UCRIVERSIDE

CS133 Computational Geometry Simplification Algorithms

Line Simplification

Line Simplification

, Given a line string and a distance threshold ε, return a simplified line string such that any point in the input line string is not displaced more than ε

Douglas-Peucker Algorithm

Running Time

function DouglasPeucker(P[], $\varepsilon)$
// Find the point with the maximum distance (=maximum cross product)
cmax $=0$
index $=0$
for $\mathrm{i}=2$ to (end - 1)
c $=\overrightarrow{P[1] P[n]} \times \overrightarrow{P[1] P[i]}$
if (c > cmax)
index = i

$$
T(n)=T(n 1)+T(n-n 1)+O(n)
$$

cmax = c
if (cmax / \| $\overrightarrow{P[1][P[n]} \|>\varepsilon$) \{
R1 = DouglasPeucker(P[1..index], ε)
R2 = DouglasPeucker(P[index..n], $\varepsilon)$
R1.removeLast
return R1 || R2 // Concatenate the two Lists
else
return [P[1], $\mathrm{P}[\mathrm{n}]]$ // Only return the first and last points

Polygon Triangulation

Polygon Triangulation

, Given a simple polygon P, break it down into a set of triangles T such that the union of the triangles is equal to the polygon and no two triangles intersect. That is:
$\mathrm{U}_{t_{i} \in T} t_{i}=P$ and $t_{i} \cap t_{j}=\phi$ for any $t_{i}, t_{j} \in T$ and $i \neq j$

Polygon Triangulation

Convex Polygons

, Choose any vertex on the polygon
, Connect it to all other vertices to create all diagonals
, Number of possible triangulations is Catalan Number C_{n-2}
> $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{2 n!}{(n+1)!n!}$

Number of Triangles

> Number of triangles in a triangulation of a polygon of n points is $n-2$ triangles
, Can be proven by induction
, Trivial case: $n=3$
> General case: If it applies for all $n<m$, we need to prove that it applies for $n=m$
, That is, we want to prove that if a triangulation exists, it will have $m-2$ triangles

Induction

> $n_{1}+n_{2}=m+1$
> \# of triangles in $P_{1}=n_{1}-2$, in $P_{2}=n_{2}-2$
> \# of triangles in $P=n_{1}-2+n_{2}-2+1$
$>=n_{1}+n_{2}-4+1=m+1-4+1=m-2$

Existence of a Triangulation

, Any simple polygon has at least one triangulation
> Proof by induction
, Trivial case: $n=3$
, General case: If there are triangulations for all polygons $n<m$, we need to prove that there is one for $n=m$

Induction

Dual Graph

, Dual graph \mathcal{G}
, Each triangle is represented by a vertex in \mathcal{G}
, Two triangles that share an edge are connected by an edge in \mathcal{G}

