with a dense vector a to compute
UTa has complexity LI . Taking the product of UT and the first
I × J frontal slab X(:, :, 1) of the I × J × K tensor X has
complexity LIJ . Pre-multiplying from the left all frontal slabs of
X by UT (computing a mode product) therefore requires LIJK
operations, when all operands are dense. Multi-way compression as
in Fig. 1 comprises three mode products, suggesting a complexity
of LIJK + MLJK + NLMK, if the first mode is compressed
first, followed by the second, and then the third mode. Notice
that the order in which the mode products are computed affects
the complexity of the overall operation; but order-wise, this is
O(min(L,M,N)IJK). Also notice that if I, J,K are of the same
order, and so are L,M,N , then the overall complexity is O(LI3).
If a is sparse with NZ(a) nonzero elements, we can compute UTa
as a weighted sum of the columns of UT corresponding to the
nonzero elements of a. This reduces matrix-vector multiplication
complexity to LNZ(a). It easily follows that if X has NZ (X)
nonzero elements, the complexity of pre-multiplying from the left
all frontal slabs of X by UT can be reduced to LNZ (X). The
problem is that, after computing the first mode product, the resulting
tensor will be dense! - hence subsequent mode products cannot
exploit sparsity to reduce complexity. Note that, in addition to
computational complexity, memory or secondary storage to save
the intermediate results of the computation becomes an issue, even
if the original tensor X is sparse.

IV. STEPPING-STONE RESULTS

The following result is a direct consequence of Lemma 1 and
Kruskal’s uniqueness condition in Theorem 1.

Theorem 4: Let x = (A⊙B⊙C)1 ∈ RIJK , where A is
I × F , B is J × F , C is K × F , and consider compressing it to
y =

(
UT ⊗VT ⊗WT

)
x =

(
(UTA)⊙ (VTB)⊙ (WTC)

)
1 =(

Ã⊙ B̃⊙ C̃
)
1 ∈ RLMN , where the mode-compression matrices

U (I × L,L ≤ I), V (J ×M,M ≤ J), and W (K ×N,N ≤ K)
are independently drawn from an absolutely continuous distribution.
If

min(L, kA) + min(M,kB) + min(N, kC) ≥ 2F + 2,

then Ã, B̃, C̃ are almost surely identifiable from the compressed data
y up to a common column permutation and scaling.
More relaxed conditions for identifiability of Ã, B̃, C̃ can be derived
from Lemma 2, and Theorems 2 and 3.

Theorem 5: For x,A,B,C,U,V,W, and y as in Theorem 4, if
F ≤ min(I, J,K), A, B, C are all full column rank (F ), N ≥ F ,
and

L(L− 1)M(M − 1) ≥ 2F (F − 1),

then Ã, B̃, C̃ are almost surely identifiable from the compressed data
y up to a common column permutation and scaling.

Call-out #2: Complexity of multi-way compression - redux. In
scalar form, the (ℓ,m, n)-th element of the tensor Y after multi-
way compression can be written as

Y(ℓ,m, n) =

I∑
i=1

J∑
j=1

K∑
k=1

U(i, ℓ)V(j,m)W(k, n)X(i, j, k)

Claim 1: Suppose that X is sparse, with NZ (X) nonzero elements,
and suppose that it is stored as a serial list with entries formatted
as [i, j, k, v], where v is the nonzero value at tensor position
(i, j, k). Suppose that the list is indexed by an integer index s, i.e.,
[i(s), j(s), k(s), v(s)] is the record corresponding to the s-th entry
of the list. Then the following simple algorithm will compute the
multi-way compressed tensor Y in only LMNNZ (X) operations,
requiring only LMN cells of memory to store the result, and
IL + JM + KN cells of memory to store the matrices U, V,
W.

Algorithm 1: Efficient multi-way compression pseudo-code:
Y=zeros(L,M,N);
for s=1:NZX,
for ell=1:L,
for m=1:M,
for n=1:N,
Y(ell,m,n) = Y(ell,m,n)+ U(i(s),ell)*V(j(s),m)*W(k(s),n)*v(s);

end
end

end
end

Notice that, even if X is dense (i.e., NZ (X) = IJK), the above
algorithm only needs to read each element of X once, so
complexity will be LMNIJK but memory will still be very
modest: only LMN cells of memory to store the result, and
IL+JM +KN cells of memory to store the matrices U, V, W.
Contrast this to the ‘naive’ way of serially computing the mode
products, whose complexity order is O(min(L,M,N)IJK) but
whose memory requirements are huge for dense U, V, W, due
to intermediate result explosion - even for sparse X. We see a
clear complexity - memory trade-off between the two approaches
for dense data, but Algorithm 1 is a clear winner for sparse data,
because sparsity is lost after the first mode product. Notice that
the above algorithm can be fully parallelized in several ways - by
splitting the list of nonzero elements across cores or processors
(paying in terms of auxiliary memory replications to store partial
results for Y and the matrices U, V, W locally at each processor),
or by splitting the (ℓ,m, n) loops - at the cost of replicating the
data list. As a final word, the memory access pattern (whether we
read and write consecutive memory elements in blocks, or make
wide ‘strides’) is the performance-limiting factor for truly big data,
and the above algorithm makes strides in reading elements of U,
V, W, and writing elements of Y. There are ways to reduce these
strides, at the cost of requiring more memory and more floating
point operations.

Remark 1: F ≤ min(I, J,K) ⇒ full column rank A, B, C
almost surely, i.e., tall matrices are full column rank except for a
set of measure zero. In other words, if F ≤ min(I, J,K) and A,
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B, C are themselves considered to be independently drawn from
an absolutely continuous distribution with respect to the Lebesgue
measure in RIF , RJF , and RKF , respectively, then they will all be
full column rank with probability 1.

Theorem 6: For x,A,B,C,U,V,W, and y as in Theorem 4,
if F ≤ min(I, J,K), A, B, C are all full column rank (F ), L ≤
M ≤ N , and

(L+ 1)(M + 1) ≥ 16F,

then Ã, B̃, C̃ are almost surely identifiable from the compressed data
y up to a common column permutation and scaling.

V. MAIN RESULTS

Theorems 4, 5, 6 can establish uniqueness of Ã, B̃, C̃, but we
are ultimately interested in A,B,C. We know that Ã = UTA,
and we know UT , but, unfortunately, it is a fat matrix that cannot
be inverted. In order to uniquely recover A, one needs additional
structural constraints. Sidiropoulos & Kyrillidis [13] proposed ex-
ploiting column-wise sparsity in A (and likewise B,C), which is
often plausible in practice1. Sparsity is a powerful constraint, but it
is not always valid (or a sparsifying basis may be unknown). For this
reason, we propose here a different solution, based on creating and
factoring a number of randomly reduced ‘replicas’ of the full data.

Consider spawning P randomly compressed reduced-size ‘replicas’{
Yp

}P

p=1
of the tensor X, where Yp is created using mode compres-

sion matrices (Up,Vp,Wp), see Fig. 2. Assume that identifiability
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NP 

 Y _ P 
…

 

(A2,B2,C2) ~   ~   ~ 

…
 

(A,B,C) 
join  

(LS)   
fork  

  

Fig. 2. Schematic illustration of the PARACOMP fork-join architecture. The
fork step creates a set of P randomly compressed reduced-size ‘replicas’{
Yp

}P

p=1
. Each Yp is obtained by applying (Up,Vp,Wp) to X, as

detailed in Fig. 1. Each Yp is then independently factored (all P threads can
be executed in parallel). The join step collects the estimated mode loading
sub-matrices

(
Ãp, B̃p, C̃p

)
from the P threads, and, after anchoring all to a

common permutation and scaling, solves a master linear least squares problem
per mode to estimate the full mode loading matrices (A,B,C).

conditions per Theorem 5 or Theorem 6 hold, so that Ãp, B̃p, C̃p are
almost surely identifiable (up to permutation and scaling of columns)
from Yp. Then, upon factoring Yp into F rank-one components, we
obtain

Ãp = UT
p AΠpΛp, (1)

where Πp is a permutation matrix, and Λp is a diagonal scaling
matrix with nonzero elements on its diagonal. Assume that the first
two columns of each Up (rows of UT

p ) are common, and let Ū
denote this common part, and Āp denote the first two rows of Ãp.
We therefore have

Āp = ŪTAΠpΛp.

Dividing each column of Āp by the element of maximum modulus in
that column, and denoting the resulting 2×F matrix Âp, we obtain

Âp = ŪTAΛΠp.

1A need only be sparse with respect to (when expressed in) a suitable
basis, provided the sparsifying basis is known a priori.

Notice that Λ does not affect the ratio of elements in each 2 × 1
column. If these ratios are distinct (which is guaranteed almost surely
if Ū and A are independently drawn from absolutely continuous
distributions), then the different permutations can be matched by
sorting the ratios of the two coordinates of each 2 × 1 column of
Âp.

In practice using a few more ‘anchor’ rows will improve the
permutation-matching performance, and is recommended in difficult
cases with high noise variance. When S anchor rows are used, the
optimal permutation matching problem can be cast as

min
Π

||Â1 − ÂpΠ||2F ,

where optimization is over the set of permutation matrices. This may
appear to be a hard combinatorial problem at first sight; but it is not.
Using

||Â1 − ÂpΠ||2F = Tr
(
(Â1 − ÂpΠ)T (Â1 − ÂpΠ)

)
=

||Â1||2F + ||ÂpΠ||2F − 2Tr(ÂT
1 ÂpΠ) =

||Â1||2F + ||Âp||2F − 2Tr(ÂT
1 ÂpΠ).

It follows that we may instead

max
Π

Tr(ÂT
1 ÂpΠ),

over the set of permutation matrices. This is what is known as the
Linear Assignment Problem (LAP), and it can be efficiently solved
using the Hungarian Algorithm.

After this column permutation-matching process, we go back to
(1) and permute its columns to obtain Ăp satisfying

Ăp = UT
p AΠΛp.

It remains to get rid of Λp. For this, we normalize each column by
dividing it with its norm. This finally yields

Ǎp = UT
p AΠΛ.

For recovery of A up to permutation and scaling of its columns, we
then require that the matrix of the linear system Ǎ1

...
ǍP

 =

 UT
1

...
UT

P

AΠΛ (2)

be full column rank. This implies that

2 +

P∑
p=1

(Lp − 2) ≥ I

i.e.,
P∑

p=1

(Lp − 2) ≥ I − 2.

Note that every sub-matrix contains the two anchor rows which are
common, and duplicate rows clearly do not increase the rank. Also
note that once the dimensionality requirement is met, the matrix will
be full rank with probability 1, because its non-redundant entries are
drawn from a jointly continuous distribution (by design).

Assuming Lp = L, ∀p ∈ {1, · · · , P} for simplicity (and
symmetry of computational load), we obtain P (L − 2) ≥ I − 2,
or, in terms of the number of threads

P ≥ I − 2

L− 2
.
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Likewise, from the corresponding full column rank requirements for
the other two modes, we obtain

P ≥ J

M
, and P ≥ K

N
.

Notice that we do not subtract 2 from numerator and denominator
for the other two modes, because the permutation of columns of
Ãp, B̃p, C̃p is common - so it is enough to figure it out from one
mode, and apply it to other modes as well. In short,

P ≥ max

(
I − 2

L− 2
,
J

M
,
K

N

)
Call-out #3: The color of compressed noise. Consider a noisy
tensor Y = X + Z, where Z denotes zero-mean additive white
noise. In vectorized form, y = x + z, with y := vec (Y), x :=
vec (X), z := vec (Z). After multi-way compression, one obtains
the reduced-size tensor Yc, whose vectorized representation yc :=
vec (Yc) =

(
UT ⊗VT ⊗WT

)
y =

(
UT ⊗VT ⊗WT

)
x +(

UT ⊗VT ⊗WT
)
z. Let zc :=

(
UT ⊗VT ⊗WT

)
z. Clearly,

E[zc] = 0, and

E
[
zcz

T
c

]
= E

[(
UT ⊗VT ⊗WT

)
zzT (U⊗V ⊗W)

]
=

(
UT ⊗VT ⊗WT

)
E
[
zzT

]
(U⊗V ⊗W) =

= σ2
(
UT ⊗VT ⊗WT

)
(U⊗V ⊗W) =

= σ2
((

UTU
)
⊗

(
VTV

)
⊗

(
WTW

))
,

where we have used two properties of the Kronecker product:
transposition

(A⊗B)T = AT ⊗BT ,

and the ‘mixed product rule’ [29]

(A⊗B) (C⊗D) = (AC⊗BD) .

We see that, if U, V, W are orthonormal, then the noise in
the compressed domain is white. Note that, for large I and U
drawn from a zero-mean unit-variance uncorrelated distribution,
UTU ≈ I by the law of large numbers. Furthermore, even if z
is not Gaussian, zc will be approximately Gaussian for large IJK,
by the Central Limit Theorem. From these, it follows that least-
squares fitting is approximately optimal in the compressed domain,
even if it is not so in the uncompressed domain. Compression thus
makes least-squares fitting ‘universal’!

Remark 2: Note that if, say, A can be identified and it is full
column rank, then B and C can be identified by solving a linear
least squares problem - but this requires access to the full big tensor
data. In the same vein, if A and B are identified, then C can be
identified from the full big tensor data even if A and B are not full
column rank individually - it is enough that A ⊙ B is full column
rank, which is necessary for identifiability of C even from the big
tensor, hence not restrictive. PARACOMP-based identification, on the
other hand, only requires access to the factors derived from the small
replicas. This is clearly advantageous, as the raw big tensor data can
be discarded after compression, and there is no need for retrieving
huge amounts of data from cloud storage.
One can pick the mode used to figure out the permutation ambiguity,
leading to the symmetrized condition P ≥ min {P1, P2, P3} with

P1 = max

(
I − 2

L− 2
,
J

M
,
K

N

)

P2 = max

(
I

L
,
J − 2

M − 2
,
K

N

)

P3 = max

(
I

L
,
J

M
,
K − 2

N − 2

)
If the compression ratios in the different modes are similar, it makes
sense to use the longest mode for this purpose; if this is the last
mode, then

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)
We have thus established the following result.

Theorem 7: In reference to Fig. 2, assume x := vec (X) =
(A⊙B⊙C)1 ∈ RIJK , where A is I×F , B is J×F , C is K×F
(i.e., the rank of X is at most F ). Assume that F ≤ I ≤ J ≤ K,
and A, B, C are all full column rank (F ). Further assume that
Lp = L, Mp = M , Np = N , ∀p ∈ {1, · · · , P}, L ≤ M ≤ N ,
(L+ 1)(M + 1) ≥ 16F , the elements of {Up}Pp=1 are drawn from
a jointly continuous distribution, and likewise for {Vp}Pp=1, while
each Wp contains two common anchor columns, and the elements
of {Wp}Pp=1 (except for the repeated anchors, obviously) are drawn
from a jointly continuous distribution. Then the data for each thread
yp := vec

(
Yp

)
can be uniquely factored, i.e.,

(
Ãp, B̃p, C̃p

)
is

unique up to column permutation and scaling. If, in addition to the
above, we also have P ≥ max

(
I
L
, J
M
, K−2
N−2

)
parallel threads, then

(A,B,C) are almost surely identifiable from the thread outputs{(
Ãp, B̃p, C̃p

)}P

p=1
up to a common column permutation and

scaling.
The above result is indicative of a family of results that can be
derived, using different CP identifiability results. Its significance may
not be immediately obvious, so it is worth elaborating further at this
point. On one hand, Theorem 7 shows that fully parallel computation
of the big tensor decomposition is possible – the first such result,
to the best of our knowledge, that guarantees identifiability of
the big tensor decomposition from the intermediate small tensor
decompositions, without placing stringent additional constraints. On
the other hand, the conditions appear convoluted, and the memory /
storage and computational savings, if any, are not necessarily easy to
see. The following claim nails down the take-home message.

Claim 2: Under the conditions of Theorem 7, if K−2
N−2

=

max
(

I
L
, J
M
, K−2
N−2

)
, then the memory / storage and computational

complexity savings afforded by the architecture shown in Fig. 2
relative to brute-force computation are of order IJ

F
.

Proof 1: Each thread must store LMN elements, and we have P =
K−2
N−2

threads in all, leading to a total data size of order LMK versus
IJK, so the ratio is IJ

LM
. The condition (L+1)(M+1) ≥ 16F only

requires LM to be of order F , hence the total compression ratio can
be as high as O

(
IJ
F

)
. Turning to overall computational complexity,

note that optimal low-rank tensor factorization is NP-hard, even in
the rank-one case. Practical tensor factorization algorithms, however,
typically have complexity O(IJKF ) (per iteration, and overall if a
bound on the maximum number of iterations is enforced). It follows
that the practical complexity order for factoring out the P parallel
threads is O(PLMNF ) versus O(IJKF ) for the brute-force com-
putation. Taking into account the lower bound on P , the ratio is again
of order IJ

LM
, and since the condition (L+ 1)(M + 1) ≥ 16F only

requires LM to be of order F , the total computational complexity
gain can be as high as O

(
IJ
F

)
.

Remark 3: The complexity of solving the master linear equation
(2) in the final merging step for A may be a source of concern -
especially because it hasn’t been accounted for in the overall com-
plexity calculation. Solving a linear system of order of I equations
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in I unknowns generally requires O(I3) computations; but closer
scrutiny of the system matrix in (2) reveals interesting features. If all
elements of the compression matrices {Up} (except for the common
anchors) are independent and identically distributed with zero mean
and unit variance, then, after removing the redundant rows, the system
matrix in (2) will have approximately orthogonal columns for large I .
This implies that its left pseudo-inverse will simply be its transpose,
approximately. This reduces the complexity of solving (2) to I2F .
If higher accuracy is required, the pseudo-inverse may be computed
off-line and stored. It is also important to stress that (2) is only solved
once for each mode at the end of the overall process, whereas tensor
decomposition typically takes many iterations. In short, the constants
are such that we need to worry more about the compression (fork)
and decomposition stages, rather than the final join stage.

Theorem 7 assumes F ≤ min(I, J,K) in order to ensure (via
Lemma 2) absolute continuity of the compressed factor matrices,
which is needed to invoke almost sure uniqueness per [26]. Cases
where F > min(I, J,K) can be treated using Kruskal’s condition
for unique decomposition of each compressed replica

min(L, kA) + min(M,kB) + min(N, kC) ≥ 2F + 2.

It can be shown that kA = min(I, F ) for almost every A (except
for a set of measure zero in RIF ); and likewise kB = min(J, F ),
and kC = min(K,F ), for almost every B and C. This simplifies2

the above condition to

min(L, I, F ) + min(M,J, F ) + min(N,K,F ) ≥ 2F + 2.

Assume I ≥ F , J ≥ F , but K < F , and pick L = M = F , and
N = 3. Then the condition further reduces to

2F + min(3,K) ≥ 2F + 2,

which is satisfied for any K ≥ 2 (i.e., for any tensor). We also need

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)
,

which in this case (N = 3) reduces to

P ≥ max

(
I

L
,
J

M
,K − 2

)
.

When I
L
= max

(
I
L
, J
M
,K − 2

)
, then there are I

L
parallel threads of

size LMN = 3F 2 each, for total cloud storage 3IF , i.e., order IF ;
hence the overall compression ratio (taking all replicas into account)
is of order IJK

IF
= JK

F
. The ratio of overall complexity orders is

also IJKF
IF2 = JK

F
. This is the same type of result as the one we

derived for the case F ≤ min(I, J,K). On the other hand, when
K − 2 = max

(
I
L
, J
M
,K − 2

)
, there are K − 2 parallel threads of

size LMN = 3F 2 each, for total cloud storage 3F 2(K − 2), i.e.,
order KF 2; hence the overall compression ratio is IJK

KF2 = IJ
F2 , and

the ratio of overall complexity orders is also IJKF
KF3 = IJ

F2 . We see
that there is a penalty factor F relative to the case F ≤ min(I, J,K);
this is likely an artifact of the method of proof, which we hope to
improve in future work. We summarize the result in the following
theorem.

Theorem 8: In reference to Fig. 2, assume x := vec (X) =
(A⊙B⊙C)1 ∈ RIJK , where A is I × F , B is J × F , C is
K × F (i.e., the rank of X is at most F ). Assume that I ≥ F ,
J ≥ F (K can be < F ), and pick Lp = L, Mp = M , Np = N ,
∀p ∈ {1, · · · , P}, with L = M = F , and N = 3. The compression
matrices are chosen as in Theorem 7. If P ≥ max

(
I
L
, J
M
,K − 2

)
,

2Meaning: if the simplified condition holds, then CP decomposition of each
reduced replica is unique for almost every (A,B,C) and almost every set
of compression matrices (U,V,W).

then (A,B,C) is identifiable from
{(

Ãp, B̃p, C̃p

)}P

p=1
, for almost

every (A,B,C) and almost every set of compression matrices. When
I
L

= max
(

I
L
, J
M
,K − 2

)
, the total storage and complexity gains

are of order JK
F

; whereas if K−2 = max
(

I
L
, J
M
,K − 2

)
, the total

storage and complexity gains are of order IJ
F2 .

A. Latent sparsity

If latent sparsity is present, we can exploit it to reduce P . Assume
that every column of A (B,C) has at most na (resp. nb, nc) nonzero
elements. A column of A can be uniquely recovered from only
2na incoherent linear equations [30]. Therefore, we may replace the
condition

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)
,

with

P ≥ max

(
2na

L
,
2nb

M
,
2nc − 2

N − 2

)
. (3)

Assuming

2nc − 2

N − 2
= max

(
2na

L
,
2nb

M
,
2nc − 2

N − 2

)
,

it is easy to see that the total cloud storage and complexity gains
are of order IJ

F
K
nc

- improved by a factor of K
nc

. It is interesting to
compare this result with the one in Sidiropoulos & Kyrillidis [13],
which corresponds to using P = 1 in our present context. Notice
that (3) implies L ≥ 2na

P
, M ≥ 2nb

P
, N − 2 ≥ 2nc−2

P
⇒ N ≥

2nc
P

+2(1− 1
P
)⇒N ≥ 2nc

P
. Substituting P = 1 we obtain L ≥ 2na,

M ≥ 2nb, N ≥ 2nc, which is exactly the condition required in [13].
We see that PARACOMP subsumes [13], offering greater flexibility
in terms of choosing P to reduce the size of replicas for easier in-
memory processing, at the cost of an additional merging step at the
end. Also note that PARACOMP is applicable in the case of dense
latent factors, whereas [13] is not.

Remark 4: In practice we will use a higher P , i.e.,

P ≥ max

(
µna

L
,
µnb

M
,
µnc − 2

N − 2

)
,

with µ ∈ {3, 4, 5} instead of 2, and an ℓ1 sparse under-determined
linear equations solver for the final merging step for A. This will
increase complexity from O(I2F ) to O(I3.5F ), and the constants
are such that the difference is significant. This is the price paid for
the reduced memory and intermediate complexity benefits afforded
by latent sparsity.

VI. MAPREDUCE IMPLEMENTATION

With the proliferation of large collections of data, as well as
big clusters of (usually commodity) computers that were largely
under-utilized, arose the need for a unified framework of scalable
distributed computation in the cloud. In [31], Dean et al. from
Google introduced such a framework, called MapReduce. MapReduce
provides a very versatile level of programming abstraction: it conceals
all its inner workings from the programmer, and simply requires the
implementation of two functions: Map and Reduce.
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Call-out #4: Is component ordering preserved after compres-
sion? Consider randomly compressing a rank-one tensor X =
a ◦ b ◦ c, written in vectorized form as x = a⊗ b⊗ c (recall that
the Kronecker product ⊗ and the Khatri-Rao product ⊙ coincide
when all arguments involved are vectors). The compressed tensor
is X̃, in vectorized form

x̃ =
(
UT ⊗VT ⊗WT

)
(a⊗ b⊗ c) =

(UTa)⊗ (VTb)⊗ (WT c),

using the mixed product rule [29]. It follows ||x̃||22 = x̃T x̃ =(
(aTU)⊗ (bTV)⊗ (cTW)

)(
(UTa)⊗ (VTb)⊗ (WT c)

)
=

(aTUUTa)⊗ (bTVVTb)⊗ (cTWWT c) =

||UTa||22||VTb||22||WT c||22,

where we have used the transposition and mixed product rules, and
that the Kronecker product of scalars is a plain product. Notice
that for our choice of U (i.i.d. zero-mean Gaussian of variance 1,
i.e., randn(I,L) in Matlab), UTU ≈ IL×L, but UUT is rank-
deficient (L < I), thus far from II×I . However, considering one
generic element of UTa, say uTa, and its magnitude-square, note
that |uTa|2 = aTuuTa, so

E[|uTa|2] = aTE[uuT ]a = aTa = ||a||22.

Next, it can be shown that

Var[|uTa|2] = 2||a||42.

So now, looking at ||UTa||22,

E[||UTa||22] = L||a||22,

and, since the different rows of UT are independent, hence variance
adds up

Var[||UTa||22] = L2||a||42.

So ||UTa||22 has mean2/variance (‘SNR’) of L
2

.
Turning to ||x̃||22 = ||UTa||22||VTb||22||WT c||22, it can be shown
that it has mean

E[||x̃||22] = LMN ||a||22||b||22||c||22,

and mean2/variance (‘SNR’)(
E[||x̃||22]

)2
Var[||x̃||22]

=
L2M2N2

(L2 + 2L)(M2 + 2M)(N2 + 2N)− L2M2N2
.

Assuming without loss of generality that L ≤ M ≤ N , this
‘SNR’ is of order L

2
. What this means is that, for moderate

L,M,N and beyond, the Frobenious norm of a compressed rank-
one tensor component (= Euclidean norm of the corresponding
vectorized representation) is approximately proportional to the
Frobenious norm of the uncompressed rank-one tensor component
of the original tensor. In other words: compression approximately
preserves component ordering. This is important because it implies
that low-rank least-squares approximation of the compressed tensor
approximately corresponds to low-rank least-squares approximation
of the big tensor. The result also suggests that it may be possible to
match the component permutations across replicas simply by sorting
component energies. These are ignored in the permutation-matching
procedure discussed in the main text, due to the normalization
needed to account for the scaling ambiguity. Including energy in
the matching process will enhance robustness to noise. It seems
intriguing to try rank (‘principal component’) deflation in this
context, but we will pursue this elsewhere due to space limitations.

The Map function runs in parallel on many machines; each instance
reads data serially from the Distributed File System3 (DFS), performs
some sort of parsing or computation on that data, and emits a series
of (key,value) pairs. Consequently, the Reduce function runs
in parallel on a set of machines, and each instance of Reduce
receives as input (key,value) pairs with the same key; it performs
some sort of (user defined) aggregation or computation on these
values, and then emits a series of (key’,value’) pairs, which
are eventually written to DFS. This way, any task that can be
expressed as a combination of a Map and a Reduce function
may be run in a distributed fashion on a cluster of computers, on
data that is also stored in the cloud, and much bigger than what
a typical personal computer can store or process in memory. The
MapReduce framework also deals with machine failures (an issue
which arises very often in large clusters of computers) in a way that
is transparent to the programmer. Among other ‘safety measures’,
MapReduce uses three-way replication of each computation, so that
even if one machine fails, there are still two backup machines that are
carrying out the same task. This way, the user does not have to deal
with the frustrations of machine failures. The original MapReduce
implementation is internal to Google; however, there exists a very
robust and well-tested open source implementation by Apache, called
Hadoop [32]. The two primary programming languages that can be
used with Hadoop are Java and Python.

Signal processing algorithms are generally not realizable as a
single MapReduce task, but it is often possible to break up a given
algorithm in parts, each of which may be written as a MapReduce
computation. In this way, the overall signal processing algorithm can
be implemented as a chain of MapReduce tasks.

The most typical introductory example of a MapReduce task is
the WordCount application [33], where the goal is to estimate
the frequency of occurrence of each word in a corpus. Given that
MapReduce was originally developed by Google, a search engine
which relies heavily on indexing large collections of text in order to
provide fast and accurate search results, the WordCount example
fits perfectly in the original context. In call-out #5 we instead use a
very simple and common signal processing task to illustrate the way
MapReduce works: computing the histogram of a big speech/audio,
image, or video signal. The particular kind of signal is not important
here, but bear in mind that our motivation is to be able to handle big
data, distributed over the cloud. In order to simplify exposition, we
assume that the signal of interest is integer-valued.

A. Sketch of PARACOMP in MapReduce

We now provide a sketch of an implementation of PARACOMP in
MapReduce. As in Figure V, we break the algorithm down to three
distinct steps: 1) Compression, 2) Decomposition, and 3) Recovery of
factor matrices. Each of the three steps consists of a few MapReduce
chain tasks.

Compression: For the compression step, we first need to create
P triplets of random compression matrices Up, Vp, Wp. This
may be carried out simply by a mapper that emits p (the ’replica’
index) as key, and the dimensions of the matrices as the value.
Thus, each reducer is responsible for creating and storing on
DFS all three compression matrices. Depending on how large the
compression matrices are, instead of assigning a single reducer
the burden of creating an entire batch of Up, Vp, Wp, we may
instead choose to assign each reducer to create a single row of

3DFS is defined by MapReduce.
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each of the matrices. Taking a closer look at Algorithm 1 in Call-
out #2, we can devise a MapReduce task for the compression
step. Let us assume that the tensor is stored in a text file, in
multiple lines (as many as the non-zero values in the tensor), in
the form

i(s), j(s), k(s), v(s)

which is appropriate for sparse tensors. Each mapper reads a
segment of that file, processing one line at a time. By inspecting
the core equation of Algorithm 1 in Call-out #2

Y(ℓ,m, n) = Y(ℓ,m, n)+U(i(s), ℓ)V(j(s),m)W(k(s), n)v(s),

we see that for each mapper, it suffices to hold U(i(s), :
), V(j(s), :), and W(k(s), :) in memory, so that it calcu-
lates the contribution of the current non-zero value of the
tensor v(s) to the partial sum that comprises Y(ℓ,m, n).
Since L,M,N are considerably smaller than I, J,K, we use
O(L + M + N) of memory on each mapper. Thus, each
mapper emits as key the concatenation of (ℓ,m, n) and as value
U(i(s), ℓ)V(j(s),m)W(k(s), n)v(s). Finally, each reducer re-
ceives all partial values of the sum that builds Y(ℓ,m, n) up,
sums up all incoming values, and emits a pair with key equal
to (ℓ,m, n) and value equal to Y(ℓ,m, n), which is eventually
written to DFS.
Since we execute multiple repetitions of the compression step,
we may concatenate the repetition number p to the key that is
emitted by the mapper, as well as the key emitted by the reducer.
Thus, at the end, there will be one file containing the non-zero
values for each compressed tensor in the form:

p, ℓ,m, n,Yp(ℓ,m, n)

Decomposition: For the decomposition step, we spawn P
parallel processes on different machines, each one fitting the
CP decomposition to the respective compressed tensor. In order
to do that in the MapReduce framework, we may use the Map
function to feed the appropriate data to each reducer. More
specifically, each mapper will read portions of the file created
by the compression step, and use as a key the repetition index
p, and as value the rest of the row, i.e. (ℓ,m, n,Yp(ℓ,m, n)).
Consequently, P reducers will be spawned, each receiving all
the data of a single compressed tensor. We assume that the
compressed tensor fits in the main memory of a single machine,
therefore each reducer simply stores the incoming values in a
three dimensional array, and proceeds with in-memory computa-
tion of the CP decomposition. In case the reducers are unable to
store the compressed tensor in main memory, there exist methods
that fit the CP decomposition on MapReduce [34]. However,
solving each one of the parallel decompositions on MapReduce
would significantly hurt performance, therefore we should aim
for compressed tensors that fit in memory.
Recovery of factor matrices: The final step involves the
recovery of the factor matrices A,B,C from the partial factors
as obtained from the parallel decomposition step. Recovery for
each factor matrix is achieved by stacking the partial results
on top of each other, as well as the compression matrices in a
similar fashion, and solving a least squares problem involving
these two matrices. The stacking of both partial factors and
compression matrices can be done through a simple MapReduce
task: each mapper will be emitting (i, f) (i.e., the indices of each
matrix coefficient) as key, and the value will be the coefficient
of the matrix at (i, f) (denoted by v) and the index p, indicating
the replica number. Then, each reducer will emit tuples of the

form
i′, f, v

where i′ will be the original row index adjusted appropriately
using p, in order to account for the stacking.
In order to solve the least squares step, we may use scalable
algorithms that implement the Moore-Penrose Pseudoinverse on
MapReduce [35]. After pseudoinversion, we need to carry out
matrix multiplication, a problem which has also been thoroughly
studied for MapReduce [36].

Call-out #5: Solving a toy problem in Hadoop - MapReduce.
Consider a large speech/audio, image, or video signal, stored as a
text file, with each line containing a signal value. This file is stored
in a distributed fashion, in DFS. In order to compute its histogram,
it suffices to use a single MapReduce job.

Map: Each mapper gets a portion of the file and reads it line-
by-line. For each line-entry, n, the mapper sets key= n and
value= 1, and emits a (n,1) pair.
Reduce: As mentioned earlier, each instance of a reducer
receives all such (key,value) pairs that have the same
key. In this particular case, all instances of number n will
be processed by the same reducer, since the Map function
set key= n. As a consequence, each reducer has all the
information needed in order to calculate the exact count of
appearances of a given number n. Thus, each reducer simply
calculates the total number of (n, 1) pairs (denoted by f ), and
emits a single tuple (n, f ), which contains the number and its
corresponding frequency of occurrence.

Finally, when all reducers have terminated, the output of the
above MapReduce task will contain lines in the form: (number,
frequency).
Even though the above example is very simple, the logic that under-
lies the transformation of an algorithm into a series of MapReduce
tasks is the same: decompose the algorithm into self-contained
pieces, find a (key, value) representation for the intermediate
data of each piece, and finally express this computation as a pair
of Map and Reduce functions.

VII. ILLUSTRATIVE NUMERICAL RESULTS

Our theorems ensure that PARACOMP works with ideal low-
and known-rank tensors, but what if there is measurement noise or
other imperfections, or we underestimate the rank? Does the overall
approach fall apart in this case? From call-outs #3 and #4, we have
good reasons to believe that this is not the case, but one cannot be
confident without numerical experiments that corroborate intuition.
In this section, we provide indicative results to illustrate what can be
expected from PARACOMP and the effect of various parameters on
estimation performance.

In all cases considered, I = J = K = 500, the noiseless tensor
has rank F = 5, and is synthesized by randomly and independently
drawing A, B, and C, each from an i.i.d. zero-mean, unit-variance
Gaussian distribution (randn(500,5) in Matlab), and then taking
their tensor product; i.e., computing the sum of outer products of
corresponding columns of A, B, and C. Gaussian i.i.d. measurement
noise is then added to this noiseless tensor to yield the observed
tensor to be analyzed. The nominal setup uses L = M = N = 50
(so that each replica is 0.1% of the original tensor), and P = 12
replicas are created for the analysis (so the overall cloud storage
used for all replicas is 1.2% of the space needed to store the original
tensor). S = 3 common anchor rows (instead of S = 2, which is the
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minimum possible) are used to fix the permutation and scaling am-
biguity. These parameter choices satisfy PARACOMP identifiability
conditions without much additional ‘slack’. The standard deviation
of the measurement noise is nominally set to σ = 0.01.

Fig. 3 shows the total squared error for estimating A, i.e.,
||A − Â||22, where Â denotes the estimate of A obtained using
PARACOMP, as a function of L = M = N . The baseline is
the total squared error attained by directly fitting the uncompressed
500×500×500 tensor using a mature tensor decomposition algorithm
(COMFAC - available at www.ece.umn.edu/∼nikos) - the size of the
uncompressed tensor used here makes such direct fitting possible,
for comparison purposes. We see that PARACOMP yields respectable
accuracy with only 1.2% of the full data, and is just an order of mag-
nitude worse than the baseline algorithm when L = M = N = 150,
corresponding to 32% of the full data. This is one way we can
trade-off memory/storage/computation versus estimation accuracy in
the PARACOMP framework: by controlling the size of each replica.
Another way to trade-off memory/storage/computation for accuracy
is through P . Fig. 4 shows accuracy as a function of the number
of replicas (computation threads) P , for fixed L = M = N = 50.
Finally, Fig. 5 plots accuracy as a function of measurement noise
variance σ2, for L = M = N = 50 and P = 12.
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VIII. SUMMARY AND TAKE-HOME POINTS

Summary: We have reviewed the basics of tensors and tensor
decomposition, and presented a novel architecture for parallel and
distributed computation of low-rank tensor decomposition that is es-
pecially well-suited for big tensors. It is based on parallel processing
of a set of randomly compressed, reduced-size ‘replicas’ of the big
tensor. We have also provided a friendly introduction to Hadoop-
MapReduce, starting from a toy signal processing problem, and going
up to sketching a Hadoop implementation of ‘tensor decomposition
in the cloud’.
Motivation and impact: There is rapidly growing interest in signal
processing for big data analytics, and in porting / translating and
developing new signal processing algorithms for cloud computing
platforms. Tensors are multi-dimensional signals that have found
numerous applications in signal processing, machine learning, data
mining, and well beyond (psychology, chemistry, life sciences, ...),
and they are becoming increasingly important for online marketing,
social media, search engines, and many more applications. Tensors
easily grow to be really big, as their total size is the product of mode
sizes, hence exponential in the number of modes (’dimensions’ in
signal processing parlance). Big tensor data will thus be a big part
of big data.
Take-home points:

1) PARACOMP enables massive parallelism with guaranteed
identifiability properties: if the big tensor is indeed of low rank
and the system parameters are appropriately chosen, then the
rank-one factors of the big tensor will indeed be recovered from
the analysis of the reduced-size replicas.

2) PARACOMP affords memory / storage and complexity gains
of order up to IJ

F
for a big tensor of size I×J×K of rank F .

No sparsity is required, although such sparsity can be exploited
to improve memory, storage and computational savings.

3) We have shown that using white noise-like compression matri-
ces

• approximately preserves component ordering;
• ensures that the compressed noise is approximately white

if the original measurement noise is white; and
• makes the compressed noise look Gaussian - rendering

classical least-squares CP algorithms well-suited for fitting
the reduced-size replicas, even if the measurement noise in
the big tensor is far from Gaussian.

4) Each replica is independently decomposed, and the results
are joined via a master linear equation per tensor mode. The



11

number of replicas and the size of each replica can be adjusted
to fit the number of computing nodes and the memory available
to each node, and each node can run its own CP software,
depending on its computational capabilities. This flexibility
is why PARACOMP is better classified as a computational
architecture, as opposed to a method or algorithm.
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