
Tensorized Feature Spaces for Feature Explosion
Ravdeep S. Pasricha∗, Pravallika Devineni†, Evangelos E. Papalexakis∗, Ramakrishnan Kannan†

∗Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA.
rpasr001@ucr.edu, epapalex@cs.ucr.edu

†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
{devinenip, kannanr}@ornl.gov

Abstract—In this paper1, we present a novel framework that
uses tensor factorization to generate richer feature spaces for
pixel classification in hyperspectral images. In particular, we
assess the performance of different tensor rank decomposition
methods as compared to the traditional kernel-based approaches
for the hyperspectral image classification problem. We propose
ORION , which takes as input a hyperspectral image tensor
and a rank and outputs an enhanced feature space from the
factor matrices of the decomposed tensor. Our method is a
feature explosion technique that inherently maps low dimensional
input space in RK to high dimensional space in RR, where
R � K, say in the order of 1000x, like a kernel. We show
how the proposed method exploits the multi-linear structure
of hyperspectral three dimensional tensor. We demonstrate the
effectiveness of our method with experiments on three publicly
available hyperspectral datasets with labeled pixels and compare
their classification performance against traditional linear and
non-linear supervised learning methods such as SVM with Linear,
Polynomial, RBF kernels, and the Multi-Layer Perceptron model.
Finally, we explore the relationship between the rank of the
tensor decomposition and the classification accuracy using several
hyperspectral datasets with ground truth.

Index Terms—Tensor, Tensor Decomposition, Hyperspectral
Imaging.

I. INTRODUCTION

Hyperspectral imaging techniques capture images of objects
or materials with hundreds of spectral bands at each pixel [1].
A particularly important use of these techniques is in capturing
images of land area on the earth’s surface from above using an
aircraft or a satellite fitted with sensors. Since objects under
observation reflect different wavelengths of the spectral band,
each pixel has a large number of features corresponding to
the spectral bands. These features have most popularly been
used to accomplish two tasks – identify the class of each
given pixel, a classification task [2], [3], [4] or, see what that
pixel is made of, an unmixing task [5], [6]. Bioucas et al. [7]
present a survey of problems often encountered in analyzing
hyperspectral remote sensing data. In this paper, we focus on

1This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-plan) This
research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725.

the pixel classification task, where labelled data for some of
the pixels is available.

Hyperspectral images (HSI) can be considered as a set of
images stacked together like a 3D cube. For hyperspectral
images with high spatial resolution, the pixel classification
task assumes that each pixel is ‘pure’, i.e. it corresponds
to a single class. In contrast with the classification task, the
unmixing task assumes that each pixel may be composed of
multiple materials or ‘endmembers’ [7]. The main challenges
involved in hyperspectral pixel classification are the large
number of spectral bands, leading to high dimensionality
and the limited availability of labelled data. Previous work
considered the feature space generated using kernel functions
for HSI classification [2], [8], [3]. These works treat data as
a matrix where each row is a pixel in multi-spectral bands.
However, there are three challenges in these kernel spaces
(a) choice of kernel and its parameters. For example, tuning
the parameter γ in Radial Basis Function (RBF) kernel is
non-trivial and impacts the performance of the classifier, (b)
the number of features generated by the kernel methods is
dependent on the number of pixels, i.e. the kernel function
K(X,X) → F takes the k spectral bands for xy pixels as
X ∈ Rxy×k will yield a feature matrix F ∈ Rxy×xy , and
(c) these kernel spaces assume that the pixels are independent
and identically distributed (IID) samples and ignore the spatial
correlation that exists between the pixels.

In this paper we address these challenges by exploring a
new feature explosion method called ORION that uses tensor
completion to generate a richer feature space by exploiting
the multi-dimensional nature of data. ORION allows relaxing
the dimension of the obtained feature space F ∈ Rxy×R
instead of fixed dimension xy from kernel methods. While we
demonstrate the usefulness of ORION for HSI classification,
we would like to emphasize that it can be applied to a broader
range of problems.

Our contributions in this work are as follows:
• Tensorized Feature Space: We introduce a new feature

space based on factors generated using tensor factor-
ization2. This works better or on par with traditional
state-of-the-art classification methods. To the best of our
knowledge, this is the first work that presents a formal
study of feature space explosion with defined number of

2We use decomposition and factorization interchangeably throughout the
paper

features R, unlike kernel methods that fix the length of
the dimension for the number of available samples.

• Experimental Evaluation: We demonstrate the effec-
tiveness of our proposed method ORION by evaluating it
on publicly available hyperspectral datasets and compare
it against traditional state-of-the-art baselines, linear and
nonlinear supervised learning methods like Linear, Poly-
nomial and RBF Support Vector Machines, and Multi-
Layer Perceptrons.

Reproducibility: To encourage transparency and repro-
ducibility of the experiments, we make our implementation
of ORION and baselines publicly available3. All datasets used
in the experiment are publicly available at [9].

The remainder of this paper is structured as follows, In
section II, we formulate the problem more formally in terms
of tensor and tensor factorization. Section III describes our
proposed method in detail. We demonstrate the effectiveness
of our method in section IV. In section V, we present the
related work in tensors and hyperspectral field and, finally we
conclude our paper in section VI.

II. PROBLEM FORMULATION

In this section, we present some preliminary definitions
required for setting up the problem and define our problem.
Table I describes the symbols used and their descriptions.

A. Preliminary Definitions
Tensor: Tensors are multi-dimensional arrays and are used to
model multi-aspect data. Each dimension of a tensor is called
a mode. For example, a 1-mode tensor is a vector, and a 2-
mode tensor is a matrix. A 3-mode tensor is represented by
X, where X ∈ RI×J×K .

For example, the hyperspectral image of a land area con-
sisting of several spectral bands can be modeled as a 3-mode
tensor X, where the first two modes I and J represent the
height and width of the image and the third mode K represents
the spectral bands.
Fibers: The row and column vectors are fibers in a matrix.
Given an n-mode tensor, we obtain fibers by fixing the n −
1 indices. For example, in a 3-mode tensor X with indices
I, J,K, X(:, J,K),X(I, :,K) and X(I, J, :) are considered
mode-1, mode-2 and mode-3 fibers respectively.
Kronecker Product The Kronecker product of two matrices
A ∈ RI×J and B ∈ RM×N is given by A⊗ B ∈ RIM×JN

A⊗ B =

a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
aI1B aI2B . . . aIJB

where aij refers to elements in matrix A.
Khatri-Rao Product Khatri-Rao product of two matrices A ∈
RI×R and B ∈ RJ×R is the column-wise Kronecker product
given by A� B ∈ RIJ×R.

A� B = [a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR]

3https://github.com/ravdeep003/ORION

where [a1,a2 . . . ,aR] and [b1,b2 . . . ,bR] are columns of
A and B respectively.
Canonical Polyadic Decomposition: Simply referred to as CP
or CANDECOMP/PARAFAC [10], [11], it is one of the most
commonly used tensor decompositions. The CP decomposition
of a 3-mode tensor X ∈ RI×J×K for a particular rank R is
given by sum of R rank-one tensors:

X ≈
R∑
r=1

A(:, r) ◦ B(:, r) ◦ C(:, r)

where A, B, and C are factor matrices of size I × R, J × R
and K ×R respectively and ◦ represents the three way outer
product. In case of an n-mode tensor, it represents an n-way
outer product.
Matricization: A tensor can be unfolded or flattened into one
of its modes to form a matrix. For example, a 3-mode tensor
X ∈ RI×J×K can be matricized in three ways: X1 ∈ RI×JK ,
X2 ∈ RJ×IK and X3 ∈ RK×IJ , where Xn represents
matricization in nth-mode.
Tensor Completion: Tensor completion is the task of pre-
dicting missing values in a tensor using tensor factorization.
Tensor factorization strives to capture the underlying hidden
structure even with the case of missing values [12], [13].

TABLE I
SYMBOLS USED IN THE PAPER

Symbols Description
X,X,x, x Tensor, matrix, column vector, scalar

R Set of Real Numbers
◦ Outer product

X(I, J, :) Spanning all elements in the 3rd-mode of X
⊗ Kronecker product
� Khatri-Rao product

We refer interested reader to [14], [15], [16], which present
detailed surveys on tensors, tensor decompositions and their
applications. This work employs MATLAB format of index-
ing.

B. Problem Definition
This work explores a new feature space using tensor com-

pletion and to show its effectiveness, we apply it to hyper-
spectral pixel classification. Previous literature related to HSI
employed methods like feature reduction and kernel methods
[8], [3]. In our work, we exploit the multi-linear structure of
the hyperspectral image tensor using tensor decomposition to
generate a richer space, where the pixels are linearly separable.

More formally we define our problem as follows:

Given a three dimensional hyperspectral image tensor
X ∈ RI×J×K , a label matrix Y ∈ RI×J and rank R,
generate a feature space for a classifier such that pixels
in the images are classified into one of the given classes.

III. PROPOSED METHOD: ORION

In this section, we introduce our method ORION and present
the intuition behind it. ORION takes as input a three dimen-
sional tensor X and a tensor rank R and generates a feature

Algorithm 1 ORION

Input: A 3-mode tensor X, a label matrix Y, rank r and
testSize
Output: A vector of predicted classes

1: Extract pixel indices [I, J] of all the non-zero classes.
2: Split [I, J] into training and testing data in a stratified

fashion.
3: Create tensor P of ones with same dimensions as X
4: P [testI, testJ, :] = 0
{% Tensor completion problem}

5: A,B,C,λ = CP WOPT (X,P, Rank) [12]
6: data = (A�B) ∗ diag(λ)
7: Using indices in Step 2, split data into training and

testing data
8: Train a linear SVM using training data with 5-fold cross

validation
9: Run the model against testing data

10: return model predictions

space using tensor factorization. The general idea behind the
proposed method lies in mapping the input data to some high
dimensional space corresponding to the rank decomposition
of the tensor.

A. The ORION algorithm

Algorithm 1 presents the steps involved in ORION , applied
to the hyperspectal pixel classification problem. Consider a
3-mode tensor X ∈ RI×J×K , where I and J represent
the resolution of the image and K represents the number
of spectral bands. For a given test size, we select pixels
with non-zero classes using stratified sampling as specified
in line 2 of the algorithm 1. We do this in order to ensure
that the training and testing data has the same percentage of
representation from each class. We mark all spectral values
of test pixels as zero, i.e. all the third mode fibers of the
test data points are marked as zero, treating the problem
of filling missing values as a tensor completion task. We
employ the tensor completion algorithm CP-WOPT (Weighted
Optimization) [12], implemented in [17] to predict the missing
values. This produces three factor matrices A, B and C. The
first two matrices A and B correspond to the two modes of
the image are used to generate a new feature space.

data = A�B

where � represents Khatri-Rao product. To scale up the
values, we multiply data with diagonalized λ matrix as shown
in line 6 in algorithm 1. We use initial training and testing
indices to generate training and testing data respectively,
removing all the data points with class value as 0. Using the
newly created feature space, we now train a linear Support
Vector Machine (SVM) with 5-fold cross validation.

B. Intuition Behind ORION

The idea behind ORION is to map the input space to higher
dimensional space by exploiting multi-linear structure of the
tensor. Consider a 3-mode tensor, X ∈ RI×J×K . The CP
decomposition with rank R of X yields three factor matrices
A, B and C of size I × R, J × R & K × R respectively.
The Khatri-Rao product of matrices A and B generates the
new data space in RIJ×R. Whereas unfolding of tensor X in
third mode would generate data space in RIJ×K . Since K �
IJ , the matrix rank is bounded by K. However, the upper
bound on tensor rank for which CP can still uniquely identify
the components within the tensor is min (IJ, JK,KI) [16],
which is considerably larger. Thus, by using a large-enough
rank, by virtue of CP’s uniqueness [16], we are able to extract a
feature space that is more expressive than simple unfolding of
the features (or any spectral method in that unfolded matrix).

IV. EXPERIMENTAL EVALUATION

In this section, we describe our experimental setup and
present our results. We use Tensor Toolbox [17] in Matlab for
our tensor completion task, CP-WOPT [12] is implemented
in this toolbox. For classification algorithms we use Python
Scikit-Learn [18] and tensorly [19] for tensor operations. In the
interest of reproducibility, the implementation of our algorithm
and baselines used is publicly available4.

A. Datasets

To evaluate our method, we use the following publicly
available datasets [9].

• Indian Pines: This dataset was acquired using the
AVIRIS5 sensor [20] and consists of 145×145 pixels and
200 spectral bands. This dataset consist of 10249 labelled
pixels spanning over 16. There is high class imbalance
in this dataset.

• University of Pavia: This dataset was collected using
ROSIS sensor over Pavia in Northern Italy. The original
image resolution of the dataset is 610 × 610 but most
of the image didn’t contain any information so the image
resolution is reduced to 610×340 over 103 spectral bands.
This dataset consist of 42776 labelled pixels spanning
over 9 classes

• Salinas: This dataset was gathered using AVIRIS sensor
over Salinas Valley, California. The dataset consists is
of 512 × 217 resolution over 204 spectral bands. It has
54219 non-zero pixels, labelled with 16 classes. Figure
1(a) shows the ground truth of Salinas dataset.

• Salinas-A: This dataset represents a subscene in the
Salinas dataset. It consists of 86×83 pixels and 6 classes.
Number of nonzero pixels in this dataset are 5348. Figure
1(b) presents the ground truth of Salinas-A dataset.

4https://github.com/ravdeep003/ORION
5https://aviris.jpl.nasa.gov/

(a) Salinas Full. (b) Salinas Subscene.

Fig. 1. Ground truth of Salinas and Salinas-A HSI datasets.

B. Baseline Methods

We evaluate our proposed method ORION against traditional
linear and non-linear methods like the Kernel SVM and
Multi-Layer Perceptron, and employ grid search to tune the
hyperparameters in these methods.

1) Support Vector Machines (SVMs): Support vector ma-
chines (SVMs) [21] are supervised learning methods that are
powerful classifiers, specially when combined with kernels.
SVMs discriminate between between data points by finding
a hyperplane which maximizes the margin. Given a dataset
(xi, yi), where xi are data points and yi are labels,

min
w,b,ξ

1

2
wTw + C

∑
i

ξi (1)

subject to yi(wTφ(xi) + b) ≥ 1 − ξi and ξi ≥ 0 for all i =
1 . . . n

where w is a normal to the hyperplane separating the data
points, C is a penalty term for misclassification, ξ is slack
variables, φ is mapping from input space to kernel space and
b is the bias or the offset for the hyperplane. Equation 1 is the
primal form and it has dual form:

min
α1,...αn

1

2

∑
i,j

αiαjyiyjKij −
n∑
i

αi (2)

such that 0 ≤ αi ≤ C and
∑n
i αiyi = 0

where αi are Lagrange multipliers and Kij is inner product
of data points in kernel space. We use the following kernels
in our experiments:

• Linear Kernel: We tune the parameter C in the objective
function. We do a grid search from 10−3 to 103 in
multiples of 10.

K(xi, xj) = xi
Txj

• Polynomial Kernel: We tune the parameters C and degree
of the polynomial. C is tuned in the range 10−3 to 103

and degree is tuned in the range from 2 to 5. We perform
a grid search to tune these parameters.

K(xi, xj) = (xi
Txj + 1)d

where d is the degree of the polynomial.
• RBF Kernel: We tune the parameters C and γ. C is tuned

from the same range as before and γ is tuned from 10−3

to 10 in multiples of 10.

K(xi, xj) = exp (−γ||xi − xj ||2)

2) Multi-Layer Perceptron (MLP): We use a Multi
Layer Perceptron model (also known as artificial neu-
ral network) as one of our baselines. Various param-
eters involved in training the model were tuned using
grid search. These parameters include hidden layer sizes
[(50, 100, 50), (100, 100, 100), (150, 100, 150)], alpha - L2
regularization term [10−4, 10−3, 10−2], initial learning rate
[10−4, 10−3, 10−2] and learning rate (constant or adaptive).
We used ReLu (rectified linear unit) activation function, Adam
optimization solver, and an iteration count of 500.

All of the models were trained with 5-fold cross validation
on training data and using weighted F1 as scoring function for
10 different runs. We chose the weighted F1 as our scoring
function since the datasets are multi-class and have imbalanced
classes. To evaluate the performance of different models, we
use overall accuracy and F1 score of the classifier against test
data. We also employ one against one scheme for multi-class
classifiers.

C. Results

We performed an 80 − 20 stratified split on the datasets,
where 80% of the data was used for training and the rest 20%
for testing, and ran experiments using ORION and baseline
methods. Table II presents the results of that experiment. In
case of Indian Pines and Salinas, we see that ORION with rank
1000 and 2000 performs better than the baselines. In case of
University of Pavia, ORION with 2000 rank performs better
than all baselines, with the Multi-Layer Perceptron being a
close second. We discuss the results of Salinas-A in subsection
IV-D.

One of the challenges in HSI classification is that the
amount of labelled data available is limited. To demonstrate
this, we run all experiments using 30-70 stratified split, where
30% is training data and 70% is testing data. For the most
part, our results remain similar. For Indian Pines and Salinas
datasets, ORION with 1000 and 2000 rank provides better
overall classification accuracy. In case of University of Pavia,
two best performing methods are SVM with RBF kernel and
MLP, but ORION with rank 2000 performs at par with the

TABLE II
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 80-20 SPLIT

Indian Pines Pavia University Salinas-A Salinas
Linear SVM 0.8708± 0.0035 0.9176 ± 0.0017 0.9986 ± 0.0016 0.9339 ± 0.0014

Polynomial SVM 0.8979± 0.0054 0.9481 ± 0.0015 0.9978 ± 0.0015 0.9463 ± 0.0014
RBF SVM 0.9178± 0.0050 0.9622 ± 0.0020 0.9985 ± 0.0017 0.9620 ± 0.0024

MLP 0.9182± 0.0057 0.9635 ± 0.0041 0.9982 ± 0.0010 0.9629 ± 0.0045
ORION -1000 0.9916± 0.0022 0.9502 ± 0.0032 0.9690 ± 0.0067 0.9927 ± 0.0010
ORION -2000 0.9949± 0.0022 0.9828 ± 0.0030 0.9680 ± 0.0063 0.9954 ± 0.0006

TABLE III
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 30-70 SPLIT

Indian Pines Pavia University Salinas-A Salinas
Linear SVM 0.8371 ± 0.0034 0.9134 ± 0.0015 0.9965 ± 0.0010 0.9322 ± 0.0007

Polynomial SVM 0.8511 ± 0.0042 0.9367 ± 0.0010 0.9941 ± 0.0017 0.9406 ± 0.0009
RBF SVM 0.8739 ± 0.0041 0.9546 ± 0.0007 0.9966 ± 0.0011 0.9515 ± 0.0012

MLP 0.8693 ± 0.0098 0.9556 ± 0.0029 0.9931 ± 0.0029 0.9475 ± 0.0041
ORION -1000 0.9725 ± 0.0032 0.9119 ± 0.0015 0.8607 ± 0.0146 0.9662 ± 0.0013
ORION -2000 0.9806 ± 0.0031 0.9544 ± 0.0021 0.8982 ± 0.0073 0.9832 ± 0.0013

TABLE IV
MEAN F1-SCORE OF ALL THE METHODS FOR 80-20 SPLIT OVER 10 RUNS

Indian Pines Pavia University Salinas-A Salinas
Linear SVM 0.8700 ± 0.0036 0.9162 ± 0.0019 0.9986 ± 0.0016 0.9326 ± 0.0016

Polynomial SVM 0.8977 ± 0.0054 0.9477 ± 0.0016 0.9978 ± 0.0015 0.9454 ± 0.0014
RBF SVM 0.9175 ± 0.0050 0.9620 ± 0.0020 0.9985 ± 0.0017 0.9620 ± 0.0024

MLP 0.9180 ± 0.0056 0.9634 ± 0.0040 0.9982 ± 0.0010 0.9628 ± 0.0045
ORION -1000 0.9915 ± 0.0022 0.9484 ± 0.0038 0.9687 ± 0.0068 0.9927 ± 0.0010
ORION -2000 0.9949 ± 0.0022 0.9823 ± 0.0032 0.9675 ± 0.0066 0.9954 ± 0.0006

TABLE V
MEAN F1-SCORE OF ALL THE METHODS FOR 30-70 SPLIT OVER 10 RUNS

Indian Pines Pavia University Salinas-A Salinas
Linear SVM 0.8358 ± 0.0033 0.9118 ± 0.0016 0.9965 ± 0.0010 0.9310 ± 0.0006

Polynomial SVM 0.8503 ± 0.0042 0.9361 ± 0.0010 0.9941 ± 0.0017 0.9396 ± 0.0009
RBF SVM 0.8734 ± 0.0041 0.9544 ± 0.0007 0.9966 ± 0.0011 0.9512 ± 0.0012

MLP 0.8690 ± 0.0095 0.9555 ± 0.0029 0.9931 ± 0.0029 0.9469 ± 0.0041
ORION -1000 0.9725 ± 0.0032 0.9068 ± 0.0018 0.8583 ± 0.0151 0.9661 ± 0.0013
ORION -2000 0.9804 ± 0.0031 0.9528 ± 0.0025 0.8961 ± 0.0074 0.9832 ± 0.0012

baseline and has similar classification accuracy. This depicts
that ORION is effective even with limited labelled data. For
both of the scenarios (80-20 and 30-70 split), tables IV and
V report mean F1 scores of our method and baselines. They
follow the same trend as the overall accuracy.

We explore the effect of rank on the overall accuracy for
Indian Pines and Salinas-A datasets. Figure 2 shows the plot of
mean accuracy vs. rank for Indian Pines dataset. We observed
that as the rank increases, classification accuracy improves
as well until a certain point, where the change in rank does
not provide any significant improvements and the accuracy
stabilizes.

D. Discussion about Salinas-A and Salinas

The Salinas-A (Figure 1(b)) dataset has 5348 labelled pixels
with 6 classes, and is a subscene of the full Salinas (Figure
1)(a) dataset which has 54129 labelled pixels and 16 classes.
For Salinas-A, all baselines outperform ORION with rank
1000 and 2000, however, in the case of Salinas, ORION

with same ranks outperforms all the baselines. This trend is
similar in both 80-20 and 30-70 splits. Upon visual inspection,
Salinas-A appears linearly separable whereas Salinas is not.
We conjecture that Salinas appears to have more concrete
and uniform blocks, potentially better trilinear structure that
is exploited via CP decomposition. Judging the trilinearity of
a dataset is a difficult problem and while there exist heuristics
for this [22], we reserve further investigation for our future
work.

V. RELATED WORK

Hyperspectral image classification takes as input a set of
observations and assigns a unique label to each pixel [6].
Supervised linear methods in HSI classification are prone to
the curse of dimensionality due to the lack of large number of
training samples [23]. Support vector machines (SVM) have
been employed to deal with this phenomenon [8]. SVMs allow
classification of data points in a higher dimensional space
using a nonlinear transformation.

Fig. 2. Mean accuracy vs. Rank of the tensor observed over 10 runs. As rank
increases, the classification accuracy increases and stabilizes after a certain
point.

Tensor methods like CP decomposition [4], [24] have been
used to represent high-order feature data in low-dimensional
space with good accuracy. [25] presented a deep learning-
based classification method that hierarchically constructs high-
level features automatically. In particular, their model exploits
a convolutional neural network (CNN) to encode the spectral
and spatial information of pixels and a multilayer perceptron
to conduct the classification task. [26] use recurrent neural
network (RNN) to characterize the sequential property of
a hyperspectral pixel vector for the classification task. Our
proposed method ORION employs factors obtained from ten-
sor factorization to generate a feature space that maps the
given feature space to a higher-dimensional space in order to
improve classification accuracy.

VI. CONCLUSIONS

In this paper, we propose a novel hyperspectral pixel classi-
fication model that employs tensor factorization to generate a
new feature space. Specifically, our proposed method ORION
exploits the multi-linear structure of the tensor to find a
richer space. To showcase the effectiveness of our method, We
conducted experiments using publicly available hyperspectral
image datasets where we compared ORION against baselines
methods like Kernel SVMs and Multi-layer Perceptron. Our
proposed method is able to provide significantly higher ac-
curacy in majority of the cases, even with limited training
samples.

ACKNOWLEDGEMENTS

This research was supported in part by an appointment to
the Oak Ridge National Laboratory ASTRO Program funded
through ORNL’s Laboratory Directed Research and Develop-
ment(LDRD), sponsored by the U.S. Department of Energy
and administered by the Oak Ridge Institute for Science and
Education. This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC05-
00OR22725. Research was partially supported by the National
Science Foundation CDS&E Grant no. OAC-1808591.

REFERENCES

[1] A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging
spectrometry for earth remote sensing,” science, vol. 228, no. 4704, pp.
1147–1153, 1985.

[2] G. Camps-Valls, L. Gomez-Chova, J. Muñoz-Marı́, J. Vila-Francés,
and J. Calpe-Maravilla, “Composite kernels for hyperspectral image
classification,” IEEE geoscience and remote sensing letters, vol. 3, no. 1,
pp. 93–97, 2006.

[3] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image
classification via kernel sparse representation,” IEEE Transactions on
Geoscience and Remote sensing, vol. 51, no. 1, pp. 217–231, 2012.

[4] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis,
“Tensor-based classification models for hyperspectral data analysis,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 12,
pp. 6884–6898, 2018.

[5] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE signal
processing magazine, vol. 19, no. 1, pp. 44–57, 2002.

[6] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE journal of
selected topics in applied earth observations and remote sensing, vol. 5,
no. 2, pp. 354–379, 2012.

[7] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,
N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data
analysis and future challenges,” IEEE Geoscience and remote sensing
magazine, vol. 1, no. 2, pp. 6–36, 2013.

[8] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 43, no. 6, pp. 1351–1362, 2005.

[9] G. de Inteligencia Computacional, “Hyperspectral remote
sensing scenes,” http://www.ehu.eus/ccwintco/index.php/Hyperspectral
Remote Sensing Scenes. [Online]. Available: http://www.ehu.eus/
ccwintco/index.php/Hyperspectral Remote Sensing Scenes

[10] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[11] R. A. Harshman et al., “Foundations of the PARAFAC procedure:
models and conditions for an explanatory multimodal factor analysis,”
UCLA Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[12] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[13] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[14] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[15] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, p. 16, 2017.

[16] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[17] B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox version
2.6,” Available online, February 2015. [Online]. Available: http:
//www.sandia.gov/∼tgkolda/TensorToolbox/

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly:
Tensor learning in python,” Journal of Machine Learning Research
(JMLR), vol. 20, no. 26, 2019.

[20] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 band aviris
hyperspectral image data set: June 12, 1992 indian pine test site 3,” Sep
2015. [Online]. Available: https://purr.purdue.edu/publications/1947/1

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
https://purr.purdue.edu/publications/1947/1

[21] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[22] R. Bro and H. A. Kiers, “A new efficient method for determining the
number of components in parafac models,” Journal of Chemometrics: A
Journal of the Chemometrics Society, vol. 17, no. 5, pp. 274–286, 2003.

[23] G. Hughes, “On the mean accuracy of statistical pattern recognizers,”
IEEE transactions on information theory, vol. 14, no. 1, pp. 55–63,
1968.

[24] M. Jouni, M. Dalla Mura, and P. Comon, “Hyperspectral image clas-
sification using tensor cp decomposition,” in IGARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 2019,
pp. 1164–1167.

[25] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convo-
lutional neural networks,” in 2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). IEEE, 2015, pp. 4959–4962.

[26] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.

	Introduction
	Problem Formulation
	Preliminary Definitions
	Problem Definition

	Proposed Method: Orion
	The Orion algorithm
	Intuition Behind Orion

	Experimental Evaluation
	Datasets
	Baseline Methods
	Support Vector Machines (SVMs)
	Multi-Layer Perceptron (MLP)

	Results
	Discussion about Salinas-A and Salinas

	Related Work
	Conclusions
	References

