
1

CS133 Lab 9–Voronoi Region

Objective
 In this lab, you will construct parts of the Voronoi diagram given an existing Delaunay

triangulation. You will build on and refine the existing DCEL structure that you started in Lab 8.

However, it is possible to finish this lab without completing Lab 8 in its entirety.

Detailed Requirements
Let us start with the following simple Delaunay triangulation (DT) that contains four sites.

1. Can you identify the vertices, edges, and faces in the above planar graph?

Number of vertices:

Number of edges:

Number of faces:

To represent this DT as a DCEL structure, we need to convert each edge to two twin half edges as shown

below.

2

2. How many vertices, half-edges, and faces does this DCEL structure have?

Number of vertices:

Number of half-edges:

Number of faces:

3. How do these numbers compare to the corresponding planar graph?

Now, recall the DCEL structure from class and Lab 8.

struct Vertex {

 double x, y;

 PEdge leaving;

};

struct HalfEdge {

 /// The vertex from which the HalfEdge starts

 PVertex origin;

 /// The face on the left side of the HalfEdge

 PFace face;

 /// The HalfEdge that starts from this->twin->origin and ends at the next

vertex in this->face

 PEdge twin;

 /// The next edge in the same face

 PEdge next;

};

struct Face {

 /// A single HalfEdge that has this Face object as its face

 PEdge edge;

};

3

4. Can you construct a correct DCEL structure for this DT?

For consistency, use the labels from the figure below and fill in the given tables.

Vertices

Vertex X Y leaving

e1

e2

e3
e4

e5
e6

e8

e7

e9e10

e12

e11

f0

f1

f2f3

p1 p2

p3

p4

4

HalfEdges

HalfEdge Origin Face Twin Next

Faces

Face Edge

5. Now, programmatically construct the above DCEL using your C++ code. At this step, you do not

have to use the createEdge and splitFace functions if they do not work. Rather, you can

manually create all the objects from the table above and fill in their attributes accordingly.

6. Now, try the following functions from your code in Lab 8. For each function, first fill in the

expected result based on the DCEL structure. Then, run your function and verify that it gives the

expected result. If it does not, this is a good time to debug and fix it.

5

Function Expected result Actual result

e1->destination(); p2

e9->destination();

e7->nextLeaving();

e7->nextLeaving()->nextLeaving();

e7->nextLeaving()->nextLeaving()->nextLeaving();

findFaces(p4);

findFaces(p1);

isConnected(p1,p4);

findIncidentEdge(p1,f1);

findIncidentEdge(p1,f2);

findIncidentEdge(p1,f0);

✪ Can you also construct the same DCEL structure using the createVertex, createEdge, and splitFace

functions from Lab8? Once you’re done with this lab, you can go back and use the same example to

debug these three functions from Lab 8.

Now, it is time to reconstruct the Voronoi diagram from the DCEL structure. We will start with the

center vertex (p4) as it makes a closed Voronoi region.

p4

v1

v2v3

7. Which half edges are needed to construct that Voronoi region?

6

8. Which half edges are need to find the coordinates of the vertex 𝑣1?

9. Write a function computeVoronoiVertex that computes the location of a vertex given two half

edges.

Point computeVoronoiVertex(PHalfEdge, PHalfEdge);

10. Use the above function to compute the coordinates of the three vertices 𝑣1, 𝑣2, and 𝑣3.

Vertex 𝑥 𝑦

𝑣1

𝑣2

𝑣3

Now, let us compute the Voronoi region for the site 𝑝2.

Since 𝑝2 has an unbounded face, we clip it to some boundary rectangle which, in this case, is defined

based on the border of the figure.

p2

v1

v2

v3

v5

7

11. Programmatically compute the coordinates of 𝑣3 and 𝑣5. How many half edges are needed to

compute each one?

Vertex 𝑥 𝑦

𝑣3

𝑣5

12. Repeat for the other two sites, 𝑝1 and 𝑝3. How many additional vertices do you need to

compute?

13. Based on this work, write a function computeVoronoiRegion that takes a DT vertex and a

clipping rectangle, and returns a list of points that make either a closed polygon for a closed

Voronoi region or an open linestring for an unbounded Voronoi region. If the Voronoi region is

closed, you do not have to clip it to the clipping rectangle.

std::vector<Point> computeVoronoiRegion(PVertex p, std::pair<Point> rectangle);

