AVL Trees

Section 4.4

AVL Tree R

» A balanced tree

» Ensures 0(logn) running time for search,
Insert, and delete

> A simple and relaxed definition for balance
» |[logn] < h < [logn]: Too restrictive

40

Balanced Tree

Height(null) = -1

4

/N

5

Height(root->left) =
Height(root->right)

Too weak

\

6

N

2

41

K

Balanced Tree

Height(null) = -1

Height(node->left) =
Height(node->right)

Could be impossible
to satisfy

42

K

AVL Balance Condition

|Height(node — left) — Height(node — right)| < 1

/\
/\ N\

A 7

Height(null) = -1

43

K

AVL Example

Is this an AVL Tree? ves

AVL Example

5

Violating node

4 6

/ \

2 7

/N

: > Is this an AVL Tree? No

K

AVL Example

g

Is this an AVL Tree? Yes

Balancing an AVL Tree R

» For simplicity, we assume that we keep the
height of each subtree at its root

s> An Imbalance can occur as a result of an
Insertion or deletion

» To balance an AVL tree, we carry out a
rotation operation

47

Insertion

» Call BST.insert
» Update the height as you climb up to the root

» After each height update, check for an AVL
tree violation and fix using rotation

48

K

Violation after Insertion

Violating

Node Cases 1 and 4 are

/ \ symmetric
Cases 2 and 3 are

symmetric

N N

Case 1 Case 2 Case 3 Case 4

&

New
Node

49

K

Case 1 — Single Rotation

Violating
Node

kl/kz\ >/ g
N /N

Y Y Z

Status upon insertion in X Is this a BST? Yes
K, IS In violation Is this an AVL Tree? Yes

50

Case 2 — Single Rotation?

Violating
Node

k/kZ\
N

X Z

Single
Rotation

Status upon insertion in Y Is this a BST? Yes
K, IS in violation Is this an AVL Tree? No

51

Case 2 — Double Rotation

Violating
Node

e /\

Ve S W
Van

B C

/\

C D

K

