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Abstract
Tensor decomposition has been shown, time and time again,
to be an effective tool in multi-aspect data mining, espe-
cially in exploratory applications where the interest is in
discovering hidden interpretable structure from the data. In
such exploratory applications, the number of such hidden
structures is of utmost importance, since incorrect selection
may imply the discovery of noisy artifacts that do not really
represent a meaningful pattern. Albeit extremely impor-
tant, selection of this number of latent factors, also known
as low-rank, is very hard, and in most cases, practitioners
and researchers resort to ad-hoc trial-and-error, or assume
that somehow this number is known or is given via domain
expertise.

There has been a considerable amount of prior work that
proposes heuristics for selecting this low rank. However, as
we argue in this paper, the state-of-the-art in those heuristic
methods is rather unstable and does not always reveal the
correct answer.

In this paper, we propose the Normalized Singular Value
Deviation (NSVD), a novel method for selecting the number
of latent factors in Tensor Decomposition, that is based on
principled theoretical foundations. We extensively evaluate
the effectiveness of NSVD in synthetic and real data and
demonstrate that it yields a more robust, stable, and reliable
estimation than state-of-the-art.

1 Introduction

Data analysis and pattern extraction have always been
an important tool in science and everyday life, since they
provide a fundamental way of understanding, organizing
and solving problems that may arise. In fact, these
problems are often characterized by a multidimensional
profile which, in turn, can produce an explosion in
the complexity of the problem, and, thus, create a
temptation to resort towards simplified and biased
solutions that are easier to figure out.

It is becoming increasingly apparent, however, that
finding ways to tackle these issues in their original multi-
aspect form, can provide answers of superior quality and
unmatched insight [29, 28]. Therefore, it makes sense to
search for methods that can encapsulate this character-
istic in a way simple enough that will also enable us to
make useful discoveries about the task at hand. Tensors,
which have traditionally been a mathematical tool, offer
exactly this capability, since they possess the simplicity
of a multidimensional array, and hence are able to cap-
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ture the multiple facets of the problem at hand. Albert
Einstein’s general relativity which was formulated us-
ing tensors, is a particularly interesting example that
demonstrates their power. At the same time, a broad
range of interesting results in tensors [20, 22] provides
an elegant mathematical framework which allows us to
derive important and insightful conclusions about the
nature of the tensor data and their structure.

PARAFAC decomposition [9, 17] and Kruskal’s
uniqueness conditions [22], have laid out an important
part of the foundation for using multidimensional ar-
rays as a tool for multi-aspect data mining. PARAFAC
decompositions express the data as the sum of other ele-
mentary rank one tensors, and when performed properly
they can reveal a lot about the underlying structure of
the data. However, finding the right number of com-
ponents for a PARAFAC decomposition is not an easy
task. To make this more clear, consider tensor rank,
which is another important concept [6, 5, 12], and is
closely tied to finding a proper number of components
for a PARAFAC decomposition. Tensor rank calcula-
tion has been proven to be NP-Hard over Q [18, 12] and
over any extension of it including R and C, and NP-
Complete over finite fields [19]. Therefore, it becomes
understood that despite the solid mathematical founda-
tions that have been set so far, we are still a long way
from finding a broadly efficient solution that sufficiently
tackles this problem.

For this reason, people have resorted to heuristic
ways for discovering low-rank structure in data [8, 27,
10], and even though some of them might enjoy success
in specific domains, they are usually unable to generalize
robustly to a broader spectrum of applications. In this
work, we are exploring some of these pathways, and we
are suggesting a different way of looking at this problem.
Our contributions are:

• A novel low-rank structure detection
method: We propose a new technique for finding
the appropriate number of PARAFAC components,
by performing a simple but powerful transforma-
tion to the decomposition, which enables us the
use of important linear algebra tools.

• Extensive theoretical analysis: We provide and
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prove various advantageous theoretical properties
of our technique, while pointing out the respective
shortcomings in the theoretical formulation of an
existing widely used method.

• Thorough experimental evaluation: Multiple
experiments for various settings are carried out
on real and artificial data, in order to study and
evaluate the behavior of our method in comparison
to other baselines.

Reproducibility: In order to promote reproducibility
of our results, we make our code for NSVD and the
synthetic tensor generator used in the paper publicly
available1.

2 Problem Formulation

2.1 Notation & Definitions Even though tensors
are often defined as elements of specific tensor product
spaces that correspond to multilinear maps, it is com-
mon in the field of data mining to define an N -mode
tensor as an element of the tensor product of N arbi-
trary vector spaces. Similarly to matrices, if we choose a
basis for each vector space, then the tensor can be repre-
sented as a multidimensional array of numbers. With-
out loss of generality, in this work we will study only
3-mode tensors X ∈ RI×J×K , where I, J and K are
the dimensions of the respective vector spaces.

Additionally, we have the following definitions:
Mode-n Fiber: A column vector produced by fixing
the indices in all of the dimensions of the tensor except
from the n-th dimension. For example, the Mode-1
fibers of a 2×2×2 tensor X can be identified as X (:, j, k)
for all j, k = 1, 2.
n-Mode Product: It is denoted as X ×n M where
M is an L× In matrix and In is the n-th dimension of
X . It modifies X by transforming its mode-n fibers as
MX (· · · , in−1, :, · · · ).

Frobenius Norm: ||X || =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

X (i, j, k)2.

Vectorization: It is denoted as vecX and is a column
vector constructed by concatenating all mode-1 fibers
X (:, j, k), with the smaller j and k having higher
priority in the concatenation, and similarly the second
dimension has higher priority than the third dimension.

2.2 PARAFAC Decomposition As already dis-
cussed, tensor decompositions play an important role in
discovering structure in multi-aspect data. Even though
a plethora of decompositions have been proposed, in this
work we will only concern ourselves with the PARAFAC

1https://github.com/gtsitsik/NSVD

Symbol Definition
x Scalar
X Matrix
X Tensor
⊗ Kronecker Product
� Column-wise Khatri-Rao Product
◦ Outer Product

Table 1: Table of Symbols

decomposition since it has a very close connection to the
rank of a tensor X . To see this, we first express X in
terms of its PARAFAC decomposition as follows

X = I ×1 A×2 B×3 C

where A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R

are the PARAFAC factor matrices, R is the number
of PARAFAC components, also called CP-rank, and
I ∈ RR×R×R for which it holds that I(i, j, k) = 1 if
i = j = k and I(i, j, k) = 0 otherwise. Note that this
expression can be reformulated as

(2.1) X =

R∑
r=1

ar ◦ br ◦ cr

where ar,br and cr are the r-th columns of the factor
matrices A, B and C, respectively. Since this is
the sum of R rank one tensors, it becomes evident
that if we manage to find the minimum R for which
(2.1) holds, then we have essentially found the rank
of the tensor. Additionally, for fixed values of R, the
PARAFAC decomposition is usually approximated by
using alternating least squares algorithms [9, 17] which
minimize the Frobenius norm of the error.

An important obstacle in finding the optimal R
though, is the fact that even for a CP-rank less than
the actual tensor rank, there is the possibility that
a decomposition exists that produces an arbitrarily
small error. This can occur due to the fact that a
rank-R best approximation of a tensor might not even
exist [11]. Thus, a common and intuitive idea is to
calculate approximate PARAFAC decompositions for
a range of CP-ranks, and then evaluate them with an
effective diagnostic tool that will hopefully uncover the
decomposition with the proper number of components.

2.3 AutoTen & the Core Consistency Diagnos-
tic As already discussed, rank estimation and low-rank
trilinear structure discovery are very difficult problems,
and there are currently no general purpose tools that
can efficiently accomplish these tasks. It is worth elab-
orating, however, on some of the most effective tools,
two of which are AutoTen [24] and the Core Consis-
tency Diagnostic (CORCONDIA) [7, 8] .
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AutoTen is a tool which aims to provide unsuper-
vised detection of multi-linear low-rank structure in ten-
sors, and is currently considered state-of-the-art among
its competitors who also attempt to automate the task.
In closer inspection, however, one can observe that Au-
toTen’s success can in large part be attributed to the
power of CORCONDIA, which is one of its main build-
ing blocks, and, therefore, for all intents and purposes
we can directly study and analyze the behavior of COR-
CONDIA instead of AutoTen’s.

In order to make this claim concrete, we first remind
that, given the PARAFAC factor matrices A, B and C
of X , CORCONDIA is defined as(

1− ||I − G∗||2

||I||2

)
· 100

where

(2.2) G∗ = arg min
G

||X − G ×1 A×2 B×3 C||

or equivalently

vecG∗ = arg min
vecG

|| vecX − (C⊗B⊗A) vecG||

which shows that the calculation of G∗ corresponds to
a linear least squares problem.

Essentially, CORCONDIA evaluates how well a
PARAFAC decomposition captures low-rank trilinear
structure in the data by comparing it to how well
the data are modeled when interactions among the
components of the decomposition are allowed. These
interactions are described by the off-diagonal elements
of G, and therefore, we see that when a lot of them have
non-zero values, then CORCONDIA will tend to have
large values. Notice that for G = I in (2.2) not only
there exist no interactions between the components,
but this is exactly how PARAFAC is formulated in
the least squares sense. Since, CORCONDIA attains
its goal by comparing G∗ to I, when their difference
is small, CORCONDIA will have a value close to 100,
which implies that the corresponding decomposition is
appropriate and captures mostly trilinear structure in
the data. On the other hand, if the difference is not
trivial, CORCONDIA can get close to zero or even
negative, which is a strong indication that the given
decomposition is not capturing properly the trilinear
variation in the data, and hence it should probably be
discarded.

Since there could be multiple models which give a
high value of CORCONDIA, the way that we choose
between them is by selecting the one that also has the
largest number of components. The reason that we
choose this model is because it will most probably also

provide the best fit in terms of the squared norm of the
error. In this manner, we can explore a trade-off be-
tween the quality of the model based on CORCONDIA
and its fit.

Based on this reasoning, AutoTen attempts to pro-
duce accurate estimates of the real number of compo-
nents by examining CORCONDIA at CP-ranks where
it starts dropping from 100 to zero. AutoTen calculates
CORCONDIA in the least squares sense, but is gener-
ally able to generate finer estimates by further consider-
ing CORCONDIA based on the KL-divergence. In this
work, we will focus on the least squares based COR-
CONDIA, and below we elaborate on some of its draw-
backs, which can have a serious impact on the perfor-
mance of AutoTen.

One of the weaknesses of CORCONDIA stems
from the fact that even with a unique PAFAFAC
decomposition, the factor matrices still suffer from
scaling and permutation indeterminacies. To make this
clear, consider the R-component PARAFAC of X and
the resulting G∗ from (2.2). Note also, that an equally
valid set of factor matrices would be APSA ,BPSB and
CPSC where P is a permutation matrix and SA, SB

and SC are diagonal scaling matrices for which it holds
that SASBSC = I. In this case, (2.2) would give

G̃∗ = arg min
G

||X − G ×1 APSA ×2 BPSB ×3 CPSC||

= arg min
G

||X − f(G)×1 A×2 B×3 C||

where f(G) = G ×1 PSA ×2 PSB ×3 PSC. This is
minimized only if

f(G̃∗) = G∗ ⇐⇒

G̃∗ = G∗ ×1 S−1A P−1 ×2 S−1B P−1 ×3 S−1C P−1

Therefore, there is an infinite number of valid G∗, which
in turn implies that CORCONDIA will not have a
unique value.

3 Proposed Method: NSVD

Since CORCONDIA can suffer from such indetermina-
cies which can create instabilities in the quality of its
estimates, we propose a new method for discovering tri-
linear structure in tensor data and mitigating the is-
sue above. Our method also possesses additional useful
properties that provide further support for its power and
robustness, as discussed in the following subsections.

3.1 Theoretical Formulation The first and prob-
ably the most important observation that we have to
make is that the Khatri-Rao product C � B � A is a
matrix which has the vectorized factors of the decom-
position as its columns. This transformation is critical
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for our analysis, since it allows us to manipulate and
make inferences about the quality and the properties of
a PARAFAC decomposition by employing a plethora of
very well established tools in linear algebra.

Specifically, notice that we can use the singular
values of C � B � A as a proxy for the behavior of
any PARAFAC decomposition. This is a particularly
interesting choice as explained in the following lemmas.

Lemma 3.1. The singular values of C�B�A are un-
affected by the scaling and permutation indeterminacies
of PARAFAC.

Proof. Scaling issues are directly solved by the Khatri-
Rao product as

CPSC �BPSB �APSA = (CP⊗BP⊗AP)Z

= (CP�BP�AP)

where Z = SC�SB�SA is exactly the matrix that can
transform a Kronecker product to a Khatri-Rao product
when multiplied from the right [23].

Regarding the permutation indeterminacy, first we
observe that performing identical column permutations
on A, B and C and then computing their Khatri-
Rao product produces the same result as when we
first calculate their Khatri-Rao product and then we
perform the same column permutations on this matrix.
This is the same as saying that CP � BP � AP =
(C�B�A)P, which in turn means that, if the Singular
Value Decomposition (SVD) of C�B�A is UΣV, then
the SVD of CPSC�BPSB�APSA can be calculated
as UΣV′ with V′ = VP, and thus consists of the same
singular values.

Notice that these singular values can capture the
essence of the decomposition in just a few parameters.
This can prove a crucial factor in evaluating the decom-
positions, since using other quantities like the norm of
the error, ||X − I ×1 A ×2 B ×3 C||, involves a huge
number of parameters which can lead to greater inac-
curacies. A specific example of this idea is presented
experimentally in the next section, where it becomes
obvious that in various cases a method based on the
norm of the error can indeed be inadequate, as opposed
to a method based on the singular values of C�B�A.
In particular, for any R-component PARAFAC decom-
position of X , we only need to study R singular values,
as opposed to an aggregation of the I · J · K errors.
Note that, even though these singular values are also
obtained based on all the elements of X , they can pro-
vide a more stable means of evaluation, since they also
have nice properties as discussed in the lemmas below.

Lemma 3.2. The Kronecker product
⊗n

i=1 Ai of any
set of n matrices Ai is an orthogonal matrix if, and only
if, all Ai are multiples of orthogonal matrices, such that
AT

i Ai = ciI and
∏n

i=1 ci = 1 .

(See appendix for proof)

Lemma 3.3. The singular values of C � B � A are
identical, up to scaling, to the singular values produced
by all tensors of the form X ×1R1×2R2×3R3, for R1,
R2 and R3 multiples of arbitrary orthogonal matrices.

Proof. Considering again the SVD UΣV of C�B�A,
we observe that every other possible matrix of the same
size that has the same singular values will have the form
U′UΣVV′ where U′ and V′ are orthogonal matrices.
However, not every orthogonal U′ and V′ results in
a matrix U′(C � B � A)V′ that has a Khatri-Rao
structure C′�B′�A′. Therefore, if we set V′ = I and
select a U′ that is in the Kronecker form R3⊗R2⊗R1,
then, following Lemma 3.2, R1, R2 and R3 have to be
multiples of orthogonal matrices and the product of the
norms of their corresponding columns has to be equal
to one. However, observe that any multiple of U′ is also
a valid choice if we let the singular values absorb the
scaling, i.e. (cU′)UΣVV′ = U′U(cΣ)VV′ .

In other words, these singular values can be viewed
as a more direct identifier of the structure of X without
being as prone to changes in the actual form of the
tensor. Particularly, this implies that although methods
like CORCONDIA or the norm of the error might
report bad evaluations for orthogonal rotations of the
decomposition, the singular values of C � B � A will
signify that the decomposition is appropriate, since they
will be identical, up to scaling, to the ones corresponding
to the PARAFAC of the original unrotated X .

The importance of this becomes more evident if we
consider the fact that the set of tensors consisting of X
and all of its orthogonal rotations contain in some sense
the same underlying structure, even though directly
looking at their elements on a high level might make
them appear as completely different tensors. In fact,
all these tensor representations correspond to the exact
same abstract tensor in different bases, which implies
that a sound rank estimation method should ideally
produce similar rank estimates for all of them.

Additionally, it is not unreasonable to expect that
multiple approximate solutions of an optimization algo-
rithm for PARAFAC, produced by using different ran-
domly generated initial points for example, will gener-
ally be similar to each other when the specified number
of components captures the underlying structure prop-
erly. On the other hand, we can expect the solutions to
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have greater deviations from each other when the given
number of components cannot describe the structure of
the data properly. Particularly, notice that for a fixed
number of components, there could be a huge number of
ways that extraneous components can be combined to
produce the decomposition, when we decompose with
more components than necessary.

Based on this observation, we propose the use of the
variances of the singular values of C�B�A as a means
to detecting and properly quantifying such deviations.
Specifically, in order to provide fair comparisons, we di-
vide these variances by the respective expected values,
and, finally, we aggregate all these quantities by calcu-
lating the sum of their logarithms. Using the logarithm
has a two-fold advantage since it provides numerical sta-
bility and leads to more interpretable plots. Numerical
inaccuracies can occur if we only consider the product
of the variances of the singular values since individual
variances sometimes take values very close to zero. Also,
considering that different CP-ranks can lead to a change
of many orders of magnitude to this product, we can see
that the logarithm provides a more suitable option.

More formally, considering a probability distribu-
tion for the random initializations of the algorithm
that calculates the R-component PARAFAC, and given
the variance σ2

R,i and the expected value µR,i of
the i-th singular value of C � B � A, we compute∑R

i=1 log(σ2
R,i/µR,i), which we will call Normalized Sin-

gular Value Deviation (NSVD). In this fashion, we are
able to discover possible trilinear structure in the data
and the number of PARAFAC components that best
models it, with distinct dips in NSVD being an indica-
tion of more appropriate decompositions.

In summary, NSVD consists of the following steps:

Step 1 Compute multiple R-component PARAFAC de-
compositions by using multiple random initializa-
tions for the algorithm that calculates them.

Step 2 Form the Khatri-Rao product C�B�A for each
decomposition.

Step 3 Compute the singular values of each C�B�A and
estimate the variance σ2

R,i and the expected value
µR,i of the i-th singular value, for all i = 1 . . . R.

Step 4 Compute f(R) =
∑R

i=1 log(σ2
R,i/µR,i).

Step 5 Repeat Steps 1-4 for multiple values of R.
Step 6 Estimate that k number of PARAFAC components

appropriately model the underlying structure of the
data if f(k) is the lowest part of a distinct dip.

Notice that we did not specify a method for cal-
culating the optimal expected value and variance esti-
mates, since their optimality depends on their desired
properties. However, in order to keep things simple and
effective, in all our experiments we are going to make use
of the sample mean and the unbiased sample variance.

4 Experimental Evaluation

In our experiments, at each number of components, R,
we approximate NSVD by first calculating a number, K,
of PARAFAC estimates using random initializations for
the optimization algorithm. These PARAFACs are then
used for the estimation of the necessary unbiased sample
variances and sample means of the singular values of
C�B�A. Lastly, we aggregate all these estimates as
explained in subsection 3.1 to get our NSVD estimate
for R components.

For more accurate results, we calculate NSVD on
the first k samples, and we repeat this for all k ranging
from 2 to K. The final NSVD estimate is calculated
based on these K−1 intermediate estimates. For further
implementation details, we refer the interested reader to
the appendix.

Finally, Tensor Toolbox [4, 3] was used for calculat-
ing all PARAFAC decompositions, and N-way Toolbox
[1] was used only in cases where there exist missing data.
Also, in all plots the horizontal axis always represents
the number of PARAFAC components, while the error-
bars signify the 25th and the 75th percentile of the K−1
intermediate NSVD estimates.

4.1 Artificial Data A first step in evaluating our
method is to assess its performance on artificially gen-
erated data whose structure can be defined explicitly. In
the following experiments, we create artificial tensors by
generating three matrices with R columns each, where
their elements are drawn from the standard normal dis-
tribution. Note that if we consider these matrices as the
PARAFAC factor matrices of our tensor, then the rank
of the tensor will be at most R, since it will be the sum
of R rank-1 factors. Additionally, these factor matri-
ces will be full column rank with very high probability,
which in turn implies that the R factors will also be
linearly independent. Therefore, the rank of the tensor
will be exactly R.

In order to achieve a better approximation of real
tensor data scenarios, however, our rank-R tensor, X , is
distorted by an additive noise tensor N , which is a rank-
100 tensor generated in the same way as X , but has its
norm scaled to be p times less than the norm of X . In

other words, the final tensor will be Y = X + N ||X ||
p||N || .

In this manner, we generated the 20×20×20 SynthSmall
tensor having 5 components and p = 2, which is studied
in subsection 4.3. Additional details about generating
artificial noise can be found at the appendix.

Also, keep in mind that although there is not a
perfect way of generating artificial data, our method
is attempting to provide good approximations of real
tensor data, without losing the flexibility and robustness
provided by its mathematical foundation. The data
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Name Dimensions Components
Chem1 351× 19× 83 6 (Chem. Verified)
Chem2 351× 18× 83 5 (Chem. Verified)

RealMining 94× 94× 4 6 (see [25])
Enron 184× 184× 44 4 & 7 (see [2, 26])

SynthSmall 20× 20× 20 5 (Synthetic)
Table 2: Tensors analyzed in the experimental section.

generator and the NSVD code are available at https:

//github.com/gtsitsik/NSVD.

4.2 Real Data Even though NSVD behaves nicely
on artificial tensor data, indicating a distinctive dip
exactly where the predefined number of components
is, it is important to also study its performance and
behavior on real tensor data in order to assess its
practicality in real-world scenarios. For this reason, we
analyze a range of real data sets as shown in Table 2.

4.2.1 Chemical Data First, we analyze the chem-
ical datasets Chem1 and Chem2. These datasets are
a small time interval taken from a large tensor dataset
where 44 wine samples were measured on a gas chro-
matographic system with mass spectrometry detection.
Each interval represents a subset on the time axis where
a few specific chemical compounds appear. The aim of
modeling the data is to separate the overlapping signals
from the compounds. One additional chemical dataset
of this type is studied at the appendix.

Note that data of this nature have generally been
observed to have a strong trilinear structure. Therefore,
when we are called to discover the individual chemi-
cal substances in the chemical samples, performing de-
compositions like PARAFAC and identifying the proper
number of components become tasks of central impor-
tance. Moreover, many times it is possible to chemi-
cally identify the number of components in the samples.
Therefore, these useful properties render chemical data
a very attractive tool for the evaluation of methods like
ours which aim to provide estimations for the rank of a
tensor or detect low-rank multilinear structure in data.
Unfortunately, however, the chemical data studied in
this work have not become publicly available, which lim-
its our ability to meaningfully study and explain their
various components.

4.2.2 Social Network Data Next, we study the
Reality Mining dataset [14], henceforth referred to as
RealMining, which includes data gathered by the MIT
Media Laboratory in the context of an experiment
assessing the behavior of social communities. These
communities consist of 100 subjects who participated

in the study, 94 of which are included in our dataset.
The experiment was conducted by special software that
was installed in the phones of the participants, and
among others it recorded four distinct communication
aspects for each subject, i.e. calls, Bluetooth devices
nearby, text messages and friendship with the rest of the
subjects, which form a 3-mode tensor with four slices.
Various studies have been conducted on this dataset
[16, 15], and particularly in [25] the authors discover
and elaborate on 6 dominant communities.

We are also evaluating our method on the famous
Enron dataset which was made public after the corpo-
ration’s scandal was uncovered. The dataset contains
a large number of emails that were exchanged between
around 150 employees of the company, and has attracted
a lot of attention [21, 13], mainly due to the fact that
it probably is the only publicly available large scale
dataset of real-world emails. In our work, we study
a smaller version of the dataset obtained as explained
in [2], which consists of the communication between 184
email addresses in an interval of 44 weeks, and, there-
fore, can be represented as a 3-mode tensor. In the same
study, the authors identify and elaborate on 4 distinct
communities, while in [26] the authors, after running
multiple iterations of their experiments, claim to have
discovered a total of 7 communities with a standard de-
viation of 0.88.

4.3 Comparison to Baselines Detecting structure
in data can be a daunting task, especially when one
attempts to automate the process and make it as
universally and domain agnostic as possible. Many
heuristic methods have been proposed for this purpose
[8, 27, 10], each with its own advantages and drawbacks,
often making it necessary to resort to different structure
finding techniques depending on the problem at hand.

It is crucial for the evaluation of NSVD , therefore,
to put it into the test against other baselines, and in turn
assess its capability in revealing the correct number of
components for a range of artificial and real datasets.
The comparison is carried out on the data described in
subsection 4.1 and subsection 4.2 using 100 iterations
for the calculation of all NSVD estimates, except for the
RealMining dataset where 74 iterations were used due
to limitations in computational resources. The following
baselines are considered in the comparison:

• CORCONDIA: (see subsection 2.3)
• Mean Squared Error (MSE): It is estimated that
R components best describe the trilinear variation
in the data, if the R-component PARAFAC gives
a low enough MSE compared to PARAFACs with
different number of components. This usually
manifests as a distinct dip at R components.
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Figure 1: Baselines comparison on the SynthSmall dataset
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Figure 2: Baselines comparison on the Chem1 dataset

• Mean Squared Error on missing data: Similar
to the usual MSE, with the only difference being
that the PARAFAC decompositions are estimated
using only the known data of the tensor, and the
MSE is calculated on the missing data. Note
that if R components produce low MSE on the
missing data, it can be interpreted as that the
corresponding PARAFAC model can better predict
them, and, hence, we can estimate that an R-
component underlying structure is appropriate. In
our work, we always assume 20% of missing data
selected randomly in each iteration.

4.3.1 Synthetic Data For our synthetic dataset
SynthSmall we observe in Figure 1 that NSVD presents
a quite distinct dip at 5 components which is the correct
answer. On the other hand, even though CORCONDIA
seems to approximate a region around 5 components, it
struggles to give a definitive answer and leaves open
the possibility of up to 7 or even 8 components. In-
terestingly, even MSE seems to be working better than
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Figure 3: Baselines comparison on the Chem2 dataset
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Figure 4: Baselines comparison on the RealMining dataset

CORCONDIA in this case, showing a subtle indication
at 5 components, which gets amplified when using MSE
on the missing data.

4.3.2 Chemical Data In Figure 2, we can see the
nice indication that NSVD provides for the 6 compo-
nents of Chem1, as opposed to CORCONDIA which
suggests only 3 components. MSE also fails to identify
the correct answer by vaguely indicating only 4 or 5
components, and similarly for the MSE on missing data
which suggests only 4 components.

The situation is different for Chem2 where all
baselines fail to discover the 5 components in the data,
as shown in Figure 3. CORCONDIA provides a vague
estimate of around 3 components, while MSE shows a
distinct dip also at 3 components. MSE on missing
data also fails to give a definitive answer, even though
it slightly hints at 4 components. On the other hand,
NSVD provides a much clearer indication at 4 and 5
components, and although it is not as sharp as in the
previous examples, it outperforms all the baselines.
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Figure 5: NSVD & CORCONDIA on the Enron dataset for tighter tolerances from left to right. Observe how NSVD is
able to reveal multiple structures in the data by using different tolerances.

4.3.3 Social Network Data In Figure 4 we see
that the behavior of NSVD on the RealMining dataset
is more convoluted, providing multiple indications at
3, 6 and 9 components. CORCONDIA provides an
indication only at 3 components, while MSE hints at 3
and 6 components. Note that even though it is hard to
obtain ground truth for this type of data, NSVD is able
to at least suggest potential structure at all the points
where both CORCONDIA and MSE do as well. It is
also interesting to observe that the 6 components that
the authors identify in [25] make sense considering that
not only both NSVD and MSE provide an indication
at this number of components, but also MSE takes
its lowest value at that point too. Finally, MSE on
missing data fails to provide a clear estimate since it
could indicate anything from 1 to 4 components.

4.4 Fine-Tuning NSVD At this point, we are going
to demonstrate an interesting property of NSVD which
makes it even more flexible and versatile, allowing it
to provide sharper and more accurate estimates, and
even uncover different levels of structure in the data.
Additionally, this improvement can be achieved by only
fine-tuning a simple parameter; the tolerance for the
termination criterion of the optimization algorithm that
calculates the PARAFAC decompositions.

This interesting property can be observed in Fig-
ure 5 where NSVD is tested on the Enron dataset for
multiple tolerance levels. At first, for the low tolerance
of 1e − 2, NSVD provides no robust estimate at all.
However, at a tolerance of 1e − 3 it shows a distinct
indication at 4 components which is in agreement with
the findings in [2]. Next, for a tolerance of 7e − 4 we
see that NSVD starts transitioning from an estimate
of 4 to an estimate of 6 components, which later be-
comes the only pronounced estimate for a tolerance of
1e − 4 and 1e − 7. In the end, NSVD seems to sta-
bilize at 7 components for the even tighter tolerances
of 1e − 10 and 1e − 12. Notice that the last estimates
of 6 and 7 components are in perfect agreement with

the findings in [26] where 7 components were identified
with a standard deviation of 0.88. On the other hand,
CORCONDIA is able to only discover 4 components,
and remains virtually unaffected by the changes in the
tolerance levels, except for a tolerance of 7e − 4 where
its estimate gets distorted. Finally, additional experi-
ments on fine-tuning NSVD for the Chem1 dataset are
provided in the appendix.

5 Conclusions

We proposed a new method called NSVD for discover-
ing low-rank multilinear structure in multiaspect data,
which is based on the variance of the singular values of
the Khatri-Rao product formed by the PARAFAC fac-
tor matrices. We have also shown various advantageous
theoretical properties of our method, and we argued
against a crucial theoretical shortcoming of CORCON-
DIA. Next, we offered extensive experimental evaluation
on both artificial and real data, which verified that our
method can be superior as compared to other widely
used structure finding heuristics. Finally, we showed
an interesting property of our method that allows it to
discover different levels of structure in the data.
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