## UCRIVERSIIDE

## CS133 <br> Computational Geometry

Review of Linear Algebra

## In this class ...

, Vectors
> Dot product
, Cross product
, Determinants

## Vectors

, Euclidean vector or geometric vector
> A geometric object that has magnitude and direction
, Notation: $\boldsymbol{a}=\overrightarrow{A B}$
> Cartesian representation

$$
\boldsymbol{a}=\left(a_{1}, a_{2}\right)
$$

> Magnitude

$$
\begin{aligned}
& >\|\boldsymbol{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}} \\
& >\tan (\theta)=\frac{a_{2}}{a_{1}}
\end{aligned}
$$



## Addition/Subtraction

$$
\boldsymbol{a}+\boldsymbol{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)
$$



$$
\boldsymbol{a}-\boldsymbol{b}=\left(a_{1}-b_{1}, a_{2}-b_{2}\right)
$$



## Scalar Multiplication

$r \boldsymbol{a}=\boldsymbol{a}+\boldsymbol{a}+\cdots+\boldsymbol{a}=\left(r a_{1}, r a_{2}\right)$


## Dot Product

$$
a \cdot b=\|a\|\|b\| \cos (\theta)
$$



$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}
$$

The result of a dot product is a scalar value

$$
\begin{aligned}
& a \cdot b=b \cdot a \\
& a \cdot a=\|a\|^{2}
\end{aligned}
$$



## Cross Product

$$
a \times b=\|a\|\|b\| \sin (\theta) \boldsymbol{n}
$$

$$
a \times b=a_{1} b_{2}-a_{2} b_{1}
$$


$a$
The result of a cross product is a vector

$$
a \times b=-b \times a
$$

$\otimes \odot$

## Determinants

$$
\rangle|D|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a \cdot d-b \cdot c
$$

$$
|D|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\quad \begin{array}{ll}
e & f \\
h & i
\end{array}\right|-
$$

$$
\begin{aligned}
& b\left|\begin{array}{ll}
b & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& \quad=a e i+b f g+c d h-c e g-b d i-a f h
\end{aligned}
$$

