LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures

Keogh, Wei, Xi, Lee \&Vlachos

Set forth these figures as I have conceived their shape...*

Outline of Talk

- The utility of shape matching
- Shape representations
- Shape distance measures
- Lower bounding rotation invariant measures with the LB_Keogh
- Accuracy experiments
- Efficiency experiments
- Conclusions

The Utility of Shape Matching I

...discovering insect mimicry, clustering petroglyphs, finding unusual arrowheads, tracking fish migration, finding anomalous fruit fly wings...

The Utility of Shape Matching II

...automatically annotating old manuscripts, mining medical images, biometrics, spatial mining of horned lizards, indexing nematodes...

Shape Representations I

For virtually all shape matching problems, rotation is the problem

If I asked you to group these reptile skulls, rotation would not confuse you

There are two ways to be rotation invariant

1) Landmarking: Find the one "true" rotation
2) Rotation invariant features

Landmarking

Rotation invariant features

Possibilities include:
Ratio of perimeter to area, fractal measures, elongatedness, circularity, min/max/mean curvature, entropy, perimeter of convex hull and histograms

The only problem with rotation invariant features is that in throwing away rotation information, you must invariably throw away useful information

We can convert shapes into a 1D signal. Thus can we

 remove information about scale and offset. Rotation we must deal with in...so it seemed to change its shape, from running lengthwise to revolving round...*

There are many other 1D representations of shape, and our algorithm can work with any of them

Shape Distance Measures

For the next ten slides, temporarily forget about rotation invariance

Mantled Howler Monkey
Alouatta palliata

Dynamic Time Warping is useful for natural shapes, which often exhibit intraclass variability

For brevity, we will only give details of Euclidean distance in this talk

However, the main point of our paper is that the same idea works for DTW and LCSS with no overhead

We will present empirical results that do show that DTW can be significantly better than Euclidean distance

Early Abandon Euclidean Distance

Most indexing techniques work by grouping objects into logical units, and defining a lower bound distance to the units

> For example, for indexing cities we can use MBRs and the classic MIN-DIST function of Guttman

Here we will use "wedges" as the logical unit, and LB_Keogh as the lower bound distance

Wedge

 \rightarrow (Lsers

Having candidate sequences C_{1}, \ldots, C_{k}, we can form two new sequences U and L :

$$
\begin{aligned}
& U_{i}=\max \left(C_{1 i}, . ., C_{k i}\right) \\
& L_{i}=\min \left(C_{1 i}, \ldots, C_{k i}\right)
\end{aligned}
$$

They form the smallest possible bounding envelope that encloses sequences C1, .. , Ck.
We call the combination of U and L a wedge, and denote a wedge as $W . W=\{U, L\}$

A lower bounding measure between an arbitrary query Q and the set of candidate sequences contained in a wedge W, is the LB_Keogh

Generalized Wedge

- Use $W_{(1,2)}$ to denote that a wedge is built from sequences C_{1} and C_{2}.
- Wedges can be hierarchally nested. For example, $W_{((1,2), 3)}$ consists of $W_{(1,2)}$ and C_{3}.

Of course, fatter wedges mean looser lower bounds...

We can create every possible rotation of the shape, by considerer every possible circular shift of the time series, as shown at my left...
But we already know how to index such time series by using wedges!
We just need to figure out the best wedge making policy..

Hierarchal Clustering

Which wedge set to choose?

Once we have all possible rotations of all the objects we want to index inserted into wedges, we can simply use any LB_Keogh indexer

What are the disadvantages of using LB_Keogh?

There are Nun
"LB_Keogh has provided a convincing lower bound" T. Rath "LB_Keogh can significantly speed up DTW.". Suzuki "LB_Keogh is the best...". Zhou \& Wong
"LB_Keogh offers the tightest lower bounds". M. Cardle.
"LB_Keogh makes retrieval of time-warped time series feasible even for large data sets". Muller et. al.
"LB_Keogh can be effectively used, resulting in considerably less number of DTW computations." Karydis "exploiting LB_Keogh, we can guarantee indexability". Bartolini et. al.
"LB_Keogh, the best method to lower bound.." Capitani.
"LB_Keogh is fast, because it cleverly exploits global constraints that appear in dynamic programming" Christos Faloutsos.

By using the LB_Keogh framework, we can leverage off the wealth of work in the literature

All our Experiments are Reproducible!

People that do irreproducible experiments should be boiled alive

Agreed!
All our data is publicly available

We tested on many diverse datasets

...and I recognized the face ${ }^{¥}$

Leaf of mine, in whom I found pleasure ${ }^{i}$

Purgatorio -- Canto IX $5,{ }^{}$ Purgatorio -- Canto XXIII, ${ }^{\text {e }}$ Purgatorio -- Canto XXVI, 'Paradiso -- Canto XV 88

Name	Classes	Instances	Euclidean Error (\%)	DTW Error (\%) $\{\mathrm{R}\}$	Other Techniques
Face	16	2240	3.839	$3.170\{3\}$	
Swedish Leaves	15	1125	13.33	$10.84\{2\}$	
Chicken	5	446	19.96	19.96\{1\}	20.5 Discrete strings
MixedBag	9	160	4.375	$4.375\{1\}$	Chamfer 6.0, Hausdorff 7.0
OSU Leaves	6	442	33.71	$15.61\{2\}$	
Diatoms	37	781	27.53	$27.53\{1\}$	26.0 Morphological Curvature Scale Spaces
Plane	7	210	0.95	0.0 \{3\}	0.55 Markov Dessriptor
Fish	7	350	11.43	9.71 $\{1\}$	36.0 Fourier Power Cepstrum

Note that DTW is sometimes worth the little extra effort

Implementation details should not matter, for example the results reported should be the same if reimplemented in Ret Hat Linux

> We therefore use a cost model that is independent of hardware/software/buffer size etc. See the paper for details

We compare to brute force, and were possible a Fourier based approach (it can't handle DTW)

Main Memory Experiments

- Projectile point database
- Increasingly larger datasets
- One-nearest-neighbor queries

Euclidean
DTW

Indexing Experiments

- Projectile point/Heterogenous databases
- Increasingly large dimensionality
- One-nearest-neighbor queries

Heterogeneous

All these are in the genus Cercopithecus, except for the skull identified as being either a Vervet or Green monkey, both of which belong in the Genus of Chlorocebus which is in the same Tribe
(Cercopithecini) as Cercopithecus.
Tribe Cercopithecini

Cercopithecus

De Brazza's Monkey, Cercopithecus neglectus
Mustached Guenon, Cercopithecus cephus
Red-tailed Monkey, Cercopithecus ascanius
Chlorocebus
Green Monkey, Chlorocebus sabaceus
Vervet Monkey, Chlorocebus pygerythrus

These are the same species
Bunopithecus hooloc (Hoolock
Gibbon)
These are in the Genus Pongo
All these are in the family Cebidae
Family Cebidae (New World monkeys)
Subfamily Aotinae
Aotus trivirgatus
Subfamily Pitheciinae sakis
Black Bearded Saki, Chiropotes satanas
White-nosed Saki, Chiropotes albinasus

All these are in the tribe
Papionini
Tribe Papionini
Genus Papio - baboons
Genus Mandrillus- Mandrill
These are in the family Lemuridae
These are in the genus Alouatta
These are in the same species
Homo sapiens (Humans)

There is a special reason why this tree is so tall and inverted at its top*

Petroglyph Mining

- They appear worldwide
- Over a million in America alone
- Surprisingly little known about them

Petroglyph are images incised in rock, usually by prehistoric, peoples. They were an important form of pre-writing symbols, used in communication from approximately 10,000 B.C.E. to modern times. Wikipedia
who so sketched out the shapes there?*

Future Work: Data Mining

We did not want to work on shape data mining until we could do fast matching, that would have been ass backwards
.. so similar in act and coloration that I will put them both to one*

Questions?

Feel free to email us with questions Eamonn Keogh: Project Leader eamonn@cs.ucr.edu

Michail Vlachos: Public
Nudity and Index
Structures
vlachos@us.ibm.com

