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K -means / VQ as constrained outer product decomposition

Cluster set of vectors
{

xj ∈ RI
}J

j=1 in K clusters:

I Find K << J cluster means
{
µk ∈ RI

}K
k=1 and an assignment of each xj to a

best-matching cluster k∗(j) such that
∑

j ||xj − µk∗(j)||2 (or other suitable
mismatch cost) is minimized
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I X := [x1, · · · ,xJ] (I × J), M := [µ1, · · · ,µK ] (I × K ), and A := [a1, · · · ,aK ]
(J × K ) , with: A(j , k) = ak(j) ∈ {0,1} and

∑K
k=1 A(j , k) = 1, ∀j (i.e., each row

sums to 1; RS constraint)
I K -means clustering:

min
M,A∈{0,1}J×K ⋂RS ||X−MAT ||2F ,

I K -means↔ low-rank “decomposition”:
min

∣∣∣∣X− (µ1aT
1 + · · · + µKaT

K

)∣∣∣∣2
F i.e., X ' µ1aT

1 + · · · + µKaT
K

I ∃ important difference: A ∈ {0,1}J×K ⋂RS
I NP-hard; popular approximation: Lloyd-Max
I Binary {0,1} constraint↔ hard clustering. Relax to [0,1] interval (or simply
≥ 0)↔ soft clustering weights

IRS constraint: every vector is classified (lossless clustering). Drop RS ↔ lossy
(exploratory) clustering; [all-zero rows in A OK]: spot important clusters

Co-clustering

Introducing co-clustering: Amazon.com
I Each customer↔ vector, across list of products (and vice-versa): matrix X
I Not interested in grouping customers (or products); but rather in ...
I ... spotting co-clusters: subsets of customers that tend to buy same subset of

products
I ... even though their overall buying patterns can otherwise be very different.
I Don’t know which subset(s) are of interest; had we known, problem would have

been reduced to K -means
I Regular clustering fails to capture such patterns because it postulates similarity in

all dimensions

Prior art
I J.A. Hartigan, JASA 1972, 1975. Hard co-clustering NP-hard (K -means is

special case)
I ∃ many ad-hoc (re)formulations and algorithms, e.g., I. Dhillon: spectral,

information-theoretic; A. Banerjee, I. Dhillon, et al max entropy Bregman
co-clustering

I Many applications: social network analysis, data & web mining, medicine,
biology (gene expression), market basket analysis, census.

Multi-mode / multi-way co-clustering

I Mostly two-mode (aka two-way) bi-clustering; very limited multi-mode / multi-way
I Important in numerous applications - unfolding ignores structure
I L. Zhao, M.J. Zaki, triclustering, SIGMOD 2005; Q. Zhou, G. Xu, Y. Zong, 2009
I Don’t know which 3-way model to use (Tucker? PARAFAC?) when in fact none

of the existing ones fits
I Our contribution: start from first principles, derive the right multi-way model

Cluster / co-cluster: rank-1 modeling

I Assume data ≥ 0, variables ≥ 0 (for the moment)
I Standard clustering: single cluster⇔ X = µaT + noise, where a(j) ∈ {0,1}.
I a selects which columns belong to the given cluster
I When only relative expression matters (e.g., gene co-expression; market

analysis), generalize as: X = baT + noise
I In co-clustering: b will be 6= 0 only for the selected rows; likewise, a will be 6= 0

only for the selected columns
I Co-cluster↔ rank-one component (X = baT + noise) w/ many (latent) zeros
I Co-clustering↔ outer prod decomp (rank = # of co-clusters)

Why sparsity is key

I Sparsity: Selects! Improves uniqueness and reduces noise
I Two-way (matrix) case (bi-clustering): Sparse bilinear decomposition
I Can be implemented using (non-neg) Lasso in alternating fashion:

min
B≥0,A≥0

||X− BAT ||2F + λ
∑
i ,k

|B(i , k)| + λ
∑
j ,k

|A(j , k)|

I Three- and higher-way case→ Sparse multi-linear (PARAFAC) decomposition

The Sparse PARAFAC decomposition

I Consider three way array X ∈ RI×J×N.
I PARAFAC w/ SLF (Sparse Latent Factors) decomposition in K rank-one

components:

min
A,B,C

‖X−
K∑

k=1

ak � bk � ck‖2
F + λ|A| + λ|B| + λ|C|

A ∈ RI×K , B ∈ RJ×K and C ∈ RN×K contain vectors ak ,bk ,ck as columns; |A| :=
∑

i ,k |A(i , k)|
I λ is sparsity-controlling regularization parameter
I Include non-negativity when appropriate
I Solved “a-la” ALS, using Lasso steps for A,B & C
I Can use different λ’s for the different modes ... but then solution is trickier :-)

Sparse PARAFAC: Uniqueness
I Even without non-negativity or sparsity, the PARAFAC decomposition is unique

under mild conditions (big advantage over the matrix case)
I Kruskal, 1977: kA + kB + kC ≥ 2K + 2: Sidiropoulos et al, 2000: Jiang &

Sidiropoulos, 2004; De Lathauwer et al, Stegeman et al, ...
I Sparsity & non-negativity improve uniqueness
I Why is this important?
B Can unravel large # of possibly overlapping co-clusters! - very important

I Impossible to do as well in the matrix case

Experimental Results

Synthetic Co-clusters
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(c) PARAFAC w/ NN SLF, λ = 12
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(d) NN PARAFAC (no sparsity)

I Support of each co-cluster is perfectly recovered, and noise has been
effectively removed. (Sparse PARAFAC)

I Loss of localization and merging of overlapping co-clusters (NN PARAFAC).
The Enron e-mail corpus

I 168× 168× 44: sender × receiver × month (’98-’02)

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

Months

Temporal evolution of co−clusters (K=5, lambda=30)

 

 
Legal
Executive
Executive, Govt. affairs
Trading
Pipeline

Change of CEO

Crisis
Breaks /
Investigation

Bankruptcy

(e) Temporal co-cluster profiles for ENRON, K = 5 and λ = 30.

K = 1 Legal - - - -
K = 2 Legal Executive, Govt. affairs - - -
K = 3 Legal Executive, Govt. affairs Trading - -
K = 4 Legal Executive, Govt. affairs Trading Pipeline -
K = 5 Legal Executive Executive, Govt. affairs Trading Pipeline

(f) Extracted co-clusters for ENRON (λ = 30)

I Our analysis is consistent (in terms of clique labels) with earlier ones, such as
Bader et al; but our co-clusters are much cleaner

I Results are ‘nested’: K → K + 1 =⇒ previously extracted co-clusters remain
stable as new co-cluster is added!

I Not true for PARAFAC, NN-PARAFAC; only PARAFAC w/ NN SLF (Sparse
Latent Factors)

On-going work

Nesting property
I Requires positive λ, becomes more accurate with increasing λ (and K ).

Co-cluster support remains intact even for moderate λ
I Corollary: greedy SPARAFAC is just as good
I Much faster and cheaper - important for scalability (very large datasets)

I Theoretical investigation of nesting
Other issues
I Asymmetric sparsity penalties
I Better, simpler, faster algorithms
I Data dependent, automatic ways of choosing λ
I Uniqueness issues - how is PARAFAC uniqueness improved by sparsity?
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