Line-line Intersection

Ahmed Eldawy

Given two straight lines, each represented by two points, there are three possible cases:

1. The two lines are parallel and disjoint. They do not intersect or they intersect in infinity.
2. The two lines are parallel and overlapping. Their intersection is a straight line equal to any of them.
3. The two lines are not parallel. They intersect in a single point.

The following derivation shows how to easily find out which case applies to the two lines and find their intersection point if they intersect in a point.

First, let us assume that the first line S_{1} is represented by two points p_{1} and p_{2}. Similarly, the second line S_{2} is represented by two points p_{3} and p_{4}. Each point p_{i} is represened by two coordinates $\left(x_{i}, y_{i}\right)$. Let us also assume that the intersection point is p_{0}.

We define the following vectors:

$$
\begin{aligned}
& a=\overrightarrow{p_{1} p_{2}}=p_{2}-p_{1}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right) \\
& b=\overrightarrow{p_{1} p_{0}}=p_{0}-p_{1}=\left(x_{0}-x_{1}, y_{0}-y_{1}\right) \\
& c=\overrightarrow{p_{3} p_{4}}=p_{4}-p_{3}=\left(x_{4}-x_{3}, y_{4}-y_{3}\right) \\
& d=\overrightarrow{p_{3} p_{0}}=p_{0}-p_{3}=\left(x_{0}-x_{3}, y_{0}-y_{3}\right)
\end{aligned}
$$

Since the intersection point p_{0} is on the first line, we have

$$
\begin{gather*}
\|a \times b\|=0 \\
\left(x_{2}-x_{1}\right)\left(y_{0}-y_{1}\right)-\left(x_{0}-x_{1}\right)\left(y_{2}-y_{1}\right)=0 \\
\left(x_{2}-x_{1}\right) y_{0}+\left(y_{1}-y_{2}\right) x_{0}=y_{1} x_{2}-x_{1} y_{2} \tag{1}
\end{gather*}
$$

Similarly, since the intersection point p_{0} is on the second line, we have

$$
\begin{gather*}
\|c \times d\|=0 \\
\left(x_{4}-x_{3}\right)\left(y_{0}-y_{3}\right)-\left(x_{0}-x_{3}\right)\left(y_{4}-y_{3}\right)=0 \\
\left(x_{4}-x_{3}\right) y_{0}+\left(y_{3}-y_{4}\right) x_{0}=y_{3} x_{4}-x_{3} y_{4} \tag{2}
\end{gather*}
$$

Now, to find the values of the two unknowns x_{0} and y_{0}, we need to solve the two linear equations 1 and 2 . We use Cramer's rule as follows.

$$
\begin{aligned}
D & =\left|\begin{array}{cc}
x_{2}-x_{1} & y_{1}-y_{2} \\
x_{4}-x_{3} & y_{3}-y_{4}
\end{array}\right| \\
D_{y_{0}} & =\left|\begin{array}{ll}
y_{1} x_{2}-x_{1} y_{2} & y_{1}-y_{2} \\
y_{3} x_{4}-x_{3} y_{4} & y_{3}-y_{4}
\end{array}\right| \\
D_{x_{0}} & =\left|\begin{array}{ll}
x_{2}-x_{1} & y_{1} x_{2}-x_{1} y_{2} \\
x_{4}-x_{3} & y_{3} x_{4}-x_{3} y_{4}
\end{array}\right|
\end{aligned}
$$

Finally, we find the unknowns $x_{0}=\left|D_{x_{0}}\right| /|D|$ and $y_{0}=\left|D_{y_{0}} /|D|\right.$. The three cases described above will map to the following cases:

1. If $|D|=0$ and $\left|D_{x_{0}}\right| \neq 0$ and $D_{y_{0}} \neq 0$, it indicates that the equations have a solution at infinity which means that the two lines are disjoint and parallel (they intersect at infinity).
2. If $|D|=0$ and $\left|D_{x_{0}}\right|=0$ and $D_{y_{0}}=0$, it indicates that the equations have infinite number of solutions which means that the two lines are coincident.
3. If $|D| \neq 0$ it indicates a single solution to the equations which means that the two lines intersect at a single point.

Example 1:

$$
\begin{gathered}
p_{1}=(2,0), p_{2}=(0,1), p_{3}=(0,0), p_{4}=(1,4) \\
D=\left|\begin{array}{cc}
0-2 & 0-1 \\
1-0 & 0-4
\end{array}\right|=\left|\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right| \\
|D|=9 \\
D_{x_{0}}=\left|\begin{array}{ll}
0-2 & 0 \cdot 0-2 \cdot 1 \\
1-0 & 0 \cdot 1-0 \cdot 4
\end{array}\right|=\left|\begin{array}{cc}
-2 & -2 \\
1 & 0
\end{array}\right| \\
\left|D_{x_{0}}\right|=2 \\
D_{y_{0}}=\left|\begin{array}{cc}
0 \cdot 0-2 \cdot 1 & 0-1 \\
0 \cdot 1-0 \cdot 4 & 0-4
\end{array}\right|=\left|\begin{array}{cc}
-2 & -1 \\
0 & -4
\end{array}\right| \\
\left|D_{y_{0}}\right|=8
\end{gathered}
$$

$$
\begin{aligned}
& x_{0}=2 / 9 \\
& y_{0}=8 / 9
\end{aligned}
$$

Example 2:

$$
\begin{gathered}
p_{1}=(2,0), p_{2}=(0,1), p_{3}=(4,0), p_{4}=(0,2) \\
D=\left|\begin{array}{ll}
0-2 & 0-1 \\
0-4 & 0-2
\end{array}\right|=\left|\begin{array}{cc}
-2 & -1 \\
-4 & -2
\end{array}\right| \\
|D|=0
\end{gathered}
$$

This means that the lines are parallel but we need to verify if it is case 1 or 2.

$$
\begin{gathered}
D_{x_{0}}=\left|\begin{array}{ll}
0-2 & 0 \cdot 0-2 \cdot 1 \\
0-4 & 0 \cdot 0-4 \cdot 2
\end{array}\right|=\left|\begin{array}{cc}
-2 & -2 \\
-4 & -8
\end{array}\right| \\
\left|D_{x_{0}}\right|=8 \neq 0
\end{gathered}
$$

This means that the two lines are parallel and disjoint.
Example 3:

$$
\begin{gathered}
p_{1}=(1,1), p_{2}=(2,2), p_{3}=(3,3), p_{4}=(4,4) \\
D=\left|\begin{array}{ll}
2-1 & 1-2 \\
4-3 & 3-4
\end{array}\right|=\left|\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right| \\
|D|=0
\end{gathered}
$$

This indicates that the two lines are parallel but we need to verify if they are overlapping or disjoint.

$$
\begin{gathered}
D_{x_{0}}=\left|\begin{array}{cc}
2-1 & 1 \cdot 2-1 \cdot 2 \\
4-3 & 3 \cdot 4-3 \cdot 4
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right| \\
D_{x_{0}}=0
\end{gathered}
$$

Which indicates an infinite number of solution and the two lines overlap.

