
AVL Trees
Section 4.4
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AVL Tree

A balanced tree

Ensures 𝑂 log𝑛 running time for search, 

insert, and delete

A simple and relaxed definition for balance

log 𝑛 ≤ ℎ ≤ log𝑛 : Too restrictive
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Balanced Tree
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Balanced Tree
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AVL Balance Condition
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𝐻𝑒𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒 → 𝑙𝑒𝑓𝑡 − 𝐻𝑒𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒 → 𝑟𝑖𝑔ℎ𝑡 ≤ 1

Height(null) = -1



AVL Example
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Is this an AVL Tree? Yes



AVL Example
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AVL Example
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Is this an AVL Tree? Yes



Balancing an AVL Tree

For simplicity, we assume that we keep the 

height of each subtree at its root

An imbalance can occur as a result of an 

insertion or deletion

To balance an AVL tree, we carry out a 

rotation operation
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Insertion

Call BST.insert

Update the height as you climb up to the root

After each height update, check for an AVL 

tree violation and fix using rotation
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Violation after Insertion
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Case 1 – Single Rotation
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Case 2 – Single Rotation?
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Case 2 – Double Rotation
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