

CS133 Computational Geometry

Instructor: Ahmed Eldawy

TA: Samriddhi Singla

Welcome back to UCR!

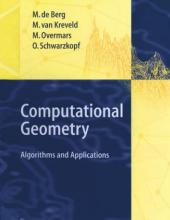
Class information

- Classes: Tuesday and Thursday 8:10 AM 9:30 AM at WCH 142
- Instructor: Ahmed Eldawy
- > TA: Samriddhi Singla
- Office hours: Tuesday and Thursday 9:30 AM – 10:30AM @357 WCH
- Conflicts?
 - > You can set a meeting by email

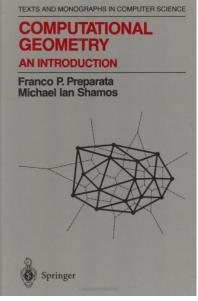
Class Information

- > Website: http://www.cs.ucr.edu/~eldawy/19SCS133/
- > Email: eldawy@ucr.edu
- > Subject: "[CS133] ..."

Textbook



Computational Geometry: Algorithms an Applications 3rd Ed, Springer By Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars ISBN: 9783642096815 Free electronic version provided by UCR



(Optional) Computational Geometry: An Introduction, Springer, 2nd Ed By Franco P. Preparata and Michael I. Shamos ISBN : 0387961313 Available at Orbach Library

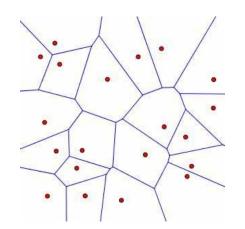
Springe

Course work

- > (5%) Active participation in the class
- (10%) 5 assignments (Lowest one discarded)
- (30%) 10 labs (Lowest two discarded)
- > (10%) First midterm (Tuesday, April 23rd)
- > (10%) Second midterm (Thursday, May 23rd)
- > (35%) Final exam
 - > Date: Saturday, June 8th, 2019
 - > Time: 8:00 a.m. 11:00 a.m.
 - Location: WCH 142

Course goals

- > What are your goals?
- Sharpen your algorithmic skills
- > Understand a new type of algorithms
- > Play with points, lines, and polygons
- Generate some nice-looking figures



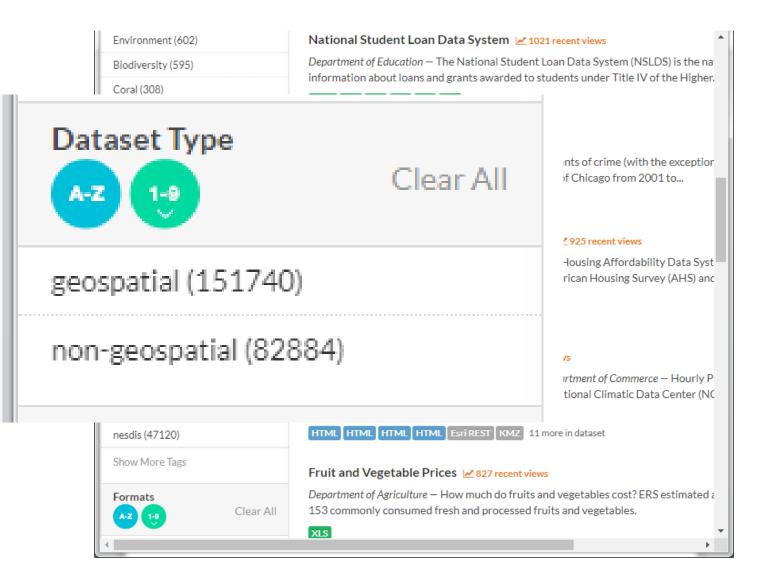
The Rise of Spatial Data

The home of the U.S. Government's open data

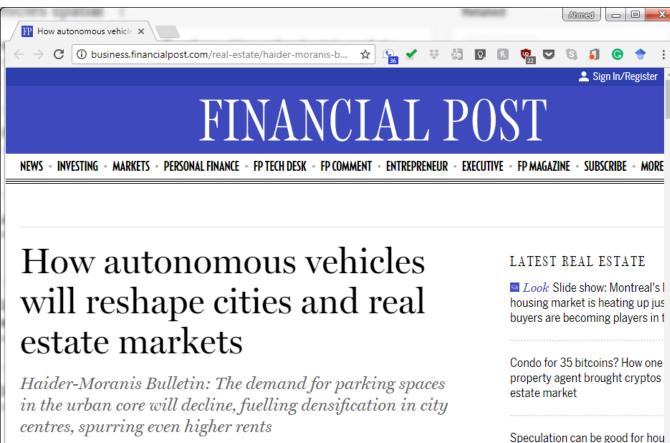
Here you will find data, tools, and resources to conduct research, develop

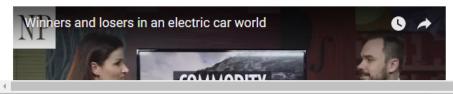
GET STARTED SEARCH OVER 234,623 DATASETS

The Rise of Spatial Data



Autonomous Vehicles

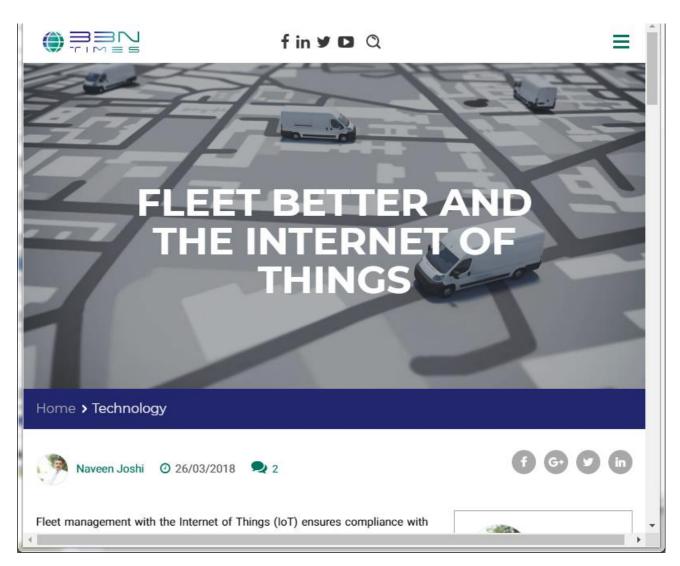




markets – just look at Paris

'Fear and uncertainty': Out-of-pr homebuyers could rush to sell if _

Internet of Things (IoT)

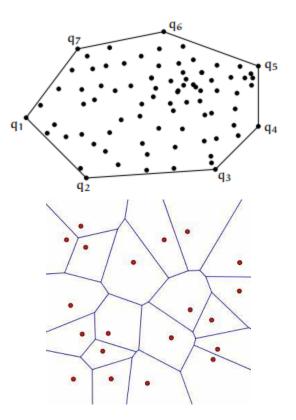


Satellites

for satellite broadband network

Course Overview

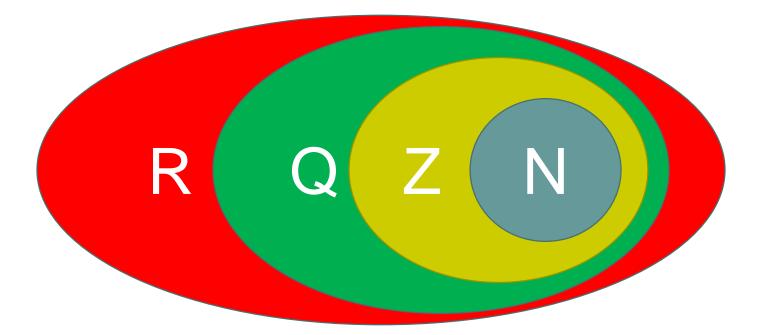
- Background on algorithms, floating point calculations, and linear algebra
- Computational geometry primitives
- Convex hull algorithms
- Search problems
- Intersection problems
- > Polygon simplification
- › Voronoi diagram
- > Delaunay triangulation



Number Representation

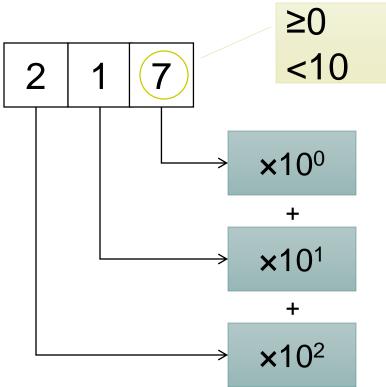
Number Representation

Number sets



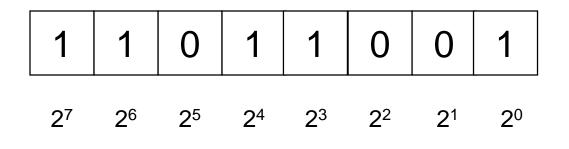
Natural Numbers (N)

> Decimal representation



Binary Representation

> Base-2 representation



 $(11011001)_2 = (217)_{10}$

Integer Numbers (Z)

- > We use a negative sign
- The computer can only represent 0 or 1 (no signs)
- Sign-magnitude representation (not used)
 - Reserve a bit for sign (0: +ve, 1: -ve)
 - > Advantage: Simplicity of representation
 - Drawbacks: Two representations for the zero, and complexity of addition and subtraction operations
- > Two's complement (Designer's choice)
 - → -x = ~x + 1

Rational Numbers (Q)

- > $q = \frac{a}{b}$
- > Where a and b are integers and b > 0
- Advantages
 - Simple representation
 - Simple calculations
 - Closed under most operations
 - > Can be 100% accurate
- > Disadvantages
 - Not closed under certain operations

Operations

- > Addition/subtraction: $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$
- > Multiplication: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

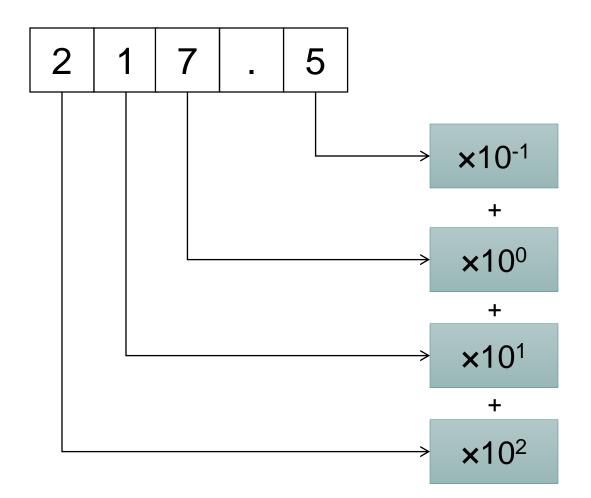
> Reciprocal:
$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

> Division:
$$\frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}$$

- > All the above operations are accurate
- Some might produce +/- ∞ or NaN

Real Numbers (R)

> A decimal (or radix/fraction) point



Fixed-point Representation

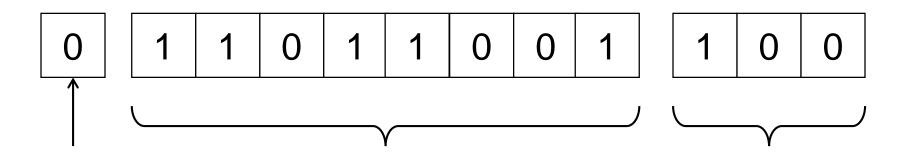
Always assume that the n-right-most digits are after the radix point

	1 0	0	=(217.5) ₁₀
--	-----	---	------------------------

- > The radix point is *fixed* at that position
- Advantages: Simplicity of representation and +/- operations
- Disadvantages: Cannot represent very large or very small numbers

Floating-point Representation

 The position of the radix point is variable (that point can float around)



Sign bit All the significant digits (Mantissa)

Position of the point (exponent)

Value =
$$(-1)^{S} \times Mantissa \times 2^{exponent}$$

IEEE 754 Standard

Single-precision floating point (32-bits) 1-bit: sign 8-bits: exponent 23-bits: Mantissa

S: 0 for +ve and 1 for -ve numbers

E: 8 bits can represent 256 different exponents

To represent both +ve and –ve exponents, these 8-bits store the exponent plus 127

E=127 indicates an exponent of zero

E=200 indicates an exponent of 200-127=73

Normalization

- If we are not careful, we might end up with redundant representations
 - > E.g., $1.5 \times 10^2 = 15 \times 10^1 = 150 \times 10^0$
- In IEEE standard, the fraction point is always placed right next to the first significant (binary) digit
- Since the left-most digit is always one, it is not stored
- > This is called normalization

Normalization Examples

Exponent

- > x₁=001011001.110
- > x₁=00<mark>1.011001110</mark>×10¹¹⁰

Mantissa

x₂=0.0000001110
 x₂=1.11×10⁻¹¹¹ Exponent

Mantissa

32 Floating Point Example

UCR

- > x=125.375
- > x=1111101.011
- > x=1.111101011×10¹¹⁰ (That's 2⁶)
- Fraction=111101011
- Exponent=6+127=133=10000101
- > Sign=0

Special Cases

- > Zero
 - Represented by all zeros in the exponent and fraction
 - Two distinct but equivalent representations:
 +0 and -0
- Infinity
 - > Exponent of all 1's and fraction of all 0's
 - ➤ Two distinct representations of +∞ and -∞
- Not-a-number (NaN)
 - > Exponent is all 1's and fraction is non-zero

Denormalized Numbers

- > X=0.00001×10⁻¹²⁶
- Normalized = 1.0×10⁻¹³¹
 - > ¥ We cannot represent an exponent of -131
- Exponent=0 (Special marker for denormalized numbers)

Arithmetic

UCR

- Multiplication
 - Multiply the signs (XOR)
 - Multiply the mantissas
 - Add up the exponents
- > Division
 - Similar to multiplication but can produce infinity or NaN
- > Addition/Subtraction
 - Aligns the two mantissas and add/subtract them
 - > Adjust the exponent to the result

Summary

- Floating points cannot represent all possible numbers
- It can represent both very small and very large numbers
- Number of significant digits is upper-bounded
- > We can represent zero, ∞, and NAN
- The result of any arithmetic operation can produce some error