

Scalable Clustering of Time Series with U-Shapelets
Liudmila Ulanova Nurjahan Begum Eamonn Keogh

University of California, Riverside

{lulan001, nbegu001, eamonn}@cs.ucr.edu
Abstract
A recently introduced primitive for time series data mining,

unsupervised shapelets (u-shapelets), has demonstrated

significant potential for time series clustering. In contrast to

approaches that consider the entire time series to compute

pairwise similarities, the u-shapelets technique allows

considering only relevant subsequences of time series.

Moreover, u-shapelets allow us to bypass the apparent

chicken-and-egg paradox of defining relevant with reference

to the clustering itself. U-shapelets have several advantages
over rival methods. First, they are defined even when the

time series are of different lengths; for example, they allow

clustering datasets containing a mixture of single heartbeats

and multi-beat ECG recordings. Second, u-shapelets mitigate

sensitivity to irrelevant data such as noise, spikes, dropouts,

etc. Finally, u-shapelets demonstrated ability to provide

additional insights into the data. Unfortunately, the state-of-

the-art algorithms for u-shapelets search are intractable and

so their advantages have only been demonstrated on tiny

datasets. We propose a simple approach to speed up a u-

shapelet discovery by two orders of magnitude, without any

significant loss in clustering quality.

1 Introduction
Time series clustering is an area of research that has attracted

a significant amount of effort in the last two decades [1][9].

Virtually all research has focused on introducing novel

similarity measures and/or novel clustering techniques. In

contrast, a recent technique, u-shapelets [26], uses the

Euclidean distance as the similarity measure, and a k-means-

like technique as the clustering algorithm. The novelty of u-

shapelets is in selectively ignoring most of the data, and only

using a small number of subsequences for clustering.
Before introducing our contributions to u-shapelet

discovery, we will first (re)argue the case for u-shapelets in

the crowded literature of time series clustering techniques.

1.1 Why U-shapelets are the Technique of

Choice
The most compelling feature of u-shapelets is that they can

ignore irrelevant data when clustering. Consider the tiny

dataset shown in Figure 1. While the correct clustering would
be obvious to the human eye, even without our color-coded

hint, most clustering algorithms would perform poorly for

two reasons. The first reason is that the data are not aligned.

This could be partially mitigated here by using Dynamic

Time Warping (DTW). However, if we considered eight-

minute instead of eight-second snippets, DTW would require

hours even for just six objects. More important, however, is

the fact that perhaps half the data in each time series is

simply irrelevant to the class, consisting of random

environmental background sounds. Any clustering algorithm

that is forced to consider and “explain” such irrelevant data is

doomed to failure.

Figure 1: Six 8-second snippets of bird songs in MFCC

space, three from the Olive-sided Flycatcher (Contopus

cooperi) and three from the White-crowned Sparrow
(Zonotrichia leucophrys). left) The clustering using

Euclidean distance is essentially random. right) The

clustering using u-shapelets (denoted dark/bold) correctly

separates the two species and gives insight as to the most

telling differences between them

An additional advantage of u-shapelet clustering is that it

is defined for datasets in which the individual objects are of

different lengths. This is not the case for most techniques in
the literature. For example, a recent paper that considers the

clustering of motion capture time series data tells us, “While

the original motion sequences have different lengths, we trim

them (to have) equal duration” [9]. Furthermore, the location

of this trimming is subjective, relying on the (human) ability

to find the region “...most significant in telling human motion

apart” [9]. Note that these authors are to be commended for

stating their assumptions so concretely. In the vast majority

of cases, no such statements are made; however, the “equal

length” assumption is implied, and the trimming to equal

length is done by exploiting expensive human skill.

The final advantage of u-shapelets is that they are much
more expressive in terms of representational power. In

particular, they allow separating data belonging to one class

and assigning the remaining data a “non-class” label. Figure

2 illustrates this idea in two-dimensional space. If we task k-

means with clustering the data shown in Figure 2.top.left, it

will produce the intuitive cluster labels shown in Figure

2.top.right. Here the three classes are simple Gaussian

“balls.” However, let us now consider the case shown in

Figure 2.bottom.left. Here we have two of the clusters used in

the previous case, but the remaining third of the data comes

from a uniform “background” distribution. In this case, k-
means produced the clustering shown in Figure

2.bottom.right.

The important observation is not that k-means cannot

correctly label the background cluster; it is that the presence
of the background cluster can cause some of the data that is

highly clusterable to be mislabeled. As shown in Figure 3,

1

4

5

2

6

3

1

2

3

4

6

5

Figure 2: top.row) k-means can recover clusters when all

objects belong to some cluster. However, bottom.row shows

that k-means has difficulty recovering the same clusters in

the presence of items that do not belong to any cluster. Note

that the colors shown are for human introspection only; they

are not available to the algorithm.

we desire an algorithm that can cluster data that is

clusterable, but ignore the non-clusterable data, i.e., non-

clusterable data should not affect the outcome of the

algorithm. As we shall show, u-shapelets solve this for the

time series case.

Figure 3: An ideal clustering algorithm would recover the

two obvious clusters in this data (enclosed by the dashed

circles), without being affected by the non-clusterable data

Many research efforts in time series clustering have

focused on modifying the distance measure to be invariant to

some property of the data [2][7], but still use k-means or
some similar partitional clustering algorithm as the

underlying clustering mechanism. These efforts assume that

every time series belongs to some cluster. However, it is not

clear why this should be the case, and in Section 4 we will

show it is not the case for many real-world datasets. With a

little introspection it is easy to see why this assumption is

more often unwarranted for time series than for other types

of data. Recall the bird calls shown in Figure 1. While both

of these birds are relatively vocal, if we attempt to estimate

population density by clustering a full day of data on a

minute-by-minute basis [3], we may expect to find that the

majority of snippets will not contain any bird sounds. Thus,
we argue that the representational power of the clusterings

algorithm is of key importance with time series, and that we

must have the ability to leave some (perhaps most) of the data

unclustered.

1.2 Scalability Issues
Although u-shapelets have shown considerable promise for

time series clustering, the u-shapelet extraction algorithms

proposed to date are intractable for large datasets [26]. To

mitigate this, the algorithm in [26] resorts to computing gap

scores for the subsequences of just the first time series in the

dataset, making it order dependent and brittle to an unusual

instance being the first item encountered. To eliminate this
undesirable property, we must compute the gap score for

every subsequence of each time series in the dataset. Each

score requires a nearest neighbor search of the subsequence

in question to each time series in the dataset. While this

algorithm can be improved by pruning and early abandoning

techniques from [14], this only produces a relatively modest

speedup.
As we noted, the bottleneck of the state-of-the-art

approach is that it requires computing all of the distances

between time series subsequences in the dataset and then

choosing the best subsequence (in a sense explained in

Section 2) as a u-shapelet. Our work leverages the

observation that most of these computations are not

necessary if we can identify a small fraction of all possible u-

shapelet candidates to compute the actual distances, and by

the further observation that a hashing algorithm can identify

a very small set of u-shapelet candidates, which will contain

the best u-shapelet with very high probability.

1.3 Summary of Contributions
We conclude this section with our contributions:

 We introduce SUSh (Scalable U-Shapelet) – a hash-

based algorithm that allows u-shapelet discovery two

orders of magnitude faster than current techniques.

 We produce the first taxonomy of u-shapelets. In

particular, we show that while there is only one way to

be a high-scoring u-shapelet, there are two distinct ways

to be a low-scoring u-shapelet. This observation is

important because it informs our speedup strategies, and

may be further exploited by others in the community.

 We make all of our code and data available [19] to allow

confirmation and extension of our work.

 Finally, while (supervised) shapelets now have a

significant user base and have seen applications in

domains as diverse as gesture recognition [10], severe

weather prediction [13], and biometrics [17], there is

currently sparse evidence for the utility of u-shapelets.

Here we forcefully provide such evidence, showing that

domain-agnostic u-shapelets can outperform rival

techniques, even after those algorithms are carefully

tuned to the problem at hand by human experts.

The rest of this paper is organized as follows. In Section

2 we present the formal definitions and background. Section
3 describes our approach. Section 4 contains experimental

results and comparisons to rival methods. Section 5 offers

conclusions and avenues for future work.

2 Definitions and Background
We begin by defining the key terms used in this work. Some

of these definitions are restated or adapted from [26], but are

included here for completeness.

As visually hinted at in Figure 1, we are not interested in

global properties of time series, but in the properties of local

time series subsequences:

DEFINITION 1. An unsupervised-shapelet (u-shapelet)

candidate Ś is any subsequence that has a number of data

2 2
2 2
2

2

2

2
2
22

2
22 22
2

22

22 2

22
2 22

22

2

3
33

33

3

3

3

3
33 333 3

3
3 3

3
3

33

3

3

3

3 3
3

3

3

1

1

1

1
1

1

1
1 1

1

1

1

1

1

1

1
1

1

1 1
1
1

1
1

1

1

1

1

1
1

11 2
2 2
2

2

2

2
2
22

2
22 22
2

21

22 2

22
2 22

22

2

2

2 21

2

1

3

23

2

22

1

2

3

3

2
2

1

3 2

2

2

1 1

2

2

2 21

1

3

1
1

1

3
1 3

1

1

1

3

1

3

1
1

3

1 1
1
1

1
1

3

1

3

1

3
1

1
1

*22 2
2 2
2

2

2

2
2
22

2
22 22
2

22

22 2

22

2 22

22

2

*

2 2*

*

2

*

**

2

**

*

*

*
*

2
2

*

* *

*

2

1

2

*

2 21

1

1

1
1

1

1
1 1

1

1

1

1

1

1

1
1

1

1 1
1
1

1
1

1

1

1

1

points less than or equal to the number of data points of the

shortest time series in the dataset.

Figure 4 shows examples of u-shapelet candidates. Note

that this definition does not require the u-shapelet to be a

subsequence of a time series existing in the dataset, as was

the case with Figure 1. However, constraining the u-shapelet

to be a subsequence of an existing time series makes the

search space finite.

DEFINITION 2. The subsequence distance sdist(S, T) between

a time series T and a subsequence S is the minimum of the
distances between the subsequence S and all possible

subsequences of T of length equal to the length of S.

This definition opens the question of which distance

measure to use for sdist. We use the ubiquitous Euclidean

distance (ED), and exploit the recent speedup techniques for

its calculation proposed by Mueen et al. [14]. ED is known to

be very competitive for time series problems [24]. Dynamic

Time Warping can be more accurate on some problems, but
this is because it is able to be invariant to the cumulative

distortions in the time axis which are inevitable in a long

sequence. Our relatively short u-shapelets neither require nor

benefit from this invariance. Following standard practice in

the community, we z-normalize all subsequences before any

ED calculations [14][24][26].

By computing the sdist between a u-shapelet candidate

and all time series in a dataset, we create an orderline:

DEFINITION 3: An orderline is a vector of subsequence
distances sdist(Ś, Ti) between a u-shapelet candidate Ś and all

time series Ti in the dataset.

The time required to calculate an orderline for a single u-

shapelet candidate is where N is the number of

time series in the dataset and M is the average length of the
time series. This computation in itself is not too daunting;

however, brute-force search requires K such calculations,

where K is the number of subsequences. The size of K

depends on the length of the u-shapelets, but is Thus,

our ultimate goal is to only compute a tiny fraction of such

orderlines.

A u-shapelet candidate can be “good” or “bad,” that is to

say, high-scoring or low-scoring.

DEFINITION 4: A good u-shapelet candidate Ś is a
subsequence having the following property: sdist between Ś

and any time series in one group DA is significantly smaller

than sdist between Ś and any time series in another group DB:

sdist(Ś, DA) << sdist(Ś, DB).

Thus, a u-shapelet candidate Ś has a separation power:

we can split the time series in the dataset into two groups by
considering the subsequence distances to Ś.

A bad u-shapelet candidate is any subsequence that does

not have such separation power. Note that u-shapelet

candidates can be bad in two ways: they may be either stop-

word u-shapelets or outlier u-shapelets.

DEFINITION 5: A stop-word u-shapelet is a subsequence that

has similar subsequences in the majority of the time series in

the dataset.

A stop-word u-shapelet does not have separation power

because its sdist to all or the majority of time series in the

dataset is small. By analogy to text retrieval, a stop-word u-

shapelet is like the words “the” or “and.” Since these words

appear in virtually every document, they are useless as

features.

An alternative way for a u-shapelet candidate to be bad

is to be a “unique” outlier subsequence.

DEFINITION 6: An outlier u-shapelet is a subsequence that is
close to too small a fraction of the dataset to be considered

worthy of representing a cluster.

Again by analogy to text retrieval, we can think of an

outlier u-shapelet as being a hapax legomena. They are

simply too rare to be useful features for discrimination.

Figure 4 demonstrates the three types of u-shapelet
candidates in the raw data and their orderlines.

Figure 4: top) Good u-shapelet candidates presented as green

subsequences in time series T1 and T2; bad u-shapelets shown
in red in time series T3 (outlier) and blue (stop-word).

bottom) Orderlines for the three different types of u-shapelets

(best viewed in color)

As the reader may have intuited from the orderlines
shown in Figure 4, a good u-shapelet will produce a large

“gap” between DA and DB. To measure its “quality,” we take

the definition from [26]:

where and denote mean(sdist(Ś, DA)) and

mean(sdist(Ś, DB)), and and represent std(sdist(Ś, DA))

and std(sdist(Ś, DB)), respectively. If DA or DB consists of

only one element (or of an insignificant number of elements
that cannot represent a separate cluster) the gap score is

assigned to zero in order to ensure the high-scored u-shapelet

candidates have true separation power.

While there are several u-shapelet clustering algorithms

we can define (cf. Section 3.4), all of them require

optimizing this gap score. However, as hinted at above, even

if we confine our attention to u-shapelet candidates that are

subsequences from our dataset, this means that we must

invoke the Euclidean distance times. We

T1

T2

T4

T3

0 0.5 1

0 0.5 1

0 0.5 1

Good u-shapelets orderline

Stop-word shapelets orderline (bad)

U-Shapelet outliers orderline (bad)

dt

dt

dt

DA DB

DA DB

DA

DB

propose to vastly reduce this number with a hashing-based

algorithm, which requires the review of a common time

series discretization technique in Section 2.2.

One last item we need to introduce does not refer to the

u-shapelets directly, but refers to the clusterings. In most

cases we want to prevent pathological results with clusters
having a very small number of items or the vast majority of

the dataset. To enforce this “balance” of cluster sizes, [26]

suggested constraints on relative sizes of DA and DB using the

ratio:

 (2)

Note that r in our work does not correspond to the number of

clusters obtained by clustering with u-shapelets; it simply

filters out the u-shapelet candidates that are not within the

desirable range of separation ratio. If r is set to one, we will

have perfectly balanced cluster sizes as . If we

increase r we are allowing increasingly unbalanced cluster

sizes.
While this constraint is undoubtedly helpful in domains

where the user has enough knowledge to steer the clustering

towards (or away from) certain solutions, for simplicity in

this work we hardcode r=5.

2.1 A Motivating Observation
Consider the much-studied Trace dataset [8] which contains

200 time series of length 275 in four equal-sized classes. If

we run a brute-force u-shapelet discovery on this dataset we

find the best u-shapelet has a gap score of 0.75. If we use this

u-shapelet to separate data we obtain a Rand index [15] of 1

(perfect clustering). However, as Figure 5 shows, any u-

shapelet that scores above 0.65 produces the same Rand
index.

Figure 5: gray) The distribution of all u-shapelet scores

computed during a brute force search. green) The minimum

Rand index of these u-shapelets. Once the u-shapelet score is
greater than about 0.65, it can achieve the same Rand index

as the best u-shapelet

While the shape of this distribution differs on other

datasets, the general rule seems universally true. Of the huge

number of possible u-shapelets (say, millions) there will be a

large number (say, thousands) that will differ in u-shapelet

score only slightly, and in external quality metrics (e.g., Rand
index) not at all. Thus, in order to obtain a high-quality

clustering it is sufficient to find one of these “good enough”

u-shapelets, a significantly easier task.

DEFINITION 7: Let the best u-shapelet in the dataset have a

gap score of nbest and the left part of its orderline contain a set

of time series DA_best. We call a u-shapelet having a gap score

ngood and containing the same set of time series on the left

part of its orderline DA_good = DA_best as a good enough u-

shapelet if it has the following property: there is no u-

shapelet candidate with a gap score of nany > ngood and left

part of its orderline DA_any such that (DA_any ≠ DA_best).

2.2 SAX Overview
Symbolic Aggregate approXimation (SAX) [11] allows the

transformation of a real-valued time series of any length n to

a discrete string of length l, where . This change of

representation reduces not only the dimensionality of the
time series, but, more critically for our application, the

cardinality. This finite (and small) cardinality allows us to

avail of algorithms defined only for discrete data, such as

hashing.

We denote a time series T, reduced to cardinality c and

dimensionality d, as SAX(T)c,d. The first step towards

obtaining a SAX word from a time series is to reduce the

dimensionality of a time series via the Piecewise Aggregate

Approximation (PAA), as shown in Figure 6. After the PAA

representation is obtained, it is then discretized into the

symbolic representation.

Figure 6: Representation of time series T (blue) in PAA

(green/bold) converted into a SAX word, SAX(T)5,8 =

{5,5,4,3,2,3,1,1}, with c = 5 and d = 8

It is important to note that we do not convert the entire

time series into one SAX word. We are not interested in the

global properties of the times series, but in local

subsequences. Therefore, we perform a subsequence

extraction from the time series using a sliding window to

convert each subsequence into an individual SAX word. The

SAX representation of the time series will consist of a set of

SAX words, as shown in Figure 7.

Figure 7: Time series T converted into a set of SAX words,

{5,5,5,2,3,2,2,1}, {5,5,4,3,3,2,2,1}, …, {4,2,5,5,3,1,2,1},
using a sliding window of length 64

Our hashing algorithm presented in Section 3 uses a

sliding window of the u-shapelet candidate’s length; thus,

each time series in the dataset will be represented as a set of

SAX words, whereas each u-shapelet candidate is

represented as a single SAX word.

We can use SAX representations as proxies for the real-

valued time series. However, it is important to preempt the
discussion of an apparent solution to our problem. One

might imagine that given this discrete, SAX version of our

dataset, one could simply avail of one of the many algorithms

developed by the bioinformatics community to

approximately solve a variant of the NP-complete

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0

1

All u-shapelet candidates with a score in this range

produce essentially the same quality clustering R
a
n
d

in
d
e
x

u-shapelet candidate gap score

0 20 40 60 80 100 120 140
-2

-1

0

1

2

5

2

1

3

1

3
4

5 5
4
3
2
1 SA

X
 s

ym
b

o
ls

One data point

{4,2,5,5,3,1,2,1}

{5,5,5,2,3,2,2,1}

…

{5,5,4,3,3,2,2,1}

Distinguishing Substring Selection problem [5], a very close

analogue of our current problem1. However, while it is

possible to define a distance measure on the SAX words that

lower bounds the Euclidean distance [11], it is possible

(although rare) that two distinct strings could have a

vanishingly small Euclidean distance, and that two identical
strings could refer to time series with a large Euclidean

distance. Nevertheless, as we shall show in Section 3.2, a

SAX-guided search allows us to quickly find high-quality u-

shapelets.

3 Our Approach
Speedup techniques based on SAX have been proposed for

both motif discovery [11] and supervised shapelet discovery

[16]. We exploit similar techniques of using hashing with

randomized “don’t care” masks for unsupervised-shapelet

discovery, but must consider some non-trivial modifications

to the algorithms.

3.1 Overview of SUSh Algorithm
We are now in a position to explain the intuition that allows

us to use hashing to efficiently find u-shapelets.

First, we converted the time series into a SAX

representation using a sliding window of the u-shapelet

candidate’s length. We expected similar time series to map to

similar, but not necessarily identical strings. To increase the

probability of similar time series mapping to the same

symbolic representation, we randomly assigned some

positions in the SAX word as “don’t cares,” an idea we

adapted from the bioinformatics community [20][22], and

generally called random masking.
As shown in [16], the approach of using SAX with

random masking is relatively insensitive to parameter

choices. Thus, we adopted and fixed the parameters from

[16], assigning the cardinality of SAX words to 4, the

dimensionality to 16 and the number of rounds of random

masking to 10 in all experiments. In extensive experiments

(relegated to [19] for brevity) we confirmed that our

algorithm is not sensitive to parameter choice. Figure 8

illustrates the result of applying random masking to identify

similar subsequences from their SAX representation on the

toy dataset we presented in Figure 4. The green subsequences

Ś1 and Ś3, while near identical in the original space, have
SAX representations that differ by a single symbol:

SAX(Ś1)6,6={6,6,3,2,2,2}, while SAX(Ś3)6,6 = {6,6,4,2,2,2}.

It is this situation that prevents the direct application of

solutions to the problem based on tests of string equality [5].

This is unavoidable for all cardinality reduction schemes

though it is sometimes possible that a different choice of

cardinality or dimensionality would have resulted in two

1 The Distinguishing Substring Selection problem is: given a set of “good”

strings and a set of “bad” strings, create a string which is, under Hamming

distance, “far” from the good strings but “close” to the bad strings [4]. Note

that we are tasked with creating a string that may not exist in the dataset,
whereas u-shapelets task us with finding a subsequence from within the data.

identical strings. However by applying random masking we

find that subsequences Ś1 and Ś3 often share their masked

SAX representation (in the figure under the first mask, both

Ś1 and Ś3 have the representation {*,6,*,2,2,2} and under the

second, {6,6,*,2,2,*}). As we apply more random projections

we expect similar subsequences to collide more often.

Figure 8: U-shapelet candidates, their original SAX
representation (c = 6 and d = 6) and SAX words after two

rounds of random masking of two symbols

Obviously, u-shapelet candidates that share the exact

same SAX word will always collide (u-shapelet candidates

Ś2, Ś4 and Ś6 in Figure 8). However, for our purposes it is

more important to find some subset of u-shapelet candidates

that only appear in some time series in the dataset, but not in
the majority of them. Consider u-shapelet candidate Ś8: under

the 2nd random mask it will collide with four other candidates

which makes the number of collisions highly variable.

For supervised (“classic”) shapelets it would be sufficient to

compute how often (under different random masks) each

candidate appeared in each labeled class of time series and to

choose those that appeared often in one class but not in

another. However, as we do not have class labels, we cannot

exploit this property, but we have discovered some other

relationships discussed below.

First, the taxonomy presented in Section 2 tells us we

can expect the u-shapelet candidates having too many or too
few collisions to be stop-words or outliers, respectively.

After several rounds of random masking were applied we

counted how many time series had a subsequence sharing the

masked SAX signature with each u-shapelet candidate. We

filtered out all of the candidates that shared their SAX

signature with most of the time series (i.e., stop-word u-

shapelets) or with only a tiny fraction of them (i.e., outlier u-

shapelets).

Second, we have observed that the variability in the

number of collisions for a SAX subsequence is a good

predictor of the eventual quality of the corresponding u-
shapelet. Figure 9 demonstrates the distribution of the

maximum gap scores of u-shapelet candidates for each

standard deviation range after we filtered out the outliers and

stop-word u-shapelet candidates. This result is very

suggestive, telling us we should compute the expensive gap

scores in the order of the lowest variance first, and that this

ordering can allow us to “early” abandon the search with

little chance of missing the best u-shapelet.

U-shapelet candidates SAX words 1st random mask 2nd random mask

T1

T2

T3

T4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

6 6 3 2 2 2

4 5 1 3 3 4

6 6 4 2 2 2

4 5 1 3 3 4

5 5 4 1 1 4

4 5 1 3 3 4

Ś1

Ś2
Ś3

Ś4

Ś5

Ś6

Ś8

Ś7 4 5 1 3 3 4

4 5 2 3 3 5

4 5 1 3 3 4

4 5 2 3 3 5

4 5 1 3 3 4

4 5 2 3 3 5

Figure 9: gray) Distribution of maximum values of gap score

per interval. green) Mean and standard deviation of gap score

values per interval

Figure 10 illustrates how we count the number of time

series sharing a masked SAX signature with each u-shapelet

candidate we are testing.

Figure 10: For each u-shapelet candidate we count how many

time series share the masked SAX signature with it (number

of collisions). U-shapelet candidates having a low variability

of the number of collisions are very likely to be better

candidates

Having sorted u-shapelet candidates as described above,

we need to compute the gap score of some small fraction of
first candidates. We will show empirically that it suffices to

compute the gap score of less than 1% of u-shapelet

candidates to find a “good enough” u-shapelet. Hashing and

sorting can be performed very quickly; therefore, we can

obtain a two orders of magnitude speedup.

3.2 Algorithm for U-shapelet Discovery
Given the intuition behind our approach, we are finally in a

position to give a formal definition of Algorithm 1.

Algorithm 1. GetU-shapelet(Data, sLen, projectionsNum)

Input: Data: dataset; sLen: u-shapelet length

Output: Ś: u-shapelet

1:

2:

3:

4:

5:

6:

7:

8:

9:

10

11:

12:

13:

14:

15:

16:

allUsh ← GetSubsequences(Data, sLen)

ushList ← ConvertToSAX(allUsh)

for i ← 1 to projectionsNum

 randProjections ← GetRandomProjections(ushList)

 cCount (:, i) ← CountCollisions (randProjections)

end for

sMean ← mean(cCount, 1)

[allUsh, cCount] ← Filter(cCount, sMean< lb | sMean> ub)

order ← Sort (std(cCount, 2)), allUsh ← allUsh(order)

m ← size(allUsh)/fraction

bsfGap← 0

for i ← 1 : m

 gap ← ComputeGap (allUsh(i))

 if gap > bsfGap then Ś ← allUsh(i)

end for

return Ś

Line 1 extracts all subsequences of a given length from

the time series in the dataset. In line 2 the subsequences are

converted to SAX. Having obtained a SAX representation of

all u-shapelet candidates, we hash their random projections

(line 4) and then count the collisions on line 5. In line 8 we

filter candidates that appear in too few or too many time

series in the dataset under the majority of masks, as we have

argued that such candidates are almost certainly outlier or

stop-word u-shapelets, respectively. In line 9 the u-shapelet
candidates that survived this pruning step are sorted by the

standard deviation of the number of collisions (lower

standard deviation first). After the u-shapelet candidates

havebeen sorted we can begin to compute the gap score

according to the algorithm proposed in [26]. We show the

algorithm for the gap score computation in Algorithm 2.

Here the algorithm is simply a direct implementation of

equation (1).

Algorithm 2. ComputeGap(s, Data, lb, ub)

Input: Data: dataset; s: u-shapelet candidate; lb, ub: lower/upper bound

of reasonable # of time series in cluster

Output: gap: gap score

1:

2:

3:

4:

5:

6:

7:

8:

9:

10

dis ← ComputeOrderline (s, Data), gap ← 0

for i ← lb to ub

 DA ← dis ≤ dis(i), DB ← dis > dis(i)

 if (lb ≤ | DA | ≤ ub) then

 mA ← mean(DA), mB ← mean(DB)

 sA ← std(DA), sB ← std(DB),

 currGap ← mB - sB - (mA + sA)

 if currGap > gap then gap ← currGap

end for

return gap

Up to this point we have neglected to discuss the

stopping criteria for the Algorithm 1. If we allow it to
exhaustively search all candidates, it will still be faster than a

naive brute force search because the filtering step in line 8

will generally have reduced the candidate set size. The

fraction of data pruned depends on the dataset, but is

typically at least 50%. If we exhaustively search the

remaining items, our algorithm has the flavor of an anytime

algorithm [23], as the “best-first” heuristic sorting in line 9

gives us the desirable diminishing returns property [23].

However, for simplicity we propose to simply stop searching

after we have examined 1% of the original candidate size.

This gives up a two order of magnitude speedup, and as we

shall empirically show, produces results that are nearly
indistinguishable from an exhaustive 100% brute force

search.

3.3 Justification of Our Approach for Gaining

Speedup
As we explained in Section 2.1, our goal is to find a “good

enough” u-shapelet, not necessarily the best one. We do not

know in advance how many “good enough” u-shapelets can
be found in the dataset, but if we assume that 0.1% of all u-

shapelet candidates can be considered “good enough,” then

the probability of finding at least one such candidate within

the first 1% of candidates checked as a function of the

number of u-shapelet candidates is presented in Figure 11 as

the blue/bold line.

70
0

0.8

Standard deviation of collisions number

M
a

x
 g

a
p

 s
c
o

re

0

R.M.1 R.M.2 R.M.3 R.M.1 R.M.2 R.M.3 R.M.1 R.M.2 R.M.3

T1 1 1 1 1 1 1 1 1 1
T2 1 1 1 0 0 0 1 1 1
T3 0 0 0 … 1 0 0 … 1 1 1
T4 0 0 0 1 0 0 1 1 1

Sum: 2 2 2 3 1 1 4 4 4
Mean: 2 1.67 4

Std: 0 1.15 0

T1

Filtered out as mean
is too high

Good candidate Not filtered out, but
will be checked after
those with lower std

Figure 11: Probability of finding a “good enough” u-shapelet

after searching 1% of candidates

Our speedup mechanism introduced in Algorithm 1 can

be seen as having two related elements: discarding

unpromising candidates (line 8) and sorting the remaining

candidates by the most promising first (line 9). Here we

consider just the utility of the former, as it may not be

intuitive that simply discarding some unpromising candidates

can produce significant speedup. In Figure 11, we show the

effects of discarding 50%, 75% and 87.5% of the candidates,

based on the probability of finding a good enough candidate

after examining just 1% of the u-shapelet candidates. This

plot shows that simply discarding a large fraction of the
unpromising data makes a huge difference in the probability

of early success.

3.4 Clustering with U-shapelets
We have discussed algorithms for u-shapelet search, but did

not explain how to cluster the time series given that we found

a good enough u-shapelet(s).

3.4.1 State-of-the-art Algorithm Overview
In the initial work on u-shapelets, Zakaria et al. [26]

suggested the use of a modified k-means algorithm. At each

step (i.e., with each u-shapelet discovered) they added the

orderline of the u-shapelet to the collection of previously

discovered u-shapelets’ orderlines, and gave this collection to

the k-means algorithm. Thus, the input to the k-means was

not the subsequences of the time series, but the distances of

each time series to each of the u-shapelets extracted. At each
step they analyzed whether a newly-added u-shapelet’s

orderline affected the clusters assigned by the k-means. The

u-shapelet extraction stopped when the clusters of time series

did not change with the addition of new u-shapelets’

orderlines. This approach has a drawback: it requires the

explicit specification of the number of clusters k. We would

like to provide an approach that allows the algorithm to

decide how many clusters the data have (though it is possible

to specify the number of clusters if this information is

available).

3.4.2 Algorithm for Clustering with U-shapelets
In contrast to [26], we do not use k-means to assign time

series to clusters. We iteratively split the data with each

discovered u-shapelet: we consider the left part of the u-

shapelet’s orderline to be a separate cluster; thus, we remove
the time series of the part DA of the u-shapelet’s orderline and

continue a new u-shapelet search with the rest of the data.

This approach is a direct implementation of the u-shapelet

definition: u-shapelets separate time series in the dataset by

the sdist to this u-shapelet. Thus, time series having a small

sdist will form a cluster, as depicted in Figure 3. As a

stopping criterion for the number of u-shapelets extracted we

examine the decline of the u-shapelet gap score: we stop

when the gap score of the newly-found u-shapelet becomes

less than half of the gap score of the first discovered u-

shapelet. In essence, this may be regarded as a form of
heuristic “knee-finding” [18].

4 Experimental Evaluation
To ensure reproducibility we created a webpage with all

datasets and code used in this work [19]. In addition, the site

contains supplementary results and multimedia to

demonstrate the utility of our ideas.

Our empirical evaluation has the following goals:

 Thus far, only a single paper has shown the utility of u-

shapelet clustering [26]. Here we provide significant

additional evidence of their utility.

 We demonstrate that our algorithm is two orders of
magnitude faster than the current state-of-the-art, while

producing results that do not differ in external evaluation

metrics (i.e., the Rand index).

We take great care to be fair to rival methods. This is

often difficult, since many methods in the literature are not

even defined for datasets unless all time series are of the

same length. Indeed, bypassing this significant limitation is

one of the main advantages of u-shapelets. While [6] argues

forcefully that this “equal-length” assumption is unwarranted

for most real-world problems and has led to “unwarranted

optimism” about the performance of algorithms in the related
task on classification, we make the effort to consider such

datasets here. In order to assess the quality of clustering with

a certain u-shapelet we need to have some metric to compare

clusterings to the ground truth. We use the Rand index [15],

which essentially indicates what fraction of data was

clustered correctly.

4.1 Speedup Evaluation
An overview of the datasets is presented in Table 1. For

addition details and the data itself we refer the interested

reader to the project’s supporting page [19].

Table 1: Dataset Information
Dataset Source TS # TS length Classes #

Trace [8] 200 275 4

PAMAP [17] 345 500 7

Birds(all) [25] 177 500 2

AMPds [12] 400 400 2

ECG_PVC [4] 166 144-698 2

ECG_APB [4] 164 140-699 2

ECG_RT [4] 126 146-700 2

We begin by comparing the original brute force
algorithm with the proposed SUSh algorithm on the 7

datasets. The results are presented in Table 2. It is clear that

our approach to ordering allows discovering good u-shapelet

candidates much more quickly than computing all

candidates’ gap scores. The mean speedup is 73.4; it varies

because of the properties of the datasets. If the data are noisy

(as is the case with PAMAP, Birds and Trace) datasets, the

random masking produces many collisions that have to be

0 100,000
0

1

Total number of u-shapelet candidates

P
ro

b
a
b

ili
ty

With 50,000 candidates we increase the
probability from 0.4 to 0.6 filtering 50%
candidates, and to 0.99 filtering 87.5%

counted. With less noisy data similar subsequences have a

higher chance of sharing their SAX representation; thus,

random masking produces fewer new collisions that must be

counted.

Table 2: Running Time and Speedup
Dataset Brute force time (hours) SUSh time (min) Speedup

Trace 1.89 1.76 64.4

PAMAP 13.65 16.23 50.5

Birds(all) 1.36 1.26 64.5

AMPds 9.37 6.89 82.9

ECG_PVC 1.68 1.37 73.6

ECG_APB 1.21 0.77 94.1

ECG_RT 0.82 0.59 83.8

In Table 3 we present the Rand index for clustering

using the u-shapelet found by brute force and SUSh. It is
clear that our claim that our approach produces essentially

the same quality of clustering as the exhaustive brute force

approach is borne out.

Table 3: Rand Index
Dataset k-means (true clusters #) Brute force SUSh

Trace 0.75 1 1

PAMAP 0.75 0.92 0.92

Birds(all) 0.77 0.97 0.97

AMPds 0.66 0.78 0.78

ECG_PVC Not defined 0.98 0.98

ECG_APB Not defined 0.97 0.97

ECG_RT Not defined 0.95 0.95

4.2 Case Study: Physical Activity Dataset
The PAMAP project (Physical Activity Monitoring for

Aging People) aims to monitor physical activity of elderly

people [17]. As shown in Figure 12, the data is comprised of

signals from accelerometers located on the subjects as they

performed different activities.

Figure 12: Examples of all types of outdoor activities from x-

accelerometer located at the foot position

The subjects recorded their activities as a single

performance, resulting in data that is one long

multidimensional time series where each activity was weakly

labeled. In other words, for each time frame, what the subject

was supposed to do was annotated without looking at the

data itself. Thus, the data may contain various transition

stages (e.g., a part of a time series labeled “cycling” may

contain regions of unlocking a bike and walking it to the
street, etc.). For simplicity we considered data only from a

single sensor (the x-axis accelerometer on the foot). We

extracted sections of 500 data points or 5 seconds long

“blindly”: we did not examine the data for the most typical or

noise-free regions. We considered 345 such time series of

length 500 from the same subject.

U-shapelet clustering gives a Rand index of 0.92. k-

means clustering, with k = 7 (the true number of clusters)

gives us a Rand index of 0.75. We further considered

clustering the data using several variants of the Fourier

methods proposed in [7]. The best of these methods obtained

a Rand index of 0.88, significantly less than u-shapelets. The

order-dependent state-of-the-art approach fails to cluster the

data because the first time series in the dataset mostly
represents a transition stage and it is not possible to extract a

u-shapelet from it [26]. If we “fix” this algorithm by making

it examine every time series in the dataset (not just the first),

then its Rand index is essentially the same as our approach,

but it then takes more than 30 hours, as opposed to just 16

minutes using our method. Note that our experiments are

focused on showing we can reduce the relative time by two

orders of magnitude. Our absolute times may seem less

impressive, but by porting to a lower-level language and

availing of (orthogonal to our contributions) additional

speedup techniques [14], we believe a further two orders of

magnitude are obtainable. In any case, even in this case we
clustered the data more quickly than it was collected (i.e., we

clustered 28.7min of data in 16min).

4.3 Case Study: Bird Calls
We investigated the utility of our u-shapelet discovery

algorithm for separating distinct bird songs. We considered

several recordings from [25], some containing songs of the

white-crowned sparrow (examples of data presented in

Figure 1) and the remainder containing other miscellaneous

species or background noise. As in Figure 1, we converted

the sounds into MFCC space and used the 2nd coefficient. We

fixed the number of time series containing white-crowned

sparrow songs and added increasing amounts of the
background noise dataset. To allow comparison with k-

means, we made all of the time series of equal length (500

data points) and aligned sparrow song snippets by hand. The

results of clustering with k-means and u-shapelets are

presented in Figure 13. It can be clearly seen that the addition

of spurious data hurts k-means clustering, whereas u-

shapelets separate bird songs essentially with the same

quality regardless of the presence of spurious data. In

essence, this was the claim we made in discussing Figure 3.

Figure 13: Rand index for k-means clustering (blue) and

clustering with u-shapelets (green). Spurious data addition

does not hurt the quality of clustering with u-shapelets

(averaged by 10 random runs)

4.4 Comparisons to Rival Methods
Recall that this paper’s contribution is making u-shapelet

discovery tractable; we are not presenting a novel clustering

technique per se. However, since there is currently only one

work showing the utility of u-shapelets, we will take the time

to compare to some existing methods. In order to be

0 100 200 300 400 500

Slow Walk

Normal Walk

Nordic Walk

Run

Cycle

Soccer

Rope Jumping

90 100 110 120 130 140 150 160 170 180
0.7

1

Time series number in dataset

R
a
n
d

 In
d

e
x

scrupulously fair to rival methods, we compare directly to the

results in the original papers, without reimplementing (and

possibly “crippling”) the algorithms, and we test only on data

the original authors chose to showcase in their work.

In [9] the authors introduce a clustering method called

CLDS (complex-valued linear dynamical systems), and note
that the “approach produces significant improvement in

clustering quality, 1.5 to 5 times better than well-known

competitors on real motion capture sequences.” The method

is hard to summarize, involving graphical models, Kalman

filters and a complex-fit EM algorithm, so we refer the

interested reader to the original paper [9]. The authors

demonstrate the utility of their work on the publicly available

MOCAPANG-Subject-35, right-foot-marker dataset. Unlike

u-shapelets, their method is not defined for time series with

different lengths, so they manually trim the data to the same

length. The evaluation method is based on the conditional

entropy, and they manage to score 0.1015. This metric is not
as intuitive as, say, the Rand index; however, suffice it to say

that smaller is better, and their score is better than random

guessing. In contrast, we ran u-shapelets on the same dataset,

and achieved a Rand index of 1 (a perfect score), and a

conditional entropy of zero. Thus, on this dataset we are

more accurate than the rival method, and more general (we

did not need to trim sequences).

The authors of [1] also deal with only a part of the data

in the time series. They propose a clustering approach for the

time series based on the similarity of only some fragments in

the time series, ignoring the rest of the data. Our u-shapelet
discovery algorithm was able to identify the synthetically

implanted trends in their synthetic dataset and performed the

correct clustering.

5 Conclusion and Future Work
Two decades ago, Timmer et al., working on one of the first

practical applications of time series clustering, noted that:

“The crucial problem is not the classifier, but the selection of

well-discriminating features.” [21]. In essence, this is what

u-shapelets are. However, rather than use statistical features

such as entropy or the zero-crossing rate, u-shapelets use

subsequences from the data itself as the discriminating
features. We have demonstrated the utility of u-shapelets in

diverse datasets and proposed the techniques that make u-

shapelet discovery tractable, thus allowing its application to

much larger datasets. Our somewhat arbitrary “examine only

a special 1% of the data” rule heuristic does empirically give

us the same accuracy as brute-force algorithms, and in future

work we hope to prove a (probabilistic) bound on

performance.

Acknowledgements. We gratefully acknowledge funding

from NSF IIS-1161997.

6 References
[1] G. Atluri,. Discovering Groups of Time Series with Similar Behavior in

Multiple Small Intervals of Time, Proceedings of the 14
th
 SIAM

International Conference on Data Mining, 2014.

[2] G. Batista, X. Wang, E. Keogh, A Complexity-Invariant Distance Measure

for Time Series, Proceedings of the 11
th
 SIAM International Conference on

Data Mining 2011, pp. 699-710

[3] D.K. Dawson, M.G. Efford, Bird population density estimated from

acoustic signals, J. Appl. Ecol., 46 (2009), pp. 1201–09

[4] A.L. Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a New Research Resource for Complex Physiologic

Signals, Circulation 101(23):e215-e220

[5] J. Gramm, J. Guo, R. Niedermeier, On exact and approximation

algorithms for Distinguishing Sub-string Selection, Proceedings of the

14th FCT. Springer-Verlag, Berlin, August 2003, pp. 25-42

[6] B. Hu, Y. Chen, E. Keogh, Time Series Classification under More

Realistic Assumptions, Proceedings of the 13
th
 SIAM International

Conference on Data Mining, 2013, pp. 578-586

[7] K. Kalpakis, D. Gada, V. Puttagunta, Distance measures for effective

clustering of ARIMA time-series, Proc’ of IEEE International

Conference on Data Mining, 2001, pp. 273-280

[8] E. Keogh et al., The UCR Time Series Classification/Clustering

Homepage: www.cs.ucr.edu/~eamonn/time_series_data/

[9] L. Li, B. Prakash, Time Series Clustering: Complex is Simpler!

Proceedings of the 28th ICML, 2011, pp. 185-192

[10] J. Liu et. al., uWave: Accelerometer-based personalized gesture

recognition and its applications, Pervasive and Mobile Computing

5(6), 2009, pp. 657-675

[11] J. Lin, E. Keogh, S. Lonardi, B. Chiu A symbolic representation of time

series, with implications for streaming algorithms, Proceedings of the

8
th
 ACM SIGMOD DMKD workshop, 2003, pp. 2-11

[12] S. Makonin et al., AMPds: A Public Dataset for Load Disaggregation

and Eco-Feedback Research, Electrical Power and Energy Conference

(EPEC), 2013 IEEE, 2013, pp. 1-6

[13] A. McGovern, D. Rosendahl, R. Brown, K. Droegemeier, Identifying

predictive multi-dimensional time series motifs: an application to

severe weather prediction, Data Mining and Knowledge Discovery. 22

(1), 2011, pp. 232-258

[14] A. Mueen, E. Keogh, N. Young, Logical-Shapelets: an expressive

primitive for Time Series classification, Proceedings of the 17
th
 ACM

SIGKDD, 2011, pp. 1154-1162

[15] W. Rand, Objective criteria for the evaluation of clustering methods,

Journal of the American Statistical Association, Vol. 66, No. 336,

Dec., 1971, pp. 846-850

[16] T. Rakthanmanon, E. Keogh, Fast shapelets: A scalable algorithm for

discovering time series shapelets, Proc’ of the 13
th
 SIAM conference

on Data Mining, 2013, pp. 668-676

[17] A. Reiss, M. Weber, D. Stricker, Exploring and extending the

boundaries of physical activity recognition, IEEE SMC’11, pp. 46-50

[18] S. Salvador, P. Chan, Determining the number of clusters/segments in

hierarchical clustering/segmentation algorithms, Proc of 16
th

IEEE

ICTAI 2004, pp. 576-584

[19] Supporting page: https://sites.google.com/site/ushapelet/

[20] K. Tharakaraman et al., Alignments anchored on genomic landmarks

can aid in the identification of regulatory elements, ISMB. 2005, pp.

440-448

[21] J. Timmer, C. Gantert, G. Deuschl, J. Honerkamp, Characteristics of

hand tremor time series, Biological cybernetics 70.1, 1993, 75-80

[22] M. Tompa, J. Buhler, Finding motifs using random projections,

Proceedings of the 5th Int’l Conference on Computational Molecular

Biology, 2001, pp. 67-74

[23] K. Ueno, X. Xi, E. Keogh, D.-J. Lee, Anytime Classification Using the

Nearest Neighbor Algorithm with Applications to Stream Mining, Proc’

of the IEEE ICDM 2006, pp. 623-632

[24] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann,

E. Keogh, Experimental comparison of representation methods and

distance measures for time series data, Data Min. Knowl. Discov.

26(2): pp. 275-309 (2013)

[25] Xeno-canto bird sounds collection http://www.xeno-canto.org/

[26] J. Zakaria, A. Mueen, E. Keogh, Clustering Time Series using

Unsupervised-Shapelets, Proceedings of the IEEE International

Conference on Data Mining, 2012, pp. 785-794

https://sites.google.com/site/ushapelet/

