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Abstract— The recently introduced data structure, the Matrix Profile, annotates a time 

series by recording the location of and distance to the nearest neighbor of every 

subsequence. This information trivially provides answers to queries for both time 

series motifs and time series discords, perhaps two of the most frequently used 

primitives in time series data mining. One attractive feature of the Matrix Profile is 

that it completely divorces the high-level details of the analytics performed, from the 

computational “heavy lifting.” The Matrix Profile can be computed using the 

appropriate computational paradigm for the task at hand: CPU, GPU, FPGA, 

distributed computing, anytime computation, incremental computation, and so forth. 

However, all the details of such computation can be hidden from the analyst who only 

needs to think about her analytical need. In this work, we expand on this philosophy 

and ask the following question: If we assume that we get the Matrix Profile for free, 

what interesting analytics can we do, writing at most ten lines of code? As we will 

show, the answer is surprisingly large and diverse. Our aim here is not to establish or 

compete with state-of-the-art results, but merely to show that we can both reproduce 

the results of many existing algorithms and find novel regularities in time series data 

collections with very little effort. 
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1 Introduction 

The recently introduced time series data structure, the Matrix Profile, annotates a time 

series by recording the location of and distance to the nearest neighbor of every 

subsequence [52][57]. This means that it encodes all the information needed to 



  

answer both time series motif and time series discord queries, perhaps two of the most 

frequently used primitives in time series data mining [24][28][48][52][57]. Both of 

these primitives can be discovered in other ways; however, the Matrix Profile can be 

computed very efficiently, regardless of the length of the subsequences considered 

(i.e. the dimensionality). This is a useful property because all other algorithms that 

compute these primitives suffer greatly from the curse of dimensionality [24][28][48]. 

For example, before the invention of the Matrix Profile, no one attempted to discover 

motifs longer than 900 datapoints long [24][28][48]. In contrast, [52] demonstrates a 

successful experiment in bioinformatics that requires finding motifs of length 60,000. 

Similarly, before the Matrix Profile, the longest dataset searched for exact motifs was 

a million datapoints long [24][28][48], but [57] increases that record one-hundred 

fold.  

While the scalability of the Matrix Profile is an attractive and enabling property, it is 

not its most interesting feature. The original Matrix Profile paper concludes with the 

sentence, “There are many avenues for future work, and we suspect that the research 

community will find many uses for the matrix profile.” [52]. Recently this claim has 

been borne out in a series of papers to show that the Matrix Profile can be used to 

support a host of analytic tasks including: semantic segmentation [13], the discovery 

of evolving patterns (time series chains) [55], and finding predictive patterns in 

weakly labeled data [51]. It is the extraordinary generality of the Matrix Profile that is 

its most important and useful feature. To support this somewhat subjective claim, in 

this work we make a more concrete claim. Given just the Matrix Profile, and at most 

ten lines of additional code (in a high-level language, here we use Matlab), one can 

perform a host of analytic tasks, as well as reproduce the results of much more 

complicated algorithms. 

Philosophically, we would like the community to regard the Matrix Profile much like 

most programmers regard the sort subroutine in their favorite language. A casual 

programmer does not care or need to know how it is implemented (quick-sort, merge-

sort, heap-sort etc.), she regards it as computationally “free1,” and she uses it to solve 

                                                                 

1 We will revisit the idea of computationally “free” for the Matrix Profile in Section 4. For the case of sorting 

numbers, most invocations of sorting are on less than one million numbers, and it is possible to sort a million 32-

bit numbers on a modern machine in 20 milliseconds with essentially no space overhead. Thus, for most 



  

many problems. In a similar spirit, a data analyst does not need to know how the 

Matrix Profile is computed (It could be by STAMP [52], STOMP [57], STOMPI [53], 

SCRIMP++ [56], etc.), she can typically regard it as computationally “free” and use it 

to solve many time series data mining problems. We regard this simple abstraction as 

game changing. Analysts are much more likely to try out a new idea if they could get 

the first results in a few minutes, including both coding time and computational time. 

A tentative idea that take hours or days to produce may never get past the idea stage.  

The rest of this paper is organized as follows. After a brief review of the Matrix 

Profile in Section 2, in Section 3 we will show ten case studies that support our claim 

that many interesting problems can be solved using the Matrix Profile and at most ten 

lines of additional code. In Section 4, we will offer conclusions and directions for 

future work. 

2 General Related Work and Background  

In the following section we briefly review the notion and definitions necessary to 

understand the Matrix Profile [50][51][52][53][55][56][57]. Readers familiar with this 

material can skip ahead to Section 3. 

2.1 Definitions and Notation 

We begin by defining the data type of interest, time series: 

Definition 1: A time series T ∈ ℝ𝑛 is a sequence of real-valued numbers ti ∈ ℝ: T 

= [t1, t2, ..., tn] where n is the length of T. 

We are not interested in the global, but the local properties of a time series. A local 

region of a time series is called a subsequence:  

Definition 2: A subsequence Ti,m ∈ ℝ𝑚 of time series T is a continuous subset of 

the values from T of length m starting from position i. Formally, Ti,m = [ti, ti+1,…, 

ti+m-1], where 1 ≤  i ≤  n-m+1, and m is a user-defined subsequence length. 

We can extract all the subsequences from a given time series by sliding a window of 

size m across the time series. This is called an all-subsequence set: 

                                                                                                                                                                                        

applications/users, it makes sense to think of sorting as a no-cost resource. Clearly, sorting can be a bottleneck 

for some applications, but these are rare enough that we think our claim self-evident.  



  

Definition 3: An all-subsequence set A of a time series T is an ordered set of all 

the subsequences of T: A = {T1,m, T2,m,…, Tn-m+1,m}. We use Ai to denote Ti,m. 

Note the all-subsequence set is defined purely for notational purposes. In our 

implementation, we do not actually extract the subsequences in this form as it would 

require significant time overhead, and explode the memory requirements. 

We can take any subsequence from a time series and compute its distance to all the 

sequences in an all-subsequence set. We store these distance values in a vector called 

the distance profile: 

Definition 4: A distance profile D is a vector of the Euclidean distances between a 

given query subsequence and every subsequence in the all-subsequence set. 

We assume the distance is measured as the Euclidean distance between the z-

normalized subsequences [4].  

The first four definitions are illustrated in Fig. 1.  

 

Fig. 1 A subsequence Q extracted from a time series T is used as a query to every subsequence in T. 

The vector of all distances is a distance profile.  

Note the query subsequence and the all-subsequence set may or may not belong to the 

same time series. By definition, if the query subsequence and the all-subsequence set 

belong to the same time series, the distance profile must be zero at the location of the 

query, and close to zero just before and after (assuming only that the time series is 

somewhat smooth). Such matches are called trivial matches in the literature [28], and 

are avoided by ignoring an exclusion zone (shown as a gray region) of m/2 before and 

after the location of the query. Practically, we set the distance values in the exclusion 

zone to infinity. 

The minimum value of a distance profile indicates the nearest neighbor (i.e., 1NN) of 

the given query subsequence within the all-subsequence set. We are interested in 

T, a snippet of a synthetic 

time series

2,0000 m/2m/2

Q, query of length m

D, a distance profile Note that |D| = |T|-|Q|+1



  

finding the nearest neighbor of every subsequence; this constitutes a similarity join 

set: 

Definition 5: Similarity join set: given two all-subsequence sets A and B, a 

similarity join set JAB of A and B is a set containing pairs of each subsequence in A 

with its nearest neighbor in B: JAB={〈 A[i], B[j] 〉 | θ1nn (A[i], B[j])}. Here θ1nn 

(A[i], B[j]) is a Boolean function which returns “true” only if B[j] is the nearest 

neighbor of A[i] in the set B. We denote the similarity join set formally as JAB = 

A⋈1nnB. 

We use two vectors, the matrix profile and the matrix profile index, to store the 

nearest neighbor information of a similarity join set. The matrix profile stores the 

distances between all the subsequences and their nearest neighbors: 

Definition 6: A matrix profile PAB is a vector of the Euclidean distances between 

each pair in JAB, where the ith element of PAB is the distance between Ai and its 

nearest neighbor in B. 

We call this vector a matrix profile since it could be computed by using the full 

distance matrix of all pairs of subsequences in time series T, and evaluating the 

minimum value of each row (although this method is naïve and space-inefficient). 

Fig. 2 shows the matrix profile of our running example. 

 

Fig. 2 A time series T, and its self-join matrix profile P.  

The ith element in the matrix profile P indicates the Euclidean distance from 

subsequence Ti,m to its nearest neighbor in time series T. However, it does not indicate 

the location of that nearest neighbor. This information is recorded in a companion 

data structure called the matrix profile index: 

Definition 7: A matrix profile index IAB of a similarity join set JAB is a vector of 

integers where the ith element of IAB is j if {〈 Ai, Bj 〉} ∈ JAB 

2,0000

P, a matrix 

profile

T, a snippet of a synthetic 

time series

Note that |P| = |T|-|Q|+1



  

By storing the neighboring information in this manner, we can efficiently retrieve the 

nearest neighbor of query Ai by accessing the ith element in the matrix profile index. 

In general, the function which computes the similarity join set of two input time series 

is not symmetric: JAB ≠ JBA, PAB ≠ PBA, and IAB ≠ IBA, except in the special case where 

A=B. 

We can regard the matrix profile as a meta time series annotating the time series T if 

the matrix profile is generated by joining T with itself (i.e., A=B). This profile has a 

host of interesting and exploitable properties. For example, the highest point on the 

profile corresponds to the time series discord [8], the (tying) lowest points correspond 

to the locations of the best time series motif pair [28], and the variance can be seen as 

a measure of the T’s complexity. 

We call this special case of similarity join set (Definition 5) a self-similarity join set, 

the corresponding matrix profile a self-similarity join matrix profile, and the 

corresponding matrix profile index a self-similarity join matrix profile index. 

Definition 8: A self-similarity join set JAA is the similarity join of an all-

subsequence set A with itself. We denote this formally as JAA = A ⋈1nn A. We 

denote the corresponding self-similarity join matrix profile as PAA, and the 

corresponding self-similarity join matrix profile index as IAA. 

For clarity of presentation, we have confined this work to the single dimensional case; 

however, nothing about our work intrinsically precludes generalizations to 

multidimensional data. In the multidimensional data, we would still have a single 

matrix profile, and a single matrix profile index; the only change needed is to replace 

the one-dimensional Euclidean Distance with the b-dimensional Euclidean Distance, 

where b is the number of dimensions the user wants to consider. 

2.2 Summary of the Previous Section 

Since the previous section was rather dense, here we summarize the main takeaway 

points. We can create two meta time series, the matrix profile and the matrix profile 

index, to annotate a time series A with the distance to and location of all its 

subsequences’ nearest neighbors in itself or another time series B. These two data 

objects explicitly contain the answers to the time series data mining tasks of motif 



  

discovery and discord discovery [53]. Moreover, as we will show below, we can 

easily perform many other kinds of analytics using the matrix profile and the matrix 

profile index as primitives.  

To make the contributions of this work more concrete, we will occasionally show the 

actual code we use to solve various problems. The two basic tools that perform the 

key operations explained above are: 

[MP, MPindex] = computeMatrixProfile(T,m);         % Def 8 

[JMP, JMPindex] = computeMatrixProfileJoin(A,B,m); % Def 6-7 

Once again, a key assumption of this work is that these operations can be computed 

very fast, by any one of half a dozen algorithms optimized for various computational 

paradigms. Thus we simply take these operations as given, and see what we can do 

with them with just a tiny amount of extra coding effort.  

3 Ten Useful Things you can do with the Matrix Profile and Ten Lines of 
Code 

In this section, we show the eponymous ten useful things you can do with the matrix 

profile and ten lines of code. In every case we make the data available [59]. The code 

to compute the matrix profile can be found at [40] and the remaining code is placed 

inline in this work. Note that we see these as ten demonstrations. We do not expand 

any section with the rigor one might expect if it were a single idea being presented in 

a paper.  

3.1 Discovering Motifs Under Uniform Scaling 

The utility for motif discovery under uniform-scaling invariance was first considered 

in [48]. We revisit the motivation with a simple and visually compelling example. We 

took two exemplars from the same class from the MALLAT dataset [9] and imbedded 

them into a random walk dataset. As Fig. 3.top shows, even without the color-coded 

clue brushed onto the data by the Matrix Profile discovery tool [40], the repeated 

pattern is visually obvious.  



  

 

Fig. 3 top.left) A random walk time series with two exemplars from the MALLAT dataset 

imbedded at locations 2001 and 5025. The color highlighting indicates the top-1 motif, which 

unsurprisingly are exactly the imbedded patterns. top.right) The matrix profile corresponding to the 

random walk time series. The minimum values correspond to the top-1 motif in the time series. 

bottom.left) The same time series, but with the second half linearly stretched by 5%. This causes the 

top-motif to change to snippets of random walk. bottom.right) The matrix profile corresponding to 

the stretched time series. We can see that the minimum points changed. 

We then took the second half of the time series and linearly stretched it by 5%. By 

any standard, such a change is a trivial difference and essentially visually 

imperceptible. Nevertheless, as Fig. 3.bottom shows, the pair of imbedded patterns are 

no longer the top-1 motif, an unexpected and disquieting result. Before we show how 

to address this within this paper’s “the Matrix Profile plus ten-lines-of-code 

framework,” we note the following facts that mitigate the issue. 

• For the rescaled version, the pair of imbedded patterns was the second-best 

motif and only just nudged out by the spurious random walk pair. 

• If, instead of searching with a motif length of 1,024, the original length of the 

imbedded pattern, we had searched for a shorter length, say 500, then the best 

motif would have been a subsequence of the imbedded pattern. The user 

could then have examined the shorter motif and realized it could be extended 

significantly while maintaining its similarity.  

• We deliberately chose this dataset, from the 85 in the UCR archive, knowing 

it would be very sensitive to changes in linear scaling. This is because 

complex time series (see [3]) with very sharp rises and falls are particularly 

sensitive to having features out of phase. For most datasets, motif discovery is 

much more robust to small amounts of uniform scaling.  

Despite all these mitigating facts, Fig. 3.bottom clearly shows that there may be some 

situations in which there is a need to find motifs with invariance to uniform scaling. 

To the best of our knowledge, there is only one research effort that has addressed this. 

However, this method is approximate, requires many parameters to be set, and is only 

1 10,048

1 10,313

100%

105%

1 10,048

1 10,313

time series matrix profile

time series (stretched) matrix profile (stretched)



  

able to support a limited range of scaling [48]. In contrast, we can easily and exactly 

solve this problem under our simple assumptions.  

For the moment, assume that we know the scaling factor we want to be invariant to 

happens to be 1.64. We can take the dataset T and copy a stretched version of it into 

T2, simply by using:   

T2 = T(1: 100/164: end); % Unofficial Matlab way to resample 

If we now call: 

     [JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500); 

Now, the resulting Matrix Profile will discover the motifs with the appropriate 

uniform scaling invariance. In fact, we did exactly this on a 6,106,456 length trace of 

household electrical demand to discover the motif shown in Fig. 4.  

 

Fig. 4 top) Two non-contagious snippets from the ElectriSense dataset [16]. While semantically 

similar, they have a very large Euclidian distance because they are of different lengths. bottom) 

After stretching the January 18th pattern by 164%, the two patterns are almost identical.  

The motif pattern appears to be the three elements of a dishwasher cycle (clean, rinse, 

dry), which can take different amounts of time due to the use of the optional half-load 

feature [23]. In this case, we knew from some first principle physics how to set the 

scaling factor, but that may not always be the case. Given our assumptions, we can 

simply iterate over all possible scaling factors in a given range. For example, to 

discover motifs that are similar after scaling one pattern by 150% to 180%, we can 

use the following code snippet.   

326,100 327,100 367,000 367,400

0

1000

2000 January 14 January 18

The January 14th pattern is a near perfect 

match the January 18th pattern, after the 

latter is uniformly stretched to 164% of its 

original length.



  

minJMP=inf(1,length(T)), minScale=ones(1,length(T)); 

minJMPindex=zeros(1,length(T)); 

for scale_factor = 150 : 180 

  T2 = T(1: 100/scale_factor: end);  

  [JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500); 

  locs = JMP < minJMP; 

  minJMP(locs)=JMP(locs), minScale(locs)=scale_factor/100; 

  minJMPindex(locs)=JMPindex(locs); 

end 

This example perfectly elucidates the philosophy driving this paper. For many time 

series data mining tasks, we may not need to spend significant human time designing, 

implementing and tuning new algorithms. The Matrix Profile and ten lines of code 

may be sufficient.  

3.2 Discovering Time Series Semordnilaps 

Consider the sentence fragment we discovered in Wikipedia, “… the longest-lived 

Tasmanian devil recorded was Coolah …” [46]. This snippet contains a Semordnilap 

pair [33], the mirrored words “lived” and “devil”. Semordnilaps are easy to find in 

arbitrary text strings, and indeed have an important role in molecular biology. For 

example, many restriction enzymes recognize specific palindromic sequences and cut 

them.  As a concrete example, the restriction enzyme EcoRI recognizes the following 

palindromic pair, “GAATTC” and “CTTAAG” [21].  

Because the original definition of time series motifs was directly inspired by the 

analogy to DNA, it is natural to ask if there is a natural time series analogy to 

semordnilaps, and if so, can they be efficiently discovered? From the previous 

example, the reader will readily see that this is trivial, we can simply use:  

 T2 = fliplr(T);  % returns T reversed   

[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);     

The only question remaining is: are there natural domains that contain time series 

semordnilaps? The answer is affirmative. 

To demonstrate the utility of Semordnilap discovery, we consider Joseph Haydn's 

Symphony No. 47 in G major, written in 1772. In particular, we examined a 

performance by the Tafelmusik Orchestra, directed by Bruno Weil in 1993 [30]. The 



  

performance is twenty-one minutes and two seconds long. As shown in Fig. 5.top, we 

converted it to Mel-frequency cepstral coefficients (MFCC) using windows with 0.5 

second and 50% of overlap (standard music processing settings). We set m to 150, or 

37.5 seconds. 

At 14 minutes and 53 seconds, there is a Semordnilap of a passage we encountered at 

14 minutes and 16 seconds.  

 

Fig. 5 top) Haydn's Symphony No. 47 converted to MFCC. center.left) Two snippets found by 

Semordnilap discovery appear unrelated until we flip one backwards in time (center.right). bottom) 

The sheet music for the relevant section explains this unexpected discovery.  

Fig. 5.bottom explains the presence of such a perfectly conserved Semordnilap. As 

noted in [7], “The most extraordinary of all canonic movements from this time is of 

course from Symphony No. 47. Here Haydn writes out only one reprise of a two-

reprise form, and the performer must play the music ‘backward’ the second time 

around”. 

While this example is clearly contrived, there may be Semordnilaps waiting to be 

discovered in dance, travel trajectories, medical data, industrial processes, and a host 

of domains that have yet to occur to us.  
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3.3 Discovering Time Series Reverse Complements 

Our success in finding Semordnilaps immediately suggests another specialized type 

pattern we could search for. Are there examples of patterns which repeat, but in which 

one pattern is the inverse of the other? That is to say, unlike Semordnilaps, which are 

“flipped” in the time axis, are there patterns that are flipped upside-down in the value 

axis? We call such patterns Time Series Reverse Complements (TSRCs). 

For example, El Nino Southern Oscillation (ENSO) is a phenomenon that is 

characterized by intermittent negative correlations between the surface temperatures 

observed in the Central and Eastern Ocean [19]. However, there are much more 

quotidian examples. Consider the two-minute snippet of time series shown in Fig. 6.  

It shows the y-axis from a hip-worn accelerometer from the USC-HAD Database 

[54]. As shown in Fig. 6.bottom.left, the best motif of length twenty seconds is not 

well conserved, and almost looks like two random subsequences. This is unsurprising, 

apart from dance or athletic performances, we would not expect human behavior to 

faithfully repeat over such an extended time scale. However, we also searched for the 

best TSRC pattern of the same length, and as shown in Fig. 6.bottom.center and Fig. 

6.bottom.right it is stunningly well conserved.  

 

Fig. 6 top) Approximately two minutes from a dataset from a hip-worn accelerometer of quotidian 

activity. bottom.left) The best motif of length twenty seconds is not well conserved, however, if we 

generalize the search to consider TSRC motifs (bottom.center) we find a highly conserved pattern. 

To better see how well conserved it is, in (bottom.right) we show the patterns with one element 

inverted, and both patterns smoothed. However, we note that we discovered this pattern in the 

original noisy space.   

0 1 minute 2 minutes

1 20 1 20 1 20seconds secondsseconds

The red pattern has 

been inv erted



  

What is the mechanism that produced this pattern? At about twenty-two seconds into 

the recording, the user stepped into an elevator. The first bump is the “jolt” of the 

elevator ascending, followed by the “dip-and-recover” as the elevator decelerated the 

desired floor. After about one minute, the user took a return trip, descending the same 

number of floors. 

The reader will readily appreciate that discovering TSRCs with the matrix profile is 

trivial, we simply used:  

 T2 = T*(-1);  % returns T flipped upside down   

[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);     

Note that in this case, the discovered TSRC also happens to be a Semordnilap. 

However, this need not be the case in general.  

3.4 Segmenting Repetitive Exercises 

In recent years, there have been dozens of papers published on the task of segmenting 

repetitive exercises – such as weight training and calisthenics – via body worn 

sensors. See [26] and the references therein and thereof. As [26] forcefully argues, 

this problem is more difficult than it may seem at first glance. Many of the proposed 

methods use Hidden Markov Models, a powerful technique, but one that typically 

requires a lot of training data and careful parameter tuning. While we do not claim to 

be able to reproduce all the features of systems such as RecoFit [26], we note that at 

least in some cases, the Matrix Profile and a single line of extra code can segment 

repetitive exercises with high accuracy. Consider the following two lines of code. 

     [MP, MPindex] = computeMatrixProfile(T,m);                  

regions_of_repetition = MP < 2/3 * (min(MP)+max(MP));              

We tested this code snippet on the Pamap Dataset [34], a dataset frequently used by 

the relevant community. Fig. 7 shows the result. 



  

 

Fig. 7 top to bottom) A snippet of accelerometer data from Pamap Dataset-Subject 1, shoe-Acc X- 

axis, with its ground truth segmentation, into Ascending stairs, Descending stairs and Transitional 

activities. The MP segmentation we predicted largely agrees, and was computed simply by 

thresholding the Matrix Profile.  After casting the ground truth segmentation in a Boolean vector of 

{Transitional | other} we find out predicted segmentation agrees with it 93% of the time.  

Why does this simple idea work so well? Note that activities such as ascending stairs 

and descending stairs correspond to very well-conserved, periodic movements of the 

person, so such data would have a low matrix profile value. In contrast, the 

transitional activities are more at random, generating very noisy patterns with high 

matrix profile values. Therefore, in this dataset, a single threshold is enough for us to 

segment the activities. 

3.5 Robust Distance Functions  

Distance functions are at the heart of much of data mining, especially time series data 

mining [3]. We can characterize distance functions by the invariances they achieve. 

For example (here we illustrate with text, the discrete analogue of time series): 

• Euclidian distance is invariant to noisy data, and able to discover the similarity 

between cat and rat. 

• Dynamic Time Warping is invariant to local misalignments in the data and 

differing data lengths, and able to discover the similarity between concat 

and cooncat. 
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• Cross Correlation is invariant to phase alignment, and can discover the 

similarity between cathouse and housecat. 

• Longest Common Subsequence is invariant to minor insertions/deletion in the 

data and able to discover the similarity between genome and gene. 

While there are many such distance measures to handle various distortions in short 

time series, long time series provide greater challenges.  Consider the following 

phrases:  

A = we can sequence the genome of the cat 

B = the cats genome was sequenced in 2014 

C = xe hes jlvoeqee kjsw eaqwe oqawe acea 

Here the hamming distance (the discrete analogue of Euclidean Distance) between A 

and B is 31, but the distance between A and C is only 26. This is an unintuitive result, 

given that we immediately see the common structure in A and B.  What we want is a 

distance measure that can reward A and B for sharing many subsequences, even if they 

are out of order. This issue also occurs for time series. To see this, we consider pairs 

of ten-second snippets extracted from four individuals experiencing cardiac issues. As 

shown in Fig. 8.left, we clustered them using a Euclidean distance average-linkage 

hierarchical clustering. 

 

Fig. 8 left) Eight ten-second snippets of time series, from four individuals, clustered using 

Euclidean distance single-linkage hierarchical clustering. right) The same snippets clustered using a 

Matrix Profile based distance measure.  

Here the disappointing results of Euclidean distance could be mitigated by very 

careful beat extraction and alignment. However, we want to be able to use distance 
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functions with minimum human effort and knowledge. There are some distance 

functions that can achieve the required invariances. Their names, bag-of-patterns [25], 

bag-of-words [45], and so on suggest both their source of inspiration and their 

approach. While these methods may produce better results for our task at hand, they 

all have at least three parameters and require significant implementation effort. In the 

spirit of this work, can we reproduce at least some of their effort with the MP and a 

few lines of code? To answer this question, consider the following lines of code: 

    [JMP, dummy] = computeMatrixProilfeJoin(A,B,m); 

    MSMD = min(JMP);  

Using this MSMD distance measure, we produced the clustering shown in Fig. 

8.right. Note that MSMD is symmetric: we can reverse the order of A and B in the 

pseudo code and obtain the same result. Assume 𝑆𝐴  is a set of all subsequences 

extracted from time series A, and 𝑆𝐵 is a set of all subsequences extracted from time 

series B, then MSMD is simply the minimum among all pairwise distances between 

subsequences from 𝑆𝐴 and subsequences from 𝑆𝐵. 

We can further test the utility of the MSMD distance measure, using classification.  

Almost all time series classification comparisons are based on the UCR archive 

[3][11]. However most of the datasets in that archive are extracted from larger 

datasets with an extraction tool based on the Euclidian distance. Given that, it is 

hardly surprising that Euclidian distance (and DTW, which subsumes Euclidian 

distance as a special case) will be hard to beat [11].  However, the newest release of 

the archive contains three related datasets that were processed in a different way. The 

source dataset is data from fifty-two pigs having three vital signs monitored, before 

and after an induced injury [15]. The data are vital signs measured at high frequency 

(250Hz) using a bed-side hemodynamic monitoring system, much like a setup that 

one might expect to see in a modern ICU. The collected measurements are arterial 

blood pressure, central venous pressure, and airway pressure. Critically for our 

purposes, the authors note “Unlike in the (pre-2018) UCR data sets, the vital signs are 

not temporally aligned: The starting point of observation is effectively arbitrary”. We 

compared MSMD, Euclidian distance and DTW on the three pig datasets. We used 

the predefined train/test splits, learning MSMD’s best value for m, and DTW’s best 



  

value for w (the warping window width) with cross validation on just the training 

data. Table 1 summarizes the results.  

Table 1: A comparison of the holdout error rates of one-nearest neighbor with three distance measures. 

In each dataset, the default rate is 0.980, because each of the 52 pigs is equally likely. 

Dataset MSMD (m) Euclidian distance DTW (w) 

PigAirwayPressure 0.134 (425) 0.944 0.903 (1) 

PigArtPressure 0.000 (140) 0.875 0.802 (1) 

PigCVP 0.105 (200) 0.918  0.841 (11) 

The results show that while both Euclidian distance and DTW struggle to beat the 

default rate, the MSMD can achieve a very low error rate. It is possible that we could 

improve DTW by using endpoint invariance DTW, and we could improve Euclidian 

distance by doing circular shift Euclidian distance. However, these results strongly 

support our basic claim: you can get good results with the Matrix Profile and a 

handful of lines of code.  

3.6 Meter-Swapping Detection  

Electricity theft is a multi-billion-dollar problem worldwide [39]. There are dozens of 

ways to steal power, but some modern wireless meters offer a surprisingly easy 

method with little chance of detection [20].  Suppose customer A is a heavy consumer 

of electricity; perhaps he has several electric cars, or a machine shop, or a marijuana 

nursery in his garage. Further suppose that he notes that one of his neighbors, 

customer B, an elderly widow living alone, consumes very little power. It is possible 

for A to surreptitiously switch his meter with B, and thus only have to pay for her 

meager consumption, while she unwittingly gets lumbered with paying for his 

extravagant consumption. This crime is called meter-swapping, and has become 

increasingly prevalent as power companies have reduced meter reading staff in favor 

of wireless meter reading [39]. 

It might be imagined that this would be easy for the power company to detect, as there 

would be a significant change in the average power consumed by two houses. 

However, as Fig. 9.top hints at, power consumption is often bursty anyway. For 

example, families take vacations, welcome a new baby, or have children return from 

college for a few weeks.  



  

Our intuition to solve this problem is to note that while volume of consumption is not 

a good feature, some households may have a unique “shape” of the consumption over 

a day. Note that we do not expect all days to be conserved and unique, it is sufficient 

for our purposes that the household occasionally produces a well-conserved pattern, 

perhaps correspond to a low-power use on the Sabbath for an orthodox family, or (as 

in one of the authors’ experience) an all-day obligation to wash and dry the soccer kits 

for the entire team once every seven weeks.   

We consider a dataset of household electrical power demand collected from twenty 

houses in the UK in 2013 [29]. To simulate a meter-swapping event, we randomly 

chose two of these time series, and swapped their traces starting at November 10th.  

As we can see in Fig. 9.top this change is not readily visually obvious.  

 

Fig. 9 top) Five time series from the set of 20 we consider for this demonstration, spanning from 

January 1st to December 23rd. A randomly chosen pair of time series had their “tails” (the region 

after November 10th) swapped to simulate a meter-swapping event. middle) If we join the head and 

tail of H11, the 1st motif pair has a mutual distance of 9.56, slightly lower than the mean of the 

motif distance for all 20 houses. bottom) If we join the head and tail pair from any of the 400 such 

combinations, the 1st motif pair from the join of HeadH11 and TailH4 produce the smallest mutual 

distance, of just 2.85; the motif patterns look strikingly similar. 
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To find the swapped time series pair, we propose the following simple algorithm. We 

divide all the time series into two sections: the “Head,” prior to November 10th and 

the “Tail,” subsequent to November 10th. We join all possible combinations of Heads 

and Tails, and record the pair Hi, Hj that minimizes the following score: 

           Swap-Score(i,j) = min(HeadHi ⋈1nn TailHj) / (min(HeadHi ⋈1nn TailHi) + epsilon) 

In our simple experiment, this score was minimized by i = H11 and j = H4, which as 

it happens, are our swapped pair. As Fig. 9.bottom shows, the motif spanning these 

two apparently distinct traces time series is suspiciously similar, perhaps similar 

enough to warrant a visit by a meter reader/fraud prevention officer.  

As before, the code to do this is trivial given the Matrix Profile: 

for i=1:5 

  [MP,MPindex] = computeMatrixProfile(Head(i),m); 

  minMP = min(MP) + eps % eps is Matlab’s built-in epsilon  

  for j=i+1:5   % Produce all pairs of Heads and Tails 

    [JMP,JMPindex]=computeMatrixProfileJoin(Head(i),Tail(j),m); 

Score = min(JMP) / minMP ; 

<trivial code to maintain the minimum Score so far> 

  end 

end 

Note that in our simple example we assumed we knew the date of the swap, removing 

that assumption would simply require expanding our search space.  

3.7 Shapelet discovery 

Time series shapelets are time series subsequences that best represent a class [49]. 

The Matrix Profile can help us quickly identify good shapelet candidates. This idea 

was mentioned in passing in [52] but was not fully developed and evaluated due to 

lack of space.  

We demonstrate our approach with the GunPoint dataset. This dataset has two classes, 

Gun and NoGun (NoGun is also known as Point, hence the name GunPoint). As 

shown in Fig. 10, we construct time series TA by concatenating all the instances of the 



  

Gun class, and construct time series TB by concatenating all the instances of the 

NoGun class. We insert an NaN value in between every two concatenated instances to 

avoid introducing artificial patterns that are not present in the original time series. We 

then compute two matrix profiles, PBB and PBA. For simplicity, we use a subsequence 

length of 38, which is the length of the best shapelet reported for this dataset [49]. 

Intuitively, PBB will be smaller than PBA because we would expect subsequences 

within the same class to be more similar than those of different classes. The difference 

between PBA and PBB (we denote it as P = PBA - PBB), as shown in Fig. 10.bottom, 

generally agrees with this intuition.  

 

Fig. 10 top and middle) Two time series A and B formed by concatenating instances of each class of 

GunPoint dataset. bottom) The difference between PBA and PBB. The top-10 peak values 

(highlighted with red circles) are suggestive of good shapelet candidates. 

We propose the peak values in P are indicators of good shapelet candidates, because 

they suggest patterns that are well conserved in their own class but are very different 

from their closest match in the other class. We pick the top-10 candidates from TB 

(analogously, we can find the top-10 candidates from TA if we consider the difference 

between PAB and PAA). The code snippet is as follows.  
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[PBB, dummy] = computeMatrixProfileJoin(B, B, m); 

[PBA, dummy] = computeMatrixProfileJoin(B, A, m); 

MPdiff = PBA – PBB; 

indicesOfTopShapelet = topTen(MPdiff); % trivial code to     

implement topTen (extracting the top 10 peaks from the matrix 

profile) omitted 

In Fig. 11.left, we can see that all the top-10 shapelets give very high classification 

accuracy on both the train and test data. Among them, we choose the one that renders 

the highest classification accuracy on the training set (the 6th shapelet) and show it in 

Fig. 11.right. This shapelet gives 93.33% accuracy on the test data, which is higher 

than the 91.33% accuracy of One-Nearest-Neighbor with DTW distance measure, 

with a bonus advantage of significantly less classification time. The shapelet learned 

reflects a distinct characteristic of the class that it represents (NoGun), as discussed by 

Ye and Keogh [49]: “the NoGun class “has a “dip” where the actor put her hand 

down by her side, and inertia carries her hand a little too far and she is forced a 

correct it…a phenomenon known as ‘overshoot’”. In contrast, in the opposite Gun 

class, the actor carries a gun. She needs to put the gun back in the holster and then 

bring her hand to a complete rest position, generating a different pattern.  

 

Fig. 11 left) Classification accuracy of ten top-ten shapelet candidates. All the candidates render 

high classification accuracy on both train and test data. right) The best shapelet found in training. 

Classification with this shapelet on test data gives 93.33% accuracy, higher than the 91.33% 

accuracy of One-Nearest-Neighbor DTW. This 93.33% accuracy is also the best accuracy achieved 

with the classic shapelet search approach [49]. 

In hindsight, this shapelet also achieves the same classification accuracy on the test 

data as the original shapelet algorithm [49]. However, in contrast to the classic 

shapelet algorithm, which exhaustively evaluates the classification power of every 

possible shapelet candidate in the dataset, the MP readily provides the top shapelet 

candidates for free.  
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3.8 Detecting and Locating Low Frequency Earthquakes  

Low frequency earthquakes (LFEs), which recur episodically, could “potentially 

contribute to seismic hazard forecasting by providing a new means to monitor slow 

slip at depth” [37]. As such, detecting and locating LFEs are of great importance to 

the seismology community.  

The waveforms of a recurring LFE recorded at the same seismic station are normally 

very similar to each other, as they reflect the unique signature of the wave reflecting 

and refracting through the local substrate. Thus, we can detect them by extracting the 

top motifs from the Matrix Profile of the continuous seismograph recording time 

series (e.g., [57]). However, as indicated in [57], this can result in a lot of false 

positives since the sensor recording of a single seismic station often contains many 

repeating sensor artifacts or instrument noise. Though such false positives are easy to 

filter out by human eye [57], this becomes untenable when the data is long enough to 

contain hundreds or thousands of false positive events. Fig. 12 shows the matrix 

profile corresponding to a 24-hour seismic recording of the FROB station near the 

central San Andreas fault at Parkfield, CA on Oct. 9th, 2007. The data is sampled at 

20Hz (1.728 million datapoints in total). The matrix profile contains hundreds of deep 

valleys, but only less than 10% of them are corresponding to true LFEs. 

 

Fig. 12 The matrix profile of the FROB station on Oct 9th, 2007 contains a lot of deep valleys, a 

vast majority of which are false positives. 

Is there a way to automatically filter out all the undesirable events (i.e. false 

positives)? Note that sensor artifacts or instrument noise are local (i.e., they will only 

be detected by a single seismic station), while recurring LFEs can be detected by 

multiple stations at similar times. Correspondingly, we would expect the matrix 

profiles of multiple stations to show low values at the time when an LFE occurs. In 
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contrast, when a false positive event occurs, only one of the matrix profiles would 

show low values and the others will show high values. This renders a simple solution 

to our problem: all we need to do is get the element-wise maximum of the matrix 

profiles corresponding to multiple nearby stations. 

In Fig. 13.top we zoom in a 15-second snippet of the matrix profile shown in Fig. 12 

at around 3am when an LFE occurs, and compare it with the same snippet taken from 

the matrix profile of a nearby seismic station JCNB (shown in Fig. 13.bottom). As 

expected, both snippets contain a valley. 

 

Fig. 13 top) A 15-second snippet of the matrix profile shown Fig. 12 at around 3am. bottom) The 

same snippet of the matrix profile corresponding to the seismic recording of the nearby station 

JCNB. Both snippets contain a deep valley, but they are a little bit misaligned as the two stations 

receive the earthquake signal at slightly different times. 

However, note that the two valleys are slightly misaligned. This is because the source 

of the LFE locates slightly closer to the JCNB station than to the FROB station, and 

earthquakes travel at a finite speed. Thus, if we simply take the element-wise 

maximum of the two matrix profiles, the valley will become shallow. Fortunately, this 

misalignment (denoted as tdiff in Fig. 13.bottom) has physical limits: the two stations 

are about 10 km away, and the velocity of seismic waves near the surface of the earth 

is around 3-4 km/s, so tdiff cannot be more than 5 seconds (i.e., 100 data points). As 

such, we slightly adjust our “element-wise maximum” strategy to the following: we 

match the ith element of MPFROB (1 ≤ i ≤ |MPFROB|) to the minimum element within the 

range [max(i-100, 1), min(i+100, |MPJCNB|)] of MPJCNB, then take their maximum. 

The pseudo-code is as follows. 
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[MPfrob,dummy]=computeMatrixProfile(DATAfrob,m); %FROB station 

[MPjcnb,dummy]=computeMatrixProfile(DATAjcnb,m); %JCNB station 

Lfrob = length(MPfrob), Ljcnb = length(MPjcnb); 

for i = 1 : Lfrob 

   [minVal,minIdx]=min(MPjcnb(max(i-100,1):min(i+100,Ljcnb))); 

   MPfrob(i) = max(MPfrob(i),minVal), Index(i) = minIdx; 

end 

Fig. 14.top shows the resulting matrix profile MPfrob, which is much “cleaner” than 

the one shown in Fig. 12. We presented the top 10 motifs extracted from this matrix 

profile to a seismologist [36] (the top 3 are shown in Fig. 14.bottom), and he verified 

that they are all true LFEs.  

 

Fig. 14 top) The deep valleys in the resulting matrix profile all correspond to true events (compare 

to Fig. 12). bottom) The top 3 motifs extracted from the resulting matrix profile. 

Besides detecting true LFEs, note that our simple strategy also provides extra 

implications for locating the LFEs. The time difference tdiff shown in Fig. 13 can be 

found from the Index vector in our pseudocode, and if we know such time 

difference between 3 pairs of nearby seismic stations in the area, the exact location of 

the source of the LFE can be calculated. We reserve detailed analysis and further 

demonstration of such considerations for future work.  

2

10

0 24 hours

0 7000 700 0 700

1st motif 2nd motif 3rd motif



  

3.9 Automatically clustering time series motifs 

Building on our previous example we consider applications of the Matrix Profile to 

clustering of seismic data. Seismic waveform clustering has been applied to 

earthquake relocation [41][44][35], repeating earthquake source identification 

[12][31][43][32][5][37][47] and volcano monitoring [38][22][38][2], helping to 

improve earthquake and volcanic hazard assessments. The seismology community has 

adopted various methods to cluster the seismic waveforms (time series subsequences 

corresponding to a seismic event) [2][41]. However, these methods take discrete, 

phase-aligned seismic waveforms of the same length as their input; extracting such 

waveforms from a long continuous seismic recording requires a lot of human effort. 

Here we introduce a simple method based on the Matrix Profile and ten lines of code, 

that can automatically discover earthquake pattern clusters from the continuous 

seismic recording. 

To allow verification of the correctness of our result, we constructed a seismic time 

series by embedding twelve earthquake patterns into a 1,000-second-long snippet of 

seismic background noise, as shown in Fig. 15.a. The 12 embedded patterns are 

generated by four different earthquake sources (patterns of the same source are 

marked with the same color). The patterns corresponding to the same source normally 

look very similar to each other, while those corresponding to different sources are 

dissimilar. Our goal is to automatically discover the four natural clusters within the 

time series. 

Before introducing our proposed solution, we would like to first dismiss some 

apparent solutions. Given the problem setting, the reader might consider finding the 

top-k motifs [28] here. Note that the top-k motifs normally refer to the top-k most 

similar pairs of subsequences in the time series. However, from Fig. 15.a we can see 

that a natural motif cluster can contain more than two occurrences of similar 

subsequences (e.g., the three red patterns are mutually similar); the classic top-k motif 

definition would separate them into different motif clusters, which is undesirable. The 

reader might also consider finding the range motifs [28] instead of top-k motifs. 

However, discovering range motifs requires setting a threshold parameter r: the 

maximum distance between any two subsequences in a motif cluster must not be 



  

larger than 2r. We argue that such threshold is very difficult to set and needs very 

careful tuning. For example, if two subsequences have a Euclidean distance of three, 

are they similar enough to be considered as a motif? The answer is not that obvious 

even for a domain expert who knows the data well. 

 

Fig. 15 a) A seismic time series with 12 earthquake patterns. These earthquakes are generated by 

four different sources. Patterns corresponding to the same source are marked in the same color. b) 

The matrix profile of the seismic time series. c) The relative matrix profile after the 1st motif pattern 

is removed. The deep valleys corresponding to the three red patterns disappeared. d) The relative 

matrix profile after the 2nd motif pattern is removed. The deep valleys corresponding to the four 

green patterns disappeared. e) The relative matrix profile after the 3rd motif pattern is removed. The 

deep valleys corresponding to the two blue patterns disappeared. f) The relative matrix profile after 

the 4th motif pattern is removed. The deep valleys corresponding to the three orange patterns 

disappeared. 

Our solution can automatically find the natural number of motif clusters in the data 

(i.e., we do not need to specify how many clusters we would like to find), and requires 

only the setting of a much less critical parameter. The code is as follows: 
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[MP, dummy] = computeMatrixProfile(T, m); 

RelMP = MP, i = 1, DissMP = inf(1, length(MP)); 

while i == 1 || min(RelMP) < 0.2 

   [minVal(i), minIdx(i)] = min(RelMP); 

   DissmissRange = T(minIdx-m+1 : minIdx+2*m-2);  

   [JMP, dummy] = computeMatrixProfileJoin(T,DissmissRange,m); 

   DissMP = min(DissMP,JMP); %dismiss all motifs discovered so far 

   RelMP = MP ./ DissMP; 

   i = i + 1; 

end 

We first compute the matrix profile MP corresponding to the input time series T, as 

shown in Fig. 15.b. We can see deep valleys in the vicinity of all the embedded 

earthquake patterns, as they all have close matches from the same source. We use the 

following iterative process to find the motif clusters one by one: 

1. We find the minimum value in the current relative matrix profile RelMP (in 

the first iteration, we set RelMP = MP). This corresponds to a motif pattern 

(Fig. 16. shows the motif pattern discovered at each iteration). 

2. We wish to avoid finding the same motif pattern in the next iteration. As such, 

we specify a DissmissRange which is a section of time series T that 

includes the current discovered motif pattern and its trivial matches, then 

compute the AB-join matrix profile JMP between the original time series T 

and DissmissRange. JMP measures how similar each subsequence is to 

the current discovered motif pattern. 

3. We use a vector DissMP to store the distance between every subsequence and 

its closest match among all the motif patterns discovered so far. DissMP is 

initialized as infinity, and once we have computed JMP, we update DissMP 

with the element-wise minimum of DissMP and JMP. 

4. We evaluate a “relative” matrix profile RelMP by dividing the original matrix 

profile MP with DissMP. Our intuition is that, if a subsequence has a very 

close nearest neighbor, but is very different from any of the discovered motifs 



  

(and their trivial matches), then its RelMP value should be low. Note that the 

values in RelMP are always between 0 and 1. 

5. If min(RelMP) < 0.2, go to step 1 and start the next iteration. Otherwise 

terminate the process. 

From Fig. 15.b-f, we can see how RelMP changes through this iterative process (we 

use RelMPi to denote the status of RelMP at the end of the ith iteration). After each 

iteration, several deep valleys corresponding to the earthquake patterns in the same 

color disappeared from RelMP. The process terminates after the 4th iteration, when 

there are no more valleys apparent in RelMP.  

The reader might wonder how we define “apparent valleys” here. We set a 

termination threshold as min(RelMP) = 1/5. Recall that RelMP(j) measures 

the relative ratio between MP(j), the distance from the jth subsequence to its nearest 

neighbor and DissMP(j), the distance from the jth subsequence to its closest match 

among all the discovered motif patterns. If the jth subsequence belongs to a new 

cluster, then it should be much more similar to its nearest neighbor than any of the 

discovered patterns. As such, we require that MP(j) cannot be more than 1/5 of 

DissMP(j). 

From Fig. 16, we can see that the discovered motifs at different iterations correspond 

to different earthquake sources (different colors), and the process terminates right 

after we have discovered all the four embedded earthquake clusters. 

 

Fig. 16 top.left) The 1st motif pattern discovered, corresponding to the minimum point of the matrix 

profile MP in Fig. 15.b. top.right) The 2nd motif pattern discovered, corresponding to the minimum 

point of the relative matrix profile RelMP1 in Fig. 15.c. bottom.left) The 3rd motif pattern 

discovered, corresponding to the minimum point of the relative matrix profile RelMP2 in Fig. 15.d. 

bottom.right) The 4th motif pattern discovered, corresponding to the minimum point of the relative 

matrix profile RelMP3 in Fig. 15.e. 
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3.10 Quantifying Parkinson Disease 

Parkinson Disease (PD) is a neuro-degenerative disease which affects gait and 

mobility. To assess the severity of the disease, clinicians use the Hoehn and Yahr 

scale [1]. The original scale published in 1967 [18] ranges from 1 to 5, with the scores 

1.5 and 2.5 added in a later revision to allow doctors to describe the progression of the 

disease.  

In a recent paper, the authors propose exploiting the “recurrence” of gait time series 

as a method to automatically score patients on the Hoehn and Yahr scale [1]. They use 

a mathematically sophisticated definition of recurrence based on an embedding in a 

phase space, showing that various heuristic complexity measures of the recurrence 

quantification analysis correlate to the Hoehn and Yahr scale. 

The phase “recurrence” in the title of this paper caught our attention. Time series 

motifs are simple recurring subsequences. It is natural to ask if the Matrix Profile 

could be used for this task.  Our intuition here is simple. Imagine a person could walk 

with a near perfectly repeated gait cycle. If we computed the matrix profile of their 

gait telemetry, we would expect the matrix profile values to be very small, as every 

subsequence would have a near perfect match somewhere. In contrast, if a person has 

an irregularity to their gait (caused by a tremor, a hesitation, or stumble), we would 

expect that these movements will add unique elements to each gait. As such, these 

unique gaits cycle will not find such close matches among their neighbors and 

therefore the matrix profile will be higher. In Fig. 17 we find some evidence to 

support the idea that people with more advanced PD have less well conserved gaits, at 

least on two randomly selected individuals.   

 

Fig. 17 A comparison of gait force profiles from two individuals walking for 20 seconds. One 

individual (top) was assessed by clinicians as being ‘3’ on the Hoehn and Yahr scale. His gait 

cycles are not repeated perfectly, we have highlighted some of the most least conserved adjacent 

cycles. In contrast, another individual (bottom) who was assessed as ‘1’ on the Hoehn and Yahr 

scale has a more conserved gait. 
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To see if this observation is more generally true, we experimented with the Parkinson 

Disease (PD) dataset provided by Hausdorff group [17], which is publicly available in 

“PhysioBank Database” [14]. The data consists of gait force profiles of 93 patients 

with idiopathic PD (disease severity levels 2, 2.5 and 3 in terms of Hoehn-Yahr scale) 

and 73 healthy control individuals (who we would expect to score at level 1). The data 

consists of vertical ground reaction force of subjects when walking normally at their 

own pace. The ground reaction force is the force exerted by the ground on an object in 

contact with it, in this case, the object is the foot. 

We propose using the median of MP of sensor data as a proxy for the severity level of 

PD. We use the median rather than the maximum or sum, as the latter two functions 

would be brittle to a single unusual step. By visual inspection it appears that, for all 

participants, the 20th step is vastly different for the rest, presumably as the patient 

reached the end of the apparatus and turned around. 

We can compute the score for each patient with just: 

      for i=1:size(1,patients) 

        [MP,MPindex] = computeMatrixProfile(patients(i),100); 

   HoehnYahrProxy = median(MP); 

end 

In Fig. 18 we show how well this proxy score models the Hoehn-Yahr scale.  

 

Fig. 18 The median of the Matrix Profile vs. the Hoehn-Yahr Scale (red horizontal bar) plotted within 

classic box and whisker plots. Note that the median does increase with the severalty of the Hoehn-Yahr 

scale. 
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It is important for us to disclaim that we are not making any medical claims for this 

experiment (we do not have such expertise), and we have not performed the type of 

statistical test that would pass muster in medical journal. Our point here, as always, is 

simply that the Matrix Profile and a few lines of code allow you to quickly test ideas 

that may be fruitful. 

3.11 Scalability  

Because the time taken for the Matrix Profile depends only on n, and not on the motif 

length m or the structure of the data, we can summarize the time complexly for all 

experiments with a single table as shown in Table 2. This is another very useful 

property of the Matrix Profile, which stands in contrast to almost all other methods. 

For example, Quick-Motif may be able to process a million datapoints on smooth data 

in about four minutes on a standard desktop [24]. But for noisier data, the time 

required could balloon by a factor of ten or more [57]. 

Table 2: Time taken to compute a Matrix Profile for datasets ranging from 218 to 223 using three 

computational paradigms. Note that for small datasets a standard desktop can beat HPC due to setup 

costs, but that advantage disappears as we see larger datasets. 

               

Instance Type 

Input Size 

Experiments of that size Desktop CPU Seconds c5.18xlarge (72 cores) 

3.06 USD/hr    Seconds 

p3.2xlarge (1 Tesla 
V100) 3.06 USD/hr  
Seconds 

218 3.2, 3.3, 3.4, 3.7, 3.9, 3.10 6.4 7 0.28 

219 3.5 25.3 14 0.68 

220 3.6 99.9 32 2.00 

221 3.8 397.8 76 7.00 

222  1584.8 252 25.80 

223 3.1 6333.3 933 96.80 

 

The three computational approaches considered were: a standard desktop, a 72-core 

c5 18xlarge spot instance (Intel Skylake architecture), and an Amazon Web Service 

p3.2xlarge (1 Tesla V100) which cost about 3.06 USD/hour at the time of writing. 

Note that the time taken for the desktop version does get prohibitive for large datasets. 

However, note that the if the data discussed in Section 3.1 was sampled at 1 Hz, then 

the 6,106,456 datapoints would represent about 70 days. Thus, even if we use a 

standard desktop, we can compute the Matrix Profile about 1,000 times faster than 

real-time for this problem. Moreover, recall that this is for the fully converged Matrix 

Profile. As [56] shows, we can typically closely approximate in the Matrix Profile in 

about 1/100th of the time to complete convergence.  



  

4 Conclusion 

We have presented ten time series data mining case studies in which interesting and 

actionable results can be obtained given just a handful of lines of code. Moreover, 

these results can be obtained essentially instantaneously, given our assumption that 

the computation of the Matrix Profile is free. That last assumption needs a little 

qualification. The existing Matrix Profile algorithms, STAMP [52], and STOMP [57] 

are effectively instantaneously for many end users, who have only tens of thousands 

of data points. For example, the Parkinson Disease, music processing, and 

classification (shapelet) examples all have this property. For users with say one-

hundred thousand to one million datapoints, they may need to wait minutes for their 

results. Our meter-swapping example is of this scale. Note, however, that the minutes 

of computation time are dwarfed by the full year of time it took to collect the data. For 

users with datasets in the many millions, computation time becomes more of an issue, 

but even here there is hope on the horizon. In a recently published paper we 

introduced a novel algorithm called SCRIMP++ [56] that can approximate the Matrix 

Profile even faster than STAMP, allowing a user with say a million datapoints to 

obtain a high quality approximate Matrix Profile in “interactive” time (a handful of 

seconds), and in an upcoming work we will show that a GPU cluster optimized 

algorithm called SCAMP can scale up to billion length time series. Moreover, we 

suspect that others in the community will find ways to accelerate the Matrix Profile 

that did not occur to us.  
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