

The Swiss Army Knife of Time Series Data Mining: Ten

Useful Things you can do with the Matrix Profile and

Ten Lines of Code

Yan Zhu, Shaghayegh Gharghabi, Diego Furtado Silva1, Hoang Anh Dau, Chin-Chia Michael Yeh,

Nader Shakibay Senobari, Abdulaziz Almaslukh, Kaveh Kamgar, Zachary Zimmerman,

Gareth Funning, Abdullah Mueen2, Eamonn Keogh

University of California, Riverside
1 Federal University of São Carlos
2 University of New Mexico

yzhu015@ucr.edu, eamonn@cs.ucr.edu This is an unofficial draft.

Abstract— The recently introduced data structure, the Matrix Profile, annotates a time

series by recording the location of and distance to the nearest neighbor of every

subsequence. This information trivially provides answers to queries for both time

series motifs and time series discords, perhaps two of the most frequently used

primitives in time series data mining. One attractive feature of the Matrix Profile is

that it completely divorces the high-level details of the analytics performed, from the

computational “heavy lifting.” The Matrix Profile can be computed using the

appropriate computational paradigm for the task at hand: CPU, GPU, FPGA,

distributed computing, anytime computation, incremental computation, and so forth.

However, all the details of such computation can be hidden from the analyst who only

needs to think about her analytical need. In this work, we expand on this philosophy

and ask the following question: If we assume that we get the Matrix Profile for free,

what interesting analytics can we do, writing at most ten lines of code? As we will

show, the answer is surprisingly large and diverse. Our aim here is not to establish or

compete with state-of-the-art results, but merely to show that we can both reproduce

the results of many existing algorithms and find novel regularities in time series data

collections with very little effort.

Keywords: Time Series, Joins, Motif Discovery, Anomaly Detection

1 Introduction

The recently introduced time series data structure, the Matrix Profile, annotates a time

series by recording the location of and distance to the nearest neighbor of every

subsequence [52][57]. This means that it encodes all the information needed to

answer both time series motif and time series discord queries, perhaps two of the most

frequently used primitives in time series data mining [24][28][48][52][57]. Both of

these primitives can be discovered in other ways; however, the Matrix Profile can be

computed very efficiently, regardless of the length of the subsequences considered

(i.e. the dimensionality). This is a useful property because all other algorithms that

compute these primitives suffer greatly from the curse of dimensionality [24][28][48].

For example, before the invention of the Matrix Profile, no one attempted to discover

motifs longer than 900 datapoints long [24][28][48]. In contrast, [52] demonstrates a

successful experiment in bioinformatics that requires finding motifs of length 60,000.

Similarly, before the Matrix Profile, the longest dataset searched for exact motifs was

a million datapoints long [24][28][48], but [57] increases that record one-hundred

fold.

While the scalability of the Matrix Profile is an attractive and enabling property, it is

not its most interesting feature. The original Matrix Profile paper concludes with the

sentence, “There are many avenues for future work, and we suspect that the research

community will find many uses for the matrix profile.” [52]. Recently this claim has

been borne out in a series of papers to show that the Matrix Profile can be used to

support a host of analytic tasks including: semantic segmentation [13], the discovery

of evolving patterns (time series chains) [55], and finding predictive patterns in

weakly labeled data [51]. It is the extraordinary generality of the Matrix Profile that is

its most important and useful feature. To support this somewhat subjective claim, in

this work we make a more concrete claim. Given just the Matrix Profile, and at most

ten lines of additional code (in a high-level language, here we use Matlab), one can

perform a host of analytic tasks, as well as reproduce the results of much more

complicated algorithms.

Philosophically, we would like the community to regard the Matrix Profile much like

most programmers regard the sort subroutine in their favorite language. A casual

programmer does not care or need to know how it is implemented (quick-sort, merge-

sort, heap-sort etc.), she regards it as computationally “free1,” and she uses it to solve

1 We will revisit the idea of computationally “free” for the Matrix Profile in Section 4. For the case of sorting

numbers, most invocations of sorting are on less than one million numbers, and it is possible to sort a million 32-

bit numbers on a modern machine in 20 milliseconds with essentially no space overhead. Thus, for most

many problems. In a similar spirit, a data analyst does not need to know how the

Matrix Profile is computed (It could be by STAMP [52], STOMP [57], STOMPI [53],

SCRIMP++ [56], etc.), she can typically regard it as computationally “free” and use it

to solve many time series data mining problems. We regard this simple abstraction as

game changing. Analysts are much more likely to try out a new idea if they could get

the first results in a few minutes, including both coding time and computational time.

A tentative idea that take hours or days to produce may never get past the idea stage.

The rest of this paper is organized as follows. After a brief review of the Matrix

Profile in Section 2, in Section 3 we will show ten case studies that support our claim

that many interesting problems can be solved using the Matrix Profile and at most ten

lines of additional code. In Section 4, we will offer conclusions and directions for

future work.

2 General Related Work and Background

In the following section we briefly review the notion and definitions necessary to

understand the Matrix Profile [50][51][52][53][55][56][57]. Readers familiar with this

material can skip ahead to Section 3.

2.1 Definitions and Notation

We begin by defining the data type of interest, time series:

Definition 1: A time series T ∈ ℝ𝑛 is a sequence of real-valued numbers ti ∈ ℝ: T

= [t1, t2, ..., tn] where n is the length of T.

We are not interested in the global, but the local properties of a time series. A local

region of a time series is called a subsequence:

Definition 2: A subsequence Ti,m ∈ ℝ𝑚 of time series T is a continuous subset of

the values from T of length m starting from position i. Formally, Ti,m = [ti, ti+1,…,

ti+m-1], where 1 ≤ i ≤ n-m+1, and m is a user-defined subsequence length.

We can extract all the subsequences from a given time series by sliding a window of

size m across the time series. This is called an all-subsequence set:

applications/users, it makes sense to think of sorting as a no-cost resource. Clearly, sorting can be a bottleneck

for some applications, but these are rare enough that we think our claim self-evident.

Definition 3: An all-subsequence set A of a time series T is an ordered set of all

the subsequences of T: A = {T1,m, T2,m,…, Tn-m+1,m}. We use Ai to denote Ti,m.

Note the all-subsequence set is defined purely for notational purposes. In our

implementation, we do not actually extract the subsequences in this form as it would

require significant time overhead, and explode the memory requirements.

We can take any subsequence from a time series and compute its distance to all the

sequences in an all-subsequence set. We store these distance values in a vector called

the distance profile:

Definition 4: A distance profile D is a vector of the Euclidean distances between a

given query subsequence and every subsequence in the all-subsequence set.

We assume the distance is measured as the Euclidean distance between the z-

normalized subsequences [4].

The first four definitions are illustrated in Fig. 1.

Fig. 1 A subsequence Q extracted from a time series T is used as a query to every subsequence in T.

The vector of all distances is a distance profile.

Note the query subsequence and the all-subsequence set may or may not belong to the

same time series. By definition, if the query subsequence and the all-subsequence set

belong to the same time series, the distance profile must be zero at the location of the

query, and close to zero just before and after (assuming only that the time series is

somewhat smooth). Such matches are called trivial matches in the literature [28], and

are avoided by ignoring an exclusion zone (shown as a gray region) of m/2 before and

after the location of the query. Practically, we set the distance values in the exclusion

zone to infinity.

The minimum value of a distance profile indicates the nearest neighbor (i.e., 1NN) of

the given query subsequence within the all-subsequence set. We are interested in

T, a snippet of a synthetic

time series

2,0000 m/2m/2

Q, query of length m

D, a distance profile Note that |D| = |T|-|Q|+1

finding the nearest neighbor of every subsequence; this constitutes a similarity join

set:

Definition 5: Similarity join set: given two all-subsequence sets A and B, a

similarity join set JAB of A and B is a set containing pairs of each subsequence in A

with its nearest neighbor in B: JAB={〈 A[i], B[j] 〉 | θ1nn (A[i], B[j])}. Here θ1nn

(A[i], B[j]) is a Boolean function which returns “true” only if B[j] is the nearest

neighbor of A[i] in the set B. We denote the similarity join set formally as JAB =

A⋈1nnB.

We use two vectors, the matrix profile and the matrix profile index, to store the

nearest neighbor information of a similarity join set. The matrix profile stores the

distances between all the subsequences and their nearest neighbors:

Definition 6: A matrix profile PAB is a vector of the Euclidean distances between

each pair in JAB, where the ith element of PAB is the distance between Ai and its

nearest neighbor in B.

We call this vector a matrix profile since it could be computed by using the full

distance matrix of all pairs of subsequences in time series T, and evaluating the

minimum value of each row (although this method is naïve and space-inefficient).

Fig. 2 shows the matrix profile of our running example.

Fig. 2 A time series T, and its self-join matrix profile P.

The ith element in the matrix profile P indicates the Euclidean distance from

subsequence Ti,m to its nearest neighbor in time series T. However, it does not indicate

the location of that nearest neighbor. This information is recorded in a companion

data structure called the matrix profile index:

Definition 7: A matrix profile index IAB of a similarity join set JAB is a vector of

integers where the ith element of IAB is j if {〈 Ai, Bj 〉} ∈ JAB

2,0000

P, a matrix

profile

T, a snippet of a synthetic

time series

Note that |P| = |T|-|Q|+1

By storing the neighboring information in this manner, we can efficiently retrieve the

nearest neighbor of query Ai by accessing the ith element in the matrix profile index.

In general, the function which computes the similarity join set of two input time series

is not symmetric: JAB ≠ JBA, PAB ≠ PBA, and IAB ≠ IBA, except in the special case where

A=B.

We can regard the matrix profile as a meta time series annotating the time series T if

the matrix profile is generated by joining T with itself (i.e., A=B). This profile has a

host of interesting and exploitable properties. For example, the highest point on the

profile corresponds to the time series discord [8], the (tying) lowest points correspond

to the locations of the best time series motif pair [28], and the variance can be seen as

a measure of the T’s complexity.

We call this special case of similarity join set (Definition 5) a self-similarity join set,

the corresponding matrix profile a self-similarity join matrix profile, and the

corresponding matrix profile index a self-similarity join matrix profile index.

Definition 8: A self-similarity join set JAA is the similarity join of an all-

subsequence set A with itself. We denote this formally as JAA = A ⋈1nn A. We

denote the corresponding self-similarity join matrix profile as PAA, and the

corresponding self-similarity join matrix profile index as IAA.

For clarity of presentation, we have confined this work to the single dimensional case;

however, nothing about our work intrinsically precludes generalizations to

multidimensional data. In the multidimensional data, we would still have a single

matrix profile, and a single matrix profile index; the only change needed is to replace

the one-dimensional Euclidean Distance with the b-dimensional Euclidean Distance,

where b is the number of dimensions the user wants to consider.

2.2 Summary of the Previous Section

Since the previous section was rather dense, here we summarize the main takeaway

points. We can create two meta time series, the matrix profile and the matrix profile

index, to annotate a time series A with the distance to and location of all its

subsequences’ nearest neighbors in itself or another time series B. These two data

objects explicitly contain the answers to the time series data mining tasks of motif

discovery and discord discovery [53]. Moreover, as we will show below, we can

easily perform many other kinds of analytics using the matrix profile and the matrix

profile index as primitives.

To make the contributions of this work more concrete, we will occasionally show the

actual code we use to solve various problems. The two basic tools that perform the

key operations explained above are:

[MP, MPindex] = computeMatrixProfile(T,m); % Def 8

[JMP, JMPindex] = computeMatrixProfileJoin(A,B,m); % Def 6-7

Once again, a key assumption of this work is that these operations can be computed

very fast, by any one of half a dozen algorithms optimized for various computational

paradigms. Thus we simply take these operations as given, and see what we can do

with them with just a tiny amount of extra coding effort.

3 Ten Useful Things you can do with the Matrix Profile and Ten Lines of
Code

In this section, we show the eponymous ten useful things you can do with the matrix

profile and ten lines of code. In every case we make the data available [59]. The code

to compute the matrix profile can be found at [40] and the remaining code is placed

inline in this work. Note that we see these as ten demonstrations. We do not expand

any section with the rigor one might expect if it were a single idea being presented in

a paper.

3.1 Discovering Motifs Under Uniform Scaling

The utility for motif discovery under uniform-scaling invariance was first considered

in [48]. We revisit the motivation with a simple and visually compelling example. We

took two exemplars from the same class from the MALLAT dataset [9] and imbedded

them into a random walk dataset. As Fig. 3.top shows, even without the color-coded

clue brushed onto the data by the Matrix Profile discovery tool [40], the repeated

pattern is visually obvious.

Fig. 3 top.left) A random walk time series with two exemplars from the MALLAT dataset

imbedded at locations 2001 and 5025. The color highlighting indicates the top-1 motif, which

unsurprisingly are exactly the imbedded patterns. top.right) The matrix profile corresponding to the

random walk time series. The minimum values correspond to the top-1 motif in the time series.

bottom.left) The same time series, but with the second half linearly stretched by 5%. This causes the

top-motif to change to snippets of random walk. bottom.right) The matrix profile corresponding to

the stretched time series. We can see that the minimum points changed.

We then took the second half of the time series and linearly stretched it by 5%. By

any standard, such a change is a trivial difference and essentially visually

imperceptible. Nevertheless, as Fig. 3.bottom shows, the pair of imbedded patterns are

no longer the top-1 motif, an unexpected and disquieting result. Before we show how

to address this within this paper’s “the Matrix Profile plus ten-lines-of-code

framework,” we note the following facts that mitigate the issue.

• For the rescaled version, the pair of imbedded patterns was the second-best

motif and only just nudged out by the spurious random walk pair.

• If, instead of searching with a motif length of 1,024, the original length of the

imbedded pattern, we had searched for a shorter length, say 500, then the best

motif would have been a subsequence of the imbedded pattern. The user

could then have examined the shorter motif and realized it could be extended

significantly while maintaining its similarity.

• We deliberately chose this dataset, from the 85 in the UCR archive, knowing

it would be very sensitive to changes in linear scaling. This is because

complex time series (see [3]) with very sharp rises and falls are particularly

sensitive to having features out of phase. For most datasets, motif discovery is

much more robust to small amounts of uniform scaling.

Despite all these mitigating facts, Fig. 3.bottom clearly shows that there may be some

situations in which there is a need to find motifs with invariance to uniform scaling.

To the best of our knowledge, there is only one research effort that has addressed this.

However, this method is approximate, requires many parameters to be set, and is only

1 10,048

1 10,313

100%

105%

1 10,048

1 10,313

time series matrix profile

time series (stretched) matrix profile (stretched)

able to support a limited range of scaling [48]. In contrast, we can easily and exactly

solve this problem under our simple assumptions.

For the moment, assume that we know the scaling factor we want to be invariant to

happens to be 1.64. We can take the dataset T and copy a stretched version of it into

T2, simply by using:

T2 = T(1: 100/164: end); % Unofficial Matlab way to resample

If we now call:

 [JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500);

Now, the resulting Matrix Profile will discover the motifs with the appropriate

uniform scaling invariance. In fact, we did exactly this on a 6,106,456 length trace of

household electrical demand to discover the motif shown in Fig. 4.

Fig. 4 top) Two non-contagious snippets from the ElectriSense dataset [16]. While semantically

similar, they have a very large Euclidian distance because they are of different lengths. bottom)

After stretching the January 18th pattern by 164%, the two patterns are almost identical.

The motif pattern appears to be the three elements of a dishwasher cycle (clean, rinse,

dry), which can take different amounts of time due to the use of the optional half-load

feature [23]. In this case, we knew from some first principle physics how to set the

scaling factor, but that may not always be the case. Given our assumptions, we can

simply iterate over all possible scaling factors in a given range. For example, to

discover motifs that are similar after scaling one pattern by 150% to 180%, we can

use the following code snippet.

326,100 327,100 367,000 367,400

0

1000

2000 January 14 January 18

The January 14th pattern is a near perfect

match the January 18th pattern, after the

latter is uniformly stretched to 164% of its

original length.

minJMP=inf(1,length(T)), minScale=ones(1,length(T));

minJMPindex=zeros(1,length(T));

for scale_factor = 150 : 180

 T2 = T(1: 100/scale_factor: end);

 [JMP, JMPindex] = computeMatrixProfileJoin(T,T2,500);

 locs = JMP < minJMP;

 minJMP(locs)=JMP(locs), minScale(locs)=scale_factor/100;

 minJMPindex(locs)=JMPindex(locs);

end

This example perfectly elucidates the philosophy driving this paper. For many time

series data mining tasks, we may not need to spend significant human time designing,

implementing and tuning new algorithms. The Matrix Profile and ten lines of code

may be sufficient.

3.2 Discovering Time Series Semordnilaps

Consider the sentence fragment we discovered in Wikipedia, “… the longest-lived

Tasmanian devil recorded was Coolah …” [46]. This snippet contains a Semordnilap

pair [33], the mirrored words “lived” and “devil”. Semordnilaps are easy to find in

arbitrary text strings, and indeed have an important role in molecular biology. For

example, many restriction enzymes recognize specific palindromic sequences and cut

them. As a concrete example, the restriction enzyme EcoRI recognizes the following

palindromic pair, “GAATTC” and “CTTAAG” [21].

Because the original definition of time series motifs was directly inspired by the

analogy to DNA, it is natural to ask if there is a natural time series analogy to

semordnilaps, and if so, can they be efficiently discovered? From the previous

example, the reader will readily see that this is trivial, we can simply use:

 T2 = fliplr(T); % returns T reversed

[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);

The only question remaining is: are there natural domains that contain time series

semordnilaps? The answer is affirmative.

To demonstrate the utility of Semordnilap discovery, we consider Joseph Haydn's

Symphony No. 47 in G major, written in 1772. In particular, we examined a

performance by the Tafelmusik Orchestra, directed by Bruno Weil in 1993 [30]. The

performance is twenty-one minutes and two seconds long. As shown in Fig. 5.top, we

converted it to Mel-frequency cepstral coefficients (MFCC) using windows with 0.5

second and 50% of overlap (standard music processing settings). We set m to 150, or

37.5 seconds.

At 14 minutes and 53 seconds, there is a Semordnilap of a passage we encountered at

14 minutes and 16 seconds.

Fig. 5 top) Haydn's Symphony No. 47 converted to MFCC. center.left) Two snippets found by

Semordnilap discovery appear unrelated until we flip one backwards in time (center.right). bottom)

The sheet music for the relevant section explains this unexpected discovery.

Fig. 5.bottom explains the presence of such a perfectly conserved Semordnilap. As

noted in [7], “The most extraordinary of all canonic movements from this time is of

course from Symphony No. 47. Here Haydn writes out only one reprise of a two-

reprise form, and the performer must play the music ‘backward’ the second time

around”.

While this example is clearly contrived, there may be Semordnilaps waiting to be

discovered in dance, travel trajectories, medical data, industrial processes, and a host

of domains that have yet to occur to us.

0 21:02

0 seconds 40

minutes:seconds

MFC8”Symphony

No. 47

0 seconds 40

14:16

14:53

al roverso

3.3 Discovering Time Series Reverse Complements

Our success in finding Semordnilaps immediately suggests another specialized type

pattern we could search for. Are there examples of patterns which repeat, but in which

one pattern is the inverse of the other? That is to say, unlike Semordnilaps, which are

“flipped” in the time axis, are there patterns that are flipped upside-down in the value

axis? We call such patterns Time Series Reverse Complements (TSRCs).

For example, El Nino Southern Oscillation (ENSO) is a phenomenon that is

characterized by intermittent negative correlations between the surface temperatures

observed in the Central and Eastern Ocean [19]. However, there are much more

quotidian examples. Consider the two-minute snippet of time series shown in Fig. 6.

It shows the y-axis from a hip-worn accelerometer from the USC-HAD Database

[54]. As shown in Fig. 6.bottom.left, the best motif of length twenty seconds is not

well conserved, and almost looks like two random subsequences. This is unsurprising,

apart from dance or athletic performances, we would not expect human behavior to

faithfully repeat over such an extended time scale. However, we also searched for the

best TSRC pattern of the same length, and as shown in Fig. 6.bottom.center and Fig.

6.bottom.right it is stunningly well conserved.

Fig. 6 top) Approximately two minutes from a dataset from a hip-worn accelerometer of quotidian

activity. bottom.left) The best motif of length twenty seconds is not well conserved, however, if we

generalize the search to consider TSRC motifs (bottom.center) we find a highly conserved pattern.

To better see how well conserved it is, in (bottom.right) we show the patterns with one element

inverted, and both patterns smoothed. However, we note that we discovered this pattern in the

original noisy space.

0 1 minute 2 minutes

1 20 1 20 1 20seconds secondsseconds

The red pattern has

been inv erted

What is the mechanism that produced this pattern? At about twenty-two seconds into

the recording, the user stepped into an elevator. The first bump is the “jolt” of the

elevator ascending, followed by the “dip-and-recover” as the elevator decelerated the

desired floor. After about one minute, the user took a return trip, descending the same

number of floors.

The reader will readily appreciate that discovering TSRCs with the matrix profile is

trivial, we simply used:

 T2 = T*(-1); % returns T flipped upside down

[JMP, JMPindex] = computeMatrixProfileJoin(T,T2,m);

Note that in this case, the discovered TSRC also happens to be a Semordnilap.

However, this need not be the case in general.

3.4 Segmenting Repetitive Exercises

In recent years, there have been dozens of papers published on the task of segmenting

repetitive exercises – such as weight training and calisthenics – via body worn

sensors. See [26] and the references therein and thereof. As [26] forcefully argues,

this problem is more difficult than it may seem at first glance. Many of the proposed

methods use Hidden Markov Models, a powerful technique, but one that typically

requires a lot of training data and careful parameter tuning. While we do not claim to

be able to reproduce all the features of systems such as RecoFit [26], we note that at

least in some cases, the Matrix Profile and a single line of extra code can segment

repetitive exercises with high accuracy. Consider the following two lines of code.

 [MP, MPindex] = computeMatrixProfile(T,m);

regions_of_repetition = MP < 2/3 * (min(MP)+max(MP));

We tested this code snippet on the Pamap Dataset [34], a dataset frequently used by

the relevant community. Fig. 7 shows the result.

Fig. 7 top to bottom) A snippet of accelerometer data from Pamap Dataset-Subject 1, shoe-Acc X-

axis, with its ground truth segmentation, into Ascending stairs, Descending stairs and Transitional

activities. The MP segmentation we predicted largely agrees, and was computed simply by

thresholding the Matrix Profile. After casting the ground truth segmentation in a Boolean vector of

{Transitional | other} we find out predicted segmentation agrees with it 93% of the time.

Why does this simple idea work so well? Note that activities such as ascending stairs

and descending stairs correspond to very well-conserved, periodic movements of the

person, so such data would have a low matrix profile value. In contrast, the

transitional activities are more at random, generating very noisy patterns with high

matrix profile values. Therefore, in this dataset, a single threshold is enough for us to

segment the activities.

3.5 Robust Distance Functions

Distance functions are at the heart of much of data mining, especially time series data

mining [3]. We can characterize distance functions by the invariances they achieve.

For example (here we illustrate with text, the discrete analogue of time series):

• Euclidian distance is invariant to noisy data, and able to discover the similarity

between cat and rat.

• Dynamic Time Warping is invariant to local misalignments in the data and

differing data lengths, and able to discover the similarity between concat

and cooncat.

Raw

accelerometer

data

Ground

Truth

MP

Segmentation

0 50000

MP

Threshold

Ascending

stairs

Descending

stairs

Transitional

• Cross Correlation is invariant to phase alignment, and can discover the

similarity between cathouse and housecat.

• Longest Common Subsequence is invariant to minor insertions/deletion in the

data and able to discover the similarity between genome and gene.

While there are many such distance measures to handle various distortions in short

time series, long time series provide greater challenges. Consider the following

phrases:

A = we can sequence the genome of the cat

B = the cats genome was sequenced in 2014

C = xe hes jlvoeqee kjsw eaqwe oqawe acea

Here the hamming distance (the discrete analogue of Euclidean Distance) between A

and B is 31, but the distance between A and C is only 26. This is an unintuitive result,

given that we immediately see the common structure in A and B. What we want is a

distance measure that can reward A and B for sharing many subsequences, even if they

are out of order. This issue also occurs for time series. To see this, we consider pairs

of ten-second snippets extracted from four individuals experiencing cardiac issues. As

shown in Fig. 8.left, we clustered them using a Euclidean distance average-linkage

hierarchical clustering.

Fig. 8 left) Eight ten-second snippets of time series, from four individuals, clustered using

Euclidean distance single-linkage hierarchical clustering. right) The same snippets clustered using a

Matrix Profile based distance measure.

Here the disappointing results of Euclidean distance could be mitigated by very

careful beat extraction and alignment. However, we want to be able to use distance

1

2

3

5

8

4

6

7

7

8

5

6

1

2

3

4

Euclidean

Distance

Minimum

Shared

Motif

Distance

functions with minimum human effort and knowledge. There are some distance

functions that can achieve the required invariances. Their names, bag-of-patterns [25],

bag-of-words [45], and so on suggest both their source of inspiration and their

approach. While these methods may produce better results for our task at hand, they

all have at least three parameters and require significant implementation effort. In the

spirit of this work, can we reproduce at least some of their effort with the MP and a

few lines of code? To answer this question, consider the following lines of code:

 [JMP, dummy] = computeMatrixProilfeJoin(A,B,m);

 MSMD = min(JMP);

Using this MSMD distance measure, we produced the clustering shown in Fig.

8.right. Note that MSMD is symmetric: we can reverse the order of A and B in the

pseudo code and obtain the same result. Assume 𝑆𝐴 is a set of all subsequences

extracted from time series A, and 𝑆𝐵 is a set of all subsequences extracted from time

series B, then MSMD is simply the minimum among all pairwise distances between

subsequences from 𝑆𝐴 and subsequences from 𝑆𝐵.

We can further test the utility of the MSMD distance measure, using classification.

Almost all time series classification comparisons are based on the UCR archive

[3][11]. However most of the datasets in that archive are extracted from larger

datasets with an extraction tool based on the Euclidian distance. Given that, it is

hardly surprising that Euclidian distance (and DTW, which subsumes Euclidian

distance as a special case) will be hard to beat [11]. However, the newest release of

the archive contains three related datasets that were processed in a different way. The

source dataset is data from fifty-two pigs having three vital signs monitored, before

and after an induced injury [15]. The data are vital signs measured at high frequency

(250Hz) using a bed-side hemodynamic monitoring system, much like a setup that

one might expect to see in a modern ICU. The collected measurements are arterial

blood pressure, central venous pressure, and airway pressure. Critically for our

purposes, the authors note “Unlike in the (pre-2018) UCR data sets, the vital signs are

not temporally aligned: The starting point of observation is effectively arbitrary”. We

compared MSMD, Euclidian distance and DTW on the three pig datasets. We used

the predefined train/test splits, learning MSMD’s best value for m, and DTW’s best

value for w (the warping window width) with cross validation on just the training

data. Table 1 summarizes the results.

Table 1: A comparison of the holdout error rates of one-nearest neighbor with three distance measures.

In each dataset, the default rate is 0.980, because each of the 52 pigs is equally likely.

Dataset MSMD (m) Euclidian distance DTW (w)

PigAirwayPressure 0.134 (425) 0.944 0.903 (1)

PigArtPressure 0.000 (140) 0.875 0.802 (1)

PigCVP 0.105 (200) 0.918 0.841 (11)

The results show that while both Euclidian distance and DTW struggle to beat the

default rate, the MSMD can achieve a very low error rate. It is possible that we could

improve DTW by using endpoint invariance DTW, and we could improve Euclidian

distance by doing circular shift Euclidian distance. However, these results strongly

support our basic claim: you can get good results with the Matrix Profile and a

handful of lines of code.

3.6 Meter-Swapping Detection

Electricity theft is a multi-billion-dollar problem worldwide [39]. There are dozens of

ways to steal power, but some modern wireless meters offer a surprisingly easy

method with little chance of detection [20]. Suppose customer A is a heavy consumer

of electricity; perhaps he has several electric cars, or a machine shop, or a marijuana

nursery in his garage. Further suppose that he notes that one of his neighbors,

customer B, an elderly widow living alone, consumes very little power. It is possible

for A to surreptitiously switch his meter with B, and thus only have to pay for her

meager consumption, while she unwittingly gets lumbered with paying for his

extravagant consumption. This crime is called meter-swapping, and has become

increasingly prevalent as power companies have reduced meter reading staff in favor

of wireless meter reading [39].

It might be imagined that this would be easy for the power company to detect, as there

would be a significant change in the average power consumed by two houses.

However, as Fig. 9.top hints at, power consumption is often bursty anyway. For

example, families take vacations, welcome a new baby, or have children return from

college for a few weeks.

Our intuition to solve this problem is to note that while volume of consumption is not

a good feature, some households may have a unique “shape” of the consumption over

a day. Note that we do not expect all days to be conserved and unique, it is sufficient

for our purposes that the household occasionally produces a well-conserved pattern,

perhaps correspond to a low-power use on the Sabbath for an orthodox family, or (as

in one of the authors’ experience) an all-day obligation to wash and dry the soccer kits

for the entire team once every seven weeks.

We consider a dataset of household electrical power demand collected from twenty

houses in the UK in 2013 [29]. To simulate a meter-swapping event, we randomly

chose two of these time series, and swapped their traces starting at November 10th.

As we can see in Fig. 9.top this change is not readily visually obvious.

Fig. 9 top) Five time series from the set of 20 we consider for this demonstration, spanning from

January 1st to December 23rd. A randomly chosen pair of time series had their “tails” (the region

after November 10th) swapped to simulate a meter-swapping event. middle) If we join the head and

tail of H11, the 1st motif pair has a mutual distance of 9.56, slightly lower than the mean of the

motif distance for all 20 houses. bottom) If we join the head and tail pair from any of the 400 such

combinations, the 1st motif pair from the join of HeadH11 and TailH4 produce the smallest mutual

distance, of just 2.85; the motif patterns look strikingly similar.

Jan 1st Nov 10th Dec 31th

H1

H2

H3

H4

H11

::

::

0 24

0 24

Head Tail

min(HeadH11 ⋈1nn TailH11)

min(HeadH11 ⋈1nn TailH4)
Nov 8th at 4:12pm

Dec 17th at 3:44pm

Euclidean Distance = 9.56

Euclidean Distance = 2.85

Hours

To find the swapped time series pair, we propose the following simple algorithm. We

divide all the time series into two sections: the “Head,” prior to November 10th and

the “Tail,” subsequent to November 10th. We join all possible combinations of Heads

and Tails, and record the pair Hi, Hj that minimizes the following score:

 Swap-Score(i,j) = min(HeadHi ⋈1nn TailHj) / (min(HeadHi ⋈1nn TailHi) + epsilon)

In our simple experiment, this score was minimized by i = H11 and j = H4, which as

it happens, are our swapped pair. As Fig. 9.bottom shows, the motif spanning these

two apparently distinct traces time series is suspiciously similar, perhaps similar

enough to warrant a visit by a meter reader/fraud prevention officer.

As before, the code to do this is trivial given the Matrix Profile:

for i=1:5

 [MP,MPindex] = computeMatrixProfile(Head(i),m);

 minMP = min(MP) + eps % eps is Matlab’s built-in epsilon

 for j=i+1:5 % Produce all pairs of Heads and Tails

 [JMP,JMPindex]=computeMatrixProfileJoin(Head(i),Tail(j),m);

Score = min(JMP) / minMP ;

<trivial code to maintain the minimum Score so far>

 end

end

Note that in our simple example we assumed we knew the date of the swap, removing

that assumption would simply require expanding our search space.

3.7 Shapelet discovery

Time series shapelets are time series subsequences that best represent a class [49].

The Matrix Profile can help us quickly identify good shapelet candidates. This idea

was mentioned in passing in [52] but was not fully developed and evaluated due to

lack of space.

We demonstrate our approach with the GunPoint dataset. This dataset has two classes,

Gun and NoGun (NoGun is also known as Point, hence the name GunPoint). As

shown in Fig. 10, we construct time series TA by concatenating all the instances of the

Gun class, and construct time series TB by concatenating all the instances of the

NoGun class. We insert an NaN value in between every two concatenated instances to

avoid introducing artificial patterns that are not present in the original time series. We

then compute two matrix profiles, PBB and PBA. For simplicity, we use a subsequence

length of 38, which is the length of the best shapelet reported for this dataset [49].

Intuitively, PBB will be smaller than PBA because we would expect subsequences

within the same class to be more similar than those of different classes. The difference

between PBA and PBB (we denote it as P = PBA - PBB), as shown in Fig. 10.bottom,

generally agrees with this intuition.

Fig. 10 top and middle) Two time series A and B formed by concatenating instances of each class of

GunPoint dataset. bottom) The difference between PBA and PBB. The top-10 peak values

(highlighted with red circles) are suggestive of good shapelet candidates.

We propose the peak values in P are indicators of good shapelet candidates, because

they suggest patterns that are well conserved in their own class but are very different

from their closest match in the other class. We pick the top-10 candidates from TB

(analogously, we can find the top-10 candidates from TA if we consider the difference

between PAB and PAA). The code snippet is as follows.

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1

2

3
TA: Concatenation of class 1 (Gun)

0 500 1000 1500 2000 2500 3000 3500 4000
-4

-2

0

2

4
TB: Concatenation of class 2 (NoGun)

P = PBA - PBB

0 500 1000 1500 2000 2500 3000 3500 4000
-2

0

2

4

6

[PBB, dummy] = computeMatrixProfileJoin(B, B, m);

[PBA, dummy] = computeMatrixProfileJoin(B, A, m);

MPdiff = PBA – PBB;

indicesOfTopShapelet = topTen(MPdiff); % trivial code to

implement topTen (extracting the top 10 peaks from the matrix

profile) omitted

In Fig. 11.left, we can see that all the top-10 shapelets give very high classification

accuracy on both the train and test data. Among them, we choose the one that renders

the highest classification accuracy on the training set (the 6th shapelet) and show it in

Fig. 11.right. This shapelet gives 93.33% accuracy on the test data, which is higher

than the 91.33% accuracy of One-Nearest-Neighbor with DTW distance measure,

with a bonus advantage of significantly less classification time. The shapelet learned

reflects a distinct characteristic of the class that it represents (NoGun), as discussed by

Ye and Keogh [49]: “the NoGun class “has a “dip” where the actor put her hand

down by her side, and inertia carries her hand a little too far and she is forced a

correct it…a phenomenon known as ‘overshoot’”. In contrast, in the opposite Gun

class, the actor carries a gun. She needs to put the gun back in the holster and then

bring her hand to a complete rest position, generating a different pattern.

Fig. 11 left) Classification accuracy of ten top-ten shapelet candidates. All the candidates render

high classification accuracy on both train and test data. right) The best shapelet found in training.

Classification with this shapelet on test data gives 93.33% accuracy, higher than the 91.33%

accuracy of One-Nearest-Neighbor DTW. This 93.33% accuracy is also the best accuracy achieved

with the classic shapelet search approach [49].

In hindsight, this shapelet also achieves the same classification accuracy on the test

data as the original shapelet algorithm [49]. However, in contrast to the classic

shapelet algorithm, which exhaustively evaluates the classification power of every

possible shapelet candidate in the dataset, the MP readily provides the top shapelet

candidates for free.

1 2 3 4 5 6 7 8 9 10

0.8

0.85

0.9

0.95

1

Train accuracy

Test accuracy

C
la

s
s
if
ic

a
tio

n
 A

c
c
u
ra

c
y

Shapelet candidates

0 80 160

Best shapelet

An instance fromthe NoGun class

3.8 Detecting and Locating Low Frequency Earthquakes

Low frequency earthquakes (LFEs), which recur episodically, could “potentially

contribute to seismic hazard forecasting by providing a new means to monitor slow

slip at depth” [37]. As such, detecting and locating LFEs are of great importance to

the seismology community.

The waveforms of a recurring LFE recorded at the same seismic station are normally

very similar to each other, as they reflect the unique signature of the wave reflecting

and refracting through the local substrate. Thus, we can detect them by extracting the

top motifs from the Matrix Profile of the continuous seismograph recording time

series (e.g., [57]). However, as indicated in [57], this can result in a lot of false

positives since the sensor recording of a single seismic station often contains many

repeating sensor artifacts or instrument noise. Though such false positives are easy to

filter out by human eye [57], this becomes untenable when the data is long enough to

contain hundreds or thousands of false positive events. Fig. 12 shows the matrix

profile corresponding to a 24-hour seismic recording of the FROB station near the

central San Andreas fault at Parkfield, CA on Oct. 9th, 2007. The data is sampled at

20Hz (1.728 million datapoints in total). The matrix profile contains hundreds of deep

valleys, but only less than 10% of them are corresponding to true LFEs.

Fig. 12 The matrix profile of the FROB station on Oct 9th, 2007 contains a lot of deep valleys, a

vast majority of which are false positives.

Is there a way to automatically filter out all the undesirable events (i.e. false

positives)? Note that sensor artifacts or instrument noise are local (i.e., they will only

be detected by a single seismic station), while recurring LFEs can be detected by

multiple stations at similar times. Correspondingly, we would expect the matrix

profiles of multiple stations to show low values at the time when an LFE occurs. In

0 24 hours

2

10

contrast, when a false positive event occurs, only one of the matrix profiles would

show low values and the others will show high values. This renders a simple solution

to our problem: all we need to do is get the element-wise maximum of the matrix

profiles corresponding to multiple nearby stations.

In Fig. 13.top we zoom in a 15-second snippet of the matrix profile shown in Fig. 12

at around 3am when an LFE occurs, and compare it with the same snippet taken from

the matrix profile of a nearby seismic station JCNB (shown in Fig. 13.bottom). As

expected, both snippets contain a valley.

Fig. 13 top) A 15-second snippet of the matrix profile shown Fig. 12 at around 3am. bottom) The

same snippet of the matrix profile corresponding to the seismic recording of the nearby station

JCNB. Both snippets contain a deep valley, but they are a little bit misaligned as the two stations

receive the earthquake signal at slightly different times.

However, note that the two valleys are slightly misaligned. This is because the source

of the LFE locates slightly closer to the JCNB station than to the FROB station, and

earthquakes travel at a finite speed. Thus, if we simply take the element-wise

maximum of the two matrix profiles, the valley will become shallow. Fortunately, this

misalignment (denoted as tdiff in Fig. 13.bottom) has physical limits: the two stations

are about 10 km away, and the velocity of seismic waves near the surface of the earth

is around 3-4 km/s, so tdiff cannot be more than 5 seconds (i.e., 100 data points). As

such, we slightly adjust our “element-wise maximum” strategy to the following: we

match the ith element of MPFROB (1 ≤ i ≤ |MPFROB|) to the minimum element within the

range [max(i-100, 1), min(i+100, |MPJCNB|)] of MPJCNB, then take their maximum.

The pseudo-code is as follows.

4

10

431600 431900

4

10

MPFROB

MPJCNB

tdiff

[MPfrob,dummy]=computeMatrixProfile(DATAfrob,m); %FROB station

[MPjcnb,dummy]=computeMatrixProfile(DATAjcnb,m); %JCNB station

Lfrob = length(MPfrob), Ljcnb = length(MPjcnb);

for i = 1 : Lfrob

 [minVal,minIdx]=min(MPjcnb(max(i-100,1):min(i+100,Ljcnb)));

 MPfrob(i) = max(MPfrob(i),minVal), Index(i) = minIdx;

end

Fig. 14.top shows the resulting matrix profile MPfrob, which is much “cleaner” than

the one shown in Fig. 12. We presented the top 10 motifs extracted from this matrix

profile to a seismologist [36] (the top 3 are shown in Fig. 14.bottom), and he verified

that they are all true LFEs.

Fig. 14 top) The deep valleys in the resulting matrix profile all correspond to true events (compare

to Fig. 12). bottom) The top 3 motifs extracted from the resulting matrix profile.

Besides detecting true LFEs, note that our simple strategy also provides extra

implications for locating the LFEs. The time difference tdiff shown in Fig. 13 can be

found from the Index vector in our pseudocode, and if we know such time

difference between 3 pairs of nearby seismic stations in the area, the exact location of

the source of the LFE can be calculated. We reserve detailed analysis and further

demonstration of such considerations for future work.

2

10

0 24 hours

0 7000 700 0 700

1st motif 2nd motif 3rd motif

3.9 Automatically clustering time series motifs

Building on our previous example we consider applications of the Matrix Profile to

clustering of seismic data. Seismic waveform clustering has been applied to

earthquake relocation [41][44][35], repeating earthquake source identification

[12][31][43][32][5][37][47] and volcano monitoring [38][22][38][2], helping to

improve earthquake and volcanic hazard assessments. The seismology community has

adopted various methods to cluster the seismic waveforms (time series subsequences

corresponding to a seismic event) [2][41]. However, these methods take discrete,

phase-aligned seismic waveforms of the same length as their input; extracting such

waveforms from a long continuous seismic recording requires a lot of human effort.

Here we introduce a simple method based on the Matrix Profile and ten lines of code,

that can automatically discover earthquake pattern clusters from the continuous

seismic recording.

To allow verification of the correctness of our result, we constructed a seismic time

series by embedding twelve earthquake patterns into a 1,000-second-long snippet of

seismic background noise, as shown in Fig. 15.a. The 12 embedded patterns are

generated by four different earthquake sources (patterns of the same source are

marked with the same color). The patterns corresponding to the same source normally

look very similar to each other, while those corresponding to different sources are

dissimilar. Our goal is to automatically discover the four natural clusters within the

time series.

Before introducing our proposed solution, we would like to first dismiss some

apparent solutions. Given the problem setting, the reader might consider finding the

top-k motifs [28] here. Note that the top-k motifs normally refer to the top-k most

similar pairs of subsequences in the time series. However, from Fig. 15.a we can see

that a natural motif cluster can contain more than two occurrences of similar

subsequences (e.g., the three red patterns are mutually similar); the classic top-k motif

definition would separate them into different motif clusters, which is undesirable. The

reader might also consider finding the range motifs [28] instead of top-k motifs.

However, discovering range motifs requires setting a threshold parameter r: the

maximum distance between any two subsequences in a motif cluster must not be

larger than 2r. We argue that such threshold is very difficult to set and needs very

careful tuning. For example, if two subsequences have a Euclidean distance of three,

are they similar enough to be considered as a motif? The answer is not that obvious

even for a domain expert who knows the data well.

Fig. 15 a) A seismic time series with 12 earthquake patterns. These earthquakes are generated by

four different sources. Patterns corresponding to the same source are marked in the same color. b)

The matrix profile of the seismic time series. c) The relative matrix profile after the 1st motif pattern

is removed. The deep valleys corresponding to the three red patterns disappeared. d) The relative

matrix profile after the 2nd motif pattern is removed. The deep valleys corresponding to the four

green patterns disappeared. e) The relative matrix profile after the 3rd motif pattern is removed. The

deep valleys corresponding to the two blue patterns disappeared. f) The relative matrix profile after

the 4th motif pattern is removed. The deep valleys corresponding to the three orange patterns

disappeared.

Our solution can automatically find the natural number of motif clusters in the data

(i.e., we do not need to specify how many clusters we would like to find), and requires

only the setting of a much less critical parameter. The code is as follows:

2000

0

50

0

1

0

1

0

1

0 100000

0

1

MP

time series

(b)

(c)

(d)

(e)

(f)

RelMP1

RelMP2

RelMP3

RelMP4

-2000

0

(a)

[MP, dummy] = computeMatrixProfile(T, m);

RelMP = MP, i = 1, DissMP = inf(1, length(MP));

while i == 1 || min(RelMP) < 0.2

 [minVal(i), minIdx(i)] = min(RelMP);

 DissmissRange = T(minIdx-m+1 : minIdx+2*m-2);

 [JMP, dummy] = computeMatrixProfileJoin(T,DissmissRange,m);

 DissMP = min(DissMP,JMP); %dismiss all motifs discovered so far

 RelMP = MP ./ DissMP;

 i = i + 1;

end

We first compute the matrix profile MP corresponding to the input time series T, as

shown in Fig. 15.b. We can see deep valleys in the vicinity of all the embedded

earthquake patterns, as they all have close matches from the same source. We use the

following iterative process to find the motif clusters one by one:

1. We find the minimum value in the current relative matrix profile RelMP (in

the first iteration, we set RelMP = MP). This corresponds to a motif pattern

(Fig. 16. shows the motif pattern discovered at each iteration).

2. We wish to avoid finding the same motif pattern in the next iteration. As such,

we specify a DissmissRange which is a section of time series T that

includes the current discovered motif pattern and its trivial matches, then

compute the AB-join matrix profile JMP between the original time series T

and DissmissRange. JMP measures how similar each subsequence is to

the current discovered motif pattern.

3. We use a vector DissMP to store the distance between every subsequence and

its closest match among all the motif patterns discovered so far. DissMP is

initialized as infinity, and once we have computed JMP, we update DissMP

with the element-wise minimum of DissMP and JMP.

4. We evaluate a “relative” matrix profile RelMP by dividing the original matrix

profile MP with DissMP. Our intuition is that, if a subsequence has a very

close nearest neighbor, but is very different from any of the discovered motifs

(and their trivial matches), then its RelMP value should be low. Note that the

values in RelMP are always between 0 and 1.

5. If min(RelMP) < 0.2, go to step 1 and start the next iteration. Otherwise

terminate the process.

From Fig. 15.b-f, we can see how RelMP changes through this iterative process (we

use RelMPi to denote the status of RelMP at the end of the ith iteration). After each

iteration, several deep valleys corresponding to the earthquake patterns in the same

color disappeared from RelMP. The process terminates after the 4th iteration, when

there are no more valleys apparent in RelMP.

The reader might wonder how we define “apparent valleys” here. We set a

termination threshold as min(RelMP) = 1/5. Recall that RelMP(j) measures

the relative ratio between MP(j), the distance from the jth subsequence to its nearest

neighbor and DissMP(j), the distance from the jth subsequence to its closest match

among all the discovered motif patterns. If the jth subsequence belongs to a new

cluster, then it should be much more similar to its nearest neighbor than any of the

discovered patterns. As such, we require that MP(j) cannot be more than 1/5 of

DissMP(j).

From Fig. 16, we can see that the discovered motifs at different iterations correspond

to different earthquake sources (different colors), and the process terminates right

after we have discovered all the four embedded earthquake clusters.

Fig. 16 top.left) The 1st motif pattern discovered, corresponding to the minimum point of the matrix

profile MP in Fig. 15.b. top.right) The 2nd motif pattern discovered, corresponding to the minimum

point of the relative matrix profile RelMP1 in Fig. 15.c. bottom.left) The 3rd motif pattern

discovered, corresponding to the minimum point of the relative matrix profile RelMP2 in Fig. 15.d.

bottom.right) The 4th motif pattern discovered, corresponding to the minimum point of the relative

matrix profile RelMP3 in Fig. 15.e.

56500 58000 26000 27500

10000 11500 80500 82000

3.10 Quantifying Parkinson Disease

Parkinson Disease (PD) is a neuro-degenerative disease which affects gait and

mobility. To assess the severity of the disease, clinicians use the Hoehn and Yahr

scale [1]. The original scale published in 1967 [18] ranges from 1 to 5, with the scores

1.5 and 2.5 added in a later revision to allow doctors to describe the progression of the

disease.

In a recent paper, the authors propose exploiting the “recurrence” of gait time series

as a method to automatically score patients on the Hoehn and Yahr scale [1]. They use

a mathematically sophisticated definition of recurrence based on an embedding in a

phase space, showing that various heuristic complexity measures of the recurrence

quantification analysis correlate to the Hoehn and Yahr scale.

The phase “recurrence” in the title of this paper caught our attention. Time series

motifs are simple recurring subsequences. It is natural to ask if the Matrix Profile

could be used for this task. Our intuition here is simple. Imagine a person could walk

with a near perfectly repeated gait cycle. If we computed the matrix profile of their

gait telemetry, we would expect the matrix profile values to be very small, as every

subsequence would have a near perfect match somewhere. In contrast, if a person has

an irregularity to their gait (caused by a tremor, a hesitation, or stumble), we would

expect that these movements will add unique elements to each gait. As such, these

unique gaits cycle will not find such close matches among their neighbors and

therefore the matrix profile will be higher. In Fig. 17 we find some evidence to

support the idea that people with more advanced PD have less well conserved gaits, at

least on two randomly selected individuals.

Fig. 17 A comparison of gait force profiles from two individuals walking for 20 seconds. One

individual (top) was assessed by clinicians as being ‘3’ on the Hoehn and Yahr scale. His gait

cycles are not repeated perfectly, we have highlighted some of the most least conserved adjacent

cycles. In contrast, another individual (bottom) who was assessed as ‘1’ on the Hoehn and Yahr

scale has a more conserved gait.

1000 2000

0

N
e

w
to

n
s

1500

0

1500

1

Hoehn-Yahr scale: 3

Hoehn-Yahr scale: 1

N
e

w
to

n
s

To see if this observation is more generally true, we experimented with the Parkinson

Disease (PD) dataset provided by Hausdorff group [17], which is publicly available in

“PhysioBank Database” [14]. The data consists of gait force profiles of 93 patients

with idiopathic PD (disease severity levels 2, 2.5 and 3 in terms of Hoehn-Yahr scale)

and 73 healthy control individuals (who we would expect to score at level 1). The data

consists of vertical ground reaction force of subjects when walking normally at their

own pace. The ground reaction force is the force exerted by the ground on an object in

contact with it, in this case, the object is the foot.

We propose using the median of MP of sensor data as a proxy for the severity level of

PD. We use the median rather than the maximum or sum, as the latter two functions

would be brittle to a single unusual step. By visual inspection it appears that, for all

participants, the 20th step is vastly different for the rest, presumably as the patient

reached the end of the apparatus and turned around.

We can compute the score for each patient with just:

 for i=1:size(1,patients)

 [MP,MPindex] = computeMatrixProfile(patients(i),100);

 HoehnYahrProxy = median(MP);

end

In Fig. 18 we show how well this proxy score models the Hoehn-Yahr scale.

Fig. 18 The median of the Matrix Profile vs. the Hoehn-Yahr Scale (red horizontal bar) plotted within

classic box and whisker plots. Note that the median does increase with the severalty of the Hoehn-Yahr

scale.

0
1

0.5

2 2.5 3

M
ed

ia
n

 o
f

M
at

ri
x

 P
ro

fi
le

Hoehn-Yahr Scale

It is important for us to disclaim that we are not making any medical claims for this

experiment (we do not have such expertise), and we have not performed the type of

statistical test that would pass muster in medical journal. Our point here, as always, is

simply that the Matrix Profile and a few lines of code allow you to quickly test ideas

that may be fruitful.

3.11 Scalability

Because the time taken for the Matrix Profile depends only on n, and not on the motif

length m or the structure of the data, we can summarize the time complexly for all

experiments with a single table as shown in Table 2. This is another very useful

property of the Matrix Profile, which stands in contrast to almost all other methods.

For example, Quick-Motif may be able to process a million datapoints on smooth data

in about four minutes on a standard desktop [24]. But for noisier data, the time

required could balloon by a factor of ten or more [57].

Table 2: Time taken to compute a Matrix Profile for datasets ranging from 218 to 223 using three

computational paradigms. Note that for small datasets a standard desktop can beat HPC due to setup

costs, but that advantage disappears as we see larger datasets.

Instance Type

Input Size

Experiments of that size Desktop CPU Seconds c5.18xlarge (72 cores)

3.06 USD/hr Seconds

p3.2xlarge (1 Tesla
V100) 3.06 USD/hr
Seconds

218 3.2, 3.3, 3.4, 3.7, 3.9, 3.10 6.4 7 0.28

219 3.5 25.3 14 0.68

220 3.6 99.9 32 2.00

221 3.8 397.8 76 7.00

222 1584.8 252 25.80

223 3.1 6333.3 933 96.80

The three computational approaches considered were: a standard desktop, a 72-core

c5 18xlarge spot instance (Intel Skylake architecture), and an Amazon Web Service

p3.2xlarge (1 Tesla V100) which cost about 3.06 USD/hour at the time of writing.

Note that the time taken for the desktop version does get prohibitive for large datasets.

However, note that the if the data discussed in Section 3.1 was sampled at 1 Hz, then

the 6,106,456 datapoints would represent about 70 days. Thus, even if we use a

standard desktop, we can compute the Matrix Profile about 1,000 times faster than

real-time for this problem. Moreover, recall that this is for the fully converged Matrix

Profile. As [56] shows, we can typically closely approximate in the Matrix Profile in

about 1/100th of the time to complete convergence.

4 Conclusion

We have presented ten time series data mining case studies in which interesting and

actionable results can be obtained given just a handful of lines of code. Moreover,

these results can be obtained essentially instantaneously, given our assumption that

the computation of the Matrix Profile is free. That last assumption needs a little

qualification. The existing Matrix Profile algorithms, STAMP [52], and STOMP [57]

are effectively instantaneously for many end users, who have only tens of thousands

of data points. For example, the Parkinson Disease, music processing, and

classification (shapelet) examples all have this property. For users with say one-

hundred thousand to one million datapoints, they may need to wait minutes for their

results. Our meter-swapping example is of this scale. Note, however, that the minutes

of computation time are dwarfed by the full year of time it took to collect the data. For

users with datasets in the many millions, computation time becomes more of an issue,

but even here there is hope on the horizon. In a recently published paper we

introduced a novel algorithm called SCRIMP++ [56] that can approximate the Matrix

Profile even faster than STAMP, allowing a user with say a million datapoints to

obtain a high quality approximate Matrix Profile in “interactive” time (a handful of

seconds), and in an upcoming work we will show that a GPU cluster optimized

algorithm called SCAMP can scale up to billion length time series. Moreover, we

suspect that others in the community will find ways to accelerate the Matrix Profile

that did not occur to us.

Acknowledgements

We gratefully acknowledge funding from NSF IIS-1161997 II, NASA award

NNX15AM66H, USGS G16AP00034, MERL Labs and Samsung, and all the data

donors.

References

[1] Afsar, O., Tirnakli, U., and Marwan, N. Recurrence Quantification Analysis at work: Quasi-periodicity based

interpretation of gait force profiles for patients with Parkinson disease. Scientific Reports 8.1 (2018): 9102.

[2] Bardainne, T., Gaillot, P., Dubos-Sallée, N., Blanco, J., and Sénéchal, G. Characterization of seismic

waveforms and classification of seismic events using chirplet atomic decomposition. Example from the Lacq

gas field (Western Pyrenees, France). Geophysical Journal International, 166(2): 699-71

[3] Batista, G.E.A.P.A., Keogh, E.J., Tataw, O.M. and De Souza, V.M.A. CID: an efficient complexity-invariant

distance for time series. Data Min. Knowl. Discov. 28.3 (2014): 634-669.

[4] Bayardo, R. J., Ma, Y., and Srikant, R. Scaling Up All Pairs Similarity Search. WWW 2007, pp 131-140.

[5] Beeler, N.M., Lockner, D.L., and Hickman, S.H. A simple stick-slip and creep-slip model for repeating

earthquakes and its implication for microearthquakes at Parkfield. Bulletin of the Seismological Society of

America, 91.6(2001): 1797-1804.

[6] Begum, N., and Keogh, E. Rare Time Series Motif Discovery from Unbounded Streams. PVLDB 8.2 (2014):

149-160.

[7] Bonds, M.E., Haydn's' Cours complet de la composition' and the Sturm und Drang. Haydn studies, pp.152-

76, 1998.

[8] Chandola, V., Cheboli, D., and Kumar, V. Detecting Anomalies in a Time Series Database. UMN TR09-004.

[9] Chen, Y. et al. The UCR Time Series Classification Archive.

http://www.cs.ucr.edu/~eamonn/time_series_data/

[10] Convolution - Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Convolution. Accessed: 2016-

01-19.

[11] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. J. Querying and Mining of Time Series

Data: Experimental Comparison of Representations and Distance Measures. PVLDB 1(2): 1542-1552. 2008.

[12] Geller, R.J. and Mueller, C.S. Four similar earthquakes in central California. Geophysical Research Letters,

7.10(1980): 821–824

[13] Gharghabi, S., Ding, Y., Yeh, C.C.M., Kamgar, K., Ulanova, L. and Keogh, E. Matrix Profile VIII: Domain

Agnostic Online Semantic Segmentation at Superhuman Performance Levels. IEEE ICDM 2017: 117-126.

[14] Goldberger, A.L. et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource

for complex physiologic signals. Circulation 101.23 (2000): e215-e220

[15] Guillame-Bert, M. and Dubrawski, A., 2017. Classification of time sequences using graphs of temporal

constraints. The Journal of Machine Learning Research, 18(1), pp.4370-4403.

[16] Gupta, S., Reynolds, M.S. and Patel, S.N. ElectriSense: single-point sensing using EMI for electrical event

detection and classification in the home. In Proceedings of the 12th ACM international conference on

ubiquitous computing, pp. 139-148, 2010.

[17] Hausdorff, J.M., Ladin, Z., and Wei, J.Y. Footswitch system for measurement of the temporal parameters of

gait. Journal of biomechanics 28.3 (1995): 347–351.

[18] Hoehn, M.M and Yahr, M.D. Parkinsonism: onset, progression and mortality. Neurology 17.5 (1967): 427–

442.

[19] Kao, H.Y. and Yu, J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of

Climate, 22.3(2009): 615-632.

[20] Kate, P.G. and Rana, J.R. ZIGBEE based monitoring theft detection and automatic electricity meter reading.

2015 International Conference on Energy Systems and Applications : 258-262.

[21] Kurpiewski, M.R., Engler, L.E., Wozniak, L.A., Kobylanska, A., Koziolkiewicz, M., Stec, W.J. and Jen-

Jacobson, L. Mechanisms of coupling between DNA recognition specificity and catalysis in EcoRI

endonuclease. Structure, 12.10(2004): 1775-1788.

[22] Lahr, J.C., Chouet B.A., Stephens C. D., Powers J. A., and Page R.A. Earthquake classification, location, and

error analysis in a volcanic environment: Implications for the magmatic system of the 1989–1990 eruptions

at Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62 (1994): 137–152

[23] LG Dishwasher Owners Manual. URL retrieved on June 21st, 2017.

http://www.lg.com/us/support/products/documents/Owners%20Manual.pdf

[24] Li, Y., Yiu, M.L. and Gong, Z. Quick-motif: An efficient and scalable framework for exact motif discovery.

ICDE 2015: 579-590.

[25] Lin, J., Khade, R. and Li, Y. Rotation-invariant similarity in time series using bag-of-patterns representation.

Journal of Intelligent Information Systems. 39. 2 (2012): 287-315.

[26] Morris, D., Saponas, T.S., Guillory, A. and Kelner, I. RecoFit: using a wearable sensor to find, recognize,

and count repetitive exercises. ACM CHI 2014: 3225-3234.

[27] Mueen, A., Hamooni, H., and Estrada, T. Time Series Join on Subsequence Correlation. IEEE ICDM 2014,

pp. 450-459.

[28] Mueen, A., Keogh, E., Zhu, Q., Cash, S. and Westover, B. Exact Discovery of Time Series Motif. SDM 2009.

[29] Murray, D., Liao, J., Stankovic, L., Stankovic, V., Hauxwell-Baldwin, R., Wilson, C., Coleman, M., Kane, T.

and Firth, S. A data management platform for personalised real-time energy feedback. In Proceedings of the

8th International Conference on Energy Efficiency in Domestic Appliances and Lighting Lighting (EEDAL),

2015: 1–15.

[30] Music performance of Joseph Haydn's Symphony No. 47 in G major, by the Tafelmusik Orchestra. URL

Retrieved July 4th 2017. www.youtube.com/watch?v=yeB_Ohpsm64

[31] Nadeau, R.M., Foxall, W., and McEvilly, T.V. Clustering and periodic recurrence of microearthquakes on

the San Andreas Fault at Parkfield, California. Science, 267.5197(1995): 503–507

[32] Nadeau, R.M., and McEvilly, T.V. Fault slip rates at depth from recurrence intervals of repeating

microearthquakes. Science, 285.5428(1999): 718–721.

[33] Puder, J. Seventeen Synonyms of Semordnilap. Word Ways, 33.1(2010): 9.

[34] Reiss, A. and Stricker, D., Introducing a new benchmarked dataset for activity monitoring. In 16th

International Symposium on Wearable Computers (ISWC), 2012, pp 108–109.

[35] Richards‐Dinger, K.B. and Shearer, P.M. Earthquake locations in southern California obtained using source‐

specific station terms. Journal of Geophysical Research: Solid Earth, 105.B5 (2000): 10939-10960

[36] Shakibay-Senobari, N. Personal Correspondence. June 14, 2018.

[37] Shelly, D.R., Beroza, G.C., Ide, S., and Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and

their relationship to episodic tremor and slip. Nature 442.7099(2006): 188-191

[38] Sherburn, S., Scott, B.J., Nishi, Y., and Sugihara, M. Seismicity at White Island volcano, New Zealand: a

revised classification and inferences about source mechanism, J. Volc. Geotherm. Res., 83 (1998): 287–312

[39] Sreenivasan, G. Power Theft. NewDelhi: PHI Learning Pvt. Ltd. 2016.

[40] The UCR Matrix Profile Page. URL retrieved July 9th, 2017. www.cs.ucr.edu/~eamonn/MatrixProfile.html

[41] Trugman, D.T., and Shearer, P. M. GrowClust: A hierarchical clustering algorithm for relative earthquake

relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences.

Seismological Research Letters, 88.2A (2017): 379–391.

[42] Ueno, K., Xi, X., Keogh, E. J., and Lee, D.-J. Anytime Classification Using the Nearest Neighbor Algorithm

with Applications to Stream Mining. ICDM 2006.

[43] Vidale, J.E., ElIsworth, W.L., Cole, A. and Marone, C. Variations in rupture process with recurrence interval

in a repeated small earthquake. Nature, 368.6472(1994): 624-629.

[44] Waldhauser F. and Ellsworth W.L. A double-difference earthquake location algorithm: Method and

application to the northern Hayward fault, Bull. Seism. Soc. Am., 90 (2000): 1353-1368

[45] Wang, J., Liu, P., She, M.F., Nahavandi, S. and Kouzani, A. Bag-of-words representation for biomedical time

series classification. Biomedical Signal Processing and Control, 8.6 (2013): 634-644.

[46] Wikipedia entry for Tasmanian devil. Retrieved June 12th 2017.

https://en.wikipedia.org/wiki/Tasmanian_devil

[47] Wisely, B.A., Schmidt, D.A., and Weldon II, R.J. Compilation of Surface Creep on California Faults and

Comparison of WGCEP 2007 Deformation Model to Pacific-North American Plate Motion (No. 2007-1437-

P). Geological Survey (US), 2008.

[48] Yankov, D., Keogh, E., Medina J., Chiu, B. and Zordan, V. Detecting time series motifs under uniform

scaling. ACM SIGKDD 2007: 844-853

[49] Ye, L., and Keogh, E. Time Series Shapelets: A New Primitive for Data Mining. ACM SIGKDD 2009: 947-

956.

[50] Yeh, C.C. M., Herle, H. V., and Keogh, E. Matrix Profile III: The Matrix Profile Allows Visualization of

Salient Subsequences in Massive Time Series. To be appeared in IEEE ICDM 2016.

[51] Yeh, C.C.M., Kavantzas, N. and Keogh, E. Matrix profile IV: using weakly labeled time series to predict

outcomes. Proceedings of the VLDB Endowment, 10.12 (2017): 1802-1812.

[52] Yeh, C.C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H. A., Silva, D. F., Mueen, A., and Keogh, E.

Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords

and Shapelets. To be appeared in IEEE ICDM 2016: 1317-1322.

[53] Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Zimmerman, Z., Silva, D.F., Mueen, A.

and Keogh, E., 2018. Time series joins, motifs, discords and shapelets: a unifying view that exploits the

matrix profile. Data Mining and Knowledge Discovery 32(1): 83-123.

[54] Zhang, M. and Sawchuk, A. USC-HAD: a daily activity dataset for ubiquitous activity recognition using

wearable sensors. UbiComp 2012: 1036-1043.

[55] Zhu, Y., Imamura, M., Nikovski, D., and Keogh, E. Matrix Profile VII: Time Series Chains: A New Primitive

for Time Series Data Mining. IEEE ICDM 2017: 695-704.

[56] Zhu, Y., Yeh, C.C.M., Zimmerman, Z., Kamgar, K., and Keogh, E. Matrix Profile XI: SCRIMP++: Time

Series Motif Discovery at Interactive Speeds. IEEE ICDM 2018 (to appear).

[57] Zhu, Y., Zimmerman, Z., Senobari, N. S., Yeh, C.-C. M., Funning, G., Mueen, A., Brisk, P., and Keogh, E.

Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for

Time Series Motifs and Joins. IEEE ICDM 2016: 739-748.

[58] Zilberstein, S. and Russell, S. Approximate Reasoning Using Anytime Algorithms. In Imprecise and

Approximate Computation, Kluwer Academic Publishers, 1995.

[59] Supporting Webpage: https://sites.google.com/site/matrixprofiletopten/

