Sorting

Chapter 7

Objectives

> Understand the importance of the sort problem
> Analyze the running times of different sorting algorithms
> Choose the most efficient sorting algorithms based on the problem requirements

Sorting

, Given an array A of n elements, we need to sort the elements of the array so that $\mathrm{A}[1]<\mathrm{A}[2]<\ldots<\mathrm{A}[\mathrm{n}]$
> For simplicity, we will assume no repeated values
, The values have a total order
>All comparisons are done through the < or > operators

Insertion Sort

, For $\mathrm{j}=2$ to n
, Keep A[1..j] sorted

Insertion Sort

For $\mathrm{j}=1$ to n
key = A[j]
i $=\mathrm{j}-1$
while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key
$\mathrm{A}[i+1]=\mathrm{A}[i]$
$\mathrm{i}=\mathrm{i}-1$
$\mathrm{A}[\mathrm{i}+1]=\mathrm{key}$

Selection Sort

UCR

, For $\mathrm{j}=1$ to n
> Find the $\mathrm{j}^{\text {th }}$ smallest element and put it in place

For $\mathrm{j}=1$ to n
$\min =j$
for $\mathrm{i}=\mathrm{j}+1$ to n
if $A[i]<A[m i n]$
$\min =\mathrm{i}$
$\operatorname{swap}(A[j], A[m i n])$

Selection Sort

UCR

, For $\mathrm{j}=1$ to n
> Find the $\mathrm{j}^{\text {th }}$ smallest element and put it in place

For $\mathrm{j}=1$ to n
min $=j$
for $\mathrm{i}=\mathrm{j}+1$ to n
if $A[i]<A[m i n]$
$\min =\mathrm{i}$
$\operatorname{swap}(A[j], A[m i n])$

Bubble Sort

, Whenever you find an unordered pair, reorder them

For $\mathrm{j}=1$ to n
For $\mathrm{i}=1$ to $\mathrm{n}-1$
if $A[i]>A[i+1]$
swap(A[i], A[i+1])

Bubble Sort

, Whenever you find an unordered pair, reorder them

For $\mathrm{j}=1$ to n
For $\mathrm{i}=1$ to n - j
if $A[i]>A[i+1]$
swap(A[i], A[i+1])

Bubble Sort

, Whenever you find an unordered pair, reorder them

For $\mathrm{j}=1$ to n
sorted = true
For $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{j}$
if $A[i]>A[i+1]$
swap(A[i], A[i+1]) sorted = false
break if sorted

Shell Sort

> Bubble sort and insertion sort make a very slow progress
, Shell sort tries to make bigger leaps

Shell Sort

UCR

For gap $=\mathrm{n} / 2$ downto 1; gap = gap/2 for $\mathrm{j}=\mathrm{gap}$ to n
for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{j}$
if $A[i]>A[i+g a p]$
$\operatorname{swap}(A[i], A[i+g a p])$

