
Big Spatial Data Management

1

Claudius Ptolemy (AD 90 – AD 168)

Al Idrisi (1099–1165)

Cholera cases in the London epidemic of 1854

Cool computer
technology..!!

Can I use it in my
application?

Oh..!! But, it is not
made for me. Can’t
make use of it as is

My pleasure.
Here it is.

I have BIG data.
I need HELP..!!

Kindly let me get
the technology

you have

Kindly let me
understand your needs

1969

HELP..!! I have BIG
data. Your

technology is not
helping me

mmm…Let me check
with my good friends

there.
My pleasure.

Here it is.

Cool Database
technology..!!

Can I use it in my
application?

Oh..!! But, it is not
made for me. Can’t
make use of it as is

Kindly let me
understand your needs

Kindly let me get
the technology

you have

HELP..!! Again,

I have BIG data.
Your technology is

not helping me

Sorry, seems like the
DBMS technology
cannot scale more

Let me check with
my other good
friends there. My pleasure.

Here it is.

Cool Big Data technology..!!
Can I use it in my application?

Oh..!! But, it’s not
made for me. Can’t
make use of it as is

Kindly let me
understand your needs

Kindly let me get
the technology

you have

Big
Spatial
Data

Management

Tons of Spatial data out there…

26

Smart Phones

Satellite Images

Medical Data

Traffic Data

Geotagged Microblogs

VGI

Sensor Networks

Geotagged Pictures

Spatial Data on Spark

27

val points: RDD[(Double, Double)] = sc.textFile("points.csv")
.map(l => {

val coords = l.split(",").map(_.toDouble)
(coords(0), coords(1))

})
val xmin, ymin, xmax, ymax: Double = null
val result = points.filter(point => {

point._1 >= xmin && point._1 < xmax &&
point._2 >= ymin && point._2 < ymax

})
result.map(pt => s"${pt._1},${pt._2}")

.saveAsTextFile("output")

val points: RDD[IFeature] = sc.readCSVPoint("points.csv")
val range = new GeometryFactory().toGeometry(

new Envelope(xmin, xmax, ymin, ymax))
val results = points.rangeQuery(range)
results.saveAsCSVPoints("output.csv")

193 seconds

2 seconds

The Built-in Approach of Beast

The On-top
Approach

28

Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial Modules
(Spatial)

User Program
+

RDD APIs
+

Job Monitoring
and Scheduling +

RDD Runtime
+

Storage
+
… Storage (HDFS)

RDD Runtime

Job Monitoring
and Scheduling

SQL Spark Java/
Scala APIS

User Programs

Spatial
Indexing

Early
Pruning

Spatial
Operators

Spatial
Language

From Scratch
Approach

The Built-in Approach
(Beast)

Domain-specific Big-data
• Spark and similar frameworks are

general purpose systems
• They can be customized for a specific

domain
• This part is an example of how to

customize a big-data system for the
domain of spatial data

29

Beast Architecture

30

Spatial Data Types

In-situ Spark Loaders/Writers

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big

Spatial
Data
Apps

Beast Architecture

31

In-situ Spark Loaders/Writers

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big

Spatial
Data
Apps

Spatial Data Types

32

• RDD is flexible enough to allow any
user-defined class to be used with RDD
• In Beast, we define the following types
§ Point: n-dimensional point
§ Envelope: n-dimensional box
§ Geometry: Any vector-based

geometry
§ Feature: Geometry + attributes

Spatial Data Types

Spatial Data Types

33

Point Envelope

Geometry

Feature

Code Samples

34

import org.apache.spark.rdd.RDD
import edu.ucr.cs.bdlab.beast.geolite.IFeature
val buildings: RDD[IFeature] = sc.geojsonFile("buildings.geojson")

val polygons: SpatialRDD = sc.shapefile("us_counties")
val randomPoints: SpatialRDD = sc.generateSpatialData.
mbr(polygons.summary).uniform(1000000)

val sjResult = polygons.spatialJoin(randomPoints)

Code Samples

35

val counties: SpatialRDD = sc.shapefile("us_counties")
counties.toDataFrame(spark).createOrReplaceTempView("counties")
val counties_areas = spark.sql(
"SELECT NAME, g, ST_Area(g) FROM counties")

counties_areas.toSpatialRDD.saveAsGeoJSON("us_counties_areas")

import edu.ucr.cs.bdlab.beast.indexing.RSGrovePartitioner
val partitioned: RDD[(Int, IFeature)] = sc.shapefile("points.shp").
partitionBy(classOf[RSGrovePartitioner])

Code Samples

36

partitioned.saveAsIndex("partitioned_data", "shapefile")
// To load the data back in another Spark application
val loadedPartitioned = sc.shapefile("partitioned_data")

sc.shapefile("us_counties")
.plotImage(2000, 2000, "counties.png")

Beast Architecture

37

Spatial Data Types

Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework
Big

Spatial
Data
Apps

In-situ Spark Loaders/Writers

38

• In Spark, a data loader is a top-level
RDD that does not depend on any
other RDD
• To load data in an input path:
§ Define partitions based on the input

metadata
§ Provide a parser for one partition

that extracts all records

Spark Loaders

Spatial binary files

39

Data records

Header

Input file

Load

compute

RDD[IFeature]

Partition 1

Partition 2

Partition n

Header

Iterator[IFeature]

Boundary records
A record is processed by

the partition that contains
its start offset

…

40

• Implemented as an action
• Operates on RDD[IFeature] and writes

all its contents to an output path
• Each partition is written to a separate

file

Spark Writer

Spark Writer

41

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

HDFS

Part 1

Part 2

Part n

…

Beast Architecture

42

Spatial Data Types

In-situ Spark Loaders/Writers

RDD-based Query Processor

Visualization Framework
Big

Spatial
Data
Apps Spatial Partitioner & Load Balancer

Data Loading in HDFS
• Blindly chops down

a big file into 128MB
chunks
• Values of records

are not considered
• Relevant records are

typically assigned to
two different blocks
• HDFS is too

restrictive where
files cannot be
modified

43

Input File Data Nodes

128MB

128MB

128MB

128MB

Two-layer Index Layout

44

!"#$%"&'()*+,(-
!"#$%%&'()*+,+*'
-./0'1"#23

.4'5"*+3

6
%"7$%'()*+,

Uniform Grid

45

Works only for uniformly distributed data

R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data

46

R-tree
• Read a sample
• Partition the sample using

an R-tree index
• Use MBR of leaf nodes

as partition boundaries
for all the data

47

R-tree-based Index of a 400 GB road network

Non-partitioned dataset

49

50

• RDD + Partitioner
• Spark allows custom partitioners

Spatially Partitioned RDD

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

Spatial Partitioner

Partition # Extents

1 (0, 0) è (3.5, 2.3)

2 …

…

n …

Index Writing and Loading
• Beast provides an option to write an

index to disk and read it back
• This gives an option to load an already

partitioned RDD

51

Index Writing and Loading

52

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

HDFS

Part 1

Part 2

Part n

…

.master-
file

Write

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

Load

Beast Architecture

53

Spatial Data Types

In-situ Spark Loaders/Writers

Visualization Framework
Big

Spatial
Data
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor

RDD Processing
• Since a spatial RDD is just a regular RDD,

all existing transformations and actions
can work seamlessly on it
• In addition, we have specialized

handling for spatial queries
§ Range Query
§ Spatial Join

54

Range Query

55

Use the partition
information to prune
disjoint partitions

Scan matching
partitions in parallel to
find matching records

Range Query

56

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

PartitionPruning
RDD[IFeature]

Partition 1

Partition n

…

Spatial
Partitioner

RDD[Ifeature]

Partition 1

Partition n

…

Spatial
Partitioner

Filter

Question: Is this narrow or wide dependency?

Spatial Join

57

Join Directly Partition – Join

Spatial Join

58

Join Directly Partition – Join

Total of 36 overlapping pairs Only 16 overlapping pairs

Join Directly

59

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial
Partitioner

SpatialIntersection
RDD[(Iterator[IFeature],

Iterator[IFeature])]

Partition 1

Partition 2

Partition k

…
Partition 3

RDD[(IFeature,
IFeature)]

Partition 1

Partition 2

Partition k

…
Partition 3

Question: Is this narrow or wide dependency?

Map

Join Directly

60

RDD[IFeature]

Partition 1

Partition 2

Partition n

…

Spatial
Partitioner

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial
Partitioner

Question: Is this narrow or wide dependency?

RDD[IFeature]

Partition 1

Partition 2

Partition m

…

Spatial
Partitioner

repartition

RDD[(Iterator[IFeature],
Iterator[IFeature])]

Partition 1

Partition 2

Partition k

…
Partition 3

RDD[(IFeature,
IFeature)]

Partition 1

Partition 2

Partition k

…
Partition 3

CoGroup

CoGroup

Beast Architecture

61

Spatial Data Types

In-situ Spark Loaders/Writers

Big
Spatial
Data
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework

Visualization in HadoopViz

62
Scatter Plot

Road Network Heat MapSatellite Data

Vector Map Admin Boundaries

The goal of HadoopViz is not to propose new visualization

techniques, instead its goal is to scale out existing techniques.

Heat Map From 2009 to 2014
Month-by-Month

63

72 Frames × 14 Billion points per frame
Total = 1 Trillion points

Created in 3 hours on 10 nodes instead of 60 hours

Abstract Visualization

64

Input Partition

3. plot

3. plot

3. plot

2. Create
canvas

2. Create
canvas

4. merge

4. merge

4. merge

1. smooth

1. smooth

1. smooth

5. write

Output
Image

Example: Satellite Data Visualization

65

1. Smooth: Recover holes 2. Create Canvas: Initialize a
2D Matrix with zeros

0 0 0 0 0 0
0 𝟐𝟐 0 0 𝟕 0
0 0 𝟏𝟓 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3. Plot:
Update the matrix

+

4. Merge:
Matrix addition

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

5. Write:
Generate the image

Example: Road Network Visualization

66

1. Smooth: Merge intersections 2. Create Canvas:
Create a blank
image

3. Plot: Draw
roads as polygons

5. Write: Encode as
PNG and write to file

4. Merge: Plot an
image on the other

Single Level Image

Input

Split Split Split Split
create-raster create-raster create-raster create-rasterrasterize rasterize rasterize rasterize

Merge
(Overlay)

Space Partitioning

Input

Split Split Split Split
create-raster create-raster create-raster create-rasterrasterize rasterize rasterize rasterizesmooth smooth smooth smooth

create-raster

Merge (Stitch)

Level of Details

4/8/2021 69

Multilevel Images in HadoopViz

70

Map of California – 2GB
Generated in 2 minutes on 10-node cluster instead of one hour

Multi-level Image
• Many images at

different zoom levels
§ Pan
§ Zoom in/out
§ Fly to

• More details as the
zoom level increases

• Number of tiles
increases
exponentially

Multi-level Visualization
• Abstract multi-level visualization algorithm
• The choice of partitioning technique

changes for each zoom level

72

Zoom
 Level

Threshold
level 𝑧&

Default
partitioning

Spatial
Partitioning

Beast Architecture

73

Spatial Data Types

In-situ Spark Loaders/Writers

Big
Spatial
Data
Apps Spatial Partitioner & Load Balancer

RDD-based Query Processor

Visualization Framework

Thank You
Questions?

74

A Unified Big Data Interface

75

Impala

Sphinx

MLLib …

HDFS – File System

YARN – Resource Manager

Unified Big Data Abstraction
Cost Model Query Optimizer Query Executor

SparkSQL

Language

76

Applications: SHAHED [ICDE’15] – MNTG [SSTD’13, ICDE’14¯]
TAREEG[SIGMOD’14¯, SIGSPATIAL’14]

Visualization
[VLDB’15¯, ICDE’16]

ST-H
adoop [TO

D
S

«]

Operations Basic operations – CG_Hadoop
[SIGSPATIAL’13, TSAS«]

MapReduce Spatial File Splitter
Spatial Record Reader

Indexing Grid – R-tree – R+-tree – Quad tree
[VLDB’15]

« Under review ¯Demo paper

Language
Pigeon [ICDE’14¯]

VLDB’13¯

ICDE’15

Language (Pigeon)
• Hides the complexity of the system with a

high level language
• OGC standard used by Oracle Spatial and

PostGIS
• Extends Pig Latin with OGC-compliant

primitives
§ Spatial data types (e.g., Polygon)
§ Basic operations (e.g., Area)
§ Spatial predicates (e.g., Touches)
§ Spatial analysis (e.g., Union)
§ Spatial aggregate functions (e.g., Convex Hull)

77
A. Eldawy and M. F. Mokbel, “Pigeon: A Spatial MapReduce Language”, Demo at IEEE ICDE’14

Spatial Data Types

78

lakes = LOAD ’lakes’ AS (id:int, area:polygon);

Data Loading

Range Query

houses_in_range =
Filter houses BY
Overlap(house_loc, range);

nearest_houses =
KNN houses WITH_K=100
USING DistanceTo(house_loc,
query_loc);

lakes_states = Join lakes BY lakes_boundary
states BY states_boundary Predicate = Overlap

KNN

Spatial Join

Spatio-temporal Indexing

79

Applications: SHAHED [ICDE’15] – MNTG [SSTD’13, ICDE’14¯]
TAREEG[SIGMOD’14¯, SIGSPATIAL’14]

Visualization
HadoopViz[VLDB’15¯]

Operations Basic operations – CG_Hadoop
[SIGSPATIAL’13, TSAS«]

MapReduce Spatial File Splitter
Spatial Record Reader

Indexing Grid – R-tree – R+-tree – Quad tree
[VLDB’15]

Language
Pigeon [ICDE’14¯]

« Under review ¯Demo paper

ST-H
adoop [TO

D
S

«]

VLDB’13¯

ICDE’15

A. Eldawy, L. Alarabi, M. F. Mokbel. “ST-Hadoop: A MapReduce Framework for Spatial and
Spatio-temporal Data” Submitted to ACM TODS

Monthly Indexes

Multiresolution Spatio-temporal
Index

80

2012 2013

jan feb dec jan feb dec jan

366 1 2 365 1 2 31

… …

………1

Daily Indexes

Yearly Indexes

A. Eldawy, L. Alarabi, M. F. Mokbel. “ST-Hadoop: A MapReduce Framework for Spatial and
Spatio-temporal Data” Submitted to ACM TODS

2

Performance of SHAHED

81

Reference Point

82

Intersection
rectangl e

Referen ce
point

r

s

Index building

83

Index Building for NASA Data

84

Related Work
• Most techniques for spatial data processing in

Hadoop use Hadoop as a blackbox
§ RQ, KNN and SJMR [Zhang et al’09]
§ R-tree construction [Cary et al’09]
§ KNN Join [Lu et al’12, Zhang et al’12]
§ RNN [Akdogan et al’10]
§ ANN [Wang et al’10]

• MD-HBase [Nishimura et al’11]
§ Framework for multi-dimensional data

processing
§ Based on HBase, a key-value store on HDFS
§ Does not support MapReduce programming

85

Map plan – Hadoop

86

File
Splitter

Split
Number
of splits

Split

Record
Reader

Record
Reader

k,v

k,v

k,v

k,v

k,v

k,v

Map

Map

Map task

Map task

Input Heap
File

Spatial
File
Splitter

Filter
Function

Spatial
Record
Reader

Spatial
Record
Reader

Map plan – SpatialHadoop

Indexed Input
File(s)

…

KNN

87

k=3

SpatialFileSplitter
selects the block that
contains the query
point

Map function performs
kNN in the selected
block

Answer is tested for
correctness
ü Answer is correct

KNN

88

k=3

First iteration runs as
before and result is
tested for correctness

û Answer is incorrect

Second iteration
processes other
blocks that might
contain an answer

Range query

89

K Nearest Neighbor

90

Preliminary Results

91

