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Abstract 
A recently introduced primitive for time series data mining, 

unsupervised shapelets (u-shapelets), has demonstrated 

significant potential for time series clustering. In contrast to 

approaches that consider the entire time series to compute 

pairwise similarities, the u-shapelets technique allows 

considering only relevant subsequences of time series. 

Moreover, u-shapelets allow us to bypass the apparent 

chicken-and-egg paradox of defining relevant with reference 

to the clustering itself. U-shapelets have several advantages 
over rival methods. First, they are defined even when the 

time series are of different lengths; for example, they allow 

clustering datasets containing a mixture of single heartbeats 

and multi-beat ECG recordings. Second, u-shapelets mitigate 

sensitivity to irrelevant data such as noise, spikes, dropouts, 

etc. Finally, u-shapelets demonstrated ability to provide 

additional insights into the data. Unfortunately, the state-of-

the-art algorithms for u-shapelets search are intractable and 

so their advantages have only been demonstrated on tiny 

datasets. We propose a simple approach to speed up a u-

shapelet discovery by two orders of magnitude, without any 

significant loss in clustering quality. 

1 Introduction 
Time series clustering is an area of research that has attracted 

a significant amount of effort in the last two decades [1][9]. 

Virtually all research has focused on introducing novel 

similarity measures and/or novel clustering techniques. In 

contrast, a recent technique, u-shapelets [26], uses the 

Euclidean distance as the similarity measure, and a k-means-

like technique as the clustering algorithm. The novelty of u-

shapelets is in selectively ignoring most of the data, and only 

using a small number of subsequences for clustering. 
Before introducing our contributions to u-shapelet 

discovery, we will first (re)argue the case for u-shapelets in 

the crowded literature of time series clustering techniques.  

1.1 Why U-shapelets are the Technique of 

Choice 
The most compelling feature of u-shapelets is that they can 

ignore irrelevant data when clustering. Consider the tiny 

dataset shown in Figure 1. While the correct clustering would 
be obvious to the human eye, even without our color-coded 

hint, most clustering algorithms would perform poorly for 

two reasons. The first reason is that the data are not aligned. 

This could be partially mitigated here by using Dynamic 

Time Warping (DTW). However, if we considered eight-

minute instead of eight-second snippets, DTW would require 

hours even for just six objects. More important, however, is 

the fact that perhaps half the data in each time series is 

simply irrelevant to the class, consisting of random 

environmental background sounds. Any clustering algorithm 

that is forced to consider and “explain” such irrelevant data is 

doomed to failure. 

 
Figure 1: Six 8-second snippets of bird songs in MFCC 

space, three from the Olive-sided Flycatcher (Contopus 

cooperi) and three from the White-crowned Sparrow 
(Zonotrichia leucophrys). left) The clustering using 

Euclidean distance is essentially random. right) The 

clustering using u-shapelets (denoted dark/bold) correctly 

separates the two species and gives insight as to the most 

telling differences between them 

An additional advantage of u-shapelet clustering is that it 

is defined for datasets in which the individual objects are of 

different lengths. This is not the case for most techniques in 
the literature. For example, a recent paper that considers the 

clustering of motion capture time series data tells us, “While 

the original motion sequences have different lengths, we trim 

them (to have) equal duration” [9]. Furthermore, the location 

of this trimming is subjective, relying on the (human) ability 

to find the region “...most significant in telling human motion 

apart” [9]. Note that these authors are to be commended for 

stating their assumptions so concretely. In the vast majority 

of cases, no such statements are made; however, the “equal 

length” assumption is implied, and the trimming to equal 

length is done by exploiting expensive human skill. 

The final advantage of u-shapelets is that they are much 
more expressive in terms of representational power. In 

particular, they allow separating data belonging to one class 

and assigning the remaining data a “non-class” label. Figure 

2 illustrates this idea in two-dimensional space. If we task k-

means with clustering the data shown in Figure 2.top.left, it 

will produce the intuitive cluster labels shown in Figure 

2.top.right. Here the three classes are simple Gaussian 

“balls.” However, let us now consider the case shown in 

Figure 2.bottom.left. Here we have two of the clusters used in 

the previous case, but the remaining third of the data comes 

from a uniform “background” distribution. In this case, k-
means produced the clustering shown in Figure 

2.bottom.right. 

The important observation is not that k-means cannot 

correctly label the background cluster; it is that the presence 
of the background cluster can cause some of the data that is 

highly  clusterable  to  be  mislabeled.  As shown in Figure 3, 
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Figure 2: top.row) k-means can recover clusters when all 

objects belong to some cluster. However, bottom.row shows 

that k-means has difficulty recovering the same clusters in 

the presence of items that do not belong to any cluster. Note 

that the colors shown are for human introspection only; they 

are not available to the algorithm.  

we desire an algorithm that can cluster data that is 

clusterable, but ignore the non-clusterable data, i.e., non-

clusterable data should not affect the outcome of the 

algorithm. As we shall show, u-shapelets solve this for the 

time series case.  

 
Figure 3: An ideal clustering algorithm would recover the 

two obvious clusters in this data (enclosed by the dashed 

circles), without being affected by the non-clusterable data 

Many research efforts in time series clustering have 

focused on modifying the distance measure to be invariant to 

some property of the data [2][7], but still use k-means or 
some similar partitional clustering algorithm as the 

underlying clustering mechanism. These efforts assume that 

every time series belongs to some cluster. However, it is not 

clear why this should be the case, and in Section 4 we will 

show it is not the case for many real-world datasets. With a 

little introspection it is easy to see why this assumption is 

more often unwarranted for time series than for other types 

of data. Recall the bird calls shown in Figure 1. While both 

of these birds are relatively vocal, if we attempt to estimate 

population density by clustering a full day of data on a 

minute-by-minute basis [3], we may expect to find that the 

majority of snippets will not contain any bird sounds. Thus, 
we argue that the representational power of the clusterings 

algorithm is of key importance with time series, and that we 

must have the ability to leave some (perhaps most) of the data 

unclustered.   

1.2 Scalability Issues 
Although u-shapelets have shown considerable promise for 

time series clustering, the u-shapelet extraction algorithms 

proposed to date are intractable for large datasets [26]. To 

mitigate this, the algorithm in [26] resorts to computing gap 

scores for the subsequences of just the first time series in the 

dataset, making it order dependent and brittle to an unusual 

instance being the first item encountered. To eliminate this 
undesirable property, we must compute the gap score for 

every subsequence of each time series in the dataset. Each 

score requires a nearest neighbor search of the subsequence 

in question to each time series in the dataset. While this 

algorithm can be improved by pruning and early abandoning 

techniques from [14], this only produces a relatively modest 

speedup.  
As we noted, the bottleneck of the state-of-the-art 

approach is that it requires computing all of the distances 

between time series subsequences in the dataset and then 

choosing the best subsequence (in a sense explained in 

Section 2) as a u-shapelet. Our work leverages the 

observation that most of these computations are not 

necessary if we can identify a small fraction of all possible u-

shapelet candidates to compute the actual distances, and by 

the further observation that a hashing algorithm can identify 

a very small set of u-shapelet candidates, which will contain 

the best u-shapelet with very high probability. 

1.3 Summary of Contributions  
We conclude this section with our contributions: 

 We introduce SUSh (Scalable U-Shapelet) – a hash-

based algorithm that allows u-shapelet discovery two 

orders of magnitude faster than current techniques. 

 We produce the first taxonomy of u-shapelets. In 

particular, we show that while there is only one way to 

be a high-scoring u-shapelet, there are two distinct ways 

to be a low-scoring u-shapelet. This observation is 

important because it informs our speedup strategies, and 

may be further exploited by others in the community. 

 We make all of our code and data available [19] to allow 

confirmation and extension of our work. 

 Finally, while (supervised) shapelets now have a 

significant user base and have seen applications in 

domains as diverse as gesture recognition [10], severe 

weather prediction [13], and biometrics [17], there is 

currently sparse evidence for the utility of u-shapelets. 

Here we forcefully provide such evidence, showing that 

domain-agnostic u-shapelets can outperform rival 

techniques, even after those algorithms are carefully 

tuned to the problem at hand by human experts. 

The rest of this paper is organized as follows. In Section 

2 we present the formal definitions and background. Section 
3 describes our approach. Section 4 contains experimental 

results and comparisons to rival methods. Section 5 offers 

conclusions and avenues for future work. 

2 Definitions and Background 
We begin by defining the key terms used in this work. Some 

of these definitions are restated or adapted from [26], but are 

included here for completeness.  

As visually hinted at in Figure 1, we are not interested in 

global properties of time series, but in the properties of local 

time series subsequences: 

DEFINITION 1. An unsupervised-shapelet (u-shapelet) 

candidate Ś is any subsequence that has a number of data 
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points less than or equal to the number of data points of the 

shortest time series in the dataset. 

Figure 4 shows examples of u-shapelet candidates. Note 

that this definition does not require the u-shapelet to be a 

subsequence of a time series existing in the dataset, as was 

the case with Figure 1. However, constraining the u-shapelet 

to be a subsequence of an existing time series makes the 

search space finite. 

DEFINITION 2. The subsequence distance sdist(S, T) between 

a time series T and a subsequence S is the minimum of the 
distances between the subsequence S and all possible 

subsequences of T of length equal to the length of S. 

This definition opens the question of which distance 

measure to use for sdist. We use the ubiquitous Euclidean 

distance (ED), and exploit the recent speedup techniques for 

its calculation proposed by Mueen et al. [14]. ED is known to 

be very competitive for time series problems [24]. Dynamic 

Time Warping can be more accurate on some problems, but 
this is because it is able to be invariant to the cumulative 

distortions in the time axis which are inevitable in a long 

sequence. Our relatively short u-shapelets neither require nor 

benefit from this invariance. Following standard practice in 

the community, we z-normalize all subsequences before any 

ED calculations [14][24][26].  

By computing the sdist between a u-shapelet candidate 

and all time series in a dataset, we create an orderline: 

DEFINITION 3: An orderline is a vector of subsequence 
distances sdist(Ś, Ti) between a u-shapelet candidate Ś and all 

time series Ti in the dataset. 

The time required to calculate an orderline for a single u-

shapelet candidate is            where N is the number of 

time series in the dataset and M is the average length of the 
time series. This computation in itself is not too daunting; 

however, brute-force search requires K such calculations, 

where K is the number of subsequences. The size of K 

depends on the length of the u-shapelets, but is        Thus, 

our ultimate goal is to only compute a tiny fraction of such 

orderlines. 

A u-shapelet candidate can be “good” or “bad,” that is to 

say, high-scoring or low-scoring.  

DEFINITION 4: A good u-shapelet candidate Ś is a 
subsequence having the following property: sdist between Ś 

and any time series in one group DA is significantly smaller 

than sdist between Ś and any time series in another group DB: 

sdist(Ś, DA) << sdist(Ś, DB). 

Thus, a u-shapelet candidate Ś has a separation power: 

we can split the time series in the dataset into two groups by 
considering the subsequence distances to Ś.  

A bad u-shapelet candidate is any subsequence that does 

not have such separation power. Note that u-shapelet 

candidates can be bad in two ways: they may be either stop-

word u-shapelets or outlier u-shapelets.  

DEFINITION 5: A stop-word u-shapelet is a subsequence that 

has similar subsequences in the majority of the time series in 

the dataset.  

A stop-word u-shapelet does not have separation power 

because its sdist to all or the majority of time series in the 

dataset is small. By analogy to text retrieval, a stop-word u-

shapelet is like the words “the” or “and.” Since these words 

appear in virtually every document, they are useless as 

features. 

An alternative way for a u-shapelet candidate to be bad 

is to be a “unique” outlier subsequence. 

DEFINITION 6: An outlier u-shapelet is a subsequence that is 
close to too small a fraction of the dataset to be considered 

worthy of representing a cluster. 

Again by analogy to text retrieval, we can think of an 

outlier u-shapelet as being a hapax legomena. They are 

simply too rare to be useful features for discrimination. 

Figure 4 demonstrates the three types of u-shapelet 
candidates in the raw data and their orderlines.   

 
Figure 4: top) Good u-shapelet candidates presented as green 

subsequences in time series T1 and T2; bad u-shapelets shown 
in red in time series T3 (outlier) and blue (stop-word). 

bottom) Orderlines for the three different types of u-shapelets 

(best viewed in color) 

As the reader may have intuited from the orderlines 
shown in Figure 4, a good u-shapelet will produce a large 

“gap” between DA and DB. To measure its “quality,” we take 

the definition from [26]:  

                    

where    and    denote mean(sdist(Ś, DA)) and 

mean(sdist(Ś, DB)), and    and    represent std(sdist(Ś, DA)) 

and std(sdist(Ś, DB)), respectively. If DA or DB consists of 

only one element (or of an insignificant number of elements 
that cannot represent a separate cluster) the gap score is 

assigned to zero in order to ensure the high-scored u-shapelet 

candidates have true separation power.  

While there are several u-shapelet clustering algorithms 

we can define (cf. Section 3.4), all of them require 

optimizing this gap score. However, as hinted at above, even 

if we confine our attention to u-shapelet candidates that are 

subsequences from our dataset, this means that we must 

invoke the Euclidean distance            times. We 
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propose to vastly reduce this number with a hashing-based 

algorithm, which requires the review of a common time 

series discretization technique in Section 2.2. 

One last item we need to introduce does not refer to the 

u-shapelets directly, but refers to the clusterings. In most 

cases we want to prevent pathological results with clusters 
having a very small number of items or the vast majority of 

the dataset. To enforce this “balance” of cluster sizes, [26] 

suggested constraints on relative sizes of DA and DB using the 

ratio:  

                            (2) 

Note that r in our work does not correspond to the number of 

clusters obtained by clustering with u-shapelets; it simply 

filters out the u-shapelet candidates that are not within the 

desirable range of separation ratio. If r is set to one, we will 

have perfectly balanced cluster sizes as            . If we 

increase r we are allowing increasingly unbalanced cluster 

sizes.  
While this constraint is undoubtedly helpful in domains 

where the user has enough knowledge to steer the clustering 

towards (or away from) certain solutions, for simplicity in 

this work we hardcode r=5. 

2.1 A Motivating Observation 
Consider the much-studied Trace dataset [8] which contains 

200 time series of length 275 in four equal-sized classes. If 

we run a brute-force u-shapelet discovery on this dataset we 

find the best u-shapelet has a gap score of 0.75. If we use this 

u-shapelet to separate data we obtain a Rand index [15] of 1 

(perfect clustering). However, as Figure 5 shows, any u-

shapelet that scores above 0.65 produces the same Rand 
index.  

 
Figure 5: gray) The distribution of all u-shapelet scores 

computed during a brute force search. green) The minimum 

Rand index of these u-shapelets. Once the u-shapelet score is 
greater than about 0.65, it can achieve the same Rand index 

as the best u-shapelet 

While the shape of this distribution differs on other 

datasets, the general rule seems universally true. Of the huge 

number of possible u-shapelets (say, millions) there will be a 

large number (say, thousands) that will differ in u-shapelet 

score only slightly, and in external quality metrics (e.g., Rand 
index) not at all. Thus, in order to obtain a high-quality 

clustering it is sufficient to find one of these “good enough” 

u-shapelets, a significantly easier task. 

DEFINITION 7: Let the best u-shapelet in the dataset have a 

gap score of nbest and the left part of its orderline contain a set 

of time series DA_best. We call a u-shapelet having a gap score 

ngood and containing the same set of time series on the left 

part of its orderline DA_good = DA_best as a good enough u-

shapelet if it has the following property: there is no u-

shapelet candidate with a gap score of nany > ngood and left 

part of its orderline DA_any such that (DA_any ≠ DA_best). 

2.2 SAX Overview 
Symbolic Aggregate approXimation (SAX) [11] allows the 

transformation of a real-valued time series of any length n to 

a discrete string of length l, where    . This change of 

representation reduces not only the dimensionality of the 
time series, but, more critically for our application, the 

cardinality. This finite (and small) cardinality allows us to 

avail of algorithms defined only for discrete data, such as 

hashing. 

We denote a time series T, reduced to cardinality c and 

dimensionality d, as SAX(T)c,d. The first step towards 

obtaining a SAX word from a time series is to reduce the 

dimensionality of a time series via the Piecewise Aggregate 

Approximation (PAA), as shown in Figure 6. After the PAA 

representation is obtained, it is then discretized into the 

symbolic representation.  

 
Figure 6: Representation of time series T (blue) in PAA 

(green/bold) converted into a SAX word, SAX(T)5,8 = 

{5,5,4,3,2,3,1,1}, with c = 5 and d = 8 

It is important to note that we do not convert the entire 

time series into one SAX word. We are not interested in the 

global properties of the times series, but in local 

subsequences. Therefore, we perform a subsequence 

extraction from the time series using a sliding window to 

convert each subsequence into an individual SAX word. The 

SAX representation of the time series will consist of a set of 

SAX words, as shown in Figure 7. 

 
Figure 7: Time series T converted into a set of SAX words, 

{5,5,5,2,3,2,2,1}, {5,5,4,3,3,2,2,1}, …, {4,2,5,5,3,1,2,1}, 
using a sliding window of length 64 

Our hashing algorithm presented in Section 3 uses a 

sliding window of the u-shapelet candidate’s length; thus, 

each time series in the dataset will be represented as a set of 

SAX words, whereas each u-shapelet candidate is 

represented as a single SAX word.  

We can use SAX representations as proxies for the real-

valued time series. However, it is important to preempt the 
discussion of an apparent solution to our problem. One 

might imagine that given this discrete, SAX version of our 

dataset, one could simply avail of one of the many algorithms 

developed by the bioinformatics community to 

approximately solve a variant of the NP-complete 
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Distinguishing Substring Selection problem [5], a very close 

analogue of our current problem1. However, while it is 

possible to define a distance measure on the SAX words that 

lower bounds the Euclidean distance [11], it is possible 

(although rare) that two distinct strings could have a 

vanishingly small Euclidean distance, and that two identical 
strings could refer to time series with a large Euclidean 

distance. Nevertheless, as we shall show in Section 3.2, a 

SAX-guided search allows us to quickly find high-quality u-

shapelets. 

3 Our Approach 
Speedup techniques based on SAX have been proposed for 

both motif discovery [11] and supervised shapelet discovery 

[16]. We exploit similar techniques of using hashing with 

randomized “don’t care” masks for unsupervised-shapelet 

discovery, but must consider some non-trivial modifications 

to the algorithms. 

3.1 Overview of SUSh Algorithm 
We are now in a position to explain the intuition that allows 

us to use hashing to efficiently find u-shapelets. 

First, we converted the time series into a SAX 

representation using a sliding window of the u-shapelet 

candidate’s length. We expected similar time series to map to 

similar, but not necessarily identical strings. To increase the 

probability of similar time series mapping to the same 

symbolic representation, we randomly assigned some 

positions in the SAX word as “don’t cares,” an idea we 

adapted from the bioinformatics community [20][22], and 

generally called random masking.  
As shown in [16], the approach of using SAX with 

random masking is relatively insensitive to parameter 

choices. Thus, we adopted and fixed the parameters from 

[16], assigning the cardinality of SAX words to 4, the 

dimensionality to 16 and the number of rounds of random 

masking to 10 in all experiments. In extensive experiments 

(relegated to [19] for brevity) we confirmed that our 

algorithm is not sensitive to parameter choice. Figure 8 

illustrates the result of applying random masking to identify 

similar subsequences from their SAX representation on the 

toy dataset we presented in Figure 4. The green subsequences 

Ś1 and Ś3, while near identical in the original space, have 
SAX representations that differ by a single symbol: 

SAX(Ś1)6,6={6,6,3,2,2,2}, while SAX(Ś3)6,6 = {6,6,4,2,2,2}. 

It is this situation that prevents the direct application of 

solutions to the problem based on tests of string equality [5]. 

This is unavoidable for all cardinality reduction schemes 

though it is sometimes possible that a different choice of 

cardinality or dimensionality would have resulted in two 

                                                             

1 The Distinguishing Substring Selection problem is: given a set of “good” 

strings and a set of “bad” strings, create a string which is, under Hamming 

distance, “far” from the good strings but “close” to the bad strings [4]. Note 

that we are tasked with creating a string that may not exist in the dataset, 
whereas u-shapelets task us with finding a subsequence from within the data.  

identical strings. However by applying random masking we 

find that subsequences Ś1 and Ś3 often share their masked 

SAX representation (in the figure under the first mask, both 

Ś1 and Ś3 have the representation {*,6,*,2,2,2} and under the 

second, {6,6,*,2,2,*}). As we apply more random projections 

we expect similar subsequences to collide more often. 

 
Figure 8: U-shapelet candidates, their original SAX 
representation (c = 6 and d = 6) and SAX words after two 

rounds of random masking of two symbols 

Obviously, u-shapelet candidates that share the exact 

same SAX word will always collide (u-shapelet candidates 

Ś2, Ś4 and Ś6 in Figure 8). However, for our purposes it is 

more important to find some subset of u-shapelet candidates 

that only appear in some time series in the dataset, but not in 
the majority of them. Consider u-shapelet candidate Ś8: under 

the 2nd random mask it will collide with four other candidates 

which makes the number of collisions highly variable. 

For supervised (“classic”) shapelets it would be sufficient to 

compute how often (under different random masks) each 

candidate appeared in each labeled class of time series and to 

choose those that appeared often in one class but not in 

another. However, as we do not have class labels, we cannot 

exploit this property, but we have discovered some other 

relationships discussed below. 

First, the taxonomy presented in Section 2 tells us we 

can expect the u-shapelet candidates having too many or too 
few collisions to be stop-words or outliers, respectively. 

After several rounds of random masking were applied we 

counted how many time series had a subsequence sharing the 

masked SAX signature with each u-shapelet candidate. We 

filtered out all of the candidates that shared their SAX 

signature with most of the time series (i.e., stop-word u-

shapelets) or with only a tiny fraction of them (i.e., outlier u-

shapelets). 

Second, we have observed that the variability in the 

number of collisions for a SAX subsequence is a good 

predictor of the eventual quality of the corresponding u-
shapelet. Figure 9 demonstrates the distribution of the 

maximum gap scores of u-shapelet candidates for each 

standard deviation range after we filtered out the outliers and 

stop-word u-shapelet candidates. This result is very 

suggestive, telling us we should compute the expensive gap 

scores in the order of the lowest variance first, and that this 

ordering can allow us to “early” abandon the search with 

little chance of missing the best u-shapelet. 

U-shapelet candidates SAX words 1st random mask 2nd random mask

T1

T2

T3

T4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

Ś1

Ś2
Ś3

Ś4

Ś5

Ś6

Ś8

Ś7 4 5 1 3 3 4

4 5 2 3 3 5

4 5 1 3 3 4

4 5 2 3 3 5

4 5 1 3 3 4

4 5 2 3 3 5



 

 

 
Figure 9: gray) Distribution of maximum values of gap score 

per interval. green) Mean and standard deviation of gap score 

values per interval 

Figure 10 illustrates how we count the number of time 

series sharing a masked SAX signature with each u-shapelet 

candidate we are testing. 

 
Figure 10: For each u-shapelet candidate we count how many 

time series share the masked SAX signature with it (number 

of collisions). U-shapelet candidates having a low variability 

of the number of collisions are very likely to be better 

candidates 

Having sorted u-shapelet candidates as described above, 

we need to compute the gap score of some small fraction of 
first candidates. We will show empirically that it suffices to 

compute the gap score of less than 1% of u-shapelet 

candidates to find a “good enough” u-shapelet. Hashing and 

sorting can be performed very quickly; therefore, we can 

obtain a two orders of magnitude speedup. 

3.2 Algorithm for U-shapelet Discovery 
Given the intuition behind our approach, we are finally in a 

position to give a formal definition of Algorithm 1. 

Algorithm 1. GetU-shapelet(Data, sLen, projectionsNum) 

Input: Data: dataset; sLen: u-shapelet length 

Output: Ś: u-shapelet 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10 

11: 

12: 

13: 

14: 

15: 

16: 

allUsh ← GetSubsequences(Data, sLen) 

ushList ← ConvertToSAX(allUsh) 

for i ← 1 to projectionsNum 

    randProjections ← GetRandomProjections(ushList) 

    cCount (:, i) ← CountCollisions (randProjections) 

end for 

sMean ← mean(cCount, 1) 

[allUsh, cCount] ← Filter(cCount, sMean< lb | sMean> ub) 

order ← Sort (std(cCount, 2)),  allUsh ← allUsh(order) 

m ← size(allUsh)/fraction 

bsfGap← 0 

for i ← 1 : m 

    gap ← ComputeGap (allUsh(i)) 

    if gap > bsfGap then Ś ← allUsh(i) 

end for 

return Ś 

Line 1 extracts all subsequences of a given length from 

the time series in the dataset. In line 2 the subsequences are 

converted to SAX. Having obtained a SAX representation of 

all u-shapelet candidates, we hash their random projections 

(line 4) and then count the collisions on line 5. In line 8 we 

filter candidates that appear in too few or too many time 

series in the dataset under the majority of masks, as we have 

argued that such candidates are almost certainly outlier or 

stop-word u-shapelets, respectively. In line 9 the u-shapelet 
candidates that survived this pruning step are sorted by the 

standard deviation of the number of collisions (lower 

standard deviation first). After the u-shapelet candidates 

havebeen sorted we can begin to compute the gap score 

according to the algorithm proposed in [26]. We show the 

algorithm for the gap score computation in Algorithm 2. 

Here the algorithm is simply a direct implementation of 

equation (1). 

Algorithm 2. ComputeGap(s, Data, lb, ub)  

Input: Data: dataset; s: u-shapelet candidate; lb, ub: lower/upper bound 

of reasonable # of time series in cluster 

Output: gap: gap score 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10 

dis ← ComputeOrderline (s, Data),  gap ← 0 

for i ← lb to ub 

    DA ← dis ≤ dis(i), DB ← dis > dis(i) 

    if (lb ≤ | DA | ≤ ub) then 

        mA ← mean(DA), mB ← mean(DB) 

        sA ← std(DA), sB ← std(DB),  

        currGap ← mB - sB - (mA + sA) 

    if currGap > gap then gap ← currGap 

end for 

return gap 

Up to this point we have neglected to discuss the 

stopping criteria for the Algorithm 1. If we allow it to 
exhaustively search all candidates, it will still be faster than a 

naive brute force search because the filtering step in line 8 

will generally have reduced the candidate set size. The 

fraction of data pruned depends on the dataset, but is 

typically at least 50%. If we exhaustively search the 

remaining items, our algorithm has the flavor of an anytime 

algorithm [23], as the “best-first” heuristic sorting in line 9 

gives us the desirable diminishing returns property [23]. 

However, for simplicity we propose to simply stop searching 

after we have examined 1% of the original candidate size. 

This gives up a two order of magnitude speedup, and as we 

shall empirically show, produces results that are nearly 
indistinguishable from an exhaustive 100% brute force 

search. 

3.3 Justification of Our Approach for Gaining 

Speedup  
As we explained in Section 2.1, our goal is to find a “good 

enough” u-shapelet, not necessarily the best one. We do not 

know in advance how many “good enough” u-shapelets can 
be found in the dataset, but if we assume that 0.1% of all u-

shapelet candidates can be considered “good enough,” then 

the probability of finding at least one such candidate within 

the first 1% of candidates checked as a function of the 

number of u-shapelet candidates is presented in Figure 11 as 

the blue/bold line.  
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Figure 11: Probability of finding a “good enough” u-shapelet 

after searching 1% of candidates 

Our speedup mechanism introduced in Algorithm 1 can 

be seen as having two related elements: discarding 

unpromising candidates (line 8) and sorting the remaining 

candidates by the most promising first (line 9). Here we 

consider just the utility of the former, as it may not be 

intuitive that simply discarding some unpromising candidates 

can produce significant speedup. In Figure 11, we show the 

effects of discarding 50%, 75% and 87.5% of the candidates, 

based on the probability of finding a good enough candidate 

after examining just 1% of the u-shapelet candidates. This 

plot shows that simply discarding a large fraction of the 
unpromising data makes a huge difference in the probability 

of early success.  

3.4 Clustering with U-shapelets 
We have discussed algorithms for u-shapelet search, but did 

not explain how to cluster the time series given that we found 

a good enough u-shapelet(s). 

3.4.1 State-of-the-art Algorithm Overview 
In the initial work on u-shapelets, Zakaria et al. [26] 

suggested the use of a modified k-means algorithm. At each 

step (i.e., with each u-shapelet discovered) they added the 

orderline of the u-shapelet to the collection of previously 

discovered u-shapelets’ orderlines, and gave this collection to 

the k-means algorithm. Thus, the input to the k-means was 

not the subsequences of the time series, but the distances of 

each time series to each of the u-shapelets extracted. At each 
step they analyzed whether a newly-added u-shapelet’s 

orderline affected the clusters assigned by the k-means. The 

u-shapelet extraction stopped when the clusters of time series 

did not change with the addition of new u-shapelets’ 

orderlines. This approach has a drawback: it requires the 

explicit specification of the number of clusters k. We would 

like to provide an approach that allows the algorithm to 

decide how many clusters the data have (though it is possible 

to specify the number of clusters if this information is 

available).  

3.4.2 Algorithm for Clustering with U-shapelets 
In contrast to [26], we do not use k-means to assign time 

series to clusters. We iteratively split the data with each 

discovered u-shapelet: we consider the left part of the u-

shapelet’s orderline to be a separate cluster; thus, we remove 
the time series of the part DA of the u-shapelet’s orderline and 

continue a new u-shapelet search with the rest of the data. 

This approach is a direct implementation of the u-shapelet 

definition: u-shapelets separate time series in the dataset by 

the sdist to this u-shapelet. Thus, time series having a small 

sdist will form a cluster, as depicted in Figure 3. As a 

stopping criterion for the number of u-shapelets extracted we 

examine the decline of the u-shapelet gap score: we stop 

when the gap score of the newly-found u-shapelet becomes 

less than half of the gap score of the first discovered u-

shapelet. In essence, this may be regarded as a form of 
heuristic “knee-finding” [18]. 

4 Experimental Evaluation 
To ensure reproducibility we created a webpage with all 

datasets and code used in this work [19]. In addition, the site 

contains supplementary results and multimedia to 

demonstrate the utility of our ideas.  

Our empirical evaluation has the following goals: 

 Thus far, only a single paper has shown the utility of u-

shapelet clustering [26]. Here we provide significant 

additional evidence of their utility.  

 We demonstrate that our algorithm is two orders of 
magnitude faster than the current state-of-the-art, while 

producing results that do not differ in external evaluation 

metrics (i.e., the Rand index). 

We take great care to be fair to rival methods. This is 

often difficult, since many methods in the literature are not 

even defined for datasets unless all time series are of the 

same length. Indeed, bypassing this significant limitation is 

one of the main advantages of u-shapelets. While [6] argues 

forcefully that this “equal-length” assumption is unwarranted 

for most real-world problems and has led to “unwarranted 

optimism” about the performance of algorithms in the related 
task on classification, we make the effort to consider such 

datasets here. In order to assess the quality of clustering with 

a certain u-shapelet we need to have some metric to compare 

clusterings to the ground truth. We use the Rand index [15], 

which essentially indicates what fraction of data was 

clustered correctly. 

4.1 Speedup Evaluation 
An overview of the datasets is presented in Table 1. For 

addition details and the data itself we refer the interested 

reader to the project’s supporting page [19]. 

Table 1: Dataset Information 
Dataset Source TS # TS length Classes # 

Trace [8] 200 275 4 

PAMAP [17] 345 500 7 

Birds(all) [25] 177 500 2 

AMPds [12] 400 400 2 

ECG_PVC [4] 166 144-698 2 

ECG_APB [4] 164 140-699 2 

ECG_RT [4] 126 146-700 2 

We begin by comparing the original brute force 
algorithm with the proposed SUSh algorithm on the 7 

datasets. The results are presented in Table 2. It is clear that 

our approach to ordering allows discovering good u-shapelet 

candidates much more quickly than computing all 

candidates’ gap scores. The mean speedup is 73.4; it varies 

because of the properties of the datasets. If the data are noisy 

(as is the case with PAMAP, Birds and Trace) datasets, the 

random masking produces many collisions that have to be 
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counted. With less noisy data similar subsequences have a 

higher chance of sharing their SAX representation; thus, 

random masking produces fewer new collisions that must be 

counted.  

Table 2: Running Time and Speedup 
Dataset Brute force time (hours) SUSh time (min) Speedup 

Trace 1.89 1.76 64.4 

PAMAP 13.65 16.23 50.5 

Birds(all) 1.36 1.26 64.5 

AMPds 9.37 6.89 82.9 

ECG_PVC 1.68 1.37 73.6 

ECG_APB 1.21 0.77 94.1 

ECG_RT 0.82 0.59 83.8 

In Table 3 we present the Rand index for clustering 

using the u-shapelet found by brute force and SUSh. It is 
clear that our claim that our approach produces essentially 

the same quality of clustering as the exhaustive brute force 

approach is borne out. 

Table 3: Rand Index 
Dataset k-means (true clusters #) Brute force SUSh 

Trace 0.75 1 1 

PAMAP 0.75 0.92 0.92 

Birds(all) 0.77 0.97 0.97 

AMPds 0.66 0.78 0.78 

ECG_PVC Not defined 0.98 0.98 

ECG_APB Not defined 0.97 0.97 

ECG_RT Not defined 0.95 0.95 

4.2 Case Study: Physical Activity Dataset 
The PAMAP project (Physical Activity Monitoring for 

Aging People) aims to monitor physical activity of elderly 

people [17]. As shown in Figure 12, the data is comprised of 

signals from accelerometers located on the subjects as they 

performed different activities. 

 
Figure 12: Examples of all types of outdoor activities from x-

accelerometer located at the foot position 

The subjects recorded their activities as a single 

performance, resulting in data that is one long 

multidimensional time series where each activity was weakly 

labeled. In other words, for each time frame, what the subject 

was supposed to do was annotated without looking at the 

data itself. Thus, the data may contain various transition 

stages (e.g., a part of a time series labeled “cycling” may 

contain regions of unlocking a bike and walking it to the 
street, etc.). For simplicity we considered data only from a 

single sensor (the x-axis accelerometer on the foot). We 

extracted sections of 500 data points or 5 seconds long 

“blindly”: we did not examine the data for the most typical or 

noise-free regions. We considered 345 such time series of 

length 500 from the same subject. 

U-shapelet clustering gives a Rand index of 0.92. k-

means clustering, with k = 7 (the true number of clusters) 

gives us a Rand index of 0.75. We further considered 

clustering the data using several variants of the Fourier 

methods proposed in [7]. The best of these methods obtained 

a Rand index of 0.88, significantly less than u-shapelets. The 

order-dependent state-of-the-art approach fails to cluster the 

data because the first time series in the dataset mostly 
represents a transition stage and it is not possible to extract a 

u-shapelet from it [26]. If we “fix” this algorithm by making 

it examine every time series in the dataset (not just the first), 

then its Rand index is essentially the same as our approach, 

but it then takes more than 30 hours, as opposed to just 16 

minutes using our method. Note that our experiments are 

focused on showing we can reduce the relative time by two 

orders of magnitude. Our absolute times may seem less 

impressive, but by porting to a lower-level language and 

availing of (orthogonal to our contributions) additional 

speedup techniques [14], we believe a further two orders of 

magnitude are obtainable. In any case, even in this case we 
clustered the data more quickly than it was collected (i.e., we 

clustered 28.7min of data in 16min). 

4.3 Case Study: Bird Calls 
We investigated the utility of our u-shapelet discovery 

algorithm for separating distinct bird songs. We considered 

several recordings from [25], some containing songs of the 

white-crowned sparrow (examples of data presented in 

Figure 1) and the remainder containing other miscellaneous 

species or background noise. As in Figure 1, we converted 

the sounds into MFCC space and used the 2nd coefficient. We 

fixed the number of time series containing white-crowned 

sparrow songs and added increasing amounts of the 
background noise dataset. To allow comparison with k-

means, we made all of the time series of equal length (500 

data points) and aligned sparrow song snippets by hand. The 

results of clustering with k-means and u-shapelets are 

presented in Figure 13. It can be clearly seen that the addition 

of spurious data hurts k-means clustering, whereas u-

shapelets separate bird songs essentially with the same 

quality regardless of the presence of spurious data. In 

essence, this was the claim we made in discussing Figure 3. 

 
Figure 13: Rand index for k-means clustering (blue) and 

clustering with u-shapelets (green). Spurious data addition 

does not hurt the quality of clustering with u-shapelets 

(averaged by 10 random runs) 

4.4 Comparisons to Rival Methods 
Recall that this paper’s contribution is making u-shapelet 

discovery tractable; we are not presenting a novel clustering 

technique per se. However, since there is currently only one 

work showing the utility of u-shapelets, we will take the time 

to compare to some existing methods. In order to be 
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scrupulously fair to rival methods, we compare directly to the 

results in the original papers, without reimplementing (and 

possibly “crippling”) the algorithms, and we test only on data 

the original authors chose to showcase in their work. 

In [9] the authors introduce a clustering method called 

CLDS (complex-valued linear dynamical systems), and note 
that the “approach produces significant improvement in 

clustering quality, 1.5 to 5 times better than well-known 

competitors on real motion capture sequences.” The method 

is hard to summarize, involving graphical models, Kalman 

filters and a complex-fit EM algorithm, so we refer the 

interested reader to the original paper [9]. The authors 

demonstrate the utility of their work on the publicly available 

MOCAPANG-Subject-35, right-foot-marker dataset. Unlike 

u-shapelets, their method is not defined for time series with 

different lengths, so they manually trim the data to the same 

length. The evaluation method is based on the conditional 

entropy, and they manage to score 0.1015. This metric is not 
as intuitive as, say, the Rand index; however, suffice it to say 

that smaller is better, and their score is better than random 

guessing. In contrast, we ran u-shapelets on the same dataset, 

and achieved a Rand index of 1 (a perfect score), and a 

conditional entropy of zero. Thus, on this dataset we are 

more accurate than the rival method, and more general (we 

did not need to trim sequences).  

The authors of [1] also deal with only a part of the data 

in the time series. They propose a clustering approach for the 

time series based on the similarity of only some fragments in 

the time series, ignoring the rest of the data. Our u-shapelet 
discovery algorithm was able to identify the synthetically 

implanted trends in their synthetic dataset and performed the 

correct clustering. 

5 Conclusion and Future Work 
Two decades ago, Timmer et al., working on one of the first 

practical applications of time series clustering, noted that: 

“The crucial problem is not the classifier, but the selection of 

well-discriminating features.” [21]. In essence, this is what 

u-shapelets are. However, rather than use statistical features 

such as entropy or the zero-crossing rate, u-shapelets use 

subsequences from the data itself as the discriminating 
features. We have demonstrated the utility of u-shapelets in 

diverse datasets and proposed the techniques that make u-

shapelet discovery tractable, thus allowing its application to 

much larger datasets. Our somewhat arbitrary “examine only 

a special 1% of the data” rule heuristic does empirically give 

us the same accuracy as brute-force algorithms, and in future 

work we hope to prove a (probabilistic) bound on 

performance. 
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