
Growth of Functions

16

Learning Objectives

Understand the meaning of growth of

functions.

Measure the growth of the running time of an

algorithm.

Use the Big-Oh notation to compare the

growth of two functions.

17

Growth of Functions

1 2 3 4 5 6 7 8 9 10

g(n)

f(n)

18

O-notation

∃𝑐 > 0,𝑛0 > 0

0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛
𝑛 ≥ 𝑛0

g(n) is an

asymptotic upper-

bound for f(n)

19

Ω-notation

∃𝑐 > 0, 𝑛0 > 0
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛
𝑛 ≥ 𝑛0

g(n) is an

asymptotic lower-

bound for f(n)

20

Θ-notation

∃𝑐1, 𝑐2 > 0, 𝑛0 > 0
0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛)
𝑛 ≥ 𝑛0

g(n) is an

asymptotic tight-

bound for f(n)

21

o-notation

∀𝑐 > 0
∃𝑛0 > 0
0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛
𝑛 ≥ 𝑛0

g(n) is a non-tight

asymptotic upper-

bound for f(n)

𝑓 𝑛 = 𝑜(𝑔 𝑛)

22

ω-notation

∀𝑐 > 0
∃𝑛0 > 0
0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛
𝑛 ≥ 𝑛0

g(n) is a non-tight

asymptotic lower-

bound for f(n)
𝑓 𝑛 = 𝜔(𝑔 𝑛)

23

Analogy to real numbers

Functions Real numbers

𝒇 𝒏 = 𝑶 𝒈 𝒏 𝑎 ≤ 𝑏

𝒇 𝒏 = Ω 𝒈 𝒏 𝑎 ≥ 𝑏

𝒇 𝒏 = Θ 𝒈 𝒏 𝑎 = 𝑏

𝒇 𝒏 = o 𝒈 𝒏 𝑎 < 𝑏

𝒇 𝒏 = ω 𝒈 𝒏 𝑎 > 𝑏

24

Standard Classes of Functions

Constant: 𝑓 𝑛 = Θ 1

Logarithmic: 𝑓 𝑛 = Θ(lg 𝑛)

Sublinear: 𝑓 𝑛 = 𝑜(𝑛)

Linear: 𝑓 𝑛 = Θ 𝑛

Super-linear: 𝑓 𝑛 = 𝜔(𝑛)

Quadratic: 𝑓 𝑛 = Θ(𝑛2)

Polynomial: 𝑓 𝑛 = Θ(𝑛𝑘); k is a constant

Exponential: 𝑓 𝑛 = Θ(𝑘𝑛); k is a constant

25

Insertion Sort (Revisit)

n-times

j-times

Θ(𝑛2)

26

Using L'Hopital’s rule

Determine the relative growth rates by using L'Hopital's rule

compute

if 0: f(N) = o(g(N))

if constant 0: f(N) = (g(N))

if : g(N) = o(f(N))

limit oscillates: no relation

)(

)(
lim

Ng

Nf

n

Recursion

In math: A function is defined based on itself

Factorial: 𝑛! = (𝑛 − 1)! ∙ 𝑛, 0! = 1

Fibonacci: 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2), 𝐹(0) =
 𝐹(1) = 1

In programming: A function calls itself

Question: Who is the recursion’s worst

enemy?

int fib(int number)

{

 if (number == 0) return 0;

 if (number == 1) return 1;

 return fib(number-1) + fib(number-2);

}

28

Function calls

main() {

 F1(…);

}

F1(…) {

 F2(…);

}

F2(…) {

 F3(…);

}

Stack

Local variables

Other things you do not

want to know F1

F2

F3

29

