UCRIVERSIDE

CS133 Computational Geometry Instructor: Ahmed Eldawy TA: Samriddhi Singla

Welcome back to UCR!

Class information

, Classes: Tuesday and Thursday 8:10 AM - 9:30 AM at WCH 142
> Instructor: Ahmed Eldawy
, TA: Samriddhi Singla
, Office hours:
Tuesday and Thursday 9:30 AM - 10:30AM @357 WCH
, Conflicts?
, You can set a meeting by email

Class Information

> Website:
http://www.cs.ucr.edu/~eldawy/19SCS133/
> Email: eldawy@ucr.edu
> Subject: "[CS133] ..."

Textbook

Computational Geometry: Algorithms an Applications 3rd Ed, Springer By Mark de Berg, Ottried Cheong, Marc van Kreveld, and Mark Overmars ISBN: 9783642096815
Free electronic version provided by UCR

(Optional) Computational Geometry: An Introduction, Springer, 2nd Ed By Franco P. Preparata and Michael I. Shamos
ISBN : 0387961313
Available at Orbach Library

Course work

> (5\%) Active participation in the class
> (10\%) 5 assignments (Lowest one discarded)
> (30\%) 10 labs (Lowest two discarded)
> (10\%) First midterm (Tuesday, April 23rd)
> (10\%) Second midterm (Thursday, May 23 ${ }^{\text {rd }}$)
> (35\%) Final exam
> Date: Saturday, June $8^{\text {th }}, 2019$
Time: 8:00 a.m. - 11:00 a.m.
, Location: WCH 142

Course goals

, What are your goals?
, Sharpen your algorithmic skills
> Understand a new type of algorithms
> Play with points, lines, and polygons
, Generate some nice-looking figures

The Rise of Spatial Data

The home of the U.S. Government's open data

GET STARTED

SEARCH OVER 234,623 DATASETS
4

BROWSE TOPICS

The Rise of Spatial Data

Environment (602)
Biodiversity (595)
Coral (308)
National Student Loan Data System $\propto \sim 1021$ recent views
Department of Education - The National Student Loan Data System (NSLDS) is the na information about loans and grants awarded to students under Title IV of the Higher.

Dataset Type

geospatial (151740)
non-geospatial (82884)
nts of crime (with the exceptior If Chicago from 2001 to...

- 925 recent views
łousing Affordability Data Syst rican Housing Survey (AHS) anc

Is
irtment of Commerce - Hourly P tional Climatic Data Center (NC

Autonomous Vehicles

NEWS - INVESTING - MARKETS - PERSONAL FINANCE - FPTECHDESK - FPCOMMENT - ENTREPRENEUR - EXECUTIVE - FP MAGAZINE - SUBSCRIBE - MORE

How autonomous vehicles will reshape cities and real estate markets

Haider-Moranis Bulletin: The demand for parking spaces in the urban core will decline, fuelling densification in city centres, spurring even higher rents

Latest real estate
■ Look Slide show: Montreal's | housing market is heating up jus buyers are becoming players in t

Condo for 35 bitcoins? How one property agent brought cryptos estate market

Speculation can be good for hou markets - just look at Paris
'Fear and uncertainty': Out-of-pr homebuyers could rush to sell if

Internet of Things (loT)

Satellites

Course Overview

, Background on algorithms, floating point calculations, and linear algebra
, Computational geometry primitives
, Convex hull algorithms
, Search problems
, Intersection problems
, Polygon simplification
, Voronoi diagram
> Delaunay triangulation

Number Representation

Number Representation

, Number sets

Natural Numbers (N)

, Decimal representation

Binary Representation

> Base-2 representation

$(11011001)_{2}=(217)_{10}$

Integer Numbers (Z)

, We use a negative sign
> The computer can only represent 0 or 1 (no signs)
, Sign-magnitude representation (not used)
> Reserve a bit for sign (0: +ve, 1: -ve)
> Advantage: Simplicity of representation
> Drawbacks: Two representations for the zero, and complexity of addition and subtraction operations
> Two's complement (Designer's choice)

$$
\Rightarrow-x=\sim x+1
$$

Rational Numbers (Q)

> $q=\frac{a}{b}$
, Where a and b are integers and $b>0$
, Advantages
> Simple representation
> Simple calculations
, Closed under most operations
> Can be 100\% accurate
, Disadvantages
> Not closed under certain operations

Operations

, Addition/subtraction: $\frac{a}{b} \pm \frac{c}{d}=\frac{a d \pm b c}{b d}$
, Multiplication: $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
, Reciprocal: $\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$
> Division: $\frac{a}{b} / \frac{c}{d}=\frac{a d}{b c}$
> All the above operations are accurate
> Some might produce $+/-\infty$ or NaN

Real Numbers (R)

, A decimal (or radix/fraction) point

Fixed-point Representation

, Always assume that the n-right-most digits are after the radix point

> The radix point is fixed at that position
> Advantages: Simplicity of representation and +/- operations
, Disadvantages: Cannot represent very large or very small numbers

Floating-point Representation

> The position of the radix point is variable (that point can float around)

Sign bit

All the significant digits (Mantissa)

Position of the point (exponent)

Value $=(-1)^{S} \times$ Mantissa $\times 2^{\text {exponent }}$

IEEE 754 Standard

Single-precision floating point (32-bits)
1-bit: sign
8-bits: exponent
23-bits: Mantissa
S E E E E E E E EMMMMMMMMMMMMMMMMMMMMMMM
S: 0 for +ve and 1 for -ve numbers
E: 8 bits can represent 256 different exponents
To represent both +ve and -ve exponents, these 8 -bits store the exponent plus 127
$\mathrm{E}=127$ indicates an exponent of zero
$\mathrm{E}=200$ indicates an exponent of $200-127=73$

Normalization

, If we are not careful, we might end up with redundant representations

$$
\text { E.g., } 1.5 \times 10^{2}=15 \times 10^{1}=150 \times 10^{0}
$$

> In IEEE standard, the fraction point is always placed right next to the first significant (binary) digit
, Since the left-most digit is always one, it is not stored
, This is called normalization

Normalization Examples

> $x_{1}=001011001.110$
> $x_{1}=001.011001110 \times 10^{110}$ Exponent
Mantissa
> $x_{2}=0.0000001110$
> $x_{2}=1.11 \times 10^{-111}$ Exponent
Mantissa

32 Floating Point Example

> $x=125.375$
> $x=1111101.011$
> $x=1.111101011 \times 10^{110}$
(That's 2^{6})
> Fraction=111101011
, Fraction=11110101100000000000000
> Exponent=6+127=133=10000101
, Sign=0
0100001011111101011000000000000000

Special Cases

, Zero
> Represented by all zeros in the exponent and fraction
, Two distinct but equivalent representations: +0 and -0
> Infinity
, Exponent of all 1's and fraction of all 0's
, Two distinct representations of $+\infty$ and $-\infty$
> Not-a-number (NaN)
> Exponent is all 1's and fraction is non-zero

Denormalized Numbers

, $\mathrm{X}=0.00001 \times 10^{-126}$
, Normalized $=1.0 \times 10^{-131}$
, x We cannot represent an exponent of -131
> Exponent=0 (Special marker for denormalized numbers)
> Fraction=000010000000000000000000

Arithmetic

> Multiplication
, Multiply the signs (XOR)
, Multiply the mantissas
, Add up the exponents
, Division
, Similar to multiplication but can produce infinity or NaN
, Addition/Subtraction
, Aligns the two mantissas and add/subtract them
, Adjust the exponent to the result

Summary

> Floating points cannot represent all possible numbers
> It can represent both very small and very large numbers
> Number of significant digits is upper-bounded
, We can represent zero, ∞, and NAN
, The result of any arithmetic operation can produce some error

