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Fast Similarity Matrix Profile for Music Analysis
and Exploration
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Abstract—Most algorithms for music data mining and retrieval
analyze the similarity between feature sets extracted from the
raw audio. A conventional approach to assess similarities within
or between recordings is to create similarity matrices. However,
this method requires quadratic space for each comparison and
typically requires a costly post-processing of the matrix. We have
recently proposed SiMPle, a powerful representation based on
subsequence similarity join, which is applicable in several music
analysis tasks. In this paper, we propose SiMPle-Fast a highly
efficient method for exact computation of SiMPle that is up to
one order of magnitude faster than SiMPle. Furthermore, we
demonstrate the utility of SiMPle-Fast in cover music recognition
and thumbnailing tasks and show our method is significantly
faster and more accurate than the state-of-the-art.

Index Terms—Data analysis, distance measurement, music
information retrieval

I. INTRODUCTION

There exist an ever-increasing interest in applications related
to music processing, music information retrieval and data
mining in both academia and the music industry. However, the
analysis of audio recordings remains a significant challenge,
aggravated by the growing volume of music data created by the
expansion of electronic music file distribution and streaming
services. For this reason, algorithms for music analysis must
be efficient in both time and space.

Most algorithms for content-based music analysis have at
their cores some similarity or distance function. Consequently,
a variety of applications rely on techniques to assess the
similarity between music objects. These applications include:
segmentation [1], audio-to-score alignment [2], cover song
recognition [3], query by singing/humming [4], artist similarity
identification [5], and visualization [6].

A standard approach to assessing similarity in music record-
ings is utilizing a self-similarity matrix (SSM) [7]. This
representation reveals the relationship between each segment
of a track to all the other segments in the same recording. This
idea has been generalized to measure the relationships between
subsequences of different songs, such as the application of
cross-recurrence analysis for cover song recognition [8].

Because similarity matrices simultaneously reveal both the
global and local structure of music recordings, they are highly
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advantageous. However, this representation requires quadratic
space concerning the length of the feature vector used to
describe the audio. For this reason, most methods used to find
patterns in the similarity matrix are, at least, quadratic in time
complexity. However, most information contained in similarity
matrices is irrelevant or has little impact on their analysis. This
observation suggests a room for improvements in representing
music recordings regarding space and time efficiency.

In our previous work [9], we applied the all-pairs-similarity-
search of subsequences, which is also known as similarity
join, to assess the similarity between audio recordings for
Music Information Retrieval (MIR) tasks. Analogously to
the similarity matrices, representing the entire subsequence
join requires a quadratic space, and it also has a high time
complexity, which is dependent upon the length of the sub-
sequences to be joined. However, we demonstrate how to
exploit a new data structure called a matrix profile, which
allows for a space-efficient representation of the similarity
join matrix between subsequences. Moreover, we can leverage
recent optimizations in the all-neighbor search to compute the
matrix profile efficiently [10]. For clarity, we refer to this
representation as Similarity Matrix ProfiLE (SiMPle).

Figure 1 illustrates an example of two matrices representing
the dissimilarities/distances within and between recordings and
their relative SiMPle, which corresponds to the minimum value
of each column in the matrices.
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Fig. 1. Self-distance matrix (left), the cross-distance matrix between different
recordings (right) and their respective SiMPle (bottom).

In this work, we extend our previous conference paper by
further improving SiMPle time efficiency. We propose SiMPle-
Fast a highly efficient method for exact computation of SiMPle
that is up to one order of magnitude faster than SiMPle.
We demonstrate the utility of SiMPle-Fast in cover music
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recognition and thumbnailing tasks and show our method is
significantly faster and more accurate than the state-of-the-art.

The remainder of the paper is organized as follows. Sec-
tion II introduces SiMPle and SiMPle-Fast, our novel algo-
rithm to speed up the SiMPle calculation. Section III presents
an experimental evaluation of SiMPle-Fast method, including
the description of the used datasets (Section III-A), experi-
ments on scalability (Section III-B), a broad experimentation
on cover song recognition (Section III-C), and an algorithm
based on SiMPle-Fast for audio thumbnailing (Section III-E).
Finally, Section IV briefly summarizes the information con-
tained in the paper and concludes the work.

II. SIMPLE AND SIMPLE-FAST: SIMILARITY MATRIX
PROFILE

We begin this section by presenting the necessary definitions
to introduce our method. We use the terms time series and
subsequences to refer to the feature vectors that describe the
whole audio and excerpts respectively. Formally, we define a
time series as follow.

Definition 1. A time series T = (t1, t2, . . . , tn) is a con-
tiguous sequence of vectors ti with length n, such that ti is
composed of f real values comprising the features extracted
to represent a small segment of the audio.

For clarity, if we are using chromatic features1 to describe
our audio files, f is the number of bins adopted (usually 12,
24, or 32) and n is the number of windows used to extract the
features. Next, we define a subsequence.

Definition 2. A subsequence Ss = (ts, ts+1, , ts+m−1) is a
contiguous subset from the time series T with length m.

The primary operation for producing the similarity matrix
profile is the similarity join, which is defined below.

Definition 3. Similarity join or AB-similarity join. Given two
time series A and B and the desired subsequence length
m, the similarity join identifies the nearest neighbor of each
subsequence in A from all possible subsequences of B (both
with length m).

Through a similarity join, we can gather two pieces of
information about each subsequence in A, which are i) the
distance to its nearest neighbor in B and ii) the position of
its nearest neighbor in B. This information can be compactly
stored in vectors, referred to as a similarity matrix profile
(SiMPle) and similarity matrix profile index (SiMPle index),
respectively.

Definition 4. Similarity matrix profile (SiMPle). Given two
time series A and B, SiMPle is a vector representation of the
AB-similarity join. The position Pi stores the distance between
the subsequence Ai and its nearest neighbor in B. SiMPle
index stores in Ii the index j of the subsequence in Bj which
is the nearest neighbor of Ai.

1Despite that we used chromatic features in this work, our method is
applicable to any set of features.

When both input time series refer to the same recording, this
is a particular case of similarity join. We define the operation
that handles this specific case as a self-similarity join.

Definition 5. Self-similarity join. Given a time series A and
the desired subsequence length m, the self-similarity join
identifies the nearest neighbor of each subsequence from A
to every (non-trivial) subsequence set from A.

The only major difference between the self-similarity join
(Definition 5) and the AB-similarity join (Definition 3) is
the exclusion of trivially matched pairs when identifying the
nearest neighbor. The exclusion of trivial matches is crucial,
since matching a subsequence with itself (or slightly shifted
version of itself) produces no useful information.

Definition 6. Trivial match. Given a subsequence Ai and its
nearest neighbor Aj from a same time series A, a trivial match
occurs when i = j. We also consider trivial matches the cases
where |i − j| < ξ , for a parameter ξ ≤ m. Trivial match
subsequences share a significant amount of observations and
naturally have small distances between them.

Given the relevant definitions, we are in the position to
describe the original method to calculate SiMPle [9] in the
Algorithm 1. We will later use this algorithm to highlight the
differences to our proposal, SiMPle-Fast.

In line 1, we record the length of A. In line 2, we allocate
memory and initialize SiMPle P and SiMPle index I . From
line 3 to line 6, we calculate the distance profile vector D,
which contains the distances between the subsequence in the
time series A starting at idx and each subsequence in the time
series B. In other words, for each subsequence of length m
in A, we calculate a vector D which stores in the position i
the distance between the assessed subsequence and the subse-
quence B[i : i+m− 1], i ∈ {1, 2, . . . , length(B)−m+ 1}.

The particular function we use to compute D is MASS,
which is the most efficient algorithm known for distance vector
computation [10]. Then we find the minimum value in D to
update P [idx], i.e., P in the position idx. We also update
I[idx] with the position of the minimum value in the vector
D. Finally, we return P and I in line 7.

Algorithm 1 Procedure to calculate SiMPle and SiMPle index
Require: Two time series, A and B, and the desired subsequence length m
Ensure: The SiMPle P and the associated SiMPle index I
1: len← length(A)−m + 1
2: P ← infs(len), I ← zeros(len)
3: for each idx in [1 : len] do
4: D ←MASS(A[idx : idx + m− 1], B) // c.f. [10]
5: P [idx], I[idx]← min(D)
6: end for
7: return P, I

Note that the Algorithm 1 computes SiMPle for the general
similarity join. To modify it to compute the self-similarity join
SiMPle of a time series A, we simply replace B by A in line
4 and ignore trivial matches in D when performing the min
operation in line 5. To ignore trivial matches we ensure that
D[idx− ξ : idx+ ξ − 1] = ∞. This modification guarantees
that the algorithm will not consider a subsequence starting in
this interval as the nearest neighbor of the currently assessed
subsequence. In our experiments, we defined ξ = m/4.
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The method MASS (used in line 4) is important to speed
up the similarity calculations. The main contribution of MASS
is the use of an efficient divide-and-conquer Fast Fourier
Transform-based method to calculate the cross-correlation
between a subsequence and a time series. The cross-correlation
provides the sliding dot product between the elements of
both sequences. In other words, it provides the dot products
between the subsequence under analysis and each subsequence
of the same length from the other time series, or the same time
series, in the case of self-join. Figure 2 illustrates this idea.

ai ai+1 ai+2 ai+3 ai+4

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

ai ai+1 ai+2 ai+3 ai+4

ai ai+1 ai+2 ai+3 ai+4
...

...

(ai,...,ai+4)·(b1,...,b5)

(ai,...,ai+4)·(b2,...,b6)

(ai,...,ai+4)·(b3,...,b7)

Fig. 2. The cross-correlation between a time series B and a subsequence
from A provides the dot product between their elements.

This trick applies to several distance measures which depend
on the dot product between values. In this work, we use the
squared Euclidean distance. To clarify the use of the cross-
correlation, Equation 1 defines the Euclidean distance, where
SA and SB are subsequences from A and B, respectively.

ED(SA, SB) =

m∑
i=1

(ai − bi)2

=

m∑
i=1

(ai)
2 +

m∑
i=1

(bi)
2 − 2(SA · SB)

(1)

in which SA · SB is the dot product between SA and SB .
For each subsequence in A, we create a distance profile,

which represents the distance between the currently assessed
subsequence to every subsequence of the same length in B.
Once we calculated the sliding dot product for this subse-
quence, Equation 1 provides the Euclidean distance to each
position of the matrix profile.

The original algorithm to calculate SiMPle uses MASS
for each subsequence. Recently, researchers noticed that
the dot products do not need to be recalculated from
scratch for each subsequence [11]. Instead, we can reuse
the values calculated for the first subsequence to make
a faster calculation in the next iterations. The idea is to
make use of the intersections between the required prod-
ucts in consecutive iterations. Consider the subsequence
(ai, ai+1, . . . , ai+m−1) of length m extracted from the time
series A, starting at the position i. After the calculation of
the distance profile to this subsequence, we have all the
dot products (ai, ai+1, . . . , ai+m−1) · (bj , bj+1, . . . , bj+m−1)
for each valid j. By subtracting the first partial of these
products, i.e., the value ai multiplied by each value in
the time series B, we obtain the products given by
(ai+1, ai+2, . . . , ai+m−1) · (bj+1, bj+2, . . . , bj+m−1). Finally,
we can obtain (ai+1, ai+2, . . . , ai+m) · (bj+1, bj+2, . . . , bj+m)
by adding (ai+m)(bj+m). The last dot product gives the
required value to the next iteration. Figure 3 illustrates the
procedure.

ai ai+1 ai+2 ai+3 ai+4 ai+5

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 ...

ai ai+1 ai+2 ai+3 ai+4 ai+5
...

(ai+1,...,ai+5)·(b2,...,b6)

(ai+1,...,ai+5)·(b3,...,b7)

Fig. 3. In order to quickly obtain the sliding dot product between a
subsequence from the time series A and the time series B, our method reuses
the products obtained from the previous subsequence in A.

After this procedure, we have all the values necessary to
construct the distance profile that refers to the subsequence
(ai+1, ai+2, . . . , ai+m), except for the first value. For this
reason, before calculating the SiMPle, we calculate and store
the cross-correlation of the first subsequence from B, i.e.,
(b1, b2, . . . , bm) with the time series A. With this procedure,
we obtain every necessary dot product to fulfill the distance
profile calculations. Algorithm 2 presents this procedure in
detail, which we refer as SiMPle-Fast.

Algorithm 2 SiMPle-Fast
Require: Two time series, A and B, and the desired subsequence length m
Ensure: The SiMPle P and the associated SiMPle index I
1: sqsumB, prodB ← initB(B,A)
2: len← length(A)−m + 1
3: P ← infs(len), I ← zeros(len)
4: D, prodA, sqsumA←MASS(A[1 : m], B)
5: P [1], I[1]← min(D)
6: lp← length(prodA)
7: for each idx in 2 : len do
8: sumval← A[idx + m− 1] · B[len + 1 : len + lp− 1]
9: subval← A[idx− 1] · B[1 : lp]

10: prodA[2 : lp]← prodA[1 : lp− 1] + addval− subval
11: prod[1]← prodB[idx]
12: sqsumA← sqsumA− A[idx− 1]2 + A[idx + m− 1]2

13: D ← sqsumA + sqsumB − 2 ∗ prod
14: P [idx], I[idx]← min(D)
15: end for
16: return P, I

To explain this algorithm, we will split into two main parts.
The first one comprises lines 1 to 6. In this section, the
algorithm calculates and stores auxiliary values and computes
the first value of the SiMPle. Specifically, line 1 calculates
the cumulative squared sum of all elements from B, as well
as the sliding dot product between the first subsequence of B
and the time series A. These values will be used to calculate
the distances and update the sliding dot products regarding
subsequences from A, respectively. The variables len and lp
store the lengths of the SiMPle and the vector containing the
products between a subsequence from A and the time series B.
The algorithm uses these values in further operations. Finally,
the operations between lines 3 and 5 compute the distance
between the first subsequence from A to the time series B
and store its minimum in the SiMPle. Note that we modified
MASS to return the vector containing the dot products and the
squared sum of elements in the subsequence from A.

In the second section, comprised between lines 7 and 15,
the algorithm computes the remaining positions of SiMPle by
updating the previously obtained values. It starts by updating
the dot products, using the operations from line 8 to line 11.
These operations perform the previously explained steps to
reuse the dot products obtained from (ai, ai+1, . . . , ai+m−1)
to obtain the products for (ai+1, ai+2, . . . , ai+m), as illustrated
in Figure 3. Line 11 attributes the product between the first
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subsequence from B and the subsequence starting at the
position idx in the time series A to the first position of the
new vector of sliding dot product. Recall that the operation
performed in line 1 stored this value.

Finally, line 12 updates the cumulative squared sum for the
new subsequence, to use it in the distance calculation in line
13. Note that line 13 is the implementation of Equation 1. Once
the distance is computed, we attribute its minimum value to
its relative position in SiMPle.

III. EXPERIMENTAL EVALUATION

This work proposes SiMPle-Fast, a fast and space-efficient
method to assess local similarities within a music recording
or between two different tracks. Our proposal applies to a
multitude of music information retrieval and data mining tasks.
For some examples, we refer the reader to [9].

In this paper, we focus on two straightforward algorithms
to deal with the tasks of cover music recognition and audio
thumbnail identification. We note that, although both algo-
rithms use the SiMPle and SiMPle index computed by SiMPle-
Fast, they have some differences between them.

In cover music recognition, we apply the AB-join and
use the median of SiMPle distances to estimate the global
distance between different recordings. Conversely, in thumb-
nail identification, we utilize the SiMPle index over the self-
join operation to compute the most frequent nearest neighbor
subsequence. We also use SiMPle to resolve draw cases,
in which the latter operation equally scores two or more
subsequences.

Before describing these methods and presenting results, we
introduce the datasets used in our experimental analysis and
experiments on the scalability of SiMPle-Fast.

A. Datasets

We evaluate our method in different scenarios regarding
music styles and the size of the databases. Specifically, we
assess SiMPle-Fast on popular and classical recordings. The
first database considered is the YouTube Covers [12], which
consists of 50 different compositions, each containing seven
different recordings obtained from YouTube videos. The orig-
inal data have training and testing partitions, in which the
training set has one original studio recording and one live
version performed by the same artist. For the cover song
recognition task, we follow the same configuration of [12]
to allow comparisons with literature results.

The second dataset we consider is the widely used collection
of Chopin’s Mazurkas [13]. The set of Mazurkas used in this
work contains 2,919 recordings of 49 pieces for piano. The
number of recordings of each song varies from 41 to 95.

The evaluation of different choices of feature sets is not
the focus of this paper. For this reason, we fixed the use
of chroma-based features in our experiments. This kind of
features is prevalent in many music retrieval and data mining
tasks. Specifically, we used the chroma energy normalized
statistics (CENS) [14] to provide local tempo invariance. These
features rely on applying a Hanning window on consecutive
windows of “raw” chroma and aggregate features among the

window to smooth the temporal chroma variation and reduce
the dimensionality of the examples.

B. Scalability

Before we introduce the two approaches for cover song
recognition and thumbnailing using the SiMPle and the
SiMPle-index representations, we present an experiment to
evaluate how the SiMPle-Fast improves the runtime for calcu-
lating these primitives.

The length of the time series and the number of tracks in
the database directly affect the runtime of our method, as well
as the runtime of any other method. For this reason, we per-
formed one separate experiment for each of these parameters.
In this section, we compare the proposed method against the
original SiMPle calculation and the Dynamic Time Warping
(DTW) [15]. Although we compare our method against other
algorithms considered state-of-the-art for specific tasks in the
next sections, these methods are at least as slow as DTW. For
instance, both DTW and the local alignment distance proposed
by Serrà et al. [3] have O(n2) time complexity. However,
DTW has smaller constant factors than Serrà’s approach.

In our first experiment, we randomly chose one recording
on the YouTube Covers dataset as a query and measured the
similarity to all other tracks in the dataset. In the case of
SiMPle, the similarity is the median distance between all sub-
sequences of length m of the query and the time series under
comparison. This approach is the same we use to calculate
similarity for cover music recognition in Section III-C. After
each distance calculation, we register the cumulative runtime
of the experiment. This experiment shows how the runtime
increases according to the size of the dataset, i.e., the number
of tracks compared to the query. Figure 4 presents the results
for two feature rates, 0.5 and 10 CENS per second, which
results in different time series lengths.
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Fig. 4. Runtime obtained by querying one song by varying the number of
objects in the dataset and the length of the time series. Specifically, we used
0.5 (left) and 10 (right) CENS per second in the feature extraction process.

The results show a linear behavior of the three methods with
respect to the size of the data set. In any of these cases, the
proposed method is faster than the others. Specifically, for the
case of 10 CENS per second (around 1,600 features per song
in average), the SiMPle-Fast is 8.5 times faster than DTW and
6.6 times faster than the original SiMPle implementation. In
the case of using 0.5 CENS per second, resulting in an average
of 132 CENS per song, our method is approximately 2.7 times
faster than DTW and 3.3 times faster than SiMPle.

These are the smallest and highest numbers of features
assessed in our experiments. An appropriate value for this
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parameter is task- and data-dependent. For the cover song
recognition task, we found that 2 CENS per second was the
most suitable value (c.f. Section III-C). This value leads to an
average of 526 features per recording in the YouTube Covers
data. In this case, the proposed method is around 5.1 times
faster than both DTW and the original SiMPle algorithm.
However, we notice that a larger number of features may
be required in many tasks, mainly when we look for time
precision, such as visualization and segmentation.

Another interesting aspect to observe is the relation between
the runtime of SiMPle and DTW. Notice in Figure 4 that
DTW outperforms SiMPle with 0.5 CENS per second, but
is outperformed with 10 CENS per second. Moreover, both
are outperformed by SiMPle-Fast.

Therefore, the method that performs best between DTW
and SiMPle is dependent on the length of the time series.
For this reason, we performed a second experiment, in which
we evaluate the influence of the time series length on the
runtime. For this, we use different feature rates, providing
us the runtime for seven different lengths of time series. We
executed each experiment five times and computed the average
of the runtime values for each time series length. Figure 5
presents the results.
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Fig. 5. Average runtime for comparing random queries to the remaining
examples in the YouTube Covers dataset by varying the length of the time
series (left), given by the number of features per second, and a zoom in the
region of the shorter time series for the sake of better visualization of the
runtime (right). The markers represent actual runtime measurements, and the
lines represent values from a quadratic curve fitting interpolation.

In the second experiment, there is a quadratic trend on the
runtime concerning the increasing length of the time series.
Despite the fact that the original SiMPle and the DTW have a
similar performance, in this case, the SiMPle-Fast is notably
faster than both. More importantly, these results show that the
longer the time series, the more significant the improvement
provided by our method.

C. SiMPle-based Cover Song Recognition

“Cover song” is the generic term used to denote a new
performance of a previously recorded track. For example, a
cover song may refer to a live performance, a remix, or an
interpretation in a different music style. The automatic identi-
fication of covers has several applications, such as copyright
management, collection organization, and search by content.

In order to identify different versions of the same song,
most algorithms search for globally [16] or locally [3], [17]
conserved structure(s). A well-known and widely applied
algorithm for measuring the global similarity between tracks
is DTW. Despite its utility in other domains, frequently
DTW is not flexible enough to handle the differences in

structure between the recordings. A potential solution would
be segmenting the song before applying the DTW similarity
estimation. However, audio segmentation itself is also an
open problem, and the error on boundary detection can cause
a domino effect (compounded errors) in the identification
process.

Also, the complexity of the algorithm to calculate DTW
is O(n2). Although there exist methods to approximate the
DTW with fast algorithms [18], such methods lack an error
bound for such approximations. In other words, these methods
do not guarantee a maximum approximation error compared
to the actual DTW.

Algorithms that search for local similarities have been
successfully used to provide structural invariance to the cover
song identification task. A well-known method for music
similarity proposes the use of a binary distance function to
compare chroma-based features, followed by a dynamic pro-
gramming local alignment [3]. Despite its demonstrated utility
to recognize cover recordings and some variants proposed in
the literature, this method has several parameters that are unin-
tuitive to tune and is computationally demanding. Specifically,
the local alignment is estimated by an algorithm with similar
complexity to DTW. Plus, the binary distance between chroma
features used in each step of the algorithm relies on multiple
shifts of the chroma vectors under comparison.

In this work, we propose to use SiMPle-Fast to measure
the distance between recordings to identify cover songs. In
essence, we exploit the fact that the global relation between
the tracks is composed of many local similarities. In this way,
we simultaneously take advantage of both local and global
pattern matching.

Intuitively, we expect that the SiMPle obtained by compar-
ing a cover song to its original version is composed mostly
of low values. In contrast, two completely different songs will
result in a SiMPle constituted mainly by high values. For this
reason, we adopted the median value of the SiMPle as a global
distance estimation. Formally, the distance between a query B
and a candidate original recording A is defined in Equation 2.

d(A,B) = median(SiMPle(B,A)); (2)

It is important to notice that a cover song recognition
algorithm needs to be robust for several distortions between
different versions. While our method is robust to structural
variations (c.f. Section III-C1) and we use CENS to improve
the robustness against tempo variations, our distance measure
is very sensitive to key differences. For this reason, we apply
the Optimal Transposition Index (OTI) [19] to transpose the
recordings to the same key.

Note that several other statistical measures could be used
instead of the median. However, the median is robust enough
to handle outliers in the matrix profile. Distortions may
appear when a performer decides, for instance, to add a new
segment (e.g., an improvisation or drum solo) to the song. The
robustness of our method in this situation, as well as other
changes in structure, is discussed in the next section.

1) On the Structural Invariance: The structural variance is
a critical concern when comparing different songs. Changes in
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structure may occur by insertion or deletion of segments, as
well as changes in the order that different excerpts are played.
From a high-level point of view, SiMPle describes a global
similarity outline between songs by providing information
about local comparisons. This fact has several implications
in our distance estimation, which makes it largely invariant to
structural variations:
• If two performances are virtually identical, except for the

order and the number of repetitions of each representative
excerpt (i.e., chorus, verse, bridge, etc.), all the values that
compose SiMPle are close to zero.

• If a segment of the original version is deleted in the cover
song, this will cause virtually no changes in the SiMPle.

• If a new segment is inserted into a cover, the only
consequence is a peak in the SiMPle, which may only
slightly increase its median value.

We have experimented to testify these assumptions. For
this, we compared the SiMPle-based distances between four
songs in the YouTube Covers dataset and some variations of
them. Specifically, the songs used in this experiment are the
following:
• Song A: The first original recording (in alphabetical

order) in the dataset, i.e., ABBA - “Dancing Queen.”
• Song B: A cover version of the song A from the movie

“Mamma Mia.”
• Song C: The non-cover nearest neighbor of song A,

which is a cover version of “No Woman No Cry,” by
Bob Marley.

• Song D: A randomly chosen song, which is which is
a cover version of “I Want It That Way,” by Backstreet
Boys.

Other variations were proposed in this experiment to verify
the assumptions earlier described in this section. They are:
• Song A2: The song A repeated twice, i.e., the concate-

nation of song A with itself.
• Song A3: The song A cut in half, i.e., truncated in the

position which defines half of its length.
• Song A4: The song A with ten subsequences randomly

displaced in time.
• Song B2: The song B with one randomly chosen subse-

quence of 20 seconds removed. The same strategy was
used to create C2 and D2.

• Song B3: The song B after inputting a random subse-
quence from D. The same strategy was used to create
C3.

First, we evaluated the effects of modifying the original
song A. We use A, A2, A3 and A4 as reference and compute
the SiMPle-based distance to songs B, C, and D. Table I
summarize the results.

TABLE I
DISTANCES FROM THREE DISTINCT QUERY TO FOUR VARIATIONS OF THE

SAME REFERENCE RECORDINGS

Song identifier A A2 A3 A4
B 3.20 3.20 3.56 3.25
C 5.57 5.57 6.32 5.57
D 8.22 8.22 8.70 8.13

We also experimented with the variations of A as faithful
versions of the original song, but with structural invariance. In
this case, we computed the SiMPle-based distance from A to
A2, A3, and A4. The distances to A2 and A4 are in the order
of 10−14, which may happen exclusively because of rounding
errors. The distance between A and A3 is 0.615, which is
significantly smaller than the distance calculated to the cover
B, which is song A’s nearest neighbor.

Finally, we examined the effects of modifying the record-
ings of cover versions. Table II shows the results. Note that
in all these cases the distances do not change significantly.

TABLE II
DISTANCES FROM THE VARIATIONS OF THE QUERIES B, C, AND D TO THE

ORIGINAL VERSION OF SONG A

Song identifier B2 B3 C2 C3 D2
A 3.39 3.42 5.50 5.68 8.68

We also made a more extensive evaluation of SiMPle
robustness to structural variations. We calculated the distance
between each variation of song A, i.e., A, A2, A3, and A4,
and all the remaining 349 recordings in the dataset. Then,
we measured the Pearson correlation coefficient between the
vectors of distances obtained using A and each of its variations
as the original version. The correlations regarding A2, A3, and
A4 are, respectively, 0.999, 0.980, and 0.989. This clearly
shows that distinct structural differences barely affects our
method.

2) Results and Discussion: We used three commonly ap-
plied evaluation measures to assess the performance of our
method in the cover song recognition task: mean average
precision (MAP), precision at 10 (P@10), and the mean rank
of first correctly identified cover (MR1). Note that for MR1,
smaller values are better.

Table III shows the results for the YouTube Covers. In
addition to comparing the results presented in the literature,
we implemented the algorithm for local alignments based on
the chroma binary distance [3]2. Given this dataset only has
two recordings per song in the training set, notice that the
maximum value for P@10 is 0.2.

TABLE III
MEAN AVERAGE PRECISION (MAP), PRECISION AT 10 (P@10), AND

MEAN RANK OF FIRST CORRECTLY IDENTIFIED COVER (MR1) ON THE
YOUTUBE COVERS DATASET

Algorithm MAP P@10 MR1
DTW 0.425 0.114 11.69
Silva et al. [12] 0.478 0.126 8.49
Serrà et al. [3] 0.525 0.132 9.43
SiMPle 0.591 0.140 7.91

Our method achieves the most accurate results in this
experiment. Also, our method is notably faster than the second
best (Serrà et al.). For a better understanding of the runtime,
we tested all the algorithms used in this experiment. While

2Note that the algorithm proposed by Serrà et al. for cover song recognition
uses 32 Harmonic Class Pitch Profile (HPCP) [20] features. In this work,
we only used the proposed distance measure. Specifically, we compared the
distances using the same set of features used by our method and DTW, i.e.,
CENS.
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the original algorithm to calculate SiMPle is competitive with
DTW and our new method can perform five times faster (c.f.
Section III-B for details), the method proposed by Serrà et al.
is more than ten times slower than DTW. We acknowledge
that we did not prioritize optimizing the competing method.
However, we do not believe that any code optimization is
capable of significantly reducing the performance gap.

The presented results use 2 CENS per second and a subse-
quence representing 10 seconds. When we vary these param-
eters from the feature extraction and the SiMPle calculation
phases, we obtain slightly different results.

Regarding the length of the subsequence, varying from 5
seconds to 60 seconds still provides us better results than
the method proposed by Serrà et al. Specifically, using 15
seconds achieves slightly better results regarding MAP and
MR1. In this case, we obtain 0.598 and 7.760 for these
measures, respectively. The best P@10 is obtained when using
10 seconds.

On the other hand, the results presented more variability
according to the feature extraction parameters. The previously
presented results are the best obtained concerning the number
of extracted features. When we double the number of features,
the MAP, P@10, and MR1 obtained by SiMPle are 0.571,
0.132, and 8.68, respectively. If we use half of the features,
these values are 0.549, 0.133, and 8.84. However, this change
also affects all the assessed competitors. For instance, when we
reduce the number of features by half, DTW achieves 0.3124,
0.0816, and 23.4960 for MAP, P@10, and MR1, respectively.
Serrà’s method achieves 0.4978, 0.1256, and 9.9600 for the
same evaluation measures.

Finally, we also evaluated using different central tendency
measures. Although we proposed the SiMPle-based distance
using the median of local distances, we can use any other
statistic. As previously stated, the median is more robust to
outliers, such as insertions in the song that are not similar
to any subsequence in its covers or its original recording.
However, we noticed that using mean or geometric mean
does not change the results significantly. In these cases, the
differences in the assessed evaluation measures are in the order
of 10−2. On the other hand, the results obtained by using
harmonic mean were slightly worse but still better than the
adversary methods. Although we only report on varying the
parameters for the YouTube Covers data, the conclusions are
similar to the Mazurkas dataset.

Regarding the dataset of classical music, we report the
results obtained by DTW and the MAP values documented
in the literature. Notice that the values of P@10 and MR1 are
not available for this dataset in the papers used for comparison.
Specifically, the subset of Mazurkas used in this work is the
same as the one used in [21] and [22] and has only minor
differences with the dataset used in [23]. Although subtle
variations of [3] are commonly used in state-of-the-art cover
song identification systems [17], we do not include its results
due to the high time complexity. Table IV shows the results.

In this dataset, most of the recordings conserve the struc-
tures of the pieces. In this case, DTW performs similarly to our
algorithm. However, our method is approximately one order
of magnitude faster, and it has several advantages over DTW

TABLE IV
MEAN AVERAGE PRECISION (MAP), PRECISION AT 10 (P@10), AND

MEAN RANK OF FIRST CORRECTLY IDENTIFIED COVER (MR1) ON THE
MAZURKAS DATASET

Algorithm MAP P@10 MR1
DTW 0.882 0.949 4.05
Bello [21] 0.767 - -
Silva et al. [22] 0.795 - -
Grosche et al. [23] 0.525 - -
SiMPle 0.880 0.952 2.33

such as an incremental property that allows our method to
apply to data streams. Next section discusses such property.

D. Streaming Cover Song Recognition

Real-time audio matching has attracted attention in the last
years. In this scenario, the input is a stream of audio, and the
output is a sorted list of similar objects in a database.

In this section, we evaluate our algorithm in an online cover
song recognition scenario. For concreteness, consider a TV
station broadcasting a live concert. To automatically present
the name of the song to the viewers or to synchronize the
concert with a second screen app, we would like to take the
streaming audio as input for our algorithm and recognize what
song the band is playing as soon as possible. To accomplish
this task, we need to match the input to a set of (previously
processed) recordings.

In addition to allowing the fast calculation of all the
distances of a subsequence to a whole song, the proposed
algorithm has an incremental property that allows estimating
cover song similarity in a streaming fashion. If we have a
previously calculated SiMPle regarding the first few seconds
of the song, then, when we extract a new vector of (chroma)
features, we do not need to recalculate the whole SiMPle from
the beginning. Instead, only two quick steps are required:
• First we calculate the distance profile to the new subse-

quence, i.e., the distance of the last observed subsequence
(including the new feature vector) to all the subsequences
of the original songs.

• Then it is necessary to update SiMPle by selecting the
minimum value between the new distance profile and the
previous SiMPle for each subsequence.

Notice that in the first step, we do not need to calculate the
distance profile from scratch. Instead, we take advantage of
the previously calculated values (c.f. Section II).

To evaluate the capability of our method for streaming
recognition, we performed a simple experiment simulating
the previously described scenario. First, we extracted features
from each track in the Mazurkas dataset of original recordings.
For clarity, we will refer to this database as the training set.
Then, we randomly chose a “cover” recording as our query
and processed it in the following manner. We began extracting
features from the first two seconds of the query to calculate
the first distance estimation to each training object. After this
initial step, for each second of the query, we repeated the
process of extracting features and re-estimating the distance
measure to the training set.
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In this experiment, we used 2 CENS per second. The
training set is composed of one recording of each piece. We
used a performance (which is not part of the training set)
with approximately 92 seconds as a query, and the process
was still faster than real-time. Specifically, the updates took
approximately 0.28 second to extract the features, update
SiMPle, and recalculate the distance to all the training objects
for each second of “listened” performance.

Figure 6 demonstrates the changes in distance estimation
in an audio streaming query session. In this case, we used a
recording of the “Mazurka in F major, Op. 68, No. 3” as the
query and a subsequence of two seconds. In the first distance
estimation, i.e., after two seconds of audio, the correct class
appears in the sixth position of the ranking. However, with
more evidence, it quickly becomes the best match. Specifically,
after three seconds of streaming, it goes to the fourth position.
Four seconds from the beginning, the correct class is already
considered the best match. It stands until the streaming ends.

Distance to the training recording

Op. 68, No. 3

Op. 33, No. 4

Op. 68, No. 1

Op. 41, No. 3

Op. 24, No. 3

Op. 24, No. 2

7 9 11 13 15

Op. 7, No. 3

Op. 41, No. 3

Op. 68, No. 3

Op. 68, No. 1

Op. 33, No. 4

Op. 24, No. 2

7 9 11 13 15

Op. 41, No. 3

Op. 7, No. 3

Op. 56, No. 3
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Fig. 6. Changes in the distance when querying a recording of the “Mazurka
in F major, Op. 68, No. 3” in a streaming fashion. The graphs represent the
top five matches after processing two (left), three (middle), and four (right)
seconds of the audio.

We experimented to verify how fast is the streaming cover
recognition. For this purpose, we randomly chose five versions
of each of the 49 pieces in the Mazurkas dataset and calculated
the time taken for the version to reach the third and the first
position in the similarity ranking. We did not use all the
versions to avoid pieces with a high number of versions to
dominate the results.

For some recordings, our method is not able to rank the
correct version as the best match. Although these are a few
cases, they may significantly affect the runtime statistics. For
this reason, we assessed the time to achieve the top positions
in the ranking using two different sets of results. The first
only considers the cases in which the algorithm identified the
original version in these positions. The second one considers
all the cases.

Table V presents the mean and median time in these
evaluation scenarios. We compute both centrality measures to
account for the variability in the times necessary to identify
the cover song.

In our experimental design, the first rank assessment occurs
after two seconds of music execution. In more than half of
the recordings in the subset, our algorithm correctly ranks the
version among the top 3 right in the first iteration. When we
consider all cases, our method needs to listen for 4 seconds
to rank 50% of the versions in the top 3. Regarding the first
position in the ranking, we need 6 and 39 seconds in these
scenarios, respectively.

TABLE V
TIME TO ACHIEVE THE TOP 1 AND TOP 3 POSITIONS IN THE SIMILARITY

RANKING IN THE STREAMING SCENARIO. THE “AVERAGE TIME - SUBSET”
AND “MEDIAN TIME - SUBSET” CONSIDER THE SUBSET OF CASES OUR

ALGORITHM RANKS THE CORRECT VERSION IN THE TOP 1 AND 3.
“MEDIAN TIME - ALL” CONSIDERS ALL CASES, INCLUDING THE ONES

OUR PROPOSAL DOES NOT CORRECTLY RANK THE VERSIONS AMONG THE
TOP 3.

Top 1 Top 3
Average time - subset 17.11s 8.93s
Median time - subset 6.00s 3.00s
Median time - all 39.00s 4.00s

E. SiMPle-Based Audio Thumbnailing

Audio thumbnails are short representative excerpts of audio
recordings. Thumbnails have several applications in music
information retrieval. For example, they can be used to show
the result of a search to the user. In a commercial application,
they can be used as the preview to a potential customer in an
online music store.

There is a consensus in the music information retrieval
community that the “ideal” music thumbnail is the most
repeated excerpt, such as the chorus [24]. By using this
assumption, the application of SiMPle to identify a thumbnail
is direct. Consider the SiMPle index obtained by the self-join
procedure. The thumbnail is the subsequence which is the
nearest neighbor of other subsequences most times. In other
words, the mode of the SiMPle index points to the beginning
of the thumbnail.

This method, first proposed by [9], is simple and completely
fits the assumption of the thumbnail be the most repeated
excerpt. However, we noticed that it is very susceptible to
draws. In other words, there are many recordings with more
than one mode in the SiMPle index.

To testify this fact, we calculated the SiMPle and SiMPle
index of each track in the YouTube Covers data and counted
the number of tied cases. When using 2 CENS per second
to identify 30-seconds thumbnails, 197 from 350 examples
presented draws. Considering all the recordings, the average
number of draws per song is 4.15. When limiting this cal-
culation to the 197 cases containing draws, the average is
7.36. Clearly, if we use fewer features per second, we will
have a lower number of subsequences to be assessed and,
consequently, the number of draws tends to decrease. On
the other hand, if we use a higher number of features per
second, the number of examples with tied subsequences tends
to increase.

In the original proposal, in the case of drawing, the algo-
rithm took the first tied subsequence as the thumbnail. We
propose to use the values in the SiMPle to untie these cases.
The pair of nearest subsequences with smaller distance is,
intuitively, the most “faithful” repetition in the time series.
Similarly, the tied subsequence that is, on average, the most
similar to its neighbors is the most faithfully repeated one.

For this purpose, while calculating the mode, we also store
the summed distances between the neighbors. In other words,
while we use the SiMPle index to count the number of times
each subsequence is the nearest neighbor of others, we sum
the values stored in the SiMPle in these cases. In the end,
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we take the subsequences the maximum number of times in
the SiMPle index pointed as candidates for the thumbnail. If
this operation returns only one subsequence, this is considered
the thumbnail. Otherwise, we assume the candidate with the
smallest sum of distances as the thumbnail of that recording.

At this point, the reader must be wondering how effective
is our untying strategy. To answer this question, we compared
the original and the proposed methods. Regarding the 197 tied
recordings in the YouTube Covers data, the new algorithm
differs from the original in 130 cases. It represents 66% of
the cases.

A commonly observed case of draw occurs when some
subsequences comprise pre-chorus excerpts. In this case, the
chorus and the pre-chorus contain the same number of neigh-
bors pointed in the SiMPle index. However, the pre-chorus
commonly present slight differences caused by some word
substitution or distinct intonation by the singer, which induces
a subtle difference in the chroma features. This effect is usually
much lower in the chorus.

Figure 7 shows one example of this fact. It represents
a histogram of the SiMPle index obtained from the song
“Like a Rolling Stone” by Bob Dylan using a subsequence
representing 30 seconds. We can notice many tied cases.
Specifically, the first one occurs at 81 seconds of the song
and comprises part of the first pre-chorus and a small portion
of the chorus. It presents an average distance of 13.11 from
its neighbors, while there is another tied subsequence much
smaller average distance. This other subsequence is on average
6.59 units far from their neighbors. The proposed untying
algorithm, then, returns this last subsequence, which starts at
153 seconds, comprising exactly the chorus of the song.
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Fig. 7. Histogram of the SiMPle index for the song “Like a Rolling Stone.”
Each bar counts how many times the subsequence started at that point
was considered the nearest neighbor of any other. The first prominent peak
(starting at 81 seconds of the song) comprises pieces of a pre-chorus and a
chorus. However, the proposed untying algorithm selects a subsequence which
comprises only the chorus (starting at 153 seconds).

The proposed method is simple and fast. If the SiMPle and
SiMPle index are already calculated for other taks, we only
need an additional O(n) procedure to find a thumbnail in it.
Otherwise, both operations, counting and summing distances,
can be performed during the computation of the SiMPle and
the SiMPle index. In this case, these additional operations do
not affect the runtime of SiMPle-Fast significantly.

IV. CONCLUSION

In this paper, we introduced a technique to exploit sub-
sequences joins to assess similarity in music. The presented

method is very fast and requires only one parameter, the sub-
sequence length, that is intuitively set in music applications.
Moreover, we showed that our method is robust for the choice
of this parameter for a range of values.

While we focused our evaluation on the cover song recog-
nition and audio thumbnailing, our approach has the potential
for applications in different MIR tasks. We intend to further
investigate the use of matrix profiles in other tasks and the
effects of different features in the process.

One limitation of the proposed method is that the use of only
one nearest neighbor is sensitive to hubs, i.e., subsequences
considered the nearest neighbor of many other snippets. For
instance, a hub subsequence in an original recording can
severely affect the cover song recognition performance. In this
case, the recording containing this fragment tends to appear in
the top positions for a multitude of queries, cover or not. Better
understanding this and other effects of analyzing subsequences
similarity join in music data is also part of our future work.

Despite the fact that our method is much faster than the
previously proposed algorithm, it still faces difficulties when
scaling to massive datasets. When using SiMPle for similarity-
based recovery tasks, such as cover song recognition, indexing
the search procedure usually provides a significant speedup.
Given that our method is based on the Euclidean distance, we
believe that we can adapt some methods for indexing in metric
space to speed up the search based on SiMPle. As another
direction for future work, we intend to seek possible solutions
for this issue.

We notice that we are committed to the reproducibility of
our results, and we encourage researchers and practitioners to
extend our ideas and evaluate using the SiMPle in different
MIR tasks. To this end, we have created a website3 with
the complete source code used in our experiments and videos
highlighting some of the results presented in this work.
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