
Rehashing 

As more keys are inserted into the hashtable, 

the performance degrades. Why? 

The solution to this problem is rehashing. A 

new hashtable is created, and all keys are 

rehashed to the new table. 

Q1: When is a good time to rehash? 

Q2: What is a good size for the new 

hashtable? 

57 



When to rehash? 

In arrays, we used to expand the array when 

it is full. Should we do the same with 

hashtables? 

What happens if we wait until the hashtable is 

full? 

with linear probing 

with quadratic probing 

Load Factor: 𝜆 =
# 𝑜𝑓 𝑘𝑒𝑦𝑠

# 𝑜𝑓 𝑏𝑢𝑐𝑘𝑒𝑡𝑠
 

0 ≤ 𝜆 ≤ 1 

58 



Load Factor 

59 Load factor (λ) 

𝜆=0.5 

We would better 

stay on this side 



Rehashing 

When 𝜆 > 0.5 

New size is roughly double the old side 

 

60 

Rehash() { 
  T* newHashtable = new T[new_size]; 
  for (i = 0 to old_size) { 
    if (bucket #i is occupied) { 
      Insert the key at bucket #i into the new table; 
    } 
  } 
  replace the old table with the new one; 
} 



Rehashing Example 

61 

0 

1 

2 

3 

4 

5 

6 

h = x % 7 

Insert {37, 8, 3, 16, 26} 



Rehashing Example 

62 

0 

1 8 

2 37 

3 3 

4 16 

5 26 

6 

h = x % 7 

Insert {30, 8, 3, 16, 26} 

Rehash 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

h = x % 13 



Rehashing Example 

63 

0 

1 8 

2 37 

3 3 

4 16 

5 26 

6 

h = x % 7 

Insert {37, 8, 3, 16, 26} 

Rehash 

0 26 

1 

2 

3 3 

4 16 

5 

6 

7 

8 8 

9 

10 

11 37 

12 

h = x % 13 



Application to Hashtables 

Bloom filter 

Stores a set of keys 

Answers one question: Is the key 𝑥 in the set 

or not? 

Application: Used as a prefilter to avoid costly 

searches when the key is not there 

e.g., BST search, hashtable search, ordered list 

search, unordered list search 

65 



Bloom Filter 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

66 

Initialize: Create a bit vector all set to zeros 



Bloom Filter 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 

Insert(x) 

hash(x) 



Bloom Filter 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

68 

Insert(x) 

hash(x) 



Bloom Filter 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

69 

Search(x) 

hash(x) 

Return 



Implementation 

70 

Insert(x) { 
  b[hash(x)] = 1; 
} 

Search(x) { 
  return b[hash(x)]; 
} 

Initialize(m) { 
  b = new bit vector[m]; 
} 



Collisions 

What to do with collisions? 

Nothing!! 

What are the consequences of this? 

False positives 

How to support deletions? 

Deletions are not supported 

71 



Multiple Hash Functions 

72 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Insert(x) 

hash2(x) hash1(x) hash3(x) 



Multiple Hash Functions 

73 

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Insert(x) 

hash2(x) hash1(x) hash3(x) 



Multiple Hash Functions 

74 

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Search(x) 

hash2(x) hash1(x) hash3(x) 

AND 

Return 


