

Growth of Functions

Learning Objectives

- Understand the meaning of growth of functions.
- Measure the growth of the running time of an algorithm.
- Use the Big-Oh notation to compare the growth of two functions.

Growth of Functions

O-notation

 $\begin{aligned} \exists c > 0, n_0 > 0 \\ 0 \leq f(n) \leq cg(n) \\ n \geq n_0 \end{aligned}$

g(n) is an asymptotic upperbound for f(n)

Ω-notation

 $\begin{aligned} \exists c > 0, n_0 > 0 \\ 0 \leq cg(n) \leq f(n) \\ n \geq n_0 \end{aligned}$

g(n) is an asymptotic lowerbound for f(n)

Θ-notation

$$\begin{aligned} \exists c_1, c_2 &> 0, n_0 > 0\\ 0 &\leq c_1 g(n) \leq f(n) \leq c_2 g(n)\\ n &\geq n_0 \end{aligned}$$

g(n) is an asymptotic tightbound for f(n)

o-notation

 $\forall c > 0$ $\exists n_0 > 0$ $0 \le f(n) \le cg(n)$ $n \geq n_0$

f(n) = o(q(n))

g(n) is a non-tight asymptotic upperbound for f(n) 22

ω-notation

 $\forall c > 0$ $\exists n_0 > 0$ $0 \le cg(n) \le f(n)$ $n \geq n_0$

g(n) is a non-tight asymptotic lowerbound for f(n)

 $f(n) = \omega(q(n))$

Analogy to real numbers

Functions	Real numbers
f(n) = O(g(n))	$a \leq b$
$f(n) = \Omega(g(n))$	$a \ge b$
$f(n) = \Theta(g(n))$	a = b
f(n) = o(g(n))	a < b
$\boldsymbol{f}(\boldsymbol{n}) = \omega(\boldsymbol{g}(\boldsymbol{n}))$	a > b

Standard Classes of Functions

- > Constant: $f(n) = \Theta(1)$
- > Logarithmic: $f(n) = \Theta(\lg(n))$
- > Sublinear: f(n) = o(n)
- > Linear: $f(n) = \Theta(n)$
- > Super-linear: $f(n) = \omega(n)$
- > Quadratic: $f(n) = \Theta(n^2)$
- > Polynomial: $f(n) = \Theta(n^k)$; k is a constant
- > Exponential: $f(n) = \Theta(k^n)$; k is a constant

Insertion Sort (Revisit)

INSERTION-SORT
$$(A, n)$$

for $j = 2$ to n
 $key = A[j]$
// Insert $A[j]$ into the sorted sequence $A[1 ... j - 1]$.
 $i = j - 1$
while $i > 0$ and $A[i] > key$
 $A[i + 1] = A[i]$
 $i = i - 1$
 $A[i + 1] = key$
 $\Theta(n^2)$

Using L'Hopital's rule

- > Determine the relative growth rates by using L'Hopital's rule
 - > compute $\lim_{n \to \infty} \frac{f(N)}{g(N)}$ > if 0: f(N) = o(g(N))> if constant \neq 0: $f(N) = \Theta(g(N))$
 - $if \infty: g(N) = o(f(N))$
 - limit oscillates: no relation

Recursion

Function calls

Stack