Growth of Functions

Learning Objectives

> Understand the meaning of growth of functions.
> Measure the growth of the running time of an algorithm.
, Use the Big-Oh notation to compare the growth of two functions.

Growth of Functions

O-notation

$$
\begin{array}{cc}
n_{0} \\
f(n)=O(g(n))
\end{array}
$$

$$
\begin{aligned}
& \exists c>0, n_{0}>0 \\
& 0 \leq f(n) \leq c g(n) \\
& n \geq n_{0}
\end{aligned}
$$

$\mathrm{g}(\mathrm{n})$ is an asymptotic upperbound for $\mathrm{f}(\mathrm{n})$

Ω-notation

$$
\begin{aligned}
& \exists c>0, n_{0}>0 \\
& 0 \leq c g(n) \leq f(n) \\
& n \geq n_{0}
\end{aligned}
$$

$\mathrm{g}(\mathrm{n})$ is an asymptotic lowerbound for $f(n)$

©-notation

$\exists c_{1}, c_{2}>0, n_{0}>0$
$0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
$n \geq n_{0}$

$g(n)$ is an asymptotic tightbound for $f(n)$

o-notation

ω-notation

$$
f(n)=\omega(g(n))
$$

$\mathrm{g}(\mathrm{n})$ is a non-tight asymptotic lowerbound for f(n)

Analogy to real numbers

Functions

Real numbers

$$
\begin{array}{lll}
\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n})) & a \leq b \\
\boldsymbol{f}(\boldsymbol{n})=\Omega(\boldsymbol{g}(\boldsymbol{n})) & a \geq b \\
\boldsymbol{f}(\boldsymbol{n})=\Theta(\boldsymbol{g}(\boldsymbol{n})) & a=b \\
\hline \boldsymbol{f}(\boldsymbol{n})=o(\boldsymbol{g}(\boldsymbol{n})) & a<b \\
\boldsymbol{f}(\boldsymbol{n})=\omega(\boldsymbol{g}(\boldsymbol{n})) & a>b
\end{array}
$$

Standard Classes of Functions

, Constant: $f(n)=\Theta(1)$
, Logarithmic: $f(n)=\Theta(\lg (n))$
, Sublinear: $f(n)=o(n)$
> Linear: $\quad f(n)=\Theta(n)$
, Super-linear: $f(n)=\omega(n)$
, Quadratic: $f(n)=\Theta\left(n^{2}\right)$
> Polynomial: $f(n)=\Theta\left(n^{k}\right) ; k$ is a constant
> Exponential: $f(n)=\Theta\left(k^{n}\right) ; k$ is a constant

Insertion Sort (Revisit)

InSERTION-SORT (A, n)

for $j=2$ to n

$$
k e y=A[j]
$$

// Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$.

$$
i=j-1
$$

while $i>0$ and $A[i]>$ key $\left.\begin{array}{l}A[i+1]=A[i] \\ i=i-1\end{array}\right\}$ j-times

$$
A[i+1]=k e y
$$

Using L'Hopital's rule

, Determine the relative growth rates by using L'Hopital's rule > compute $\lim _{n \rightarrow \infty} \frac{f(N)}{g(N)}$

if $0:$	$f(N)=0(g(N))$
if constant $\neq 0:$	$f(N)=\Theta(g(N))$
if $\infty:$	$g(N)=0(f(N))$

limit oscillates: no relation

Recursion

Function calls

> main() \{
F1(...);
\}
> F1(...) \{ F2(...); \}
, F2(...) \{ F3(...); \}

F3

F2

Other things you do not want to know

Local variables

Stack

