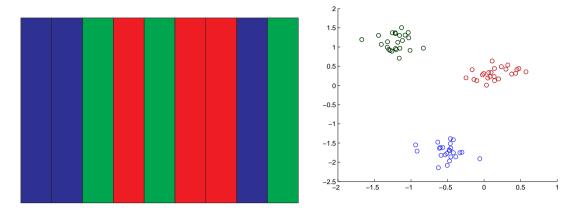
K-means / VQ as constrained outer product decomposition

Cluster set of vectors $\{\mathbf{x}_j \in \mathbb{R}^{I}\}_{i=1}^{J}$ in *K* clusters:

Find K << J cluster means $\{\mu_k \in \mathbb{R}'\}_{k=1}^K$ and an assignment of ea best-matching cluster $k^*(j)$ such that $\sum_i ||\mathbf{x}_j - \boldsymbol{\mu}_{k^*(j)}||^2$ (or other suit mismatch cost) is minimized



- ▶ $X := [x_1, \dots, x_J] (I \times J), M := [\mu_1, \dots, \mu_K] (I \times K), \text{ and } A := [a_1, \dots (J \times K)], \text{ with: } A(j, k) = a_k(j) \in \{0, 1\} \text{ and } \sum_{k=1}^K A(j, k) = 1, \forall j \text{ (i.e., } A(j, k) = 1)$ sums to 1; \mathcal{RS} constraint)
- ► *K*-*means* clustering:

 $\min_{\mathbf{M},\mathbf{A}\in\{0,1\}^{J\times K}\cap\mathcal{RS}}||\mathbf{X}-\mathbf{M}\mathbf{A}^{T}||_{F}^{2},$

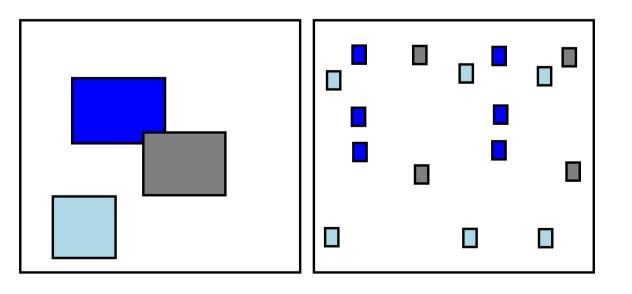
• *K*-*means* \leftrightarrow low-rank "decomposition":

- $\min \left| \left| \mathbf{X} (\boldsymbol{\mu}_1 \mathbf{a}_1^T + \dots + \boldsymbol{\mu}_K \mathbf{a}_K^T) \right| \right|_F^2 \text{ i.e., } \mathbf{X} \simeq \boldsymbol{\mu}_1 \mathbf{a}_1^T + \dots + \boldsymbol{\mu}_K \mathbf{a}_K^T \right|$
- ▶ ∃ important difference: $\mathbf{A} \in \{\mathbf{0}, \mathbf{1}\}^{J \times K} \cap \mathcal{RS}$
- NP-hard; popular approximation: Lloyd-Max
- ▶ Binary $\{0, 1\}$ constraint \leftrightarrow hard clustering. Relax to [0, 1] interval (o \geq 0) \leftrightarrow soft clustering weights
- \mathcal{RS} constraint: every vector is classified (*lossless* clustering). Drop \mathcal{R} (exploratory) clustering; [all-zero rows in A OK]: spot important cluster

Co-clustering

Introducing co-clustering: Amazon.com

- Each customer \leftrightarrow vector, across list of products (and vice-versa):
- Not interested in grouping customers (or products); but rather in ...
- ... spotting co-clusters: subsets of customers that tend to buy same s products
- ... even though their overall buying patterns can otherwise be very dif
- Don't know which subset(s) are of interest; had we known, problem been reduced to K-means
- Regular clustering fails to capture such patterns because it postulate all dimensions



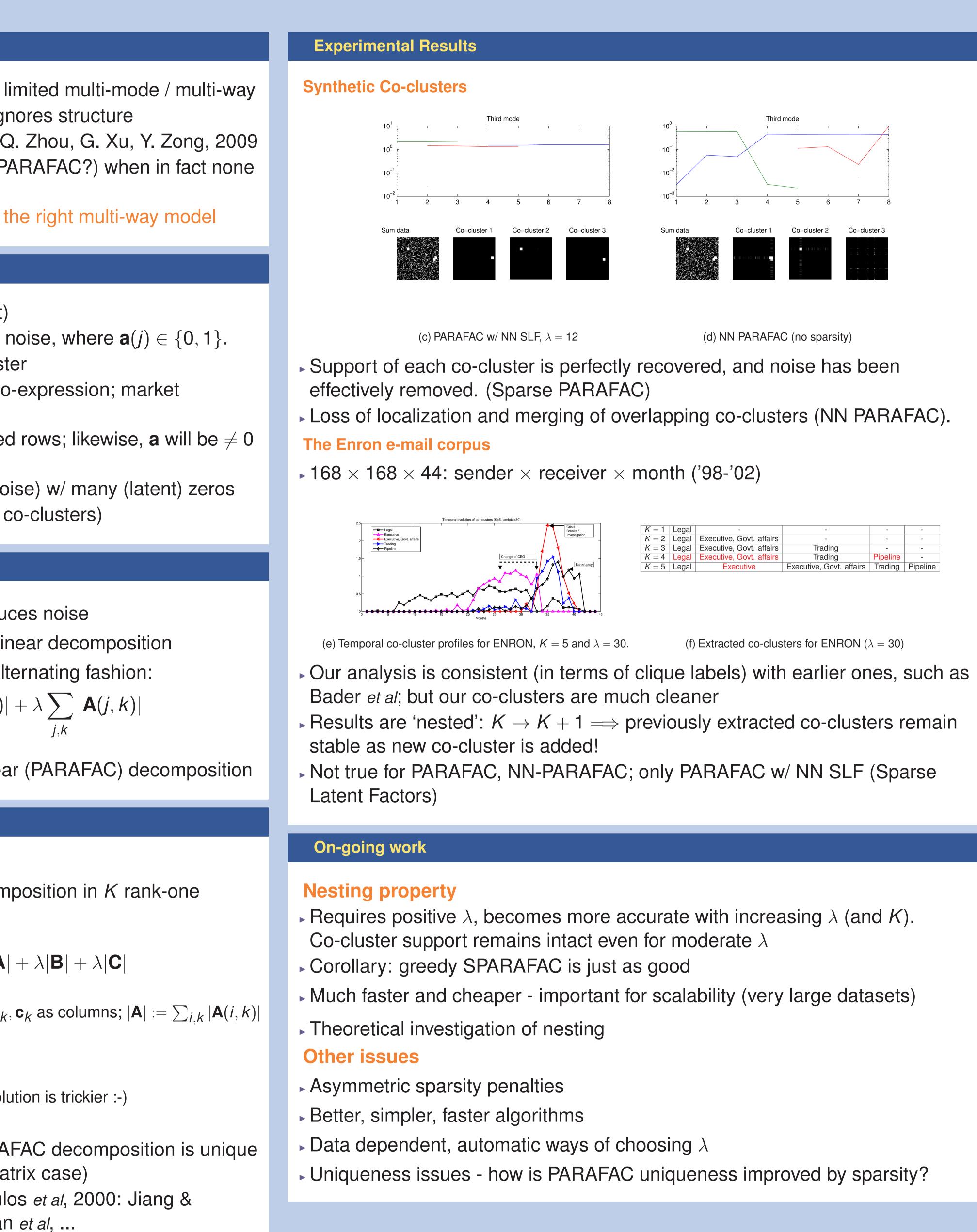
Prior art

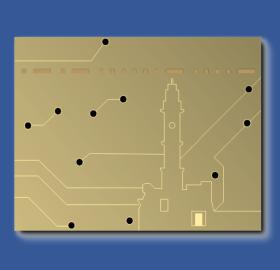
- ▶ J.A. Hartigan, JASA 1972, 1975. Hard co-clustering NP-hard (K-m special case)
- \blacksquare many ad-hoc (re)formulations and algorithms, e.g., I. Dhillon: spe information-theoretic; A. Banerjee, I. Dhillon, et al max entropy Breg co-clustering
- Many applications: social network analysis, data & web mining, me biology (gene expression), market basket analysis, census.

	Multi-mode / multi-way co-clustering				
ach x _j to a table	 Mostly two-mode (aka two-way) <i>bi-clustering</i>; very lit Important in numerous applications - unfolding ign L. Zhao, M.J. Zaki, triclustering, SIGMOD 2005; G Don't know which 3-way model to use (Tucker? PA of the existing ones fits Our contribution: start from first principles, <i>derive</i> the start from first principles. 				
	Cluster / co-cluster: rank-1 modeling				
\cdot , a _{<i>K</i>}]	 Assume data ≥ 0, variables ≥ 0 (for the moment) Standard clustering: single cluster ⇔ X = μa^T + r a selects which columns belong to the given cluster When only relative expression matters (e.g., gene co analysis), generalize as: X = ba^T + noise In co-clustering: b will be ≠ 0 only for the selected only for the selected columns Co-cluster ⇔ rank-one component (X = ba^T + noise Co-clustering ⇔ outer prod decomp (rank = # of constant) 				
or simply	Why sparsity is key				
$\mathcal{RS} \leftrightarrow \mathit{lossy}$ ters	► Sparsity: Selects! Improves uniqueness and reduct ► Two-way (matrix) case (bi-clustering): Sparse biling ► Can be implemented using (non-neg) Lasso in alt $\min_{\mathbf{B} \ge 0, \mathbf{A} \ge 0} \mathbf{X} - \mathbf{B}\mathbf{A}^{T} _{F}^{2} + \lambda \sum_{i,k} \mathbf{B}(i,k) $				
matrix X	ullet Three- and higher-way case $ ightarrow$ Sparse multi-linea				
subset of	The Sparse PARAFAC decomposition				
fferent. n would have	• Consider three way array $\underline{\mathbf{X}} \in \mathbb{R}^{I \times J \times N}$. • PARAFAC w/ SLF (Sparse Latent Factors) decom				
es similarity in	components: $\min_{\mathbf{A},\mathbf{B},\mathbf{C}} \ \underline{\mathbf{X}} - \sum_{k=1}^{K} \mathbf{a}_k \odot \mathbf{b}_k \odot \mathbf{c}_k \ _F^2 + \lambda \mathbf{A} $				
	$\mathbf{A} \in \mathbb{R}^{I \times K}, \mathbf{B} \in \mathbb{R}^{J \times K} \text{ and } \mathbf{C} \in \mathbb{R}^{N \times K} \text{ contain vectors } \mathbf{a}_k, \mathbf{b}_k,$ $ \lambda \text{ is sparsity-controlling regularization parameter} $ $ \text{ Include non-negativity when appropriate} $ $ \text{ Solved "a-la" ALS, using Lasso steps for } \mathbf{A}, \mathbf{B} \& \mathbf{C} $ $ \text{ Can use different } \lambda \text{ 's for the different modes but then solution} $				
	Sparse PARAFAC: Uniqueness				
neans is ectral,	 ► Even without non-negativity or sparsity, the PARA under mild conditions (big advantage over the mathematical structures). ► Kruskal, 1977: k_A + k_B + k_C ≥ 2K + 2: Sidiropould Sidiropoulos. 2004: Do Lathauwor et al. Storopoulos. 				
gman	Sidiropoulos, 2004; De Lathauwer <i>et al</i> , Stegeman Sparsity & non-negativity improve uniqueness				
edicine,	Why is this important? Can unravel large # of possibly overlapping co-				

Impossible to do as well in the matrix case

Co-clustering as Multilinear Decomposition with Sparse Latent Factors Evangelos. E. Papalexakis¹ Nicholas. D. Sidiropoulos¹ ¹Department of Electronic & Computer Engineering, Technical University of Crete, Chania, Greece





	<i>K</i> = 1	Legal	-	-	-	-
on	<i>K</i> = 2	Legal	Executive, Govt. affairs	-	-	-
	<i>K</i> = 3	Legal	Executive, Govt. affairs	Trading	-	-
	<i>K</i> = 4	Legal	Executive, Govt. affairs	Trading	Pipeline	-
kruptcy	K = 5	Legal	Executive	Executive, Govt. affairs	Trading	Pipeline
45						
nd $\lambda =$ 30.		(f)	Extracted co-clus	ters for ENRON ($\lambda=$ 30)	