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Computational Geometry

Convex Hull
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Convex Hull

Given a set of n points, find the minimal 

convex polygon that contains all the points
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Convex Hull Properties
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Convex Hull Representation

The convex hull is represented by all its 

points sorted in CW/CCW order

Special case: Three collinear points
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Naïve Convex Hull Algorithm

Iterate over all possible line segments

A line segment is part of the convex hull if all 

other points are to its left

Emit all segments in a CCW order

Running time 𝑂 𝑛3
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Naïve Convex Hull Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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14

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15
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Graham Scan Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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24

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15



Graham Scan Algorithm

25

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15
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Graham Scan Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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Graham Scan Algorithm
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Example
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Graham Scan Pseudo Code

Select the point with minimum 𝑦

Sort all points in CCW order 𝑝0, 𝑝1, … , 𝑝𝑛
𝑆 = 𝑝0, 𝑝1
For 𝑖 = 2 to 𝑛

While |𝑆| > 2 && 𝑝𝑖 is to the right of 𝑆−2, 𝑆−1
𝑆.pop

𝑆.push(𝑝𝑖)
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Monotone Chain Algorithm

Has some similarities with Graham scan 

algorithm

Instead of sorting in CCW order, it sorts by 

one coordinate (e.g., x-coordinates)
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Example
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Pseudo Code

Sort 𝑆 by 𝑥

𝑈 = {𝑆0}

For 𝑖 = 1 to 𝑛

while |𝑈| > 1 && 𝑆𝑖 is to the left of 𝑈−2𝑈−1
𝑈.pop

𝑈.push(𝑆𝑖)

𝐿 = {𝑆0}

While |𝐿| > 1 && 𝑆𝑖 is to the right of 𝐿−2𝐿−1
𝐿.pop

𝐿.push(𝑆𝑖)
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Gift Wrapping Algorithm

Start with a point on the convex hull

Find more points on the hull one at a time

Terminate when the first point is reached 

back

Also knows as Jarvi’s March Algorithm
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Example
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Gift Wrapping Pseudo Code

Gift Wrapping(S)

CH= {}

CH << Left most point

do

Start point = CH.last

End point = CH[0]

For each point s ∈ S

If Start point = End Point OR

s is to the left of 𝑆𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡, 𝐸𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

End point = s

CH << End point

Running time 𝑂(𝑛 ⋅ 𝑘)
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Divide & Conquer Convex Hull

ConvexHull(S)

Splits S into two subsets S1 and S2

Ch1 = ConvexHull(S1)

Ch2 = ConvexHull(S2)

Return Merge(Ch1, Ch2)
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Divide & Conquer Convex Hull

ConvexHull(S)

Splits S into two subsets S1 and S2

Ch1 = ConvexHull(S1)

Ch2 = ConvexHull(S2)

Return Merge(Ch1, Ch2)
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Merge: Upper Tangent
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Merge: Upper Tangent
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Merge: Upper Tangent
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Merge: Lower Tangent
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Merge: Lower Tangent
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Merge: Lower Tangent
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Merge: Lower Tangent
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Merge: Lower Tangent
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Merge: Lower Tangent
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Merge Step

Upper Tangent(𝐿, 𝑅)

𝑃𝑖 = Right most point in 𝐿

𝑃𝑗 = Left most point in 𝑅

Do

Done = true

While 𝑃𝑖+1 is to the right of 𝑝𝑗𝑝𝑖
𝑖 + +; done = false

While 𝑃𝑗−1 is to the left of 𝑝𝑖𝑝𝑗
𝑗 − −; done = false
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Analysis

Sort step: 𝑂 𝑛 ⋅ log 𝑛

Merge step: 𝑂 𝑛

Recursive part

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐 ⋅ 𝑛

𝑇 𝑛 = 𝑂 𝑛 ⋅ log 𝑛

Overall running time 𝑂 𝑛 ⋅ log 𝑛
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Incremental Convex Hull

Start with an initial convex hull

Add one additional point to the convex hull

Given a convex hull CH and a point p, how to 

compute the convex hull of {CH, p}?

Think: Insert an element into a sorted list
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Case 1: p inside CH
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Case 2: p on CH
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Case 3: p outside CH
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Case 3: p outside CH
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Analysis of the Insert Function

Test whether the point is inside, outside, or 

on the polygon O(n)

Find the two tangents O(n)

A more efficient algorithm can have an 

amortized running time of O(log n)
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Quick Hull

If we can have a divide-and-conquer 

algorithm similar to merge sort …

why not having an algorithm similar to quick 

sort?

Sketch

Find a pivot

Split the points along the pivot

Recursively process each side
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Quick Hull
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Quick Hull
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How to split the points across the line segment?



Quick Hull
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How to select the farthest point?



Quick Hull
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Quick Hull
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Quick Hull

73

How to split the points into three subsets?



Quick Hull
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Quick Hull
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Quick Hull
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Quick Hull
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Quick Hull
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Quick Hull
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Quick Hull

80



Example
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Running Time Analysis

𝑇 𝑛 = 𝑇 𝑛1 + 𝑇 𝑛2 + 𝑂 𝑛

Worst case 𝑛1 = 𝑛 − 𝑘 or 𝑛2 = 𝑛 − 𝑘, where 𝑘 is 

a small constant (e.g., k=1)

𝑇 𝑛 = 𝑂 𝑛2

Best case 𝑛1 = 𝑘 and 𝑛2 = 𝑘, where 𝑘 is a small 

constant

In this case, most of the points are pruned

𝑇 𝑛 = 𝑂 𝑛

Average case, 𝑛1 = 𝛼𝑛 and 𝑛2 = 𝛽𝑛, where 𝛼 <
1 and 𝛽 < 1

𝑇 𝑛 = 𝑂 𝑛 log 𝑛
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