Sorting
Chapter 7

IIIIIIIIIIIIIIIIIIIIII



Objectives R

» Understand the importance of the sort
problem

> Analyze the running times of different sorting
algorithms

» Choose the most efficient sorting algorithms
based on the problem requirements



Sorting R

> Given an array A of n elements, we need to
sort the elements of the array so that
A[1] <A[2] < ... <A[n]

> For simplicity, we will assume no repeated
values

» The values have a total order

> All comparisons are done through the < or >
operators



Insertion Sort

» Forj=2ton
Keep A[l..|] sorted

R



Insertion Sort

Forj=1ton
key = Alj]
=3-1
while i > 0 and A[i] > key

Ali+1] = A[i]
i=i-1
Ali+1] = key

R



Selection Sort

» Forj=1ton
Find the jth smallest element and put it in place

Forj=1ton
min =]
fori =j+1ton
if A[i] < A[min]

min = |
swap(A[j], A[lmin])

R



Selection Sort

» Forj=1ton
Find the jth smallest element and put it in place

Forj=1ton
min =]
fori =j+1ton
if A[i] < A[min]

min = |
swap(A[j], A[lmin])

R



Bubble Sort K

> Whenever you find an unordered pair, reorder
them

Forj=1ton
Fori =1 to n-1
if A[i] > A[i+1]
swap(A[i], A[i+1])




Bubble Sort K

> Whenever you find an unordered pair, reorder
them

Forj=1ton
Fori =1 to n-j
if A[i] > A[i+1]
swap(A[i], A[i+1])




Bubble Sort K

> Whenever you find an unordered pair, reorder
them

Forj=1ton
sorted = true
Fori =1 to n-j

if A[i] > A[i+1]

swap(A[i], A[i+1])
sorted = false
break if sorted

10



Shell Sort UCR

> Bubble sort and insertion sort make a very
slow progress

> Shell sort tries to make bigger leaps

.
4

~—
~aii—4
—~—
~— 4
~e—
—
~— 4
~—4
~—
~~— 4
~— 4
~ai—7
~~— 4
~a—4
~—
~ 4
|

11



Shell Sort

For gap = n/2 downto 1; gap = gap/2
for j = gap ton
fori=1to n-j
if A[i] > Al[i+gap]

swap(Ali], Ali+gap])

12

R



