

Graphs

Chapter 9

Objectives

- Getting familiar with the graph model
- > Understand the basic terminology of a graph
- Recognize the different types of graph
- > Understand the graph ADT
- Understand the two common graph representations

Applications of Graphs

- > Networks
 - Social networks
 - > Business network
 - Computer networks (even wireless networks)
 - Road networks
- Many-to-many relationships
 - Students and courses
 - Students and departments

Example: Social Network

Example: Airport Network

Graph Model

- A Graph (G) consists of a set of Vertices (V) and Edges (E). G = (V, E)
- > $V = \{v_1, v_2, \dots, v_{|V|}\}$
- > $E = \{e_1, e_2, \dots, e_{|E|}\}$
- ▶ $e = (v, w), e \in E, v \in V, w \in V$

Graph Terminology

All adjacent vertices of a vertex are called **neighbors**

Path

A, B, F, G is a **path** on the graph

Connected Graphs

Cycles

A, B, F, G, E, C, A is a **cycle**

A cycle is a path where the first and last vertices are the same

Weighted Graphs

A vertex and/or edge might have an associated weight or cost

Directed Graphs

We call v the source and w the destination

G

Complete Graph

In a complete graph, there is a direct edge between every pair of vertices

Graph Representation

- Adjacency matrix
- Adjacency list

Adjacency Matrix

Destination

	Α	B	С	D	Ε	F	G
A	0	0	1	0	0	0	0
B	1	0	1	0	0	1	0
С	0	0	0	1	0	0	0
D	0	0	0	0	0	1	0
E	0	0	1	0	0	0	0
F	0	0	0	0	1	0	1
G	0	0	0	0	1	0	0

Source

Adjacency List

20

Undirected Graph

For undirected graphs, we usually store an undirected edge e = (v,w) as two directed edges e₁ = (v,w) and e₂ = (w,v)