Graphs

Chapter 9

Objectives

, Getting familiar with the graph model
, Understand the basic terminology of a graph
> Recognize the different types of graph
, Understand the graph ADT
, Understand the two common graph representations

Flashback (Trees)

Flash Forward (Graphs)

Applications of Graphs

> Networks
, Social networks
, Business network
, Computer networks (even wireless networks)
, Road networks
> Many-to-many relationships
, Students and courses
, Students and departments

Example: Social Network

Example: Airport Network

Graph Model

, A Graph (G) consists of a set of Vertices (V) and Edges $(E) . G=(V, E)$
> $V=\left\{v_{1}, v_{2}, \ldots, v_{|V|}\right\}$
$\rangle E=\left\{e_{1}, e_{2}, \ldots, e_{|E|}\right\}$
$>e=(v, w), e \in E, v \in V, w \in V$

Graph Terminology

Edges or Links or Arcs

Adjacency

Two vertices with an edge connecting them are called adjacent vertices

B and F are adjacent vertices

All adjacent vertices of a vertex are called neighbors

Path

A, B, F, G is a path on the graph

A and G are said to be connected

Connected Graphs

A graph is connected if every pair of vertices are connected

Unconnected Graphs

A graph is unconnected if there is at least one pair of vertices that are not connected

Cycles

A, B, F, G, E, C, A is a cycle
A cycle is a path where the first and last vertices are the same

Weighted Graphs

A vertex and/or edge might have an associated weight or cost

Directed Graphs

$$
e=(v, w) \text { is an ordered pair }
$$

 the destination

Complete Graph

In a complete graph, there is a direct edge between every pair of vertices

Graph Representation

, Adjacency matrix
, Adjacency list

Adjacency Matrix

Destination

Adjacency List

Undirected Graph

> For undirected graphs, we usually store an undirected edge $e=(v, w)$ as two directed edges $e_{1}=(v, w)$ and $e_{2}=(w, v)$

