AVL Trees

Section 4.4




AVL Tree R

» A balanced tree

» Ensures 0(logn) running time for search,
Insert, and delete

> A simple and relaxed definition for balance
» |[logn] < h < [logn]: Too restrictive
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Balanced Tree

Height(null) = -1
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Height(root->left) =
Height(root->right)

Too weak
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Balanced Tree

Height(null) = -1

Height(node->left) =
Height(node->right)

Could be impossible
to satisfy
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AVL Balance Condition

|Height(node — left) — Height(node — right)| < 1
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Height(null) = -1
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AVL Example

Is this an AVL Tree? ves



AVL Example
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Violating node

4 6

/ \

2 7

/N

: > Is this an AVL Tree? No
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AVL Example

g

Is this an AVL Tree? Yes




Balancing an AVL Tree R

» For simplicity, we assume that we keep the
height of each subtree at its root

s> An Imbalance can occur as a result of an
Insertion or deletion

» To balance an AVL tree, we carry out a
rotation operation
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Insertion

» Call BST.insert
» Update the height as you climb up to the root

» After each height update, check for an AVL
tree violation and fix using rotation
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Violation after Insertion

Violating

Node Cases 1 and 4 are

/ \ symmetric
Cases 2 and 3 are

symmetric

N N

Case 1 Case 2 Case 3 Case 4
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New
Node
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Case 1 — Single Rotation

Violating
Node

kl/kz\ >/ g
N /N

Y Y Z

Status upon insertion in X Is this a BST? Yes
K, IS In violation Is this an AVL Tree? Yes
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Case 2 — Single Rotation?

Violating
Node

k/kZ\
N

X Z

Single
Rotation

Status upon insertion in Y Is this a BST? Yes
K, IS in violation Is this an AVL Tree? No
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Case 2 — Double Rotation

Violating
Node
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