
CS133
Computational Geometry

Convex Hull

1

Convex Hull

Given a set of n points, find the minimal

convex polygon that contains all the points

2

Convex Hull Properties

3

θ

Convex Hull Representation

The convex hull is represented by all its

points sorted in CW/CCW order

Special case: Three collinear points

4

Naïve Convex Hull Algorithm

Iterate over all possible line segments

A line segment is part of the convex hull if all

other points are to its left

Emit all segments in a CCW order

Running time 𝑂 𝑛3

5

Naïve Convex Hull Algorithm

6

Graham Scan Algorithm

7

Graham Scan Algorithm

8

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

9

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

10

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

11

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

12

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

13

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

14

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

15

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

16

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

17

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

18

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

19

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

20

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

21

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

22

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

23

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

24

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

25

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

26

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

27

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

28

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

29

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

30

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Graham Scan Algorithm

31

0

12

3

4

5

6

7

8

9

10

11

12

13
14

15

Example

32

Graham Scan Pseudo Code

Select the point with minimum 𝑦

Sort all points in CCW order 𝑝0, 𝑝1, … , 𝑝𝑛
𝑆 = 𝑝0, 𝑝1
For 𝑖 = 2 to 𝑛

While |𝑆| > 2 && 𝑝𝑖 is to the right of 𝑆−2, 𝑆−1
𝑆.pop

𝑆.push(𝑝𝑖)

33

Monotone Chain Algorithm

Has some similarities with Graham scan

algorithm

Instead of sorting in CCW order, it sorts by

one coordinate (e.g., x-coordinates)

34

Example

35

Pseudo Code

Sort 𝑆 by 𝑥

𝑈 = {𝑆0}

For 𝑖 = 1 to 𝑛

while |𝑈| > 1 && 𝑆𝑖 is to the left of 𝑈−2𝑈−1
𝑈.pop

𝑈.push(𝑆𝑖)

𝐿 = {𝑆0}

While |𝐿| > 1 && 𝑆𝑖 is to the right of 𝐿−2𝐿−1
𝐿.pop

𝐿.push(𝑆𝑖)

36

Gift Wrapping Algorithm

Start with a point on the convex hull

Find more points on the hull one at a time

Terminate when the first point is reached

back

Also knows as Jarvi’s March Algorithm

37

Gift Wrapping Example

38

Gift Wrapping Example

39

Gift Wrapping Example

40

Gift Wrapping Example

41

Gift Wrapping Example

42

Gift Wrapping Example

43

Gift Wrapping Example

44

Gift Wrapping Example

45

Gift Wrapping Example

46

Gift Wrapping Pseudo Code

Gift Wrapping(S)

CH= {}

CH << Left most point

do

Start point = CH.last

End point = CH[0]

For each point s ∈ S

If Start point = End Point OR

s is to the left of 𝑆𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡, 𝐸𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

End point = s

CH << End point

Running time 𝑂(𝑛 ⋅ 𝑘)
47

Divide & Conquer Convex Hull

ConvexHull(S)

Splits S into two subsets S1 and S2

Ch1 = ConvexHull(S1)

Ch2 = ConvexHull(S2)

Return Merge(Ch1, Ch2)

48

Divide & Conquer Convex Hull

ConvexHull(S)

Splits S into two subsets S1 and S2

Ch1 = ConvexHull(S1)

Ch2 = ConvexHull(S2)

Return Merge(Ch1, Ch2)

49

Merge: Upper Tangent

50

Merge: Upper Tangent

51

Merge: Upper Tangent

52

Merge: Lower Tangent

53

Merge: Lower Tangent

54

Merge: Lower Tangent

55

Merge: Lower Tangent

56

Merge: Lower Tangent

57

Merge: Lower Tangent

58

Merge Step

Upper Tangent(𝐿, 𝑅)

𝑃𝑖 = Right most point in 𝐿

𝑃𝑗 = Left most point in 𝑅

Do

Done = true

While 𝑃𝑖+1 is to the right of 𝑝𝑗𝑝𝑖
𝑖 + +; done = false

While 𝑃𝑗−1 is to the left of 𝑝𝑖𝑝𝑗
𝑗 − −; done = false

59

Analysis

Sort step: 𝑂 𝑛 ⋅ log 𝑛

Merge step: 𝑂 𝑛

Recursive part

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐 ⋅ 𝑛

𝑇 𝑛 = 𝑂 𝑛 ⋅ log 𝑛

Overall running time 𝑂 𝑛 ⋅ log 𝑛

60

Incremental Convex Hull

Start with an initial convex hull

Add one additional point to the convex hull

Given a convex hull CH and a point p, how to

compute the convex hull of {CH, p}?

Think: Insert an element into a sorted list

61

Case 1: p inside CH

62

Case 2: p on CH

63

Case 3: p outside CH

64

Case 3: p outside CH

65

Analysis of the Insert Function

Test whether the point is inside, outside, or

on the polygon O(n)

Find the two tangents O(n)

A more efficient algorithm can have an

amortized running time of O(log n)

66

Quick Hull

If we can have a divide-and-conquer

algorithm similar to merge sort …

why not having an algorithm similar to quick

sort?

Sketch

Find a pivot

Split the points along the pivot

Recursively process each side

67

Quick Hull

68

Quick Hull

69

How to split the points across the line segment?

Quick Hull

70

How to select the farthest point?

Quick Hull

71

Quick Hull

72

Quick Hull

73

How to split the points into three subsets?

Quick Hull

74

Quick Hull

75

Quick Hull

76

Quick Hull

77

Quick Hull

78

Quick Hull

79

Quick Hull

80

Example

81

Running Time Analysis

𝑇 𝑛 = 𝑇 𝑛1 + 𝑇 𝑛2 + 𝑂 𝑛

Worst case 𝑛1 = 𝑛 − 𝑘 or 𝑛2 = 𝑛 − 𝑘, where 𝑘 is

a small constant (e.g., k=1)

𝑇 𝑛 = 𝑂 𝑛2

Best case 𝑛1 = 𝑘 and 𝑛2 = 𝑘, where 𝑘 is a small

constant

In this case, most of the points are pruned

𝑇 𝑛 = 𝑂 𝑛

Average case, 𝑛1 = 𝛼𝑛 and 𝑛2 = 𝛽𝑛, where 𝛼 <
1 and 𝛽 < 1

𝑇 𝑛 = 𝑂 𝑛 log 𝑛

82

