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ABSTRACT

Data collected at very frequent intervals is usually extremely sparse

and has no structure that is exploitable by modern tensor decompo-

sition algorithms. Thus the utility of such tensors is low, in terms

of the amount of interpretable and exploitable structure that one

can extract from them. In this paper, we introduce the problem

of finding a tensor of adaptive aggregated granularity that can be

decomposed to reveal meaningful latent concepts (structures) from

datasets that, in their original form, are not amenable to tensor

analysis. Such datasets fall under the broad category of sparse point

processes that evolve over space and/or time. To the best of our

knowledge, this is the first work that explores adaptive granular-

ity aggregation in tensors. Furthermore, we formally define the

problem and discuss what different definitions of “good structure”

can be in practice, and show that optimal solution is of prohibitive

combinatorial complexity. Subsequently, we propose an efficient

and effective greedy algorithm which follows a number of intuitive

decision criteria that locally maximize the “goodness of structure”,

resulting in high-quality tensors. We evaluate our method on syn-

thetic and semi-synthetic data where ground truth is known. Our

proposed method constructs tensors that have very high structure

quality.
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1 INTRODUCTION

In the age of big data, applications deal with data collected at very

fine-grained time intervals. In many real world applications, the

data collected spans long periods of time and can be extremely

sparse. For instance, a time-evolving social network that records

interactions of users every second results in a very sparse adjacency

matrix if observed at that granularity. Similarly, in spatio-temporal

data, if one considers GPS data over time, discretizing GPS coor-

dinates based on the observed granularity can lead to very sparse

data which may not contain any visible and useful structure. How
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can we find meaningful and actionable structure in these types of

data? A great deal of such datasets are multi-aspect in nature and

hence can be modeled using tensors. For instance, a three-mode

tensor can represent a time-evolving graph capturing user-user

interactions over a period of time, measuring crime incidents in a

city community area over a period of time [1, 17], or measuring

traffic patterns [21]. Tensor decomposition has been used in order

to extract hidden patterns from such multi-aspect data [10, 13, 16].

However the degree of sparsity in the tensor, which is a function of

the granularity in which the tensor is formed, significantly affects

the ability of the decomposition to discover “meaningful” structure

in the data.

Consider a dataset which can be modeled as three-mode tensor,

where the third mode is temporal as shown in Figure 1. If the granu-

larity of the temporal mode is too fine (in milliseconds or seconds),

one might end up with a tensor that is extremely long on the time

mode and where each instance of time has very small number of

entries. This results in a extremely sparse tensor, which typically is

of very high rank, and which usually has no underlying exploitable

structure for widely popular and successful tensor decomposition

algorithms [10, 13, 16]. However, as we aggregate data points over

time, exploitable structure starts to appear (where-by “exploitable”

we define the kind of low-rank structure that a tensor decomposi-

tion can successfully model and extract). In this paper we set out to

explore what is the best such data-driven aggregation of a tensor

which leads to better, exploitable, and interpretable structure, and

how this fares against the traditional alternative of selecting a fixed

interval for aggregation.

As far as tackling the problem above, there is considerable amount

of work that focuses on a special case, that of aggregating edges of

a time evolving graph into “mature” adjacency matrices based on

certain graph properties [18–20]. In our work, however, we address

the problem in more general terms, where the underlying data can

be any point process that is observed over time and/or space, and

where the aggregation/discretization of the corresponding dimen-

sions directly affects our ability to extract interpretable patterns

via tensor decomposition. Effectively, as shown in Figure 1, in this

paper we work towards automating the data aggregation starting

from raw data into a well-structured tensor.

Our contributions in this work are as follows:

• Novel ProblemFormulation: We formally define the prob-

lem of optimally aggregating a tensor, which is formed from

raw sparse data in their original level of aggregation, into

a tensor with exploitable and interpretable structure. We

further show that solving this problem optimally is computa-

tionally intractable. To the best of our knowledge, this paper

is the first to tackle this problem in its general form, and we

view our formulation as the first step towards automating

the process of creating well-behaved tensor datasets.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Starting from raw CSV files, IceBreaker discovers a tensor that has good structure (under various measures of quality, includ-

ing interpretability and predictive quality), outperforming traditional fixed aggregation heuristics. Furthermore, IceBreaker using various

notions of locally optimal structure, discovers different resolutions in the data.

• Practical Algorithm: We propose a practical, efficient, and

effective algorithm that is able to produce high-quality ten-

sors from raw data without incurring the combinatorial cost

of the optimal solution. Our proposed method follows a

greedy approach, where at each step we decide whether

different “slices” of the tensor are aggregated based on a

variety of intuitive functions that characterize the “goodness

of structure” locally.

• Experimental Evaluation: We extensively evaluate our

proposedmethod on synthetic and semi-synthetic data, where

ground truth is known, where we use popular heuristic mea-

sures of structure goodness to measure success.

• Reproducibility: We make our implementation publicly

available at link
1
in order to encourage reproducibility of

our results.

2 PROBLEM FORMULATION

2.1 Tensor Definition and Notations

Tensors are multi-dimensional extensions of matrices, and tensor

decompositions are a class of methods that extract latent structure

from tensor datasets by extending techniques such as Principal Com-

ponent Analysis and Singular Value Decomposition. The different

“dimensions” of a tensor are usually referred to as “modes”. In this pa-

per, we focus on the CANDECOMP/PARAFAC (henceforth refered

to as CP for brevity) decomposition [9], which is the “rank decom-

position” of a tensor, i.e., the decomposition of an arbitrary tensor

into a sum of 𝑅 rank-one tensors. Mathematically, for a three-mode

tensor X, the CP decomposition is X ≈
𝑅∑
𝑟=1

A(:, 𝑟 ) ◦ B(:, 𝑟 ) ◦ C(:, 𝑟 ),

where ◦ is the generalized outer product. Matrices A,B,C are called

“factor matrices”, and each column corresponds to a latent pattern,

directly relating an entity of the corresponding mode to a value

that can be roughly construed as a soft clustering coefficient [5]. CP

has arguably been the most popular tensor decomposition model in

applications where the interest is to extract interpretable patterns

for exploratory analysis, and thus, we adopt this decomposition

model as our standard in this work. In the interest of space, we

1
https://github.com/ravdeep003/adaptive-granularity-tensors

refer the reader to a number of available surveys [10, 13, 16]. We

denote tensors as X and matrices as X, and we adopt Matlab-like

notation for indexing.

2.2 Tensor decomposition quality

Unsupervised tensor decomposition, albeit very popular, poses a

significant challenge: how can we tell whether a computed decom-

position is of “high quality”, and how can we go about defining

“quality” in a meaningful way? Unfortunately, this happens to be

a very hard problem to solve [14], and defining a new measure of

quality is beyond the scope of this paper. However, there has been

significant amount of work in that direction, which basically boils

down to 1) model-based measures, where the quality is measured

by how well a given decomposition represents the intrinsic hidden

structure of the data, and 2) extrinsic measures, where the qual-

ity is measured by how well the computed decomposition factors

perform in a predictive task.

In terms of model-based measures, the most straightforward one

is the fit, i.e., how well does the decomposition approximate the

data under the chosen loss function, in a low rank. Low rank is key,

because the number of components (rank) has to be as small and

compact as possible in order to lend itself to human evaluation and

exploratory analysis. However, fit has been shown to be unstable

and prone to errors especially in real and noisy data, thus the

community has collectively turned its attention to more robust

measures such as the Core Consistency Diagnostic (CORCONDIA

for short) [3], which measures how well the computed factors obey

the CP model.

On the other end of the spectrum, extrinsic quality measures

are always tied to a predictive task. A popular such task is com-

munity detection, where the tensor consists of a multi-view or

time-evolving graph, and the frontal slices contain adjacency matri-

ces of that given graph; the task is to use the computed factors for

the nodes as features for assigning them to a community label and

subsequently measure the quality of that assignment with measures

such as the Normalized Mutual Information (NMI) [4, 7, 8].

Both types of quality measure are heuristic and capture different

elements of what an end-user would deem good in a set of decom-

position factors. In this paper, we are going to use such popular
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measures of quality in order to characterize the quality of a given

tensor dataset X. In order to do so, we assume that we have a func-

tion Q
(
X
)
which, optimizes the heuristic quality measure 𝑞 () for

a given tensor over all possible decomposition ranks 𝑅 2
, i.e.,

Q𝑖
(
X
)
= max

𝑅
𝑞𝑖

(
X,A,B,C

)
where A,B,C are the 𝑅-column factor matrices for X. Finally, a use-
ful operation is the 𝑛-mode product, where a matrixW is multiplied

by the 𝑛-th mode of a tensor (predicated on matching dimensions

in the 𝑛-th mode of the tensor and the rows of the matrix), denoted

as X ×𝑛 W. For instance, an 𝐼 × 𝐽 ×𝐾 tensor where 𝑛 = 3 andW of

size 𝐾 × 𝐾∗
, the product X ×𝑛 W multiplies all third mode slices of

X with W and results in a 𝐼 × 𝐽 × 𝐾∗
tensor.

2.3 The Trapped Under Ice problem
To give reader an intuition of the problem, consider an example of

time-evolving graph which captures social activity over the span of

some time. This example can be modeled as three-mode tensor X
of dimensions 𝐼 × 𝐽 × 𝐾 where “sender” and “receiver” are the first

two modes, “time” being the third mode, and non-zero entry in the

tensor represents communications between user at a particular time.

If the time granularity is extremely fine-grained (milliseconds or

seconds), there might be only handful of data points at a particular

time stamp causing resulting tensor to be extremely sparse and to

have a high tensor-rank as a result. In that case, X might not have

any interpretable low-rank structure that can be exploited by CP.

In this example we assume that the third mode (time mode) is too

fine-grained but in reality any mode (one or more) can be extremely

fine grained. For example, in spatio-temporal data, where the first

two modes are latitude and longitude and the third mode is time,

all three modes can suffer from the same problem.

Given tensor X which is created using the “raw” granularities,

how does one find a tensor (say Y) which has better exploitable

structure and hence can be decomposed into meaningful latent

structure. This, is informally the Trapped Under Ice problem that we

define here (which draws an analogy between the good structure

that may exist within the data as being trapped under the ice and

not visible by mere inspection). Trapped Under Ice has an inherent

assumption that the mode in which we aggregate is ordered (e.g.,

representing time or space), thus permuting the third mode will

lead to a different instance of the problem.

More formally we define our problem as follows:

Given a tensor X of dimensions 𝐼 × 𝐽 × 𝐾 Find:

A tensor Y of dimensions 𝐼 × 𝐽 × 𝐾∗
with 𝐾∗ ≤ 𝐾 such that

max

W
Q

(
X ×3 W

)
where Q is a measure of goodness and W(𝑖, 𝑗) = 1 if slice 𝑖

in tensor X is aggregated into slice 𝑗 in the resulting tensor,

otherwiseW(𝑖, 𝑗) = 0.

At first glance, Trapped Under Ice might look like a problem

amenable to dynamic programming, since it exhibits the optimal

substructure property. However, it lacks the overlapping subprob-

lems property: there are overlapping subproblems across the set of

2
In practice, this is done over a small number of low ranks, since low-rank structure is

desirable.

different W matrices (e.g., two different matrices may have over-

lapping subproblems) but not within any singleW. Thus, we still

have to iterate over 2
𝐾−1 W’s refer subsection 2.4 for more details.

Structure of W: The matrix W has a special structure. Here we

provide an example. Consider a three-mode tensor X of dimensions

10 × 10 × 10, with the third mode being the time mode. Suppose

that the optimal level of aggregation for Y is 𝐾∗ = 3. In this case,

W is of size 3 × 10 and an example of such matrix is:

W =


1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1


ThisW aggregates first three slice of X to form first slice of Y, next
three to form the second slice and last four to form the third slice.

No twoW matrices will produce the same aggregation. They can

have the same 𝐾∗
but order of aggregation of slices will be different.

2.4 Solving Trapped Under Ice optimally is hard

Solving Trapped Under Ice optimally poses a number of hurdles. First

and foremost, the hardness of the problem depends on the definition

of function Q, and most reasonable and intuitive such definitions

are very hard to optimize since they are non-differentiable, non-

continuous, and not concave. So far, in the literature, to the best of

our knowledge, there are only heuristics for this quality function.

Even so, those heuristic functions can only be evaluated on a single

already fully-aggregated tensor, not a partially aggregated version

thereof. Thus, Trapped Under Ice can be only solved optimally via

enumerating all admissible solutions and choosing the best. In order

to conduct this enumeration, we need to calculate the cardinality

of the set of all W for a given instance of the problem.

Lemma 2.1. For an instance of a problem with 𝐾 initial slices, the
cardinality of the set of allW is 2𝐾−1

Proof. To get 𝐾∗
aggregated slices there are

( 𝐾−1
𝐾∗−1

)
ways to

choose each of them leading to a differentW. This is a number of

ways that 𝐾 − 1 partition slots can be filled partitioned by 𝐾∗ − 1

blocks. In order to get the final number, we need to sum up over all

potential 𝐾∗
:

𝐾−1∑
𝐾∗=0

(
𝐾 − 1

𝐾∗

)
= 2

𝐾−1

□

Direct corollary of the above lemma is that solving optimally

Trapped Under Ice requires calling the function Q 𝑂

(
2
𝐾
)
times,

which is computationally intractable. There may be small room for

improvement by exploiting special structure in the set of all W,

however, given discontinuities in our objective function Q, this is

not be a feasible alternative either. In this paper we define proxy

quality functions Q that lend themselves to partial evaluation on a

partially aggregated solution, thus allowing for efficient algorithms

Thus, in the next section we propose a fast greedy approach which

locally optimizes different criteria quality.

3 PROPOSED METHOD

In this section, we propose our efficient and effective greedy algo-

rithm called IceBreaker which takes a tensor X as an input, which
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has been created directly from raw data, and has no exploitable

structure. and returns a tensor Ywhich maximizes the interpretable

and exploitable structure. The basic idea behind IceBreaker is to

make a linear pass on the mode for which the granularity is subop-

timal, and using a number of intuitive and locally optimal criteria

for goodness of structure (henceforth referred to as utility func-
tions), we greedily decide whether a particular slice across that

mode needs to be aggregated
3
into an existing slice or contains

good-enough structure to stand on its own. IceBreaker can choose

from a number of intuitive utility functions which are based on

different definitions of good quality in matrices and graphs (in cases

where we are dealing with underlying graph data).

3.1 The IceBreaker algorithm

Algorithm 1 gives a high level overview of IceBreaker . More

specifically, the algorithm takes a three-mode tensorX of dimension

𝐼 × 𝐽 × 𝐾 as an input and loops over all the 𝐾 slices of tensor X.
Two slices next to each other get aggregated into a single slice if

a certain utility function has stabilized, i.e., if aggregating the two

slices does not offer any additional utility (larger than a particular

threshold), then the second slice should not be aggregated with the

first, and should mark the beginning of a new slice.

Consider a three-mode tensor X with time as third mode of

dimension 𝐼 × 𝐽 × 𝐾 is ran through IceBreaker with a particular

utility function. Our algorithm iterates over the timemode (𝐾 slices)

and aggregates slices as decided by the utility function. IceBreaker

is agnostic to utility function used. Let us consider a slice that has

been aggregated into a single slice from indices 𝑖 to 𝑗 − 1 called

previous slice and another aggregated slice from indices 𝑖 to 𝑗 called

a candidate slice. Both previous and candidate slice are passed to

utility function separately to obtain a value each called previous

and current value respectively. These values are compared (line

5 in algorithm 1) to decide whether 𝑗𝑡ℎ slice is absorbed(line 6

in algorithm 1) into previous slice or previous slice has stabilized

and entry is added in𝑊 to indicate which indices of tensor X are

aggregated together(line 8−9 in algorithm 1). Now 𝑗𝑡ℎ slice becomes

the previous slice and aggregated slice of 𝑗 and 𝑗 + 1 become the

candidate slice, the whole process is repeated until all the slices are

exhausted.

Note that IceBreaker ’s complexity is linear in terms of the slices

𝐾 of the original tensor, and its overall complexity depends on the

specific utility function used (which is called 𝑂 (𝐾) times).

3.1.1 Utility functions: In the subsection, we summarize a number

of intuitive utility functions that we are using in this work. This

list is by no means exhaustive, and can be augmented by different

functions (or function combinations) that capture different elements

of what is good structure and can be informed by domain-specific

insights.

(1) Norm:We use multiple norm types to find adaptive granu-

larity of a tensor. For a given threshold, if rate of change of

norm between previous and candidate slice is less than the

threshold, candidate slice is not selected. Our assumption

3
For the purposes of our work, we use matrix addition as aggregation of slice but this

might not be the case and would depend on the problem domain. Other aggregation

functions that can be used are OR, min, max, depending on the application domain

(e.g., binary data).

Algorithm 1: IceBreaker

Input: Tensor X of dimension 𝐼 × 𝐽 ×𝐾
Output: Tensor Y of dimension 𝐼 × 𝐽 ×𝐾1and matrixW of size 𝐾1 ×𝐾
1: 𝑖 = 1; 𝑗 = 2

2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑎𝑙𝑢𝑒 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑋 (:, :, 𝑖))
3: while 𝑗 ≤ 𝐾 do

4: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑠𝑢𝑚 (𝑋 (:, :, 𝑖 : 𝑗), 3)
5: if 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑎𝑙𝑢𝑒 ⪋ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 then

6: j = j+1 {Aggregate Slice}

7: else

8: {Create a New Slice}

Add a row inW with value as 1 for indices 𝑖 to 𝑗 − 1.

{Update indices for next candidate slice}

9: 𝑖 = 𝑗 ; 𝑗 = 𝑗 + 1;

10: previousValue = UtilityFunction(X(:,:,i));

11: end if

12: end while

13: Y = X ×3 W
14: return Y andW

in this case is no significant amount of information is being

added to previous slice and is considered to have been stabi-

lized. MatrixW is updated accordingly with indices of the

previous slice (aggregated slices in previous slice). Otherwise

the candidate slice is selected and the process continues until

all the slices are exhausted. Different norms demonstrated

in this work are Frobenius, 2-norm, and Infinity norm.

(2) Matrix Rank: In case of matrix rank, we focus on the 95%

reconstruction rank, which is typically much lower than

the full rank of the data, but captures the essence of the

number of components within the slice. In this case, we

consider previous slice to be stabilized if the matrix-rank of

previous slice decreases by addition of new slice, no more

slices are added and an entry in matrixW is added. We keep

aggregating slices if the matrix-rank of the slice is increasing

or remains constant.

(3) Missing Value Prediction: If a piece of data has good struc-

ture, when we hide a small random subset of the data, the

remaining data can successfully reconstruct the hidden val-

ues, under a particular model that we have chosen. To this

end, we employ a variant of matrix factorization based col-

laborative filtering [11] as a utility function to see how good

is the aggregated matrix in predicting certain percent of

missing values. This utility function takes percent of missing

value as a parameter, hides those percent of non zeros values

in the matrix. Our implementation of matrix factorization

with Stochastic Gradient Descent tries to minimize the loss

function: minU,V
∑
𝑖, 𝑗 ∈Ω RMSE

(
Aij − Ui,: · V:,j

)
where A

is a given slice, U,V are factor matrices for a given rank

(typically chosen using the same criterion as the matrix rank

above), and Ω is the set of observed (i.e., non-missing) values.

In order to create a balanced problem, since we are deal-

ing with very sparse slices, we conduct negative sampling
where we randomly sample as many zero entries as there

are non-zeros in the slice, and this ends up being the Ω set

of observed values.

(4) Graph Properties: There has been a significant amount

of work in graph mining with respect to aggregation of

temporal graph [18–20], taking inspiration from [18], we

use the following functions:
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(a) Average degree: Similar to norm, we consider a previ-

ous slice to stabilized if the rate of change of average

degree between previous and candidate slice is less than

the threshold.

(b) Connected components: We consider number of con-

nected components that has more that one node. If the

number of connected components remain the same we

keep aggregating the slices and if the increases we con-

sider it to stabilize.

4 EXPERIMENTAL EVALUATION

In this section we present a thorough evaluation of IceBreaker

using variety of data, including synthetic and semi-synthetic data

(where ground truth is known), and where we empirically evaluate

our analysis using a number of criteria described in detail below.

We implement our method in Matlab using tensor toolbox library

[2]. For small variations in parameters to the utility functions we

did not observe much deviations however we plan to investigate

in greater detail the effects of various thresholds in an extended

version.

4.1 Evaluation measures

When formulating the problem, we did not specify a quality func-

tion Q to be maximized, nor did we use such a function in our

proposed method. The reason for that is because we reserve the use

of different quality functions as a form of evaluation. In particular,

we use the two following notions of quality:

• CORCONDIA: To evaluate the interpretability of the result-
ing tensor we employ Autoten [14] that given a tensor and

some estimated tensor rank, returns a CORCONDIA score

and low rank that provides best attainable tensor decompo-

sition quality in a user-defined search space.

• Community detection NMI: We use NMI as a measure

of predictive accuracy when the ground truth for the time-

evolving data is available. To compute NMI score we perform

CP decomposition on the resulting tensor with tensor rank

provided by Autoten from above measure and then we use

K-means clustering on the relevant factor matrices with

number of communities in ground truth [6]. With that each

node (row in the factor matrix) gets assigned to a single

community we pass this result with the actual ground truth

to NMI function to get NMI score.

We should note at this point that the two quality measures above are

far from continuous andmonotonic functions, thuswe do not expect

that our IceBreaker progresses the quality will monotonically

increase. Thus, we calculate the quality for the final solution of

IceBreaker , and we reserve investigating whether monotonic and

well-behaved quality functions exist for future work.

4.2 Baseline methods

A naive way to find tensor Y can be by aggregating time mode

based on some fixed intervals. If time granularity was in millisec-

onds, then combining one thousand slices to form slices of seconds

granularity reducing the third dimension of tensor X from 𝐾 to

𝐾/1000. This can be applied incrementally from seconds to minutes

and so on to find a tensor which has some exploitable structure. We

compare the resulting tensor Y determined by IceBreaker against

tensors constructed with fixed aggregations. For fixed aggregation

we aggregate the temporal with window size of 10, 100 and 1000.

4.3 Performance for synthetic data with

ground truth

Creating synthetic data: In order to create synthetic data we fol-

low a two-step process: 1) we use an existing time-evolving tensor

generator, proposed in [15], which creates a tensor that has a certain

number of latent factors which appear, disappear, and reappear ran-

domly over time, 2) subsequently, we simulate the Trapped Under Ice
problem by taking every non-zero entry of that tensor and creating

a new slice containing that entry (effectively setting 𝐾 equal to the

number of non-zero entries of the tensor). Furthermore, we modify

the factor matrices of the first two modes, so that each row has

only one non-zero entry, corresponding to a particular “cluster” it

belongs to, thus enabling us to have ground truth labels for the first

two modes of the data. We create two synthetic scenarios: 1) one

where changes in the number of components happen on a fixed

time scale (which is ideal for fixed aggregation) and 2) one where

changes happen at randomized time windows, which is a more

challenging case.

Results for synthetic data: In order to evaluate the performance

of IceBreaker , we measure CORCONDIA and NMI on the two syn-

thetic datasets, over 10 different runs. The leftmost
4
part of Figure

2 shows the results for the first dataset, where fixed aggregations

outperform by a small margin the proposed method, a behavior

which was expected, since the dataset has been created with a nat-

ural fixed size window of aggregation. The leftmost part of Figure

3 shows the results in the more challenging case, where the natural

window of aggregation is randomized and variable. In this case, our

proposed method works on par with the fixed aggregation methods.

In both scenarios fixed aggregations performed well because of

the nature of synthetic data which has very well defined latent

structures repeated over period of time.
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Figure 2: Corcondia vs NMI and Local Optima graph for Synthetic

dataset-1

4
Dotted line in the leftmost part of figures 2, 3, 4, and 5 are average value of the score

of that experiment.
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Figure 3: Corcondia vs NMI and Local Optima graph for Synthetic

dataset-2

4.4 Performance for semi-synthetic data with

ground truth

Creating semi-synthetic data: In addition to fully synthetic data,

we also create semi-synthetic data, where the first two modes come

from a real-world graph for which the ground truth labels are

given, and the time mode is simulated according to the synthetic

data generator used in [7]. The process followed is the same as in

the synthetic case, where we take the non-zero elements and create

a tensor with equal number of slices. The real-world graph we use

for semi-synthetic data generation is the American Football used
in [7]. Other dataset used is European Email from [12] where we

create a tensor such that each non-zero entry corresponds to a slice.

Results for semi-synthetic data: The leftmost parts of Figures 4

and 5 show our results on the semi-synthetic data. We observe that,

in general, IceBreaker outperforms the fixed aggregation methods,

since IceBreaker results in high score of both CORCONDIA and

NMI.
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Figure 4: Corcondia vs NMI and Local Optima graph for Semi-

synthetic American Football

4.5 Different local optima hint to multiple

resolutions in time

IceBreaker , depending on what utility function it uses, converges

to a different (locally) optimal solution, and all such solutions

achieve roughly the same combined quality measure (ratio of COR-

CONDIA and NMI in this case). Most interestingly, those different
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Figure 5: Corcondia vs NMI and Local Optima graph for Semi-

synthetic European Email

local optima actually pertain to different levels of resolution for

the aggregation. In the rightmost parts of Figures 2, 3, 4, and 5, we

plot the degree of aggregation (measured by the ratio of
𝐾
𝐾∗ ) versus

the quality measure. We observe distinct clusters of solutions that

achieve roughly the same quality, for vastly different aggregation

levels, which points to the fact that those local optima reveal a

multi-resolution view of the raw data.

5 RELATEDWORK

To the best of our knowledge, this is the first attempt at formalizing

and solving this problem, especially as it pertains in the tensor

and multi-aspect data mining domain. Nevertheless, there has been

significant amount of work on temporal aggregations in graphs

[18–20] and in finding communities in temporal graphs [7]. The

closest work to ours is [18], in which the authors looks at aggregat-

ing stream of temporal edges to produce sequence of structurally

mature graphs based on a variety of network properties.

6 CONCLUSIONS

In this paper we are, to the best of our knowledge, the first to

define and formalize the Trapped Under Ice problem in constructing

a tensor from raw sparse data. We demonstrate that an optimal

solution is intractable and subsequently proposed IceBreaker , a

practical solution that is able to identify good tensor structure from

raw data, and construct tensors from the same dataset that pertain

to multiple resolutions. Our experiments demonstrate the merit of

IceBreaker in discovering useful and high-quality structure, as

well as providing tools to data analysts in automatically extracting

multi-resolution patterns from raw multi-aspect data. In future

work we will work towards extending IceBreaker in cases where

more than one modes is Trapped Under Ice (naively one can apply

IceBreaker to each mode sequentially, but this disregards joint

variation across modes), and extend IceBreaker for higher-order

tensors.
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