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Cholera cases in the London epidemic of 1854









Cool computer
technology..!!

Can I use it in my 
application?

Oh..!! But, it is not 
made for me. Can’t 
make use of it as is

My pleasure.
Here it is.

I have BIG data. 
I need HELP..!!





Kindly let me get 
the  technology 

you have

Kindly let me 
understand your needs

1969





HELP..!! I have BIG
data. Your 

technology is not 
helping me

mmm…Let me check 
with my good friends 

there.
My pleasure.

Here it is.

Cool Database 
technology..!!

Can I use it in my 
application?

Oh..!! But, it is not 
made for me. Can’t 
make use of it as is





Kindly let me 
understand your needs

Kindly let me get 
the  technology 

you have









HELP..!! Again,

I have BIG data. 
Your technology is 

not helping me

Sorry, seems like the 
DBMS technology 
cannot scale more

Let me check with 
my other good 
friends there. My pleasure.

Here it is.

Cool Big Data technology..!!
Can I use it in my application?

Oh..!! But, it’s not 
made for me. Can’t 
make use of it as is





Kindly let me 
understand your needs

Kindly let me get 
the  technology 

you have



Big
Spatial
Data

Management



Tons of Spatial data out there…
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Smart Phones

Satellite Images

Medical Data

Traffic Data

Geotagged Microblogs

VGI

Sensor Networks

Geotagged Pictures



Spatial Data on Spark
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val points: RDD[(Double, Double)] = sc.textFile("points.csv")
.map(l => {

val coords = l.split(",").map(_.toDouble)
(coords(0), coords(1))

})
val xmin, ymin, xmax, ymax: Double = null
val result = points.filter(point => {

point._1 >= xmin && point._1 < xmax &&
point._2 >= ymin && point._2 < ymax

})
result.map(pt => s"${pt._1},${pt._2}")

.saveAsTextFile("output")

val points: RDD[IFeature] = sc.readCSVPoint("points.csv")
val range = new GeometryFactory().toGeometry(

new Envelope(xmin, xmax, ymin, ymax))
val results = points.rangeQuery(range)
results.saveAsCSVPoints("output.csv")

193 seconds

2 seconds



The Built-in Approach of Beast

The On-top 
Approach
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Storage (HDFS)

RDD Runtime

Job Monitoring 
and Scheduling

SQL Spark Java/ 
Scala APIS

User Programs

Spatial Modules
(Spatial)

User Program
+

RDD APIs
+

Job Monitoring 
and Scheduling +

RDD Runtime 
+

Storage
+
… Storage (HDFS)

RDD Runtime

Job Monitoring 
and Scheduling

SQL Spark Java/ 
Scala APIS

User Programs

Spatial 
Indexing

Early 
Pruning

Spatial 
Operators

Spatial 
Language

From Scratch 
Approach

The Built-in Approach
(Beast)



Domain-specific Big-data
• Spark and similar frameworks are 

general purpose systems
• They can be customized for a specific 

domain
• This part is an example of how to 

customize a big-data system for the 
domain of spatial data
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Beast Architecture

30

Spatial Data Types

In-situ Spark Loaders/Writers

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big 

Spatial 
Data 
Apps



Beast Architecture
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In-situ Spark Loaders/Writers

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big 

Spatial 
Data 
Apps

Spatial Data Types
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• RDD is flexible enough to allow any 
user-defined class to be used with RDD
• In Beast, we define the following types
§ Point: n-dimensional point
§ Envelope: n-dimensional box
§ Geometry: Any vector-based 

geometry
§ Feature: Geometry + attributes

Spatial Data Types



Spatial Data Types
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Point Envelope

Geometry

Feature



Code Samples
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import org.apache.spark.rdd.RDD
import edu.ucr.cs.bdlab.beast.geolite.IFeature
val buildings: RDD[IFeature] = sc.geojsonFile("buildings.geojson")

val polygons: SpatialRDD = sc.shapefile("us_counties")
val randomPoints: SpatialRDD = sc.generateSpatialData.
mbr(polygons.summary).uniform(1000000)

val sjResult = polygons.spatialJoin(randomPoints)



Code Samples
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val counties: SpatialRDD = sc.shapefile("us_counties")
counties.toDataFrame(spark).createOrReplaceTempView("counties")
val counties_areas = spark.sql(
"SELECT NAME, g, ST_Area(g) FROM counties")

counties_areas.toSpatialRDD.saveAsGeoJSON("us_counties_areas")

import edu.ucr.cs.bdlab.beast.indexing.RSGrovePartitioner
val partitioned: RDD[(Int, IFeature)] = sc.shapefile("points.shp").
partitionBy(classOf[RSGrovePartitioner])



Code Samples
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partitioned.saveAsIndex("partitioned_data", "shapefile")
// To load the data back in another Spark application
val loadedPartitioned = sc.shapefile("partitioned_data")

sc.shapefile("us_counties")
.plotImage(2000, 2000, "counties.png")



Beast Architecture
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Spatial Data Types

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big 

Spatial 
Data 
Apps

In-situ Spark Loaders/Writers
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• In Spark, a data loader is a top-level 
RDD that does not depend on any 
other RDD
• To load data in an input path:
§ Define partitions based on the input 

metadata
§ Provide a parser for one partition 

that extracts all records

Spark Loaders



Spatial binary files
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Data records

Header

Input file

Load

compute

RDD[IFeature]

Partition 1

Partition 2

Partition n

Header

Iterator[IFeature]

Boundary records
A record is processed by 

the partition that contains 
its start offset

…
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• Implemented as an action
• Operates on RDD[IFeature] and writes 

all its contents to an output path
• Each partition is written to a separate

file

Spark Writer



Spark Writer

41

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

HDFS

Part 1

Part 2

Part n

…



Beast Architecture
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Spatial Data Types

In-situ Spark Loaders/Writers

RDD-based Query Processor

Visualization Framework
Big 

Spatial 
Data 
Apps Spatial Partitioner & Load Balancer



Data Loading in HDFS
• Blindly chops down 

a big file into 128MB 
chunks
• Values of records 

are not considered
• Relevant records are 

typically assigned to 
two different blocks
• HDFS is too 

restrictive where 
files cannot be 
modified
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Input File Data Nodes

128MB

128MB

128MB

128MB



Two-layer Index Layout
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Uniform Grid
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Works only for uniformly distributed data



R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data
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R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data

47



R-tree-based Index of a 400 GB road network



Non-partitioned dataset

49
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• RDD + Partitioner
• Spark allows custom partitioners

Spatially Partitioned RDD

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

Spatial Partitioner

Partition # Extents

1 (0, 0) è (3.5, 2.3)

2 …

…

n …



Index Writing and Loading
• Beast provides an option to write an 

index to disk and read it back
• This gives an option to load an already 

partitioned RDD
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Index Writing and Loading
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RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

HDFS

Part 1

Part 2

Part n

…

.master-
file

Write

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

Load



Beast Architecture
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Spatial Data Types

In-situ Spark Loaders/Writers

Visualization Framework
Big 

Spatial 
Data 
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor



RDD Processing
• Since a spatial RDD is just a regular RDD, 

all existing transformations and actions 
can work seamlessly on it
• In addition, we have specialized

handling for spatial queries
§ Range Query
§ Spatial Join

54



Range Query
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Use the partition 
information to prune 
disjoint partitions

Scan matching 
partitions in parallel to 
find matching records



Range Query
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RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

PartitionPruning
RDD[IFeature]

Partition 1

Partition n

…

Spatial 
Partitioner

RDD[Ifeature]

Partition 1

Partition n

…

Spatial 
Partitioner

Filter

Question: Is this narrow or wide dependency?



Spatial Join
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Join Directly Partition – Join



Spatial Join
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Join Directly Partition – Join

Total of 36 overlapping pairs Only 16 overlapping pairs



Join Directly
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RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial 
Partitioner

SpatialIntersection
RDD[(Iterator[IFeature], 

Iterator[IFeature])]

Partition 1

Partition 2

Partition k

…
Partition 3

RDD[(IFeature, 
IFeature)] 

Partition 1

Partition 2

Partition k

…
Partition 3

Question: Is this narrow or wide dependency?

Map 



Join Directly
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RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial 
Partitioner

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial 
Partitioner

Question: Is this narrow or wide dependency?

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial 
Partitioner

repartition

RDD[(Iterator[IFeature], 
Iterator[IFeature])]

Partition 1

Partition 2

Partition k

…
Partition 3

RDD[(IFeature, 
IFeature)] 

Partition 1

Partition 2

Partition k

…
Partition 3

CoGroup

CoGroup



Beast Architecture
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Spatial Data Types

In-situ Spark Loaders/Writers

Big 
Spatial 
Data 
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework



Visualization in HadoopViz
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Scatter Plot

Road Network Heat MapSatellite Data

Vector Map Admin Boundaries

The goal of HadoopViz is not to propose new visualization

techniques, instead its goal is to scale out existing techniques.



Heat Map From 2009 to 2014
Month-by-Month
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72 Frames × 14 Billion points per frame
Total = 1 Trillion points

Created in 3 hours on 10 nodes instead of 60 hours



Abstract Visualization
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Input Partition

3. plot

3. plot

3. plot

2. Create 
canvas

2. Create 
canvas

4. merge

4. merge

4. merge

1. smooth

1. smooth

1. smooth

5. write

Output 
Image



Example: Satellite Data Visualization

65

1. Smooth: Recover holes 2. Create Canvas: Initialize a 
2D Matrix with zeros

0 0 0 0 0 0
0 𝟐𝟐 0 0 𝟕 0
0 0 𝟏𝟓 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3. Plot:
Update the matrix

+

4. Merge:
Matrix addition

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

5. Write:
Generate the image



Example: Road Network Visualization
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1. Smooth: Merge intersections 2. Create Canvas:
Create a blank
image

3. Plot: Draw 
roads as polygons

5. Write: Encode as 
PNG and write to file

4. Merge: Plot an 
image on the other



Single Level Image

Input

Split Split Split Split
create-raster create-raster create-raster create-rasterrasterize rasterize rasterize rasterize

Merge
(Overlay)



Space Partitioning

Input

Split Split Split Split
create-raster create-raster create-raster create-rasterrasterize rasterize rasterize rasterizesmooth smooth smooth smooth

create-raster

Merge (Stitch)



Level of Details

4/8/2021 69



Multilevel Images in HadoopViz
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Map of California – 2GB
Generated in 2 minutes on 10-node cluster instead of one hour



Multi-level Image
• Many images at 

different zoom levels
§ Pan
§ Zoom in/out
§ Fly to

• More details as the 
zoom level increases

• Number of tiles 
increases 
exponentially



Multi-level Visualization
• Abstract multi-level visualization algorithm
• The choice of partitioning technique

changes for each zoom level

72

Zoom
 Level

Threshold 
level 𝑧&

Default 
partitioning

Spatial 
Partitioning



Beast Architecture
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Spatial Data Types

In-situ Spark Loaders/Writers

Big 
Spatial 
Data 
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework



Thank You
Questions?
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A Unified Big Data Interface
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Impala

Sphinx

MLLib …

HDFS – File System

YARN – Resource Manager

Unified Big Data Abstraction
Cost Model Query Optimizer Query Executor

SparkSQL



Language
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Applications: SHAHED [ICDE’15] – MNTG [SSTD’13, ICDE’14¯]
TAREEG[SIGMOD’14¯, SIGSPATIAL’14]

Visualization
[VLDB’15¯, ICDE’16]

ST-H
adoop [TO

D
S

«]

Operations Basic operations – CG_Hadoop
[SIGSPATIAL’13, TSAS«]

MapReduce Spatial File Splitter
Spatial Record Reader

Indexing Grid – R-tree – R+-tree – Quad tree 
[VLDB’15]

« Under review                                         ¯Demo paper

Language
Pigeon [ICDE’14¯]

VLDB’13¯

ICDE’15



Language (Pigeon)
• Hides the complexity of the system with a 

high level language
• OGC standard used by Oracle Spatial and 

PostGIS
• Extends Pig Latin with OGC-compliant 

primitives
§ Spatial data types (e.g., Polygon)
§ Basic operations (e.g., Area)
§ Spatial predicates (e.g., Touches)
§ Spatial analysis (e.g., Union)
§ Spatial aggregate functions (e.g., Convex Hull)

77
A. Eldawy and M. F. Mokbel, “Pigeon: A Spatial MapReduce Language”, Demo at IEEE ICDE’14



Spatial Data Types
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lakes = LOAD ’lakes’ AS (id:int, area:polygon);

Data Loading

Range Query

houses_in_range =
Filter houses BY
Overlap(house_loc, range);

nearest_houses =
KNN houses WITH_K=100
USING DistanceTo(house_loc,
query_loc);

lakes_states = Join lakes BY lakes_boundary
states BY states_boundary Predicate = Overlap

KNN

Spatial Join



Spatio-temporal Indexing
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Applications: SHAHED [ICDE’15] – MNTG [SSTD’13, ICDE’14¯]
TAREEG[SIGMOD’14¯, SIGSPATIAL’14]

Visualization
HadoopViz[VLDB’15¯]

Operations Basic operations – CG_Hadoop
[SIGSPATIAL’13, TSAS«]

MapReduce Spatial File Splitter
Spatial Record Reader

Indexing Grid – R-tree – R+-tree – Quad tree 
[VLDB’15]

Language
Pigeon [ICDE’14¯]

« Under review                                         ¯Demo paper

ST-H
adoop [TO

D
S

«]

VLDB’13¯

ICDE’15

A. Eldawy, L. Alarabi, M. F. Mokbel. “ST-Hadoop: A MapReduce Framework for Spatial and
Spatio-temporal Data” Submitted to ACM TODS



Monthly Indexes

Multiresolution Spatio-temporal 
Index
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2012 2013

jan feb dec jan feb dec jan

366 1 2 365 1 2 31

… …

………1

Daily Indexes

Yearly Indexes

A. Eldawy, L. Alarabi, M. F. Mokbel. “ST-Hadoop: A MapReduce Framework for Spatial and
Spatio-temporal Data” Submitted to ACM TODS
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Performance of SHAHED
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Reference Point
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Intersection
rectangl e

Referen ce
point

r

s



Index building
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Index Building for NASA Data
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Related Work
• Most techniques for spatial data processing in 

Hadoop use Hadoop as a blackbox
§ RQ, KNN and SJMR [Zhang et al’09]
§ R-tree construction [Cary et al’09]
§ KNN Join [Lu et al’12, Zhang et al’12]
§ RNN [Akdogan et al’10]
§ ANN [Wang et al’10]

• MD-HBase [Nishimura et al’11]
§ Framework for multi-dimensional data 

processing
§ Based on HBase, a key-value store on HDFS
§ Does not support MapReduce programming
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Map plan – Hadoop
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File
Splitter

Split
Number
of splits

Split

Record
Reader

Record
Reader

k,v

k,v

k,v

k,v

k,v

k,v

Map

Map

Map task

Map task

Input Heap
File

Spatial
File
Splitter

Filter
Function

Spatial
Record
Reader

Spatial
Record
Reader

Map plan – SpatialHadoop

Indexed Input
File(s)

…



KNN
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k=3

SpatialFileSplitter
selects the block that 
contains the query 
point

Map function performs 
kNN in the selected 
block

Answer is tested for 
correctness
ü Answer is correct



KNN
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k=3

First iteration runs as 
before and result is 
tested for correctness

û Answer is incorrect

Second iteration 
processes other 
blocks that might 
contain an answer



Range query

89



K Nearest Neighbor
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Preliminary Results
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