Graph ADT

> Initialize(n): Initialize a graph with n vertices
» AddEdge(v,w): Adds an edge between v and w

> RemoveEdge(v, w): If exists, removes the edge
petween v and w

» IsAdjacent?(v, w): Returns true if v and w are
adjacent

» GetNeighbors(v): Returns the set of all adjacent
vertices of v

23



Graph Algorithms

> Breadth-first search (BFS)
> Depth-first search (DFS)
» Detect cycles

R

24



Breadth-first Search (BFS)

> An algorithm to visit all the vertices reachable

>

>

>

>

for one starting vertex

Visit the starting vertex (v)

Visit the neighbors of (v)

Visit the second-degree neighbors of (v)

Until no more vertices to visit

25

R



Breadth-first Search (BFS) UCR




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K




Breadth-first Search (BFS) K

> In some cases, we would like to keep track of
the path length from the starting vertex to
each visited vertex

» The visited vertices and edges can be used
to create a BFS-tree representation of the
graph.

35



Depth-first Search (DFS) R

> An algorithm to visit all the vertices reachable
for one starting vertex

> Visit the starting vertex (v)
> Visit one neighbor of v

> Visit as much as possible from that neighbor
until moving to another neighbor

» Until all vertices reachable from v are visited

36



Depth-first Search (DFS) UCR




Depth-first Search (DFS) UCR




Depth-first Search (DFS) UCR




Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Depth-first Search (DFS)

R



Graph Traversals

GraphTraversal(G, v) {

L €& An empty data structure

L << Vv

while (L is not empty) {
X € Remove next item from L
Visit(x)
for (each neighbor n of x) {

L << n

How to make this generic code work as a BFS or DFS?

50




