
Online Discovery and Maintenance of Time Series Motifs
Abdullah Mueen

University of California, Riverside.

mueen@cs.ucr.edu

Eamonn Keogh
University of California, Riverside.

eamonn@cs.ucr.edu

ABSTRACT

The detection of repeated subsequences, time series motifs, is a
problem which has been shown to have great utility for several
higher-level data mining algorithms, including classification,
clustering, segmentation, forecasting, and rule discovery. In recent
years there has been significant research effort spent on efficiently
discovering these motifs in static offline databases. However, for
many domains, the inherent streaming nature of time series
demands online discovery and maintenance of time series motifs.
In this paper, we develop the first online motif discovery
algorithm which monitors and maintains motifs exactly in real
time over the most recent history of a stream. Our algorithm has a
worst-case update time which is linear to the window size and is
extendible to maintain more complex pattern structures. In
contrast, the current offline algorithms either need significant
update time or require very costly pre-processing steps which
online algorithms simply cannot afford.
Our core ideas allow useful extensions of our algorithm to deal
with arbitrary data rates and discovering multidimensional motifs.
We demonstrate the utility of our algorithms with a variety of case
studies in the domains of robotics, acoustic monitoring and online
compression.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Performance

Keywords

Time Series, Motifs, Online Algorithms

1. INTRODUCTION
Time series motifs are approximately repeated subsequences of a
longer time series stream. Figure 1 shows an example of a ten-
minute long motif discovered in telemetry from a shuttle mission.

Figure 1: Forty-five minutes of Space Shuttle telemetry

from an accelerometer. The two occurrences of the best ten-

minute long motif are highlighted.

Whenever a repeated structure is discovered, it immediately
suggests some underlying reason for the conservation of the
pattern. In this case a little investigation tells us that this pattern is
indicative of a “correction burn” subroutine to compensate for
random drift in the orbiter. The utility of automatic algorithms for
finding such motifs has been demonstrated in many domains. For
example, [24] recently investigated a motif-based algorithm for
controlling the performance of data center chillers, and reported
“switching from motif 8 to motif 5 gives us a nearly $40,000 in

annual savings!”. Motif discovery is also a core subroutine in at
least a dozen research projects on activity discovery for humans
and animals, with applications in elder care [27], surveillance and
sports training. In addition, there has been a recent explosion of
interest in motifs from the graphics and animation communities,
where they are used for a variety of tasks, including finding
transition sequences to allow just a few motion capture sequences
to be stitched together in an endless cycle [2].

Given the ubiquity of time series motifs it is hardly surprising that
many researchers have introduced techniques to find them
efficiently. Until recently, all scalable algorithms were
approximate [6] [27][2][16], but in [17] a scalable exact algorithm
was introduced, and it was shown that exact motif discovery is
tenable for a database with tens of millions of time series objects.
However, as others have observed in many other settings, most
data sources are not static but dynamic, and data may stream in
effectively forever. This suggests two obvious questions: is it
possible to discover and maintain motifs on streaming data, and is
it meaningful and useful to do so? In this work we answer both
questions in the affirmative. We develop the first online motif
discovery algorithm which monitors and maintains exact motifs in
real time over the most recent history of a stream. While we defer
a formal definition of the problem until later, Figure 2 gives a
visual intuition of the problem1.

Figure 2: Maintaining motifs on a forty-five minute long

sliding window. top) Initially A and B are the motif pair.

bottom) but at time 790, two new subsequences C and D

become the new motif pair of subsequences.

1 As this is an inherently visual and dynamic problem, we have created a

video version of Figure 2 at [31].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07...$10.00.

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

3000 3500

A
B

C
D 0 500 1000 1500 2000 2500

STS- 40 Z-Axis (excerpt)

Our algorithm has a worst-case update time which is linear to the
window size, allowing deployment in realistic settings with
current off-the-shelf hardware. As to the utility of streaming motif
discovery, we show empirically its usefulness on several real
world problems in the domains of robotics, wildlife monitoring,
and online compression. In addition, we show that our core ideas
allow useful extensions of our algorithm to deal with data sources
that produce data at changing rates and discovering motifs in
multidimensional streams.

The rest of this paper is organized as follows. In Section 2 we
introduce necessary background materials and notation and in
Section 3 we discuss related work. In Section 4 we introduce our
algorithm, and in Section 5 evaluate its performance. Section 6 we
consider some extensions to allow us to solve related problems.
Section 7 sees an extensive testing of our ideas in several diverse
domains, and we offer conclusions and directions in Section 8.

2. NOTATION AND BACKGROUND
Our algorithm considers real time streaming environments. In this
section we define the environment in which our algorithm works
and the notion of online motif. We begin by defining the data type
of interest, a time series:

Definition 1: A time series is a continuous sequence

x=(x1,x2,…xt) of real-valued numbers where xt is the most recent

value. The numbers are generated at a rate of λ, which can be
constant or variable within a range.

We are not interested in the entire history of the time series, but
rather the recent history, which we capture in a sliding window:

Definition 2: A sliding window (W) is the latest w numbers (xt-

w+1,xt-w+2,…xt) in the sequence x.

Within a sliding window, we are interested in motifs, which
informally are repeated subsequences:

Definition 3: A subsequence of length m of a time series

x=(x1,x2,…xt) is a time series xi,m = (xi,xi+1,…,xi+m-1) for 1 ≤ i ≤ t-

m+1.

We are now in a position to define the online motif. We define the
real time motif of length m in the most recent sliding window as
the most similar non-overlapping pair of subsequences.

Definition 4: The online motif of length m of a time series

x=(x1,x2,…xt) is a pair of subsequences (xi,m, xj,m) for 1 ≤ i <

i+m ≤ j ≤ t-m+1 such that distance(xi,m, xj,m) is the smallest
among all such pairs.

The reason for considering only the non-overlapping sequences is
to avoid trivial matches that are inherently similar because they
share most of their values [6]. Glancing back at Figure 2, we can
see the examples of online motifs, which changed as time passed.
Now we can define the class of algorithms our method belongs to.

Definition 5: The exact search for the online motif of length

m of a time series x=(x1,x2,…xt) finds the pair of subsequences

(xi,m, xj,m) for 1 ≤ i < i+m ≤ j ≤ t-m+1 such that Euclidean

distance between xi,m and xj,m is the smallest among all such
pairs.

Note that there is always a motif pair under the definition of an
exact search. We denote the output produced by an exact search as

the exact motif, as opposed to the approximate motifs, which may
not be the most similar pair under Euclidean distance.

For ease of presentation we only discuss the case of maintaining a
single motif pair. However, it is simple to modify our algorithm to
maintain a pattern that appears k-times or to maintain all pairs
having distances smaller than a threshold. Moreover, motifs from
different windows can be collectively useful in high level data
mining for collaborative structuring [29]. We think these high
level modifications are out of this paper’s scope.

 To measure the distance between subsequences we use the
ubiquitous Euclidean distance in Definition 5. Recent work has
shown that in terms of time series classification accuracy, the
Euclidean distance is surprisingly competitive [10]. Furthermore,
Euclidean distance is a metric and allows the classic early

abandoning optimization [1] and we exploit both facts in this
work. To make the algorithm invariant to baseline and amplitude
scaling, we z-normalize every subsequence and store it to avoid
renormalizing every time it is compared. It is known that z-
normalization improves the accuracy of time series classification
for virtually every problem (i.e. on 37 out of 39 problems
considered in [10]), but if appropriate we can work with non-
normalized data. Therefore, we are now obliged to think of a
subsequence as an independent object or a point in a high
dimensional space unrelated to other objects/points. So the motif
becomes the closest pair of points in this space.

At every time tick, a new subsequence xt-m+2,m of length m is
generated in W and the oldest subsequence xt-w,m is deleted from
W. Therefore, in our model of online motif discovery we assume
that at every time tick a new object/point (i.e. subsequence) is
generated and the oldest object/point is deleted. Objects may have
an exclusion condition (for example, to avoid trivial matches)
specifying the objects with which it should not be compared. This
model is general enough to discover the online motif in streams of
independent objects like individual images, video frames,
transactions, motion poses, etc.

Our algorithm requires O(wm) arithmetic operations to compute
all distances in one update. The most costly part of this is floating
point multiplication. Let's assume a pessimistic constant of b
which roughly denotes the amount of time each floating point
operation takes. In current computers, b can be close to 10-8
seconds. Given this and a user-given (m,w) pair, we can easily
compute the maximum rate (1/bmw) at which our algorithm
guarantees to operate. We assume that λ is below this maximum
rate until section 6.1, where we remove the restriction.

2.1 Why is this Problem Hard?
Here we explicitly state why this problem does not lend itself to
simple or “off-the-shelf” solutions. The issues are well known in
the general context of dynamic closest pair [12], but are worth
restating here.

Assume that we have identified the motif pair in a window W. We
know the exact locations of the two occurrences of the motif, and
their exact Euclidean distance D. If we now insert a single data
point at the head of the queue, what do we now know? The
answer is very little; the motif pair may have changed, and if it
has, then all we know is that the new motif pair has a distance of
at most D. The locations of the new motif pair can be anywhere.
Suppose instead that we delete a single data point from the tail of
the queue, what do we now know? The answer is again, very

little, as the new locations of the motif pair can be anywhere. All
we know is the (now) lower bound D on the motif distance.

However, in the case we are considering, we both insert (enqueue)
and delete (dequeue) at each time tick, so we have neither an
upper nor a lower bound on the motif distance, nor any constraint
on where they might be. So in principle, we can be forced to
completely “resolve” the motif discovery at each time step, with a
O(w2m) cost, even though our data has changed only a tiny
amount, say, 0.0001%. However, as we shall show in the next
section, by caching some computations we can guarantee that we
can maintain the motifs in just O(wm) time.

3. RELATED WORK
Eppstein describes an algorithm for maintaining the closest pair of
points under any distance measure [12]. This algorithm solves a
slightly more general problem than the one we consider, in that it
can have any arbitrary order of insertion and deletion, and it does
not require metric properties in the distance measure. It has found
use mainly in speeding up agglomerative clustering and in some
other offline applications. There is a subtle but critical difference
between the dynamic closest pair maintained in [12][19] and the
online motif discovery we consider here. In our case we are in a
streaming environment where for every update we have a fixed
time until the next value comes in. As such we must optimize the
worst-case time at each insertion for an application that runs
forever. In contrast, the method in [12] optimizes the total

running time after all of the updates (i.e. the clustering) for an
application that runs for a finite time. These distinctions are
critical, and cannot be removed by assuming a buffer in which we
temporarily cache difficult cases, since an arbitrary number of
difficult cases may arrive one after another.

Another approach in dealing with dynamic closest pair
maintenance is commonly known as the “lazy approach” [5]. Here
the data structure is not updated until the closest pair changes. In a
streaming scenario we are interested in, this idea reduces the
amortized time costs, but does not allow us to tightly bound the
time per individual object arrival on arbitrary streams.

In [3] an optimal algorithm for maintaining the closest pair of
points is described. It runs in logarithmic time with linear space.
This algorithm works by hierarchically dividing the space into
sub-spaces and has a problematic exponential constant (2d) where
d is the dimensionality of the objects. It is well understood that
space/data partitioning methods do not work well beyond
dimensionality on the order of eight to ten [28]. However, the
time series motifs that we are trying to maintain can be of any
length from hundreds to thousands.

Eppstein actually introduces two different types of data structures
in [12], a quadratic space-linear update time and a linear space-
O(w log2w) update time considering constant m. We believe that
for the general dynamic closest pair problem these are currently
the best two choices. Our algorithm falls in the first category and
utilizes the temporal ordering of updates to have an amortized

O(w3/2) space complexity.

In [8], statistics such as average, sum, minimum, maximum, etc.
are maintained over a sliding window. Their objective is to
approximate these statistics in bounded space and time, whereas
we are dealing with higher level statistics ,i.e. the closest pair. Our
work can be seen as an attempt to add motif to the set of statistics

that can be maintained; however none of the techniques in [8] are
of direct help to us.

In summary, to the best of our knowledge, none of this work, nor
the rest of the literature on maintaining the closest pair of points
has direct bearing on the exact search problem.

4. ONLINE MONITORING OF MOTIF
In this section we describe our algorithm with a running example.
Assume that we are given a set of eight points in 2D as shown in
Figure 3(a) (for now ignore the connecting arrows). Every point is
numbered by the timestamp of their time of arrival. Recall that
our task is to find the closest pair of points (currently 4 and 1),
and maintain the closest pair as we simultaneously delete 1 and
insert 9, then delete 2/insert 10, then delete 3/insert 11, etc. We
will begin with a naive version and revise it to define our
algorithm.

4.1 The First Solution
First note that the closest pair in Figure 3(a) can be changed by
one or both of the following two events (see Figure 3(b)):

Deletion: If one of the objects in the closest pair is deleted,
there must be a new closest pair having a distance not less than
that of the departing closest pair. For example, after 1 is deleted
(8,2) is the new closest pair.

Insertion: If the new object is closer to any object than the
current closest pair, the motif pair must be updated to reflect that.
For example, (6,9) is the new closest pair after the insertion of 9.

Note that in our example, the closest pair has been changed by
both the insertion and deletion.

Figure 3: a) A set of 8 points. b) At a certain time tick 1 is

deleted and 9 is inserted. c) The data structure of points. d)

The data structure after the update.

Now, the arrows connecting the points in Figure 3(a,b) represent
the nearest neighbor relation. For example, the arrow from 5 to 2
denotes that 2 is the nearest neighbor of 5. To maintain the closest
pair online, our first choice is to track the nearest neighbors of all
of the objects. We use the data structure shown in Figure 3(c) for
this purpose. Here the horizontal arrows show the direction of
insertion and deletion of points representing normalized
subsequences. Each data point is associated with a list of pointers
to the reverse nearest neighbors, the RNN-list. RNN-list is not
ordered therefore insertion to it is a constant time operation. A
data point also has a pointer to its nearest neighbor, NN. With
each pointer the distance associated with the pair is also stored. If

4

5

2

7

3

6

8

1

a)

8 7 21 8 1 24

5 1 3 24

8 67
RNN-list

Nearest Neighbor

Points

Arrive

Points

Depart

c)

1 2 3 4 5 6 7 8

4

5

2

7

3

6

8

1

9

b)

7 7 92 3 2 68

7 9 3 2 65

48d)

2 3 4 5 6 7 8 9

we can maintain such a data structure, we can answer the closest
pair query for this sliding window efficiently simply by finding
the minimum of the NN distances. Next we show how we update
this data structure.

Update upon insertion: When a new point 9 is inserted, the
distances to all of the existing points (1-8) from 9 are computed to
find its NN (6). While computing the distances we may find that
the new point is nearest to an older point. Therefore, we may need
to reset an older point’s NN as well as the new point's RNN-list.
For example, after 9 is inserted, the NN of 6 is changed to 9 from
8 (Figure 3(b)), and also, 6 is inserted in the RNN-list of 9. After
the nearest neighbor x of the new object is found we need to
update the RNN-list of x. For example, the NN of 9 is 6 and
therefore, 9 is added in the RNN-list of 6 (Figure 3(d)). The
update upon insertion is O(wm), as we have no way to avoid those
distance computations.

Update upon deletion: To handle deletion we need to look at the
RNN-list of the departing point. For each of those reverse nearest
neighbors, we need to find their new nearest neighbors. For
example, after 1 is deleted, both 4 and 7 have been assigned new
nearest neighbors (Figure 3(d)). In the worst case, a point can
have O(w) reverse nearest neighbor and thus the naive approach to
handle the deletion would take O(w2m) time.

Counting both insertion and deletion, the naive algorithm needs
O(w2m) update time. The space complexity is O(w) since each
point appears exactly once in all of the RNN-lists. In the next
version of our algorithm we reduce the update time complexity to
O(w2). As visually hinted at in Figure 4(a), we create a huge space
overhead in addressing the problem, which we will mitigate later.

The squared space version: In this version we change the data
structure to store a complete neighbor list (N-list) instead of just
the nearest neighbor (NN). The N-list entries are sorted by the
distances from the owner of the list (Figure 4(a)). Here also the
closest pair is the minimum of the first points of the N-lists.

Update upon insertion: The new object needs to be compared
with every old object and be inserted in every old object's N-list in
distance order. If we implement N-list by min-heap then insertion
in an N-list is O(log w). As a whole, the insertion cost can be as
low as O(wm). If N-lists are simple linked-lists, the insertion cost
would be O(w2) since ordered insertion is O(w) and w > m.

Update upon deletion: For every reverse nearest neighbor x of
the departing point p, we delete the first few entries (including the

departing one) from the N-list of x to get the next nearest neighbor
y within the sliding window. We also insert x in the RNN-list of y.
For example, when 1 goes out of the sliding window (Figure
4(a)), 1 is deleted from the heads of the N-lists of all of its RNNs
(7 and 4). Then 7 and 4 are inserted in the RNN-lists of 3 and 7
respectively. Similarly, when 2 departs, 2 is deleted from 5’s N-
list leaving 1 in the head of 5’s N-list. Since 1 would be an invalid
entry as it is already out of the sliding window, it is also deleted
for consistency. 2 is then deleted from 8’s N-list leaving 6 in the
head which is a valid entry as 6 is not yet departed.

If we use min-heap we may need to heapify after every deletion to
get the next minimum distance. Therefore, min-heap increases the
deletion cost to O(w2log w). For simple linked-list, the worst case
is O(w2) as we may need to delete w2 entries from an overgrown
2w2 sized data structure.

Altogether, we opt for simple linked-list as the data structure for
the N-list and can perform an update in O(w2) time.

Figure 4: a) The squared space structure. Each point has

one RNN-list (upper part) and one N-list (lower part). N-

lists are in order of the distances from the owner. b) The

reduction of space using observation 1.

4.2 Reducing Space and Time Complexity

We use two observations stated below for further refinement.

Observation 1: Every pair of points appears twice in the data
structure. If we keep just one copy of each, it is still possible
to retrieve the closest pair from this data structure.

To exploit the above observation, we can skip updating the old N-
lists during insertion even if the new point becomes the nearest
neighbor of an older point. That way the insertion involves only
building the N-list of the new point and inserting into exactly one
RNN list. This is clearly O(wm) as we can sort the N-list after
inserting all of the old objects. Figure 4(b) shows the data
structure after applying observation 1. Note that the N-list of a
point now only holds points that arrived earlier than it. Also note
that the RNN-lists contain only later points. For example, the
RNN-list of 7 does not have 3 although 7 is the NN of 3. The
RNN-list of a point is built when subsequent points are added and
we will denote it as R-list (Reverse list) from this point on. The
reason is that R-list points to the opposite direction of N-list and
stores the pointer to the later/newer N-lists where its owner is in
the head.

Deletion is still O(w2). Since the N-lists are always kept sorted
and valid, the motif pair is guaranteed to be among the first points
of the N-lists as before.

Observation 2: A point x can never make a motif pair (x,y)
with a later point y if there is a point x < z < y such that d(x,y)
≥ d(z,y).

This is because (z,y) would remain the closest pair when x goes
out of the sliding window. The direct implication of the above is
that the points in an N-list can be stored in the strict increasing
order of their timestamps starting with the nearest neighbor.
Obviously the distance ordering must be preserved.

For example, (6,4) will never get a chance to be the motif because
(6,5) has smaller distance than (6,4) (Figure 4(b)) and we can
safely skip (6,4) when the N-list of 6 is created in the newer
version (Figure 5(a)). Note that <2, 5> is a strictly increasing sub-
list of the N-list of 6, but it does not start with the nearest

8 7 21 8 1 24

5 1 3 24

8 67

5 1 17 3 3 67

7 6 75 2 4 55

1 4 83 7 5 72

4 8 42 5 2 13

6 1 38 1 8 38

3 5 66 4 6 46

a)

1 2 3 4 5 6 7 8

1 1 21 3 1 2

2 13 2 3 6

42 5 4 5

3 1 5 7

4 2 1

6 3

4

1 2 3 4 5 6 7 8

b) R-lists

N-lists

87

54

3

2

6

neighbor (3) and so it would be an erroneous N-list. The correct
N-list for 6 is <3, 5> as shown in Figure 5(a).

After building the N-list, we can use observation 2 to delete some
of the older points safely and build a strictly time ordered list by
only one pass over the N-list. Therefore, it does not increase the
insertion cost. As a benefit of the strict temporal ordering, now a
departing point can only occur in the head of the N-lists of the
points in its R-lists and nowhere else. This removes the burden of
deleting extraneous pointers after the heads at deletion time and
reduces the deletion cost to O(w). The update cost is dominated by
the distance computations upon insertion which is O(wm).

The space complexity still appears as worst-case-quadratic with
the above two observations. In the worst-case, the N-list of every
point could contain all of the previous points exactly in the order
of their arrival. However, we argue that such a pathological worst
case can never occur. In terms of amortized space cost, we can
prove that our algorithm needs O(w3/2) amortized space. The proof
is the following.

The N-list of a point arriving at time t can be any of the random
permutations of all of the objects preceding it i.e. t-w+1, t-w+2,…

,t-1. There are O(w) preceding objects and w! possible
permutations. Now, we are storing the neighbors in the ascending
order of their arrivals in the NN-list. Therefore, the average length
of an NN-list is at most as large as the average length (Ln) of the
longest increasing subsequence of a random permutation of length
w. There have been many conjectures about the exact distribution
of Ln but all agree that the expected value is O(n1/2) [20].
Therefore, the expected space needed for the data structure is
O(w3/2).

Reducing Time to create N-list: To further reduce the update
time we need to reduce the number of distance computations upon
insertion. We can use an order line [17] to order the points on a
1D line. The order line is just a circular projection of all of the
points around a reference/pivot point [11]. The relative distance
between a pair of points on the order line is a lower bound on their
true distance in the original space. Thus, for every pair of points
we now know a lower bound on their true distance, which can be
used to decide if we will compare and insert a point into the N-list
of the newly added point. To facilitate this, we first find an
allowable upper limit of the distance between an older point and
the new point and then check if the lower bound for this pair is
larger than this upper limit. Given any growing N-list, the
allowable upper limit of the distance between a point x and the
new point n is the minimum of d(n, y) for y > x.

Figure 5: a) The space reduction using the temporal

ordering of the neighbors. b) In the next time tick 1 is

deleted from all of the lists and 9 is inserted.

To illustrate this idea, in Figure 6 the evolving N-list of point 6 is
shown. On the left the order line is shown with points 1 through 6
and their positions/referenced distances illustrated. Starting from 6
the algorithm walks both directions on the order line and
compares every new point encountered with point 6. Thus the
order line provides a specific order of the points within the sliding
window to be compared with the new point. In this example the
order can be 3,2,1,4 and 5. The state of the N-list after each of the
points is considered is shown by Figure 6. First of all, 3 is inserted
as UL(3,6)=∞. Now, 2 has a lower bound LB(2,6)=1, which is
smaller than the upper limit UL(2,6)=d(3,6)=1.5. Therefore, we
compute d(2,6)=3, which is larger than the UL, and so 2 is not
inserted. Similarly, 1 has a lower bound LB(1,6)=2 which is larger
than UL(1,6)= d(3,6)=1.5 and therefore, 1 is not inserted. After
that, 4 is inserted, as it has LB(4,6)=2 smaller than UL(4,6)=∞.
Finally, 5 is inserted for the same reason in the list. The last step is
to sort the list and remove out-of-order points. For example, 4 is
knocked out of the N-list at this step.

Figure 6: Building the Neighbor list of point 6. (left) The

order line while 6 is being inserted. (middle) The states of the

N-lists after each insertion. (right) The distance values

assumed in this example.

4.3 The Algorithm

With the above example elucidated, we can complete the
description of the subsequent modifications made to the naive
algorithm to produce our final algorithm. Table 1 through Table 3
show the pseudocode of our algorithm. There are two subroutines
for insertion and deletion made to the sliding window. Each of
them takes in a point as the argument and performs the necessary
operations on the data structure. At every time tick,
insertPoint(latest point) and deletePoint(oldest point) are called to
keep the data structure updated. The locations and the distance of
the motif pair are always available after these two operations. The
data structure is assumed to be accessible by every subroutine.

When insertPoint(p) (Table 1) is called with the new point, p, p is
compared with the reference point (randomly generated or chosen
from the database [17]). By projecting p on the order line (line 1)
we mean computing the referenced distance (i.e. d(p, r)) and
inserting it in the sorted order-line (which is simply a doubly-
linked list of pointers).

After that, the buildNeighborList(p) (Table 2) is called to insert p
and create its N-list in the data structure. As described earlier, the
points are considered in the order of the distance from p on the
order line (line 2 in Table 2). Before inserting a point n in the N-
list, the algorithm finds the allowable upper limit u by looking at
the current N-list (line 3) and compares it with the lower bound
which is the same as the difference between the referenced
distances of p and n (i.e. LB(n, p) = |d(n, r)-d(p, r)|). If the lower

1 1 21 3 1 2

87

54

2 43 5 3 6

4 7

5

6

a)

3

2

6

1 2 3 4 5 6 7 8

2 3 32 3 2 6

3 4 9

8

54 4 6 8

5 7

6

6

b)

5

7

2 3 4 5 6 7 8 9

Clean

up

(6, 7)
(3, 6)

(2, 8)

(5, 11)
(4, 9)

(1, 5)
(3) d(3,6) = 1.5

(1) d(1,6) is not computed

(2) d(2,6) = 3 > d(3,6)

(4) d(4,6) = 6

(5) d(5,6) = 4.5

33 3 3 3

4 4

3 1 4 52

Insertion Order(Point, Position)

R-lists after every insertion

6 6 6 6 6

3

5

6

5

bound is smaller than the upper limit, the algorithm computes the
distance d(p, n) and again compares this with u. In case of d(p, n)

< u, n has to be inserted in the N-list of p. The loop (line 1)
finishes when the immediately previous point in the time order of
p is already inserted and the lower bound of a point is larger than
the d(prevtime(p), p). The reason for this is that all points that
would be considered if the loop were not broken must have u <
d(prevtime(p), p) and therefore would never succeed in the if
statement at line 4.

Table 1: Algorithm for Insertion.

Procedure insertPoint(p)
1 Project p on the order line

2 buildNeighborList(p)

3 Sort p.N-list in ascending order of

 distances from p

4 Remove all x from p.N-list such that

 x.timeStamp < prevN-list(x).timestamp

5 Insert p in the R-list of p.N-list.head

6 if d(p, p.N-list.head)< motif distance

7 Update motif pair with (p,p.N-list.head)

When buildNeighborList(p) returns, the N-list is sorted according
to the distances from p (line 3 of Table 1) and all the points that
meet observation 2 are removed from the N-list (line 4). Then, p is
inserted in the R-list of the first point of its own N-list (line 5). At
line 6 the algorithm checks if the new point forms a motif and
updates the motif pair if it is so. Note that the computation of
upper limit should be efficient enough to preserve the benefit of
reduction in distance computation. We leave it as a design choice
for the practitioners for brevity and lack of space.

Table 2: Algorithm for creating an N-list.

Procedure buildNeighborList(p)
1 while true

2 n ← next point from p on the order line
3 u ← UL(n, p.N-list)
4 if LB(n, p)< u

5 then if d(n,p)<u

6 insert n in p.N-list at the head

7 else if LB(n, p) ≥ d(prevtime(p),p)

8 break

Table 3: Algorithm for Deletion.

Procedure deletePoint(p)

1 for all points q in R-list of p

2 Remove q.N-list.head

3 Insert q into R-list of q.N-list.head

4 Remove p from the order line

5 if p is one of the motif pair

6 Find x for which

 d(x,x.N-list.head) is minimum

7 Update motif pair with (x,x.N-list.head)

When the deletePoint(p) (Table 3) is called with the oldest point
p, all of its reverse neighbors (q) will lose their nearest neighbor
which is p itself (line 2). Since q is a later point than the new q.N-
list.head, the algorithm inserts q into the R-list of q.N-list.head. If
p is one of the motif pair, the algorithm finds a new motif by
finding the minimum of all of the nearest neighbor distances (lines
6-7).

5. PERFORMANCE EVALUATION
We have used four very different datasets in our experiments,
EEG trace [17], EOG trace, insect behavior trace [17] and a
synthetic random walk (RW). All datasets, codes, videos and
numbers used to generate the figures in this section are available
to be downloaded from the supporting webpage [31]. We use a
2.67 GHz Intel quad core processor with 6GB RAM.

To the best of our knowledge there is no other algorithm that
discovers time series motifs online2, although there are works on
dynamic maintenance of the closest pair in high dimensionality. It
is possible to trivially modify any of these algorithms to perform
the online closest pair problem. We have selected the highly
optimized implementation of the well referenced work [12] for
this purpose. To be fair to the author of [12], we note that we
made changes to the implementation to specialize it for time series
motif discovery, and the original code is more general than our
problem requires, as it allows arbitrary insertions and deletions,
whereas we only need to be able to support insertions at the
“head” and deletions at the “tails”.

We have used the implementation of the FastPair data structure
as it performs best in most of the applications [12]. Figure 7(top)
shows that our algorithm grows a lot more slowly than FastPair if
we change both of the parameters w and m while fixing the other
at a specific value. For different datasets FastPair performs
almost identically, so we show only the best one. The speedup in
average update time is guaranteed as we compute O(w) distances
per update while FastPair computes O(w log2w) distances.
Although we cache more statistics and thus use more space per
point, in Figure 7(bottom) we can see an almost flat average space
usage per point over a large range of window sizes and motif
lengths. This is significantly less than the worst case space needed
per point, which is O(w).

Figure 7: Empirical demonstration of the slow growth of

(top) avg. update time and (bottom) avg. length of N-list. The

parameters varied are (left) the window size with m=256 and

2 Based just the title, the reader may imagine that On-line motif detection

in time series with SwiftMotif [13] discovers time series motifs online.
However this work finds approximate motifs offline then approximately
filters them online.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fast Pair

Insect

EEG

EOG

RW

A
v

er
ag

e
U

p
d
at

e
T

im
e

(S
ec

)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

Window Size (w)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fast Pair

Insect

EEG

EOG

RW

Fast Pair

Insect

EEG

EOG

RW

A
v

er
ag

e
U

p
d
at

e
T

im
e

(S
ec

)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

Window Size (w)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Insect

EEG

EOG

RW

Fast Pair
A

v
er

ag
e

U
p

d
at

e
T

im
e

(S
ec

)

Motif Length (m)
0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Insect

EEG

EOG

RW

Fast Pair
A

v
er

ag
e

U
p

d
at

e
T

im
e

(S
ec

)

Motif Length (m)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10

20

30

40

50

60

70

80

90

100

110

Insect

EEG

EOG

RW

A
v

er
ag

e
L

en
g

th
 o

f
N

-l
is

t

Window Size (w)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10

20

30

40

50

60

70

80

90

100

110

Insect

EEG

EOG

RW

A
v

er
ag

e
L

en
g

th
 o

f
N

-l
is

t

Window Size (w)
0 200 400 600 800 1000

0

50

100

150

200

250

300

350

Insect

EEG

EOG

RW

Motif Length (m)

A
v
er

ag
e

L
en

g
th

 o
f

N
-l

is
t

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

Insect

EEG

EOG

RW

Motif Length (m)

A
v
er

ag
e

L
en

g
th

 o
f

N
-l

is
t

(right) the motif length with w=40,000. Labels are in order of

the heights of the right-most points of the curves.

Note that random walk needs significantly larger N-lists to
accommodate more neighbors. The reason for this is the
prominent low-varying trends of random walk. For any m, a new
subsequence becomes neighbor to a relatively larger set of
subsequences that just show the same trend after normalization
even if they have different slopes and variances.

We have two parameters to be set by the users, w and m.
Optimum values of (w, m) significantly depend on the domain and
are very easy for the practitioners to interpret as both can be
measured in seconds or in the number of samples. In Figure 8(left)
we show the average update time per point for every combination
of two sets of possible values of w and m (Figure 8). Although the
figure shows values for the EEG dataset, other datasets exhibit a
similar shape. Figure 8(right) shows the space used per point for
the EOG dataset. Note that there are three zero values showing the
invalid combinations where a motif cannot be defined such as
w=1000, m= 512.

Figure 8: (left) Time usage per point in EEG dataset with

varying w and m. (left) Space usage per point in EOG

dataset with varying w and m.

As impressive as these results are, the following observation
allows us to further improve them. In most applications, we can
define the maximum distance (dm) beyond which no pair can be
meaningfully called a motif simply because they are not similar
enough to be of interest in that domain. As a concrete example, in
the wildlife monitoring application discussed in Section 7.2, we
found that motifs that had a value greater than about 12.0 did not
correspond to sounds that people found to be subjectively similar.
Therefore, we can ask the algorithm not to even bother finding the
motif pair, if they would have a distance of more than dm =12.0.

To incorporate dm in our algorithm, only line 8 in Table 2 needs to
be changed, to test if LB(n, p) ≥ min(d(prevtime(p), p), dm). If we
can obtain a reasonable dm from domain experts, it can reduce the
number of distance computations performed per point with the
help of the order line. The reason for this is that our algorithm can
prune off all of the pairs having distances > dm without computing
the true distances. Consequently, it makes our algorithm faster.
Figure 9(left) shows that when we use dm=0.4m (equivalent to
80% correlation) and 0.2m (equivalent to 90% correlation) then
the average number of distance computation in the EEG dataset
has been reduced for every window size. The speedup is generic
for all of the datasets, as shown in Figure 9(right).

6. EXTENSIONS
The basic online motif discovery algorithm described above can
be extended, augmented and modified in numerous ways. We
shared a very early draft of this work with domain experts in
motion capture, medicine, robotics and agricultural monitoring,

and asked them to suggest a “wish list” of extensions. The top two
requests were adapting to variable data rates (robotics and
agricultural monitoring) and handling multidimensional motifs
(motion capture, robotics). In the next two subsections we show
how this can be accomplished.

Figure 9: (left) The average amount of distance computation

is much less in our algorithm than FastPair for EEG and

further decreases with decreasing dm. (right) Speedup is

consistent over all of the datasets for m=256 and w = 40,000.

6.1 Adapting to Variable Data Rate
Recall that our framework allows a guaranteed performance rate.
That is to say, given values for m, w and a time to compute one
distance calculation, we can compute the fastest arrival rate λ that
we can a guarantee to handle (cf. Section 3). However, even if
asked to perform at exactly this rate, we can generally expect to
have idle CPU cycles, simply because there is a gap between the
pathological worst case we must consider and the average
performance on real datasets. An obvious question is whether we
can we bridge this gap between our average performance, and the
worst-case situation we must guarantee to handle, but expect to
rarely if ever encounter in the real world. The problem is
exasperated by the fact that up to this point we are assuming
constant arrival rates. For example, suppose that a stream
produces data at 100Hz 99.999999% of the time, but very
occasionally produces a burst at 120Hz. If we can just handle
100Hz with an off-the-shelf processor, must we really spend $300
for a faster processor that can handle the rarely seen faster rate?
Much of the literature on monitoring streams for various events
makes the constant arrival rate assumption. However, variable
arrival rates are common in many domains. Previously, similar
problems have been dealt with by load shedding in Data Stream
Management systems with techniques that allow dropping
operators [18], while still maintaining the quality of the results.
We believe that skipping points is also the best solution in the
current context.

Concretely, we skip every point that arrives within the current
update operation (one insertion and one deletion). For example,
for a 100Hz stream, if the update for xi,m takes 30 ms then our
algorithm would skip two immediate points (xi+1,m and xi+2,m) and
would start updating from the third point (xi+3,m) on. However, if
an update takes less than 10 ms then we would not skip the
following point. Therefore, for a smaller average update time (i.e.
6 ms in a 100Hz stream) a whole range of data usage (amount of
data not skipped) is possible. For example, if all of the updates
take 6 ms then 100% data points are used and nothing is skipped.
In contrast, about 50% of the data will be skipped if there are
oscillating update times of 1ms, 11ms, 1ms, 11ms, etc. Figure
10(left) shows the fraction of the stream that is not skipped for
different data rates with of w=32,000 and m=256.. For most of our
datasets, our algorithm can process at 200Hz while skipping every

64
128

256
396

512
1024

1k
2k

4k
8k

10k
20k

40k
0

0.02

0.04

0.06

Window Sze(w)Motif Length (m)

A
v

er
ag

e
U

p
d

at
e

T
im

e
(s

ec
)

Motif Length (m) Window Size (w)
64

128
256

396
512

1024

1k
2k

4k
8k

10k
20k

40k
0

0.02

0.04

0.06

Window Sze(w)Motif Length (m)

A
v

er
ag

e
U

p
d

at
e

T
im

e
(s

ec
)

Motif Length (m) Window Size (w)
64

128
256

396
512

1024

1k
2k

4k
8k

10k
20k

40k
0

50

100

150

Window Size (w)Motif Length (m)

A
v

er
ag

e
L

en
g

th
 o

f
N

-l
is

t

Motif Length (m) Window Size (w)
64

128
256

396
512

1024

1k
2k

4k
8k

10k
20k

40k
0

50

100

150

Window Size (w)Motif Length (m)

A
v

er
ag

e
L

en
g

th
 o

f
N

-l
is

t

Motif Length (m) Window Size (w)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

102

103

104

105

105

Window Size (w)

A
v

er
ag

e
D

is
ta

n
ce

 C
o

m
p

u
ta

ti
o

n

FastPair

dm= 0.2m

dm= ∞

dm= 0.4m

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

102

103

104

105

105

102

103

104

105

105

Window Size (w)

A
v

er
ag

e
D

is
ta

n
ce

 C
o

m
p

u
ta

ti
o

n

FastPair

dm= 0.2m

dm= ∞

dm= 0.4m

0

0.01

0.02

0.03

0.04

InsectEEG EOG RW

d
m

=
 ∞

A
v

er
ag

e
U

p
d
at

e
T

im
e

(S
ec

)

d
m

=
 0

.4
m

d
m

=
 0

.2
m

0

0.01

0.02

0.03

0.04

InsectEEG EOG RW

d
m

=
 ∞

A
v

er
ag

e
U

p
d
at

e
T

im
e

(S
ec

)

d
m

=
 0

.4
m

d
m

=
 0

.2
m

alternate point. Most real time sensors work on less than 100Hz, a
rate at which we process more than 60% of the data.

Obviously there is a chance that one of the skipped points is a
potential motif. There is no way to predict if a skipped point
would be a motif with some future subsequence. Therefore, we
accept this potential loss for the sake of an infinitely running
system. In Figure 10(right) we show that although we skipped 30-
40% of the points in high data rates (i.e. over 100Hz), we did not
miss many of the motifs. The drop rate of the number of motifs
discovered is slower than the drop in data usage.

Figure 10: (left) Fraction of Data Used (the amount of

subsequences considered) plotted against the varying data

rate for w=32,000 and m=256. Our algorithm can operate at

200Hz while skipping roughly every other point. (right) The

fraction of the motifs discovered drops more slowly than the

fraction of data used.

If we considered the unique motifs (non-overlapping) only, our
algorithm would rarely miss any of them. The reason for this is
the following: A skipped subsequence is very similar to the
previous and following non-skipped subsequences (i.e. they are
“trivial matches” [6]). Thus, even if we skipped a subsequence, its
trivial mates would get a chance to form a motif that is almost
identical to the non-skip version.

6.2 Monitoring Multidimensional Motifs
Our algorithm is trivially extendible to multidimensional time
series motifs. For simplicity, let's consider the two-dimensional
case of online motif discovery. At every time tick here we have
exactly two points arriving and two points departing. For the two
time series we keep two separate data structures, each similar to
Figure 5(a). Depending on the application we can ignore/allow a
motif within/across the same/different series. The primary change
is to redefine the set of subsequences that are compared with the
latest subsequence at the time of insertion. Thus, in the N-list and
R-list nodes can point to points in both of the sequences. Both of
the observations of Section 4.2 hold for such N-lists, and the size
of an N-list on average is still O(w1/2).

The update cost is now O(wd), where d is the number of
simultaneous time series. The space needed for the whole data
structure is O(w3/2d). The closest pair can be found as before by
checking the heads of the N-lists in both of the data structure.

7. APPLICATIONS OF ONLINE MOTIFS
Online motif discovery is appropriate for settings where real-
valued numbers are generated at a high rate and there is a
necessity for tracking a particular behavior that creates similar
subsequences in the stream. We have tested our algorithm on
several datasets that fit this model, and use online motif discovery
as a sub-routine. We note that these case studies are really
demonstrations rather than experiments (recall our classic
experiments are in Section 5). In particular, space limitations

prohibit us from providing pseudocode and some minor details.
However, this section is useful to motivate some applications
made possible by online motif discovery. Note that, as before, all
data and code is freely available at [31].

7.1 Online Summarization/Compression
Online summarization/compression of time series data is an
important problem that has attracted considerable research.
Existing approaches use various time series representations,
including piecewise linear approximations (PLA) (as shown in
Figure 11.middle), piecewise constant approximations [15],
Fourier approximations [15] and wavelets [4]. However, the
obvious idea of summarizing a real-valued stream by dynamically
finding reoccurring patterns in the data, placing one occurrence in
a dictionary and assigning future occurrences to pointers to the
dictionary entry, does not appear in the literature. We believe that
this omission is due to the fact that until now there was no
practical method to find the necessary reoccurring patterns in real
time. Clearly the results in this paper repair this omission.

Figure 11: top) An excerpt of record sddb/51 Sudden

Cardiac Death Holter Data. middle) A PLA of the data with

an approximately 0.06 compression rate bottom) A Motif-

Representation approximation of the data at twice the

compression rate still has a lower error.

Plugging motifs into virtually any online compression algorithm is
very simple. Most of the algorithms keep a small buffer of raw
data similar to our sliding window (c.f. Section 3). Within that
buffer they run a simple search algorithm, deciding, for example,
whether to approximate a heartbeat with 6 or 5 linear segments
(See Table 6 of [14] as a concrete example) All we have to do is
add a new search operator that asks “would it be better to

approximate this section with linear segments, or one of the motifs

in the current motif dictionary?”. Given this idea, all we need to
do is set two parameters; how many motifs and of what length we
should keep in the dictionary. In Figure 11 we show an excerpt
where we chose (after seeing the first five minutes of the data) to
maintain just two motifs, one of length 250 and one of length 200

In this example we compare our approach to the most referenced
method [22], which uses PLA. We found that even if we force the
motif-representation based method to use half the space of PLA, it
can still approximate the data with a residual error that is
approximately one-ninth that of PLA. The approximations
achieved are not only of a higher fidelity than other methods, but
have the advantage of being highly interpretable in some
circumstances. Note that the improvements achieved by the motif
based algorithms are highly variable. On stock market data, with
little or no repeated structure, there is no improvement; but on
normal heartbeats, which are of course highly repetitive, the
reduction in size (for the same residual error as PLA) can be two
or three orders of magnitude for larger datasets.

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1.0

EOG
Random Walk
Insect

F
ra

ct
io

n
 o

f
D

at
a

U
se

d

Data Rate (Hz)

EEG

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fraction of Data Used

F
ra

ct
io

n
 o

f
M

o
ti

fs
 D

is
co

v
er

ed

EOG

Random Walk

EEG

Insect

0 500 1000 1500 2000

Raw

PLA

MR

A

B
A AB B B B B

0 500 1000 1500 2000

Raw

PLA

MR

A

B

A

B
A AB B B B B

7.2 Acoustic Wildlife Management
Acoustic wildlife management is a useful tool for measuring the
health of an eco-system, and several projects are currently
monitoring the calls of various birds, frog and insects [26]. A key
issue is that while sensors typically monitor twenty-four hours a
day, memory limits for storage, or bandwidth limits for
transmission, form a bottleneck on how much data can be retained
in field-deployed sensors. For example, [26] reports that when
using a simple thresholding algorithm, “we have been able to

reduce half an hour of raw recording to only 13 seconds of

audio,” however, they acknowledge that this data comes with
some false positives. However, as [9] notes, “Animals of many

species sing or call in a repetitive and species specific fashion”
(our emphasis). We can exploit the repetitive nature of certain
bird calls to reduce the amount of data retained while also
reducing the false positive rate. For example, consider our efforts
to monitor a sensor from woods in Monterrey, California. The
sound data is converted into mel-frequency cepstrum coefficients,
and only the first coefficient is examined. In this project, only
Strigiformes (owls) are of interest, and domain experts have noted
that most owls repeat their calls in a window of eight to ten
seconds and that the calls last from one to three seconds [25].
Given this, we set w = 12 seconds, and m = 3 seconds, erring a
little on the long side of those values. On a thirty second trace that
we manually confirmed had only ambient noise, we found that the
mean motif value was 42.3, with an STD of 7.1. Given that we
only record sounds that have corresponding motifs with a value
less than 10.0, such a value is very unlikely to happen by chance.
In Figure 12 we show an example of a detected motif with a value
of 4.57, which corresponds to the call of a Great Horned Owl.

Figure 12: top) A stream is examined for motifs 3 seconds

long, with a history of 12 seconds. bottom) The discovered

motif is the cry of a Great Horned Owl, whose cry is

phonetically written as hoo, hooo,---,hooo, hooo. Audio is

available at [31].

7.3 Closing the Loop
Closing the loop is a classic problem in robotics in which we task
the robot with recognizing when it has returned to a previously
visited place. The robot may sense its environment with a
multitude of sensors, including cameras and ultrasonic
transceivers, all of whose output can be represented as “time
series.” The problem is challenging in two aspects: first, the robot
must be able to recognize that it has returned to a previously
visited place. This is a significant challenge, but assuming we can
solve it, there is the second challenge of mitigating time and space
complexity on resource limited robots. Naturally, we can see our

algorithm as a tool for continuously maintaining the most likely
candidate locations for loop closure.

In an effort to verify this utility, we use the "New College" dataset
[7], where a set of 2,146 images have been collected by a moving
robot. The images are taken from both sides of the robot. We
convert the images to "time series" by taking their color histogram
and group the images from both sides to form a sequence of
image-pairs. We feed our algorithm with this data and w = 200.
We also provide a separation window of 90 images for excluding
trivial similarities. Our algorithm found 89 unique motifs, 46 of
them being loop-closures. One of the motifs and its location are
shown in Figure 13.

Figure 13: (left) The map of the "New College." A segment

of robot motion is shown. (right) Motif: The most similar

pair of image-pairs that are 90 samples apart and their color

histograms. The image-pairs are from the same location and

thus our algorithm detected the loop-closure.

8. CONCLUSION
In this work we introduced the first practical algorithm for finding
and maintaining time series motifs on fast moving streams. Our
algorithm performs updates in O(w) time and O(w3/2) amortized
space where w is the size of the most recent window. We showed
applications of our ideas in robotics, online compression and
wildlife management. Future work includes reducing the worst
case space complexity and an extensive field testing of the
wildlife monitoring scenario.

9. REFERENCES
[1] Agrawal, R., Faloutsos, C. and Swami, A.N. Efficient

Similarity Search in Sequence Databases. FODO 1993: 69-
84.

[2] Beaudoin, P., Panne, M., Poulin, P. and Coros, S. Motion-
Motif Graphs. ACM/EG Symposium on Computer
Animation 2008.

[3] Bespamyatnikh, S. N. An Optimal Algorithm for Closest Pair
Maintenance. ACM SCG '95, 152-161.

[4] Bulut, A. and Singh, A.: SWAT: Hierarchical Stream
Summarization in Large Networks. In Proceedings of the
ICDE (2003).

[5] Cardinal, J. and Eppstein, D. Lazy Algorithms for Dynamic
Closest Pair with Arbitrary Distance Measures.
ALENEX/ANALC 2004.

[6] Chiu, B., Keogh, E. and Lonardi, S. Probabilistic Discovery
of Time Series Motifs. ACM SIGKDD 2003. pp 493-498.

0 50 100 150 200 250

hoo, hooo, --- hooo , hooo

0 200 400 600 800

W = 12 seconds

m = 3 seconds

0 50 100 150 200 250

hoo, hooo, --- hooo , hooo

0 50 100 150 200 250

hoo, hooo, --- hooo , hooo

0 200 400 600 800

W = 12 seconds

m = 3 seconds

0 200 400 600 800

W = 12 seconds

m = 3 seconds

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

Start Loop Closure Detected

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

0 400 800 1200 1600
0

4

8

12

16

Start Loop Closure Detected

[7] Cummins, M. and Newman, P. FAB-MAP: Probabilistic

Localization and Mapping in the Space of Appearance. The
International Journal of Robotics Research, 27(6), 647-665,
2008.

[8] Datar, M., Gionis, A., Indyk, P., and Motwani, R.
Maintaining Stream Statistics over Sliding Windows. SIAM
J. Comput. 31, 6 (Jun. 2002), 1794-1813.

[9] Dawson, D. K. and Efford, M. G. Bird Population Density

Estimated from Acoustic Signals. Journal of Applied
Ecology. Volume 46 Issue 6, Pages 1201–1209.

[10] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and
Keogh, E. Querying and Mining of Time Series Data:

Experimental Comparison of Representations and Distance

Measures. VLDB 2008.

[11] Dohnal, V., Gennaro C. and Zezula, P. Similarity Join in

Metric Spaces Using eD-Index. Database and Expert Systems
Applications, Volume 2736, pp. 484-493, 2003.

[12] Eppstein, D. Fast Hierarchical Clustering and Other

Applications of Dynamic Closest Pairs. ACM Journal of
Experimental Algorithmics 5:1 (2000).

[13] Fuchs, E., Gruber, T., Nitschke, J. and Sick, B. On-line Motif

Detection in Time Series with SwiftMotif. In: Pattern
Recognition 42(11):3015-3031, 2009.

[14] Keogh, E., Chu, S., Hart, D. and Pazzani, M. An Online

Algorithm for Segmenting Time Series. ICDM, pp. 289–296,
2001.

[15] Lazaridis, I. and Mehrotra, S. Capturing Sensor-Generated

Time Series with Quality Guarantees. ICDE 2003.

[16] Lin, J., Keogh, E., Lonardi, S. and Patel, P. Finding Motifs in

Time Series, Workshop on Temporal Data Mining
(KDD’02), 2002.

[17] Mueen, A., Keogh, E., Zhu, Q., Cash, S. and Westover, B.
Exact Discovery of Time Series Motif. SDM 2009.

[18] N. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M. and
Stonebraker. M. Load Shedding in a Data Stream Manager.
VLDB 2003, pp. 309-320.

[19] Nanopoulos A., Theodoridis Y. and Manolopoulos, Y.
C2P: Clustering Based on Closest Pairs. VLDB, pp. 331–
340, 2001.

[20] Odlyzko, A.M. and Rains, E.M. On Longest Increasing

Subsequences in Random Permutation, Analysis, Geometry,
Number Theory: the Mathematics of Leon Ehrenpreis.439–
451, Contemp. Math., 251, Amer. Math. Soc., Providence,
RI, 2000.

[21] Ogras, Y. and Ferhatosmanoglu, H. Online Summarization of

Dynamic Time Series Data. The VLDB Journal, 15(1):84–
98, 2006.

[22] Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D. and
Truppel, W. Online Amnesic Approximation of Streaming

Time Series. In ICDE 2004.

[23] Patel, P., Keogh, E., Lin, J. and Lonardi, S. Mining Motifs in

Massive Time Series Databases. ICDM 2002.

[24] Patnaik, D., Marwah, M., Sharma, R.K. and Ramakrishnan,
N. Sustainable Operation and Management of Data Center

Chillers using Temporal Data Mining. KDD 2009: 1305-
1314.

[25] Penteriani, V. Variation in the Function of Eagle Owl Vocal

Behaviour: Territorial Defence and Intra-Pair

Communication? Ethol. Ecol. Evol. 14: 275–281.

[26] Trifa, V.M., Girod, L., Collier, T., Blumstein, D.T. and
Taylor, C.E. Automated Wildlife Monitoring Using Self-

Configuring Sensor Networks Deployed in Natural Habitats.
AROB 2007.

[27] Vahdatpour, A., Amini, N. and Sarrafzadeh, M. Towards

Unsupervised Activity Discovery using Multi Dimensional

Motif Detection in Time Series. 21st International Joint
Conference on Artificial Intelligence (IJCAI) 2009,
Pasadena, California.

[28] Weber R., Schek, H-J. and Blott, S. A Quantitative Analysis

and Performance Study for Similarity-Search Methods in

High-Dimensional Spaces. VLDB, pp. 194–205, 1998.

[29] Wurst, M., Morik, K. and Mierswa, I. Localized Alternative

Cluster Ensembles for Collaborative Structuring. ECML
2006. pp. 485-496.

[30] Yankov, D., Keogh, E., Medina, J., Chiu, B. and Zordan V.
Detecting Motifs under Uniform Scaling. SIGKDD 2007.

[31] Supporting webpage containing Data, Code, Videos, Excel
sheet and Presentation slides.
Link: http://www.cs.ucr.edu/~mueen/OnlineMotif/index.html

