
AVL Trees
Section 4.4

39



AVL Tree

A balanced tree

Ensures 𝑂 log𝑛 running time for search, 

insert, and delete

A simple and relaxed definition for balance

log 𝑛 ≤ ℎ ≤ log𝑛 : Too restrictive

40



Balanced Tree

41

4

3 5

2 6

1 7

Height(root->left) = 

Height(root->right)

Too weak

Height(null) = -1



Balanced Tree

42

4

2 6

1 7

Height(node->left) = 

Height(node->right)

Could be impossible 

to satisfy

3 5

Height(null) = -1



AVL Balance Condition

43

5

3 6

2 7

1

4

𝐻𝑒𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒 → 𝑙𝑒𝑓𝑡 − 𝐻𝑒𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒 → 𝑟𝑖𝑔ℎ𝑡 ≤ 1

Height(null) = -1



AVL Example

44

5

2 7

1 6

3

4

Is this an AVL Tree? Yes



AVL Example

45

5

4 6

2 7

1 3
Is this an AVL Tree? No

Violating node



AVL Example

46

Is this an AVL Tree? Yes



Balancing an AVL Tree

For simplicity, we assume that we keep the 

height of each subtree at its root

An imbalance can occur as a result of an 

insertion or deletion

To balance an AVL tree, we carry out a 

rotation operation

47



Insertion

Call BST.insert

Update the height as you climb up to the root

After each height update, check for an AVL 

tree violation and fix using rotation

48



Violation after Insertion

49

Violating 

Node

Case 1 Case 2 Case 3 Case 4

+

New 

Node

Cases 1 and 4 are 

symmetric

Cases 2 and 3 are 

symmetric



Case 1 – Single Rotation

50

k2

k1

Violating 

Node

X

Y

Z

Status upon insertion in X

k2 is in violation

k2

k1

X
Y Z

Rotation

Is this a BST?

Is this an AVL Tree?

Yes

Yes



Case 2 – Single Rotation?

51

k2

k1

Violating 

Node

X

Y

Z

Status upon insertion in Y

k2 is in violation

k2

k1

X

Y

Z

Single 

Rotation

Is this a BST?

Is this an AVL Tree?

Yes

No



Case 2 – Double Rotation

52

k3

k1

Violating 

Node

A

B

D
k2

C

k2

k1

A
B C

k3

D


