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Abstract. There has been much recent interest in adapting data mining algorithms to
time series databases. Many of these algorithms need to compare time series.
Typically some variation or extension of Euclidean distance is used. However, as we
demonstrate in this paper, Euclidean distance can be an extremely brittle distance
measure. Dynamic time warping (DTW) has been suggested as a technique to allow
more robust distance calculations, however it is computationally expensive. In this
paper we introduce a modification of DTW which operates on a higher level
abstraction of the data, in particular, a piecewise linear representation. We
demonstrate that our approach allows us to outperform DTW by one to three orders of
magnitude.  We experimentally evaluate our approach on medical, astronomical and
sign language data.

1 Introduction

Time series are a ubiquitous form of data occurring in virtually every scientific
discipline and business application. There has been much recent work on adapting
data mining algorithms to time series databases. For example, Das et al (1998)
attempt to show how association rules can be learned from time series. Debregeas and
Hebrail (1998) demonstrate a technique for scaling up time series clustering
algorithms to massive datasets. Keogh and Pazzani (1998) introduced a new,
scaleable time series classification algorithm. Almost all algorithms that operate on
time series data need to compute the similarity between time series. Euclidean
distance, or some extension or modification thereof, is typically used. However,
Euclidean distance can be
an extremely brittle
distance measure.
Consider the clustering
produced by Euclidean
distance in Fig 1.
Sequence 3 is judged as
most similar to the line in
sequence 4, yet it appears
more similar to 1 or 2.

The reason why
Euclidean distance may
fail to produce an
intuitively correct measure
of similarity between two
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Fig. 1. An unintuitive clustering produced by the Euclidean
distance measure. Sequences 1, 2 and 3 are astronomical time
series (Derriere 1998). Sequence 4 is simply a straight line with
the same mean and variance as the other sequences



sequences is because it is very sensitive to small distortions in the time axis. Consider
Fig 2.A. The two sequences have approximately the same overall shape, but those
shapes are not exactly aligned in the time axis. The nonlinear alignment shown in Fig
2.B would allow a more sophisticated distance measure to be calculated.

A method for achieving such alignments has long been known in the speech
processing community (Sakoe and Chiba 1978). The technique, Dynamic Time
Warping (DTW), was introduced to the data mining community by Berndt and
Clifford (1994). Although they demonstrate the utility of the approach, they
acknowledge that the algorithms time complexity is a problem and that
"…performance on very large databases may be a limitation".

As an example of the utility of DTW compare the clustering shown in Figure 1
with Figure 3.

In this paper we introduce
a technique which speeds up
DTW by a large constant.
The value of the constant is
data dependent but is
typically one to three orders
of magnitude. The algorithm,
Segmented Dynamic Time
Warping (SDTW), takes
advantage of the fact that we
can efficiently approximate
most time series by a set of
piecewise linear segments.

  The rest of this paper is
organized as follows. Section 2 contains a review of the classic DTW algorithm.
Section 3 introduces the piecewise linear representation and SDTW algorithm. In
Section 4 we experimentally compare DTW, SDTW and Euclidean distance on
several real world datasets. Section 5 contains a discussion of related work.  Section 6
contains our conclusions and areas of future research.

2 The Dynamic Time Warping Algorithm

Suppose we have two time series Q and C, of length n and m respectively, where:
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Fig 3. When the dataset used in Fig. 1 is clustered using
DTW the results are much more intuitive

Fig. 2. Two sequences that represent the Y-axis position of an individual’s hand while signing
the word "pen" in Australian Sign Language. Note that while the sequences have an overall
similar shape, they are not aligned in the time axis. Euclidean distance, which assumes the ith

point on one sequence is aligned with ith point on the other (A), will produce a pessimistic
dissimilarity measure.  A nonlinear alignment (B) allows a more sophisticated distance measure
to be calculated
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Q = q1,q2,…,qi,…,qn  (1)

C = c1,c2,…,cj,…,cm  (2)

To align two sequences using DTW we construct an n-by-m matrix where the (ith,
jth) element of the matrix contains the distance d(qi,cj) between the two points qi and cj

(With Euclidean distance, d(qi,cj) = (qi - cj)
2 ). Each matrix element (i,j) corresponds

to the alignment between the points qi and cj. This is illustrated in Figure 4. A warping
path W, is a contiguous (in the sense stated below) set of matrix elements that defines
a mapping between Q and C. The kth element of W is defined as wk = (i,j)k so we have:

W = w1, w2, …,wk,…,wK max(m,n) ≤ K < m+n-1 (3)

The warping path is typically subject to several constraints.

• Boundary Conditions: w1 = (1,1) and wK = (m,n), simply stated, this requires
the warping path to start and finish in diagonally opposite corner cells of the
matrix.

• Continuity: Given wk = (a,b) then wk-1 = (a’,b’) where a–a' ≤1 and b-b' ≤ 1.
This restricts the allowable steps in the warping path to adjacent cells
(including diagonally adjacent cells).

• Monotonicity: Given wk = (a,b) then wk-1 = (a',b') where a–a' ≥ 0 and b-b' ≥ 0.
This forces the points in W to be monotonically spaced in time.

There are exponentially many warping paths that satisfy the above conditions,
however we are interested only in the path which minimizes the warping cost:

(4)

The K in the denominator is used to compensate for the fact that warping paths may
have different lengths.
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Fig. 4. An example warping path
i

j



This path can be found very efficiently using dynamic programming to evaluate the
following recurrence which defines the cumulative distance γ(i,j) as the distance d(i,j)
found in the current cell and the minimum of the cumulative distances of the adjacent
elements:

 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (5)

The Euclidean distance between two sequences can be seen as a special case of
DTW where the kth element of W is constrained such that wk = (i,j)k , i = j = k. Note
that it is only defined in the special case where the two sequences have the same
length.

The time complexity of DTW is O(nm). However this is just for comparing two
sequences. In data mining applications we typically have one of the following two
situations (Agrawal et. al. 1995).

1) Whole Matching: We have a query sequence Q, and X sequences of
approximately the same length in our database. We want to find the sequence
that is most similar to Q.

2) Subsequence Matching: We have a query sequence Q, and a much longer
sequence R of length X in our database. We want to find the subsection of R
that is most similar to Q. To find the best match we "slide" the query along R,
testing every possible subsection of R.

In either case the time complexity is O(n2X), which is intractable for many real-
world problems.

This review of DTW is necessarily brief; we refer the interested reader to Kruskall
and Liberman (1983) for a more detailed treatment.

3 Exploiting a Higher Level Representation

Because working with raw time series is computationally expensive, several
researchers have proposed using higher level representations of the data. In previous
work we have championed a piecewise linear representation, demonstrating that the
linear segment representation can be used to allow relevance feedback in time series
databases (Keogh and Pazzani 1998) and that it allows a user to define probabilistic
queries (Keogh and Smyth 1997).

3.1 Piecewise Linear Representation

We will use the following notation throughout this paper. A time series, sampled at
n points, is represented as an italicized uppercase letter such as A.  The segmented
version of A, containing N linear segments, is denoted as a bold uppercase letter such
as A, where A is a 4-tuple of vectors of length N.

A ≡ {AXL, AXR, AYL, AYR}

The ith segment of sequence A is represented by the line between (AXLi ,AYLi)
and (AXRi ,AYRi).   Figure 5 illustrates this notation.



We will denote the ratio n/N as c, the compression ratio. We can choose to set this
ratio to any value, adjusting the tradeoff between compactness and fidelity. For
brevity we omit details of
how we choose the
compression ratio and how
the segmented representation
is obtained, referring the
interested reader to Keogh
and Smyth (1997) instead.
We do note however that the
segmentation can be obtained
in linear time.

3.2 Warping with the Piecewise Linear Representation

To align two sequences using SDTW we construct an N-by-M matrix where the (ith,
jth) element of the matrix contains the distance d(Qi,Cj) between the two segments Qi

and Cj. The distance between two segments is defined as the square of the distance
between their means:

d(Qi,Cj)  = [((QYLi + QYRi) /2 ) - ((CYLj + CYRj) /2 )]2               (6)

Apart from this modification the matrix-searching algorithm is essentially
unaltered. Equation 5 is modified to reflect the new distance measure:

 γ(i,j)  = d(Qi,Cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (7)

When reporting the DTW distance between two time series (Eq. 4) we
compensated for different length paths by dividing by K, the length of the warping
path. We need to do something similar for SDTW but we cannot use K directly,
because different elements in the warping matrix correspond to segments of different
lengths and therefore K only approximates the length of the warping path.
Additionally we would like SDTW to be measured in the same units as DTW to
facilitate comparison.

 We measure the length of SDTW’s warping path by extending the recurrence
shown in Eq. 7 to return and recursively sum an additional variable, max([QXRi -
QXLi],[CXRj – CXL j]), with the corresponding element from  min{ γ(i-1,j-1) , γ(i-1,j
) , γ(i,j-1) }. Because the length of the warping path is measured in the same units as
DTW we have:

SDTW(Q,C) ≅ DTW(Q,C) (8)

Figure 6 shows strong visual evidence that SDTW finds alignments that are
very similar to those produced by DTW.

The time complexity for a SDTW is O(MN), where M = m/c and N = n/c. This
means that the speedup obtained by using SDTW should be approximately c2, minus
some constant factors because of the overhead of obtaining the segmented
representation.
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Fig. 5. We represent a time series by a sequence of
straight segments

A



4 Experimental results
We are interested in two properties of the proposed approach. The speedup

obtained over the classic DTW algorithm and the quality of the alignment. In general,
the quality of the alignment is subjective, so we designed experiments that indirectly,
but objectively measure it.

4.1 Clustering

For our clustering experiment we utilized the Australian Sign Language Dataset
from the UCI KDD archive (Bay 1999). The dataset consists of various sensors that
measure the X-axis position of a subject’s right hand while signing one of 95 words in
Australian Sign Language (There are other sensors in the dataset, which we ignored in
this work). For each of the words, 5 recordings were made. We used a subset of the
database which corresponds to the following 10 words, "spend", "lose", "forget",
"innocent", "norway", "happy", "later", "eat", "cold" and "crazy".

For every possible pairing of words, we clustered the 10 corresponding sequences,
using group average hierarchical clustering. At the lowest level of the corresponding
dendogram, the clustering is subjective. However, the highest level of the dendogram
(i.e. the first bifurcation) should divide the data into the two classes. There are
34,459,425 possible ways to cluster 10 items, of which 11,025 of them correctly
partition the two classes, so the default rate for an algorithm which guesses randomly
is only 0.031%.  We compared three distance measures:

1) DTW: The classic dynamic time warping algorithm as presented in Section 2.

2) SDTW: The segmented dynamic time warping algorithm proposed here.

3) Euclidean: We also tested Euclidean to facilitate comparison to the large body
of literature that utilizes this distance measure. Because the Euclidean distance
is only defined for sequences of the same length, and there is a small variance
in the length of the sequences in this dataset, we did the following.  When
comparing sequences of different lengths, we "slid" the shorter of the two
sequences across the longer and recorded the minimum distance.

Fig. 6.  A and B both show two similar time series and the alignment between them, as
discovered by DTW. A’ and B’ show the same time series in their segmented representation,
and the alignment discovered by SDTW.  This presents strong visual evidence that SDTW
finds approximately the same warping as DTW
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Figure 7 shows an example of one experiment and Table 1 summarizes the results.

Distance measure Mean Time
(Seconds)

Correct Clusterings
(Out of 45)

Euclidean 3.23 2

DTW 87.06 22

SDTW 4.12 21

Table 1: A comparison of three distance measures on a clustering task

Although the Euclidean distance can be quickly calculated, it performance is only
slightly better than random. DTW and SDTW have essentially the same accuracy but
SDTW is more than 20 times faster.

4.2 Query by Example

The clustering example in the previous section demonstrated the ability of SDTW
to do whole matching. Another common task for time series applications is
subsequence matching, which we consider here.

Assume that we have a query Q of length n, and a much longer reference sequence
R, of length X. The task is to find the subsequence of R, which best matches Q, and
report it’s offset within R. If we use the Euclidean distance our distance measure, we
can use an indexing technique to speedup the search (Faloutsos et. al. 1994, Keogh &
Pazzani 1999). However, DTW does not obey the triangular inequality and this makes

Fig. 7. An example of a single clustering experiment. The time series 1 to 5 correspond to 5
different readings of the word "norway", the time series 6 to 10 correspond to 5 different
readings of the word "later".  Euclidean distance is unable to differentiate between the two
words. Although DTW and SDTW differ at the lowest levels of the dendrogram, were the
clustering is subjective, they both correctly divide the two classes at the highest level
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it impossible to utilize standard indexing schemes. Given this, we are resigned to
using sequential search, "sliding" the query along the reference sequence repeatedly
recalculating the distance at each offset. Figure 8 illustrates the idea.

Brendt and Clifford (1994) suggested the simple optimization of skipping every
second datapoint in R, noting that as Q is slid across R, the distance returned by DTW
changes slowly and smoothly. We note that sometimes it would be possible to skip
much more than 1 datapoint, because the distance will only change dramatically when
a new feature (i.e. a plateau, one side of a peak or valley etc.) from R falls within the
query window. The question then arises of how to tell where features begin and end in
R. The answer to this problem is given automatically, because the process of finding
obtaining the linear segmentation can be considered a form of feature extraction
(Hagit & Zdonik 1996).

We propose searching R by anchoring the leftmost segment in Q against the left
edge of each segment in R. Each time we slid the query to measure the distance at the
next offset, we effectively skip as many datapoints as are represented by the last
anchor segment. As noted in section 3 the speedup for SDTW over DTW is
approximately c2, however this is for whole matching, for subsequence matching the
speedup is approximately c3.

For this experiment we used the EEG dataset from the UCI KDD repository (Bay
1999). This dataset contains a 10,240 datapoints.  In order to create queries with
objectively correct answers. We extracted a 100-point subsection of data at random,
then artificially warped it. To warp a sequence we begin by randomly choosing an
anchor point somewhere on the
sequence. We randomly shifted
the anchor point W time-units
left or right (with W = 10, 20,
30). The other datapoints were
moved to compensate for this
shift by an amount that depended
on their inverse squared distance
to the anchor point, thus
localizing the effect.  After this
transformation we interpolated
the data back onto the original,
equi-spaced X-axis. The net
effect of this transformation is a
smooth local distortion of the
original sequence, as shown in
Figure 9. We repeated this ten
times for each for W.

Fig. 8. Subsequence matching involves sequential search, "sliding" the query Q against the
reference sequence R, repeating recalculating the distance measure at each offset.
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Fig. 9. An example of an artificially warped time series
used in our experiments. An anchor point (black dot) is
chosen in the original sequence (solid line). The anchor
point is moved W units (here W = 10) and the
neighboring points are also moved by an amount
related to the inverse square of their distance to the
anchor point. The net result is that the transformed
sequence (dashed line) is a smoothly warped version of
the original sequence



As before, we compared three distance measures, measuring both accuracy and
time. The results are presented in Table 2.

Distance measure Mean Accuracy
(W = 10 )

Mean Accuracy

(W = 20 )

Mean Accuracy

(W = 30 )

Mean Time

(Seconds)

Euclidean 20% 0% 0% 147.23

DTW 100% 90% 60% 15064.64

SDTW 100% 90% 50% 26.16

Table 2: A comparison of three distance measures on query by example

Euclidean distance is fast to compute, but its performance degrades rapidly in the
presence of time axis distortion. Both DTW and SDTW are able to detect matches in
spite of warping, but SDTW is approximately 575 times faster.

5 Related Work
Dynamic time warping has enjoyed success in many areas where it’s time

complexity is not an issue. It has been used in gesture recognition (Gavrila & Davis
1995), robotics (Schmill et. al 1999), speech processing (Rabiner & Juang 1993),
manufacturing (Gollmer & Posten 1995) and medicine (Caiani et. al 1998).

Conventional DTW, however, is much too slow for searching large databases. For
this problem, Euclidean distance, combined with an indexing scheme is typically
used. Faloutsos et al, (1994) extract the first few Fourier coefficients from the time
series and use these to project the data into multi-dimensional space. The data can
then be indexed with a multi-dimensional indexing structure such as a R-tree. Keogh
and Pazzani (1999) address the problem by de-clustering the data into bins, and
optimizing the data within the bins to reduce search times. While both these
approaches greatly speed up query times for Euclidean distance queries, many real
world applications require non-Euclidean notions of similarity.

The idea of using piecewise linear segments to approximate time series dates back
to Pavlidis and Horowitz (1974). Later researchers, including Hagit and Zdonik
(1996) and Keogh and Pazzani (1998) considered methods to exploit this
representation to support various non-Euclidean distance measures, however this
paper is the first to demonstrate the possibility of supporting time warped queries with
linear segments.

6 Conclusions and Future Work
We demonstrated a modification of DTW that exploits a higher level representation

of time series data to produce one to three orders of magnitude speed-up with no
appreciable decrease in accuracy. We experimentally demonstrated our approach on
several real world datasets.

Future work includes a detailed theoretical examination of SDTW, and extensions
to multivariate time series.
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