
Sorting

Chapter 7

1

Objectives

Understand the importance of the sort

problem

Analyze the running times of different sorting

algorithms

Choose the most efficient sorting algorithms

based on the problem requirements

2

Sorting

Given an array A of n elements, we need to

sort the elements of the array so that

A[1] < A[2] < … < A[n]

For simplicity, we will assume no repeated

values

The values have a total order

All comparisons are done through the < or >

operators

3

Insertion Sort

For j = 2 to n

Keep A[1..j] sorted

4

Insertion Sort

5

For j = 1 to n
 key = A[j]
 i = j - 1
 while i > 0 and A[i] > key
 A[i+1] = A[i]
 i = i – 1
 A[i+1] = key

Selection Sort

6

For j = 1 to n

Find the jth smallest element and put it in place

For j = 1 to n
 min = j
 for i = j+1 to n
 if A[i] < A[min]
 min = i
 swap(A[j], A[min])

Selection Sort

7

For j = 1 to n

Find the jth smallest element and put it in place

For j = 1 to n
 min = j
 for i = j+1 to n
 if A[i] < A[min]
 min = i
 swap(A[j], A[min])

Bubble Sort

8

Whenever you find an unordered pair, reorder

them

For j = 1 to n
 For i = 1 to n-1
 if A[i] > A[i+1]
 swap(A[i], A[i+1])

Bubble Sort

9

Whenever you find an unordered pair, reorder

them

For j = 1 to n
 For i = 1 to n-j
 if A[i] > A[i+1]
 swap(A[i], A[i+1])

Bubble Sort

10

Whenever you find an unordered pair, reorder

them

For j = 1 to n
 sorted = true
 For i = 1 to n-j
 if A[i] > A[i+1]
 swap(A[i], A[i+1])
 sorted = false
 break if sorted

Shell Sort

11

Bubble sort and insertion sort make a very

slow progress

Shell sort tries to make bigger leaps

Shell Sort

12

For gap = n/2 downto 1; gap = gap/2
 for j = gap to n
 for i = 1 to n-j
 if A[i] > A[i+gap]
 swap(A[i], A[i+gap])

