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ABSTRACT 

The detection of repeated subsequences, time series motifs, is a 
problem which has been shown to have great utility for several 
higher-level data mining algorithms, including classification, 
clustering, segmentation, forecasting, and rule discovery. In recent 
years there has been significant research effort spent on efficiently 
discovering these motifs in static offline databases. However, for 
many domains, the inherent streaming nature of time series 
demands online discovery and maintenance of time series motifs. 
In this paper, we develop the first online motif discovery 
algorithm which monitors and maintains motifs exactly in real 
time over the most recent history of a stream. Our algorithm has a 
worst-case update time which is linear to the window size and is 
extendible to maintain more complex pattern structures. In 
contrast, the current offline algorithms either need significant 
update time or require very costly pre-processing steps which 
online algorithms simply cannot afford.  
Our core ideas allow useful extensions of our algorithm to deal 
with arbitrary data rates and discovering multidimensional motifs. 
We demonstrate the utility of our algorithms with a variety of case 
studies in the domains of robotics, acoustic monitoring and online 
compression. 
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Algorithms, Performance 
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1. INTRODUCTION 
Time series motifs are approximately repeated subsequences of a 
longer time series stream. Figure 1 shows an example of a ten-
minute long motif discovered in telemetry from a shuttle mission. 

 
Figure 1: Forty-five minutes of Space Shuttle telemetry 

from an accelerometer. The two occurrences of the best ten-

minute long motif are highlighted.  

Whenever a repeated structure is discovered, it immediately 
suggests some underlying reason for the conservation of the 
pattern. In this case a little investigation tells us that this pattern is 
indicative of a “correction burn” subroutine to compensate for 
random drift in the orbiter. The utility of automatic algorithms for 
finding such motifs has been demonstrated in many domains. For 
example, [24] recently investigated a motif-based algorithm for 
controlling the performance of data center chillers, and reported 
“switching from motif 8 to motif 5 gives us a nearly $40,000 in 

annual savings!”. Motif discovery is also a core subroutine in at 
least a dozen research projects on activity discovery for humans 
and animals, with applications in elder care [27], surveillance and 
sports training. In addition, there has been a recent explosion of 
interest in motifs from the graphics and animation communities, 
where they are used for a variety of tasks, including finding 
transition sequences to allow just a few motion capture sequences 
to be stitched together in an endless cycle [2].  

Given the ubiquity of time series motifs it is hardly surprising that 
many researchers have introduced techniques to find them 
efficiently. Until recently, all scalable algorithms were 
approximate [6] [27][2][16], but in [17] a scalable exact algorithm 
was introduced, and it was shown that exact motif discovery is 
tenable for a database with tens of millions of time series objects. 
However, as others have observed in many other settings, most 
data sources are not static but dynamic, and data may stream in 
effectively forever. This suggests two obvious questions: is it 
possible to discover and maintain motifs on streaming data, and is 
it meaningful and useful to do so? In this work we answer both 
questions in the affirmative. We develop the first online motif 
discovery algorithm which monitors and maintains exact motifs in 
real time over the most recent history of a stream. While we defer 
a formal definition of the problem until later, Figure 2 gives a 
visual intuition of the problem1.  

 

Figure 2: Maintaining motifs on a forty-five minute long 

sliding window. top) Initially A and B are the motif pair. 

bottom) but at time 790, two new subsequences C and D 

become the new motif pair of subsequences.  

                                                                 
1 As this is an inherently visual and dynamic problem, we have created a 

video version of Figure 2 at [31].  
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Our algorithm has a worst-case update time which is linear to the 
window size, allowing deployment in realistic settings with 
current off-the-shelf hardware. As to the utility of streaming motif 
discovery, we show empirically its usefulness on several real 
world problems in the domains of robotics, wildlife monitoring, 
and online compression. In addition, we show that our core ideas 
allow useful extensions of our algorithm to deal with data sources 
that produce data at changing rates and discovering motifs in 
multidimensional streams. 

The rest of this paper is organized as follows. In Section 2 we 
introduce necessary background materials and notation and in 
Section 3 we discuss related work. In Section 4 we introduce our 
algorithm, and in Section 5 evaluate its performance. Section 6 we 
consider some extensions to allow us to solve related problems. 
Section 7 sees an extensive testing of our ideas in several diverse 
domains, and we offer conclusions and directions in Section 8. 

2. NOTATION AND BACKGROUND 
Our algorithm considers real time streaming environments. In this 
section we define the environment in which our algorithm works 
and the notion of online motif. We begin by defining the data type 
of interest, a time series: 

Definition 1: A time series is a continuous sequence 

x=(x1,x2,…xt) of real-valued numbers where xt is the most recent 

value. The numbers are generated at a rate of λ, which can be 
constant or variable within a range. 

We are not interested in the entire history of the time series, but 
rather the recent history, which we capture in a sliding window: 

Definition 2: A sliding window (W) is the latest w numbers (xt-

w+1,xt-w+2,…xt) in the sequence x.  

Within a sliding window, we are interested in motifs, which 
informally are repeated subsequences: 

Definition 3: A subsequence of length m of a time series 

x=(x1,x2,…xt) is a time series xi,m = (xi,xi+1,…,xi+m-1) for 1 ≤ i ≤ t-

m+1. 

We are now in a position to define the online motif. We define the 
real time motif of length m in the most recent sliding window as 
the most similar non-overlapping pair of subsequences.  

Definition 4: The online motif of length m of a time series 

x=(x1,x2,…xt) is a pair of subsequences (xi,m, xj,m) for 1 ≤ i < 

i+m ≤ j ≤ t-m+1 such that distance(xi,m, xj,m) is the smallest 
among all such pairs. 

The reason for considering only the non-overlapping sequences is 
to avoid trivial matches that are inherently similar because they 
share most of their values [6]. Glancing back at Figure 2, we can 
see the examples of online motifs, which changed as time passed. 
Now we can define the class of algorithms our method belongs to. 

Definition 5: The exact search for the online motif of length 

m of a time series x=(x1,x2,…xt) finds the pair of subsequences 

(xi,m, xj,m) for 1 ≤ i < i+m ≤ j ≤ t-m+1 such that Euclidean 

distance between xi,m and xj,m is the smallest among all such 
pairs. 

Note that there is always a motif pair under the definition of an 
exact search. We denote the output produced by an exact search as 

the exact motif, as opposed to the approximate motifs, which may 
not be the most similar pair under Euclidean distance.  

For ease of presentation we only discuss the case of maintaining a 
single motif pair. However, it is simple to modify our algorithm to 
maintain a pattern that appears k-times or to maintain all pairs 
having distances smaller than a threshold. Moreover, motifs from 
different windows can be collectively useful in high level data 
mining for collaborative structuring [29]. We think these high 
level modifications are out of this paper’s scope. 

 To measure the distance between subsequences we use the 
ubiquitous Euclidean distance in Definition 5. Recent work has 
shown that in terms of time series classification accuracy, the 
Euclidean distance is surprisingly competitive [10]. Furthermore, 
Euclidean distance is a metric and allows the classic early 

abandoning optimization [1] and we exploit both facts in this 
work. To make the algorithm invariant to baseline and amplitude 
scaling, we z-normalize every subsequence and store it to avoid 
renormalizing every time it is compared. It is known that z-
normalization improves the accuracy of time series classification 
for virtually every problem (i.e. on 37 out of 39 problems 
considered in [10]), but if appropriate we can work with non-
normalized data. Therefore, we are now obliged to think of a 
subsequence as an independent object or a point in a high 
dimensional space unrelated to other objects/points. So the motif 
becomes the closest pair of points in this space.  

At every time tick, a new subsequence xt-m+2,m of length m is 
generated in W and the oldest subsequence xt-w,m is deleted from 
W. Therefore, in our model of online motif discovery we assume 
that at every time tick a new object/point (i.e. subsequence) is 
generated and the oldest object/point is deleted. Objects may have 
an exclusion condition (for example, to avoid trivial matches) 
specifying the objects with which it should not be compared. This 
model is general enough to discover the online motif in streams of 
independent objects like individual images, video frames, 
transactions, motion poses, etc.  

Our algorithm requires O(wm) arithmetic operations to compute 
all distances in one update. The most costly part of this is floating 
point multiplication. Let's assume a pessimistic constant of b 
which roughly denotes the amount of time each floating point 
operation takes. In current computers, b can be close to 10-8 
seconds. Given this and a user-given (m,w) pair, we can easily 
compute the maximum rate (1/bmw) at which our algorithm  
guarantees to operate. We assume that λ is below this maximum 
rate until section 6.1, where we remove the restriction. 

2.1 Why is this Problem Hard? 
Here we explicitly state why this problem does not lend itself to 
simple or “off-the-shelf” solutions. The issues are well known in 
the general context of dynamic closest pair [12], but are worth 
restating here.  

Assume that we have identified the motif pair in a window W. We 
know the exact locations of the two occurrences of the motif, and 
their exact Euclidean distance D. If we now insert a single data 
point at the head of the queue, what do we now know? The 
answer is very little; the motif pair may have changed, and if it 
has, then all we know is that the new motif pair has a distance of 
at most D. The locations of the new motif pair can be anywhere. 
Suppose instead that we delete a single data point from the tail of 
the queue, what do we now know? The answer is again, very 



little, as the new locations of the motif pair can be anywhere. All 
we know is the (now) lower bound D on the motif distance.  

However, in the case we are considering, we both insert (enqueue) 
and delete (dequeue) at each time tick, so we have neither an 
upper nor a lower bound on the motif distance, nor any constraint 
on where they might be. So in principle, we can be forced to 
completely “resolve” the motif discovery at each time step, with a 
O(w2m) cost, even though our data has changed only a tiny 
amount, say, 0.0001%. However, as we shall show in the next 
section, by caching some computations we can guarantee that we 
can maintain the motifs in just O(wm) time. 

3. RELATED WORK 
Eppstein describes an algorithm for maintaining the closest pair of 
points under any distance measure [12]. This algorithm solves a 
slightly more general problem than the one we consider, in that it 
can have any arbitrary order of insertion and deletion, and it does 
not require metric properties in the distance measure. It has found 
use mainly in speeding up agglomerative clustering and in some 
other offline applications. There is a subtle but critical difference 
between the dynamic closest pair maintained in [12][19] and the 
online motif discovery we consider here.  In our case we are in a 
streaming environment where for every update we have a fixed 
time until the next value comes in. As such we must optimize the 
worst-case time at each insertion for an application that runs 
forever.  In contrast, the method in [12] optimizes the total 

running time after all of the updates (i.e. the clustering) for an 
application that runs for a finite time. These distinctions are 
critical, and cannot be removed by assuming a buffer in which we 
temporarily cache difficult cases, since an arbitrary number of 
difficult cases may arrive one after another.  

Another approach in dealing with dynamic closest pair 
maintenance is commonly known as the “lazy approach” [5]. Here 
the data structure is not updated until the closest pair changes. In a 
streaming scenario we are interested in, this idea reduces the 
amortized time costs, but does not allow us to tightly bound the 
time per individual object arrival on arbitrary streams.  

In [3] an optimal algorithm for maintaining the closest pair of 
points is described. It runs in logarithmic time with linear space. 
This algorithm works by hierarchically dividing the space into 
sub-spaces and has a problematic exponential constant (2d) where 
d is the dimensionality of the objects. It is well understood that 
space/data partitioning methods do not work well beyond 
dimensionality on the order of eight to ten [28]. However, the 
time series motifs that we are trying to maintain can be of any 
length from hundreds to thousands. 

Eppstein actually introduces two different types of data structures 
in [12], a quadratic space-linear update time and a linear space-
O(w log2w) update time considering constant m. We believe that 
for the general dynamic closest pair problem these are currently 
the best two choices. Our algorithm falls in the first category and 
utilizes the temporal ordering of updates to have an amortized 

O(w3/2) space complexity. 

In [8], statistics such as average, sum, minimum, maximum, etc. 
are maintained over a sliding window. Their objective is to 
approximate these statistics in bounded space and time, whereas 
we are dealing with higher level statistics ,i.e. the closest pair. Our 
work can be seen as an attempt to add motif to the set of statistics 

that can be maintained; however none of the techniques in [8] are 
of direct help to us. 

In summary, to the best of our knowledge, none of this work, nor 
the rest of the literature on maintaining the closest pair of points 
has direct bearing on the exact search problem. 

4. ONLINE MONITORING OF MOTIF 
In this section we describe our algorithm with a running example. 
Assume that we are given a set of eight points in 2D as shown in 
Figure 3(a) (for now ignore the connecting arrows). Every point is 
numbered by the timestamp of their time of arrival.  Recall that 
our task is to find the closest pair of points (currently 4 and 1), 
and maintain the closest pair as we simultaneously delete 1 and 
insert 9, then delete 2/insert 10, then delete 3/insert 11, etc. We 
will begin with a naive version and revise it to define our 
algorithm. 

4.1 The First Solution 
First note that the closest pair in Figure 3(a) can be changed by 
one or both of the following two events (see Figure 3(b)): 

Deletion: If one of the objects in the closest pair is deleted, 
there must be a new closest pair having a distance not less than 
that of the departing closest pair. For example, after 1 is deleted 
(8,2) is the new closest pair. 

Insertion: If the new object is closer to any object than the 
current closest pair, the motif pair must be updated to reflect that. 
For example, (6,9) is the new closest pair after the insertion of 9. 

Note that in our example, the closest pair has been changed by 
both the insertion and deletion. 

   

Figure 3: a) A set of 8 points. b) At a certain time tick 1 is 

deleted and 9 is inserted. c) The data structure of points. d) 

The data structure after the update. 

Now, the arrows connecting the points in Figure 3(a,b) represent 
the nearest neighbor relation. For example, the arrow from 5 to 2 
denotes that 2 is the nearest neighbor of 5. To maintain the closest 
pair online, our first choice is to track the nearest neighbors of all 
of the objects. We use the data structure shown in Figure 3(c) for 
this purpose. Here the horizontal arrows show the direction of 
insertion and deletion of points representing normalized 
subsequences. Each data point is associated with a list of pointers 
to the reverse nearest neighbors, the RNN-list. RNN-list is not 
ordered therefore insertion to it is a constant time operation. A 
data point also has a pointer to its nearest neighbor, NN. With 
each pointer the distance associated with the pair is also stored. If 
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we can maintain such a data structure, we can answer the closest 
pair query for this sliding window efficiently simply by finding 
the minimum of the NN distances. Next we show how we update 
this data structure. 

Update upon insertion: When a new point 9 is inserted, the 
distances to all of the existing points (1-8) from 9 are computed to 
find its NN (6). While computing the distances we may find that 
the new point is nearest to an older point. Therefore, we may need 
to reset an older point’s NN as well as the new point's RNN-list. 
For example, after 9 is inserted, the NN of 6 is changed to 9 from 
8 (Figure 3(b)), and also, 6 is inserted in the RNN-list of 9. After 
the nearest neighbor x of the new object is found we need to 
update the RNN-list of x. For example, the NN of 9 is 6 and 
therefore, 9 is added in the RNN-list of 6 (Figure 3(d)). The 
update upon insertion is O(wm), as we have no way to avoid those 
distance computations. 

Update upon deletion: To handle deletion we need to look at the 
RNN-list of the departing point. For each of those reverse nearest 
neighbors, we need to find their new nearest neighbors. For 
example, after 1 is deleted, both 4 and 7 have been assigned new 
nearest neighbors (Figure 3(d)). In the worst case, a point can 
have O(w) reverse nearest neighbor and thus the naive approach to 
handle the deletion would take O(w2m) time. 

Counting both insertion and deletion, the naive algorithm needs 
O(w2m) update time. The space complexity is O(w) since each 
point appears exactly once in all of the RNN-lists. In the next 
version of our algorithm we reduce the update time complexity to 
O(w2). As visually hinted at in Figure 4(a), we create a huge space 
overhead in addressing the problem, which we will mitigate later. 

The squared space version: In this version we change the data 
structure to store a complete neighbor list (N-list) instead of just 
the nearest neighbor (NN). The N-list entries are sorted by the 
distances from the owner of the list (Figure 4(a)). Here also the 
closest pair is the minimum of the first points of the N-lists.  

Update upon insertion: The new object needs to be compared 
with every old object and be inserted in every old object's N-list in 
distance order. If we implement N-list by min-heap then insertion 
in an N-list is O(log w). As a whole, the insertion cost can be as 
low as O(wm). If N-lists are simple linked-lists, the insertion cost 
would be O(w2) since ordered insertion is O(w) and w > m. 

Update upon deletion: For every reverse nearest neighbor x of 
the departing point p, we delete the first few entries (including the 

departing one) from the N-list of x to get the next nearest neighbor 
y within the sliding window. We also insert x in the RNN-list of y. 
For example, when 1 goes out of the sliding window (Figure 
4(a)), 1 is deleted from the heads of the N-lists of all of its RNNs 
(7 and 4). Then 7 and 4 are inserted in the RNN-lists of 3 and 7 
respectively. Similarly, when 2 departs, 2 is deleted from 5’s N-
list leaving 1 in the head of 5’s N-list. Since 1 would be an invalid 
entry as it is already out of the sliding window, it is also deleted 
for consistency. 2 is then deleted from 8’s N-list leaving 6 in the 
head which is a valid entry as 6 is not yet departed.  

If we use min-heap we may need to heapify after every deletion to 
get the next minimum distance. Therefore, min-heap increases the 
deletion cost to O(w2log w). For simple linked-list, the worst case 
is O(w2) as we may need to delete w2 entries from an overgrown 
2w2 sized data structure. 

Altogether, we opt for simple linked-list as the data structure for 
the N-list and can perform an update in O(w2) time. 

  

Figure 4: a) The squared space structure. Each point has 

one RNN-list (upper part) and one N-list (lower part). N-

lists are in order of the distances from the owner. b) The 

reduction of space using observation 1. 

4.2 Reducing Space and Time Complexity 

We use two observations stated below for further refinement. 

Observation 1: Every pair of points appears twice in the data 
structure. If we keep just one copy of each, it is still possible 
to retrieve the closest pair from this data structure. 

To exploit the above observation, we can skip updating the old N-
lists during insertion even if the new point becomes the nearest 
neighbor of an older point. That way the insertion involves only 
building the N-list of the new point and inserting into exactly one 
RNN list. This is clearly O(wm) as we can sort the N-list after 
inserting all of the old objects. Figure 4(b) shows the data 
structure after applying observation 1. Note that the N-list of a 
point now only holds points that arrived earlier than it. Also note 
that the RNN-lists contain only later points. For example, the 
RNN-list of 7 does not have 3 although 7 is the NN of 3. The 
RNN-list of a point is built when subsequent points are added and 
we will denote it as R-list (Reverse list) from this point on. The 
reason is that R-list points to the opposite direction of N-list and 
stores the pointer to the later/newer N-lists where its owner is in 
the head.  

Deletion is still O(w2). Since the N-lists are always kept sorted 
and valid, the motif pair is guaranteed to be among the first points 
of the N-lists as before.  

Observation 2: A point x can never make a motif pair (x,y) 
with a later point y if there is a point x < z < y such that d(x,y) 
≥ d(z,y).   

This is because (z,y) would remain the closest pair when x goes 
out of the sliding window. The direct implication of the above is 
that the points in an N-list can be stored in the strict increasing 
order of their timestamps starting with the nearest neighbor. 
Obviously the distance ordering must be preserved.  

For example, (6,4) will never get a chance to be the motif because 
(6,5) has smaller distance than (6,4) (Figure 4(b)) and we can 
safely skip (6,4) when the N-list of 6 is created in the newer 
version (Figure 5(a)). Note that <2, 5> is a strictly increasing sub-
list of the N-list of 6, but it does not start with the nearest 
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neighbor (3) and so it would be an erroneous N-list. The correct 
N-list for 6 is <3, 5> as shown in Figure 5(a).  

After building the N-list, we can use observation 2 to delete some 
of the older points safely and build a strictly time ordered list by 
only one pass over the N-list. Therefore, it does not increase the 
insertion cost. As a benefit of the strict temporal ordering, now a 
departing point can only occur in the head of the N-lists of the 
points in its R-lists and nowhere else. This removes the burden of 
deleting extraneous pointers after the heads at deletion time and 
reduces the deletion cost to O(w). The update cost is dominated by 
the distance computations upon insertion which is O(wm). 

The space complexity still appears as worst-case-quadratic with 
the above two observations. In the worst-case, the N-list of every 
point could contain all of the previous points exactly in the order 
of their arrival. However, we argue that such a pathological worst 
case can never occur. In terms of amortized space cost, we can 
prove that our algorithm needs O(w3/2) amortized space. The proof 
is the following.  

The N-list of a point arriving at time t can be any of the random 
permutations of all of the objects preceding it i.e. t-w+1, t-w+2,… 

,t-1. There are O(w) preceding objects and w! possible 
permutations. Now, we are storing the neighbors in the ascending 
order of their arrivals in the NN-list. Therefore, the average length 
of an NN-list is at most as large as the average length (Ln) of the 
longest increasing subsequence of a random permutation of length 
w. There have been many conjectures about the exact distribution 
of Ln but all agree that the expected value is O(n1/2) [20]. 
Therefore, the expected space needed for the data structure is 
O(w3/2). 

Reducing Time to create N-list: To further reduce the update 
time we need to reduce the number of distance computations upon 
insertion. We can use an order line [17] to order the points on a 
1D line. The order line is just a circular projection of all of the 
points around a reference/pivot point [11]. The relative distance 
between a pair of points on the order line is a lower bound on their 
true distance in the original space. Thus, for every pair of points 
we now know a lower bound on their true distance, which can be 
used to decide if we will compare and insert a point into the N-list 
of the newly added point. To facilitate this, we first find an 
allowable upper limit of the distance between an older point and 
the new point and then check if the lower bound for this pair is 
larger than this upper limit. Given any growing N-list, the 
allowable upper limit of the distance between a point x and the 
new point n is the minimum of d(n, y) for y > x.  

  

Figure 5: a) The space reduction using the temporal 

ordering of the neighbors. b) In the next time tick 1 is 

deleted from all of the lists and 9 is inserted. 

To illustrate this idea, in Figure 6 the evolving N-list of point 6 is 
shown. On the left the order line is shown with points 1 through 6 
and their positions/referenced distances illustrated. Starting from 6 
the algorithm walks both directions on the order line and 
compares every new point encountered with point 6. Thus the 
order line provides a specific order of the points within the sliding 
window to be compared with the new point. In this example the 
order can be 3,2,1,4 and 5. The state of the N-list after each of the 
points is considered is shown by Figure 6. First of all, 3 is inserted 
as UL(3,6)=∞. Now, 2 has a lower bound LB(2,6)=1, which is 
smaller than the upper limit UL(2,6)=d(3,6)=1.5. Therefore, we 
compute d(2,6)=3, which is larger than the UL, and so 2 is not 
inserted. Similarly, 1 has a lower bound LB(1,6)=2 which is larger 
than UL(1,6)= d(3,6)=1.5 and therefore, 1 is not inserted. After 
that, 4 is inserted, as it has LB(4,6)=2 smaller than UL(4,6)=∞. 
Finally, 5 is inserted for the same reason in the list. The last step is 
to sort the list and remove out-of-order points. For example, 4 is 
knocked out of the N-list at this step. 

 

Figure 6: Building the Neighbor list of point 6. (left) The 

order line while 6 is being inserted. (middle) The states of the 

N-lists after each insertion. (right) The distance values 

assumed in this example. 

4.3 The Algorithm 

With the above example elucidated, we can complete the 
description of the subsequent modifications made to the naive 
algorithm to produce our final algorithm. Table 1 through Table 3 
show the pseudocode of our algorithm. There are two subroutines 
for insertion and deletion made to the sliding window. Each of 
them takes in a point as the argument and performs the necessary 
operations on the data structure. At every time tick, 
insertPoint(latest point) and deletePoint(oldest point) are called to 
keep the data structure updated. The locations and the distance of 
the motif pair are always available after these two operations. The 
data structure is assumed to be accessible by every subroutine. 

When insertPoint(p) (Table 1) is called with the new point, p, p is 
compared with the reference point (randomly generated or chosen 
from the database [17]). By projecting p on the order line (line 1) 
we mean computing the referenced distance (i.e. d(p, r)) and 
inserting it in the sorted order-line (which is simply a doubly-
linked list of pointers).  

After that, the buildNeighborList(p) (Table 2) is called to insert p 
and create its N-list in the data structure. As described earlier, the 
points are considered in the order of the distance from p on the 
order line (line 2 in Table 2). Before inserting a point n in the N-
list, the algorithm finds the allowable upper limit u by looking at 
the current N-list (line 3) and compares it with the lower bound 
which is the same as the difference between the referenced 
distances of p and n (i.e. LB(n, p) = |d(n, r)-d(p, r)|). If the lower 
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bound is smaller than the upper limit, the algorithm computes the 
distance d(p, n) and again compares this with u. In case of d(p, n) 

< u, n has to be inserted in the N-list of p. The loop (line 1) 
finishes when the immediately previous point in the time order of 
p is already inserted and the lower bound of a point is larger than 
the d(prevtime(p), p). The reason for this is that all points that 
would be considered if the loop were not broken must have u < 
d(prevtime(p), p)  and therefore would never succeed in the if 
statement at line 4. 

Table 1: Algorithm for Insertion. 

Procedure  insertPoint(p)  
1 Project p on the order line 

2 buildNeighborList(p) 

3 Sort p.N-list in ascending order of 

        distances from p 

4 Remove all x from p.N-list such that 

        x.timeStamp < prevN-list(x).timestamp 

5 Insert p in the R-list of p.N-list.head 

6 if d(p, p.N-list.head)< motif distance 

7  Update motif pair with (p,p.N-list.head) 

When buildNeighborList(p) returns, the N-list is sorted according 
to the distances from p (line 3 of Table 1) and all the points that 
meet observation 2 are removed from the N-list (line 4). Then, p is 
inserted in the R-list of the first point of its own N-list (line 5). At 
line 6 the algorithm checks if the new point forms a motif and 
updates the motif pair if it is so. Note that the computation of 
upper limit should be efficient enough to preserve the benefit of 
reduction in distance computation. We leave it as a design choice 
for the practitioners for brevity and lack of space. 

Table 2: Algorithm for creating an N-list. 

Procedure  buildNeighborList(p)  
1 while true 

2  n ← next point from p on the order line 
3  u ← UL(n, p.N-list)  
4  if LB(n, p)< u 

5   then if d(n,p)<u 

6    insert n in p.N-list at the head 

7  else if LB(n, p) ≥ d(prevtime(p),p) 

8   break 

Table 3: Algorithm for Deletion. 

Procedure  deletePoint(p)  

1 for all points q in R-list of p 

2  Remove q.N-list.head  

3  Insert q into R-list of q.N-list.head 

4 Remove p from the order line 

5 if p is one of the motif pair 

6  Find x for which  

          d(x,x.N-list.head) is minimum 

7  Update motif pair with (x,x.N-list.head) 

When the deletePoint(p) (Table 3) is called with the oldest point 
p, all of its reverse neighbors (q) will lose their nearest neighbor 
which is p itself (line 2). Since q is a later point than the new q.N-
list.head, the algorithm inserts q into the R-list of q.N-list.head. If 
p is one of the motif pair, the algorithm finds a new motif by 
finding the minimum of all of the nearest neighbor distances (lines 
6-7). 

5. PERFORMANCE EVALUATION 
We have used four very different datasets in our experiments, 
EEG trace [17], EOG trace, insect behavior trace [17] and a 
synthetic random walk (RW). All datasets, codes, videos and 
numbers used to generate the figures in this section are available 
to be downloaded from the supporting webpage [31]. We use a 
2.67 GHz Intel quad core processor with 6GB RAM. 

To the best of our knowledge there is no other algorithm that 
discovers time series motifs online2, although there are works on 
dynamic maintenance of the closest pair in high dimensionality. It 
is possible to trivially modify any of these algorithms to perform 
the online closest pair problem. We have selected the highly 
optimized implementation of the well referenced work [12] for 
this purpose. To be fair to the author of [12], we note that we 
made changes to the implementation to specialize it for time series 
motif discovery, and the original code is more general than our 
problem requires, as it allows arbitrary insertions and deletions, 
whereas we only need to be able to support insertions at the 
“head” and deletions at the “tails”. 

We have used the implementation of the FastPair data structure 
as it performs best in most of the applications [12]. Figure 7(top) 
shows that our algorithm grows a lot more slowly than FastPair if 
we change both of the parameters w and m while fixing the other 
at a specific value. For different datasets FastPair performs 
almost identically, so we show only the best one. The speedup in 
average update time is guaranteed as we compute O(w) distances 
per update while FastPair computes O(w log2w) distances. 
Although we cache more statistics and thus use more space per 
point, in Figure 7(bottom) we can see an almost flat average space 
usage per point over a large range of window sizes and motif 
lengths. This is significantly less than the worst case space needed 
per point, which is O(w).  

  

  

Figure 7: Empirical demonstration of the slow growth of 

(top) avg. update time and (bottom) avg. length of N-list. The 

parameters varied are (left) the window size with m=256 and 

                                                                 
2 Based just the title, the reader may imagine that On-line motif detection 

in time series with SwiftMotif [13] discovers time series motifs online. 
However this work finds approximate motifs offline then approximately 
filters them online. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fast Pair

Insect

EEG

EOG

RW

A
v

er
ag

e 
U

p
d
at

e 
T

im
e 

(S
ec

)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

Window Size (w)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fast Pair

Insect

EEG

EOG

RW

Fast Pair

Insect

EEG

EOG

RW

A
v

er
ag

e 
U

p
d
at

e 
T

im
e 

(S
ec

)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

Window Size (w)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Insect

EEG

EOG

RW

Fast Pair
A

v
er

ag
e 

U
p

d
at

e 
T

im
e 

(S
ec

)

Motif Length (m)
0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Insect

EEG

EOG

RW

Fast Pair
A

v
er

ag
e 

U
p

d
at

e 
T

im
e 

(S
ec

)

Motif Length (m)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10

20

30

40

50

60

70

80

90

100

110

Insect

EEG

EOG

RW

A
v

er
ag

e 
L

en
g

th
 o

f 
N

-l
is

t

Window Size (w)

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10

20

30

40

50

60

70

80

90

100

110

Insect

EEG

EOG

RW

A
v

er
ag

e 
L

en
g

th
 o

f 
N

-l
is

t

Window Size (w)
0 200 400 600 800 1000

0

50

100

150

200

250

300

350

Insect

EEG

EOG

RW

Motif Length (m)

A
v
er

ag
e 

L
en

g
th

 o
f 

N
-l

is
t

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

Insect

EEG

EOG

RW

Motif Length (m)

A
v
er

ag
e 

L
en

g
th

 o
f 

N
-l

is
t



(right) the motif length with w=40,000. Labels are in order of 

the heights of the right-most points of the curves. 

Note that random walk needs significantly larger N-lists to 
accommodate more neighbors. The reason for this is the 
prominent low-varying trends of random walk. For any m, a new 
subsequence becomes neighbor to a relatively larger set of 
subsequences that just show the same trend after normalization 
even if they have different slopes and variances. 

We have two parameters to be set by the users, w and m. 
Optimum values of (w, m) significantly depend on the domain and 
are very easy for the practitioners to interpret as both can be 
measured in seconds or in the number of samples. In Figure 8(left) 
we show the average update time per point for every combination 
of two sets of possible values of w and m (Figure 8). Although the 
figure shows values for the EEG dataset, other datasets exhibit a 
similar shape. Figure 8(right) shows the space used per point for 
the EOG dataset. Note that there are three zero values showing the 
invalid combinations where a motif cannot be defined such as 
w=1000, m= 512. 

  

Figure 8: (left) Time usage per point in EEG dataset with 

varying w and m. (left) Space usage per point in EOG 

dataset with varying w and m. 

As impressive as these results are, the following observation 
allows us to further improve them. In most applications, we can 
define the maximum distance (dm) beyond which no pair can be 
meaningfully called a motif simply because they are not similar 
enough to be of interest in that domain. As a concrete example, in 
the wildlife monitoring application discussed in Section 7.2, we 
found that motifs that had a value greater than about 12.0 did not 
correspond to sounds that people found to be subjectively similar. 
Therefore, we can ask the algorithm not to even bother finding the 
motif pair, if they would have a distance of more than dm =12.0. 

To incorporate dm in our algorithm, only line 8 in Table 2 needs to 
be changed, to test if LB(n, p) ≥ min( d(prevtime(p), p), dm ). If we 
can obtain a reasonable dm from domain experts, it can reduce the 
number of distance computations performed per point with the 
help of the order line. The reason for this is that our algorithm can 
prune off all of the pairs having distances > dm without computing 
the true distances.  Consequently, it makes our algorithm faster. 
Figure 9(left) shows that when we use dm=0.4m (equivalent to 
80% correlation) and 0.2m (equivalent to 90% correlation) then 
the average number of distance computation in the EEG dataset 
has been reduced for every window size. The speedup is generic 
for all of the datasets, as shown in Figure 9(right). 

6. EXTENSIONS 
The basic online motif discovery algorithm described above can 
be extended, augmented and modified in numerous ways. We 
shared a very early draft of this work with domain experts in 
motion capture, medicine, robotics and agricultural monitoring, 

and asked them to suggest a “wish list” of extensions. The top two 
requests were adapting to variable data rates (robotics and 
agricultural monitoring) and handling multidimensional motifs 
(motion capture, robotics). In the next two subsections we show 
how this can be accomplished. 

Figure 9: (left) The average amount of distance computation 

is much less in our algorithm than FastPair for EEG and 

further decreases with decreasing dm. (right) Speedup is 

consistent over all of the datasets for m=256 and w = 40,000. 

6.1 Adapting to Variable Data Rate 
Recall that our framework allows a guaranteed performance rate. 
That is to say, given values for m, w and a time to compute one 
distance calculation, we can compute the fastest arrival rate λ that 
we can a guarantee to handle (cf. Section 3). However, even if 
asked to perform at exactly this rate, we can generally expect to 
have idle CPU cycles, simply because there is a gap between the 
pathological worst case we must consider and the average 
performance on real datasets. An obvious question is whether we 
can we bridge this gap between our average performance, and the 
worst-case situation we must guarantee to handle, but expect to 
rarely if ever encounter in the real world. The problem is 
exasperated by the fact that up to this point we are assuming 
constant arrival rates. For example, suppose that a stream 
produces data at 100Hz 99.999999% of the time, but very 
occasionally produces a burst at 120Hz. If we can just handle 
100Hz with an off-the-shelf processor, must we really spend $300 
for a faster processor that can handle the rarely seen faster rate? 
Much of the literature on monitoring streams for various events 
makes the constant arrival rate assumption. However, variable 
arrival rates are common in many domains. Previously, similar 
problems have been dealt with by load shedding in Data Stream 
Management systems with techniques that allow dropping 
operators [18], while still maintaining the quality of the results. 
We believe that skipping points is also the best solution in the 
current context.  

Concretely, we skip every point that arrives within the current 
update operation (one insertion and one deletion). For example, 
for a 100Hz stream, if the update for xi,m takes 30 ms then our 
algorithm would skip two immediate points (xi+1,m and xi+2,m) and 
would start updating from the third point (xi+3,m) on. However, if 
an update takes less than 10 ms then we would not skip the 
following point. Therefore, for a smaller average update time (i.e. 
6 ms in a 100Hz stream) a whole range of data usage (amount of 
data not skipped) is possible. For example, if all of the updates 
take 6 ms then 100% data points are used and nothing is skipped. 
In contrast, about 50% of the data will be skipped if there are 
oscillating update times of 1ms, 11ms, 1ms, 11ms, etc. Figure 
10(left) shows the fraction of the stream that is not skipped for 
different data rates with of w=32,000 and m=256.. For most of our 
datasets, our algorithm can process at 200Hz while skipping every 
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alternate point. Most real time sensors work on less than 100Hz, a 
rate at which we process more than 60% of the data.  

Obviously there is a chance that one of the skipped points is a 
potential motif. There is no way to predict if a skipped point 
would be a motif with some future subsequence. Therefore, we 
accept this potential loss for the sake of an infinitely running 
system. In Figure 10(right) we show that although we skipped 30-
40% of the points in high data rates (i.e. over 100Hz), we did not 
miss many of the motifs. The drop rate of the number of motifs 
discovered is slower than the drop in data usage. 

  

Figure 10: (left) Fraction of Data Used (the amount of 

subsequences considered) plotted against the varying data 

rate for w=32,000 and m=256. Our algorithm can operate at 

200Hz while skipping roughly every other point. (right) The 

fraction of the motifs discovered drops more slowly than the 

fraction of data used. 

If we considered the unique motifs (non-overlapping) only, our 
algorithm would rarely miss any of them. The reason for this is 
the following: A skipped subsequence is very similar to the 
previous and following non-skipped subsequences (i.e. they are 
“trivial matches” [6]). Thus, even if we skipped a subsequence, its 
trivial mates would get a chance to form a motif that is almost 
identical to the non-skip version. 

6.2 Monitoring Multidimensional Motifs 
Our algorithm is trivially extendible to multidimensional time 
series motifs. For simplicity, let's consider the two-dimensional 
case of online motif discovery. At every time tick here we have 
exactly two points arriving and two points departing. For the two 
time series we keep two separate data structures, each similar to 
Figure 5(a). Depending on the application we can ignore/allow a 
motif within/across the same/different series. The primary change 
is to redefine the set of subsequences that are compared with the 
latest subsequence at the time of insertion. Thus, in the N-list and 
R-list nodes can point to points in both of the sequences. Both of 
the observations of Section 4.2 hold for such N-lists, and the size 
of an N-list on average is still O(w1/2). 

The update cost is now O(wd), where d is the number of 
simultaneous time series. The space needed for the whole data 
structure is O(w3/2d). The closest pair can be found as before by 
checking the heads of the N-lists in both of the data structure. 

7. APPLICATIONS OF ONLINE MOTIFS 
Online motif discovery is appropriate for settings where real-
valued numbers are generated at a high rate and there is a 
necessity for tracking a particular behavior that creates similar 
subsequences in the stream. We have tested our algorithm on 
several datasets that fit this model, and use online motif discovery 
as a sub-routine. We note that these case studies are really 
demonstrations rather than experiments (recall our classic 
experiments are in Section 5). In particular, space limitations 

prohibit us from providing pseudocode and some minor details. 
However, this section is useful to motivate some applications 
made possible by online motif discovery. Note that, as before, all 
data and code is freely available at [31]. 

7.1 Online Summarization/Compression 
Online summarization/compression of time series data is an 
important problem that has attracted considerable research. 
Existing approaches use various time series representations, 
including piecewise linear approximations (PLA) (as shown in 
Figure 11.middle), piecewise constant approximations [15], 
Fourier approximations [15] and wavelets [4]. However, the 
obvious idea of summarizing a real-valued stream by dynamically 
finding reoccurring patterns in the data, placing one occurrence in 
a dictionary and assigning future occurrences to pointers to the 
dictionary entry, does not appear in the literature. We believe that 
this omission is due to the fact that until now there was no 
practical method to find the necessary reoccurring patterns in real 
time. Clearly the results in this paper repair this omission.      

 

Figure 11: top) An excerpt of record sddb/51 Sudden 

Cardiac Death Holter Data. middle) A PLA of the data with 

an approximately 0.06 compression rate  bottom) A Motif-

Representation approximation of the data at twice the 

compression rate still has a lower error. 

Plugging motifs into virtually any online compression algorithm is 
very simple. Most of the algorithms keep a small buffer of raw 
data similar to our sliding window (c.f. Section 3). Within that 
buffer they run a simple search algorithm, deciding, for example, 
whether to approximate a heartbeat with 6 or 5 linear segments 
(See Table 6 of [14] as a concrete example) All we have to do is 
add a new search operator that asks “would it be better to 

approximate this section with linear segments, or one of the motifs 

in the current motif dictionary?”. Given this idea, all we need to 
do is set two parameters; how many motifs and of what length we 
should keep in the dictionary. In Figure 11 we show an excerpt 
where we chose (after seeing the first five minutes of the data) to 
maintain just two motifs, one of length 250 and one of length 200 

In this example we compare our approach to the most referenced 
method [22], which uses PLA. We found that even if we force the 
motif-representation based method to use half the space of PLA, it 
can still approximate the data with a residual error that is 
approximately one-ninth that of PLA. The approximations 
achieved are not only of a higher fidelity than other methods, but 
have the advantage of being highly interpretable in some 
circumstances. Note that the improvements achieved by the motif 
based algorithms are highly variable. On stock market data, with 
little or no repeated structure, there is no improvement; but on 
normal heartbeats, which are of course highly repetitive, the 
reduction in size (for the same residual error as PLA) can be two 
or three orders of magnitude for larger datasets. 

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1.0

EOG
Random Walk
Insect

F
ra

ct
io

n
 o

f 
D

at
a 

U
se

d

Data Rate (Hz)

EEG

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fraction of Data Used

F
ra

ct
io

n
 o

f 
M

o
ti

fs
 D

is
co

v
er

ed

EOG

Random Walk

EEG

Insect

0 500 1000 1500 2000

Raw

PLA

MR

A

B
A AB B B B B

0 500 1000 1500 2000

Raw

PLA

MR

A

B

A

B
A AB B B B B



7.2 Acoustic Wildlife Management 
Acoustic wildlife management is a useful tool for measuring the 
health of an eco-system, and several projects are currently 
monitoring the calls of various birds, frog and insects [26]. A key 
issue is that while sensors typically monitor twenty-four hours a 
day, memory limits for storage, or bandwidth limits for 
transmission, form a bottleneck on how much data can be retained 
in field-deployed sensors. For example, [26] reports that when 
using a simple thresholding algorithm, “we have been able to 

reduce half an hour of raw recording to only 13 seconds of 

audio,” however, they acknowledge that this data comes with 
some false positives. However, as [9] notes, “Animals of many 

species sing or call in a repetitive and species specific fashion” 
(our emphasis). We can exploit the repetitive nature of certain 
bird calls to reduce the amount of data retained while also 
reducing the false positive rate. For example, consider our efforts 
to monitor a sensor from woods in Monterrey, California.  The 
sound data is converted into mel-frequency cepstrum coefficients, 
and only the first coefficient is examined. In this project, only 
Strigiformes (owls) are of interest, and domain experts have noted 
that most owls repeat their calls in a window of eight to ten 
seconds and that the calls last from one to three seconds [25]. 
Given this, we set w = 12 seconds, and m = 3 seconds, erring a 
little on the long side of those values. On a thirty second trace that 
we manually confirmed had only ambient noise, we found that the 
mean motif value was 42.3, with an STD of 7.1. Given that we 
only record sounds that have corresponding motifs with a value 
less than 10.0, such a value is very unlikely to happen by chance. 
In Figure 12 we show an example of a detected motif with a value 
of 4.57, which corresponds to the call of a Great Horned Owl. 

 

Figure 12: top) A stream is examined for motifs 3 seconds 

long, with a history of 12 seconds. bottom) The discovered 

motif is the cry of a Great Horned Owl, whose cry is 

phonetically written as  hoo, hooo,---,hooo, hooo. Audio is 

available at [31]. 

7.3 Closing the Loop 
Closing the loop is a classic problem in robotics in which we task 
the robot with recognizing when it has returned to a previously 
visited place. The robot may sense its environment with a 
multitude of sensors, including cameras and ultrasonic 
transceivers, all of whose output can be represented as “time 
series.” The problem is challenging in two aspects: first, the robot 
must be able to recognize that it has returned to a previously 
visited place. This is a significant challenge, but assuming we can 
solve it, there is the second challenge of mitigating time and space 
complexity on resource limited robots. Naturally, we can see our 

algorithm as a tool for continuously maintaining the most likely 
candidate locations for loop closure. 

In an effort to verify this utility, we use the "New College" dataset 
[7], where a set of 2,146 images have been collected by a moving 
robot. The images are taken from both sides of the robot. We 
convert the images to "time series" by taking their color histogram 
and group the images from both sides to form a sequence of 
image-pairs. We feed our algorithm with this data and w = 200. 
We also provide a separation window of 90 images for excluding 
trivial similarities. Our algorithm found 89 unique motifs, 46 of 
them being loop-closures. One of the motifs and its location are 
shown in Figure 13. 

 

Figure 13: (left) The map of the "New College." A segment 

of robot motion is shown. (right) Motif: The most similar 

pair of image-pairs that are 90 samples apart and their color 

histograms. The image-pairs are from the same location and 

thus our algorithm detected the loop-closure. 

8. CONCLUSION 
In this work we introduced the first practical algorithm for finding 
and maintaining time series motifs on fast moving streams. Our 
algorithm performs updates in O(w) time and O(w3/2) amortized 
space where w is the size of the most recent window. We showed 
applications of our ideas in robotics, online compression and 
wildlife management. Future work includes reducing the worst 
case space complexity and an extensive field testing of the 
wildlife monitoring scenario.  
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