

CS133 Computational Geometry

Convex Hull

Convex Hull

 Given a set of n points, find the minimal convex polygon that contains all the points

Convex Hull Properties

Convex Hull Representation

- The convex hull is represented by all its points sorted in CW/CCW order
- Special case: Three collinear points

Naïve Convex Hull Algorithm

- Iterate over all possible line segments
- A line segment is part of the convex hull if all other points are to its left
- > Emit all segments in a CCW order
- > Running time $O(n^3)$

Naïve Convex Hull Algorithm

10

19

20

24

31

Example

Graham Scan Pseudo Code

- > Select the point with minimum *y*
- > Sort all points in CCW order $\{p_0, p_1, \dots, p_n\}$
- > $S = \{p_0, p_1\}$
- > For i = 2 to n
 - > While |S| > 2 && p_i is to the right of S_{-2}, S_{-1}
 - > S.pop
 - > S.push(p_i)

Monotone Chain Algorithm

- Has some similarities with Graham scan algorithm
- Instead of sorting in CCW order, it sorts by one coordinate (e.g., x-coordinates)

Example

Pseudo Code

- Sort *S* by *x*
- > $U = \{S_0\}$
- > For i = 1 to n
 - while |U| > 1 && S_i is to the left of $\overrightarrow{U_{-2}U_{-1}}$ U.pop
 - > U.push(S_i)
- > $L = \{S_0\}$
 - > While |L| > 1 && S_i is to the right of $\overrightarrow{L_{-2}L_{-1}}$
 - > L.pop
 - > $L.push(S_i)$
Gift Wrapping Algorithm

- Start with a point on the convex hull
- > Find more points on the hull one at a time
- Terminate when the first point is reached back
- > Also knows as Jarvi's March Algorithm

Gift Wrapping Pseudo Code

- Gift Wrapping(S)
 - > CH= {}
 - > CH << Left most point</p>
 - > do
 - Start point = CH.last
 - End point = CH[0]
 - ▶ For each point $s \in S$
 - > If Start point = End Point OR
 s is to the left of Start point, End point
 - End point = s
 - > CH << End point</p>
- > Running time $O(n \cdot k)$

Divide & Conquer Convex Hull

- ConvexHull(S)
 - Splits S into two subsets S1 and S2
 - Ch1 = ConvexHull(S1)
 - Ch2 = ConvexHull(S2)
 - Return Merge(Ch1, Ch2)

Divide & Conquer Convex Hull

- ConvexHull(S)
 - > Splits S into two subsets S1 and S2
 - Ch1 = ConvexHull(S1)
 - Ch2 = ConvexHull(S2)
 - Return Merge(Ch1, Ch2)

Merge: Upper Tangent

Merge: Upper Tangent

Merge: Upper Tangent

Merge Step

- > Upper Tangent(L, R)
 - > P_i = Right most point in L
 - > P_i = Left most point in R
 - > Do
 - Done = true
 - While P_{i+1} is to the right of $\overrightarrow{p_j p_i}$
 - > i + +; done = false
 - > While P_{j-1} is to the left of $\overrightarrow{p_i p_j}$
 - > j -; done = false

Analysis

UCR

- > Sort step: $O(n \cdot \log n)$
- Merge step: O(n)
- > Recursive part

>
$$T(n) = 2T\left(\frac{n}{2}\right) + c \cdot n$$

- > $T(n) = O(n \cdot \log n)$
- > Overall running time $O(n \cdot \log n)$

Incremental Convex Hull

- Start with an initial convex hull
- > Add one additional point to the convex hull
- Siven a convex hull CH and a point p, how to compute the convex hull of {CH, p}?
- > Think: Insert an element into a sorted list

Case 1: p inside CH

Case 2: p on CH

Case 3: p outside CH

Case 3: p outside CH

Analysis of the Insert Function UC

- Test whether the point is inside, outside, or on the polygon O(n)
- Find the two tangents O(n)
- A more efficient algorithm can have an amortized running time of O(log n)

- If we can have a divide-and-conquer algorithm similar to merge sort ...
- why not having an algorithm similar to quick sort?
- Sketch
 - Find a pivot
 - Split the points along the pivot
 - Recursively process each side

How to select the farthest point?

How to split the points into three subsets?

Example

Running Time Analysis

- > $T(n) = T(n_1) + T(n_2) + O(n)$
- Worst case n₁ = n k or n₂ = n k, where k is a small constant (e.g., k=1)

$$T(n) = O(n^2)$$

- Best case n₁ = k and n₂ = k, where k is a small constant
 - > In this case, most of the points are pruned
 - T(n) = O(n)
- > Average case, $n_1 = \alpha n$ and $n_2 = \beta n$, where $\alpha < 1$ and $\beta < 1$
 - > $T(n) = O(n \log n)$