
Matrix Profile VIII: Domain Agnostic Online Semantic

Segmentation at Superhuman Performance Levels

Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liudmila Ulanova, Eamonn Keogh

Department of Computer Science and Engineering
University of California, Riverside

{sghar003, yding007, myeh003, kkamg001, lulan001}@ucr.edu eamonn@cs.ucr.edu

Abstract— Unsupervised semantic segmentation in the time

series domain is a much-studied problem due to its potential to

detect unexpected regularities and regimes in poorly understood

data. However, the current techniques have several

shortcomings, which have limited the adoption of time series

semantic segmentation beyond academic settings for three

primary reasons. First, most methods require setting/learning

many parameters and thus may have problems generalizing to

novel situations. Second, most methods implicitly assume that all

the data is segmentable, and have difficulty when that

assumption is unwarranted. Finally, most research efforts have

been confined to the batch case, but online segmentation is

clearly more useful and actionable. To address these issues, we

present an algorithm which is domain agnostic, has only one

easily determined parameter, and can handle data streaming at a

high rate. In this context, we test our algorithm on the largest

and most diverse collection of time series datasets ever

considered, and demonstrate our algorithm’s superiority over

current solutions. Furthermore, we are the first to show that

semantic segmentation may be possible at superhuman

performance levels.

Keywords—Time Series; Semantic Segmentation; Online

Algorithms;

I. INTRODUCTION

The ubiquity of sensors and the plunging cost of storage
has resulted in increasing amounts of time series data being
captured. One of the most basic analyses one can perform on
such data is to segment it into homogenous regions. We note
that the word “segmentation” is somewhat overloaded in the
literature. It can refer to the approximation of a signal with
piecewise polynomials [13], or the division of a time series into
internally consistent regimes. For clarity, this latter task is
sometimes called “semantic segmentation” [1][31]; where
there is no danger of confusion, and we will refer to it as
segmentation. Sometimes, it can be fruitful to see segmentation
as a special type of clustering with the additional constraint that
the elements in each cluster are contiguous in time.

The utility of segmentation is myriad. For example, if one
can segment a long time series into k regions (where k is a
small), then it may be sufficient to show only k short
representative patterns to a human or a machine annotator in
order to produce labels for the entire dataset. Moreover, as an
exploratory tool, sometimes we can find unexpected and
actionable regularities in our data.

While there are many techniques for segmentation [1][15]
[17][19][25], they all have one or more limitations that have
prevented their utilization in real world settings. This
observation has motivated us to introduce FLOSS (Fast Low-
cost Online Semantic Segmentation), a novel algorithm which,
to the best of our knowledge, is unique in offering all the
following features:

• Domain Agnosticism: Most techniques in the literature are
implicitly or explicitly suited to a single domain, including
motion capture [1][16], motion capture of upper-body only
[3], electroencephalography [15], music [28], automobile
trajectories [11], or electrical power demand [25]. For
example, the detailed survey in [17] notes that for almost
all methods “some prior knowledge of the nature of the
motion is required.” In contrast, FLOSS is a domain
agnostic technique that makes essentially no assumptions
about the data.

• Streaming: Many segmentation algorithms are only
defined for batch data [1][15]. However, a streaming
segmentation of data may provide actionable real-time
information. For example, it could allow for medical
intervention [30] or a preemptive repair to a machine that
has entered a failure mode [22].

• Real World Data Suitability: Most techniques assume
that every region of the data belongs to a well-defined
semantic segment. However, that may not be the case.
Consider a wrist-worn accelerometer data worn by an
athlete working out at a gym. Examined at the scale of tens
of seconds, there will be many well-defined homogenous
regions of behavior, corresponding to various repetitions
on the apparatus (see Fig. 1). However, it is probable that
there are many minutes of behavior that accumulated
while the athlete was waiting her turn to use a machine.
These periods may be devoid of structure. Any model that
insists on attempting to explain all of the data may be
condemned to poor results. In contrast, FLOSS can
effectively mark these difficult sections as “don’t know”.

Beyond introducing the FLOSS algorithm, we claim the
following contributions to the literature:

• Most research efforts in this domain test on limited datasets
[1][15]. The authors of [19] and [32] are both to be
commended for considering three datasets, but they are
exceptional, considering one dataset is the norm. In
contrast, we test on a data repository of thirty-two datasets

from diverse domains. We believe that this free public
archive will accelerate progress in this area, just as the
TREC datasets have done for text retrieval and the UCR
archive has done for time series classification [8].

• While classification, clustering, compression etc. all have
formal and universally accepted metrics to assess progress
and allow meaningful comparison of rival methods, the
evaluation of segmentation algorithms has often been
anecdotal [17]. Evaluation often reduces to the authors
asking us to visually compare the output of their algorithm
with the ground truth. While there is nothing wrong with
visually compelling examples or anecdotes, it is clearly
desirable to have more formal metrics. In [19], the authors
adapt precision/recall, but in some contexts, this is
unsuitable for semantic segmentation. In Section III-D, we
introduce a metric that allows us to meaningfully score
segmentations given some external ground truth.

The rest of this paper is organized as follows. In Section II,
we provide a summary of the background and related work
along with the necessary definitions. In Section III-A, we
introduce a batch algorithm for semantic segmentation before
generalizing it to the streaming case in Section III-C. Section 0
illuminates a detailed quantitative and qualitative evaluation of
our ideas. Finally, in Section IV, we offer conclusions and
directions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we introduce all the necessary definitions
and notations and consider related work. Because the term
segmentation is so overloaded, even in the limited context of
time series, we also explicitly state what we are not attempting
to do in this work.

Note that for clarity and brevity, our definitions and
algorithms only consider the one-dimensional cases; however
the generalizations to the multidimensional case are trivial, and
we have archived multidimensional examples and code in [4].

A. Definitions

Here, we introduce the necessary definitions and
terminology, beginning with the definition of a time series:

Definition 1: A time series T = t1, t2, t3, … ,tn is a continuous

ordered sequence of real values in equally spaced time

intervals of length n.

Our segmentation algorithm will exploit the similarity of
local patterns within T, called subsequences:

Definition 2: A subsequence Ti,L of a T is a continuous

subset of the values from T of length L starting from position

i. Ti,L = ti, ti+1,…, ti+L-1, where 1 ≤ i ≤ n-L+1.

The time series T is ultimately recorded, because it is
measuring some aspect of a system S (perhaps indirectly
measuring the phenomenon in some instances).

Definition 3: A system S is a physical or logical process

containing two or more discrete states separated by one or

more boundaries b.

We further discuss and justify our assumption that S is
intrinsically discrete in Section III.

The algorithms we present are built on the recently
introduced Matrix Profile (MP) representation as well as the
STAMP and STAMPI (the online variation) algorithms used to
compute it [31]. We briefly review of these in the next section.

B. Matrix Profile Background

STAMP is a time series all-pairs one-nearest-neighbor
search (also known as similarity join) algorithm that leverages
the Fast Fourier Transform for speed and scalability. The input
parameters are the time series data T and a subsequence length
L, where L is the desired length of the time series pattern to
search for. For output, it returns two vectors, MPValues and
MPIndex, both of which are the same length of T and can be
seen as annotating it. At the index i of the data structure…

• MPValues, is the Euclidean distance of the subsequence
Ti:i+L to its nearest neighbor elsewhere in T. To prevent
trivial matches, where the subsequence matches to itself,
an exclusion region is enforced such that the distance
between Ti:i+L and any subsequence begins at [i - L/2: i +

L/2] and is assumed to be infinity.

• MPIndex is the location of i’s nearest neighbor in T. Note
that in general, this nearest neighbor information is not
symmetric, i’s nearest neighbor may be j, but j’s nearest
neighbor may be k.

This review is necessarily brief, so we refer the reader to
the original paper for more details [31].

C. What FLOSS is Not

Even within the narrow context of time series analytics, the
term segmentation is overloaded; thus, it is necessary to
explicitly explain some tasks we are not addressing.

Change point detection is a method for detecting various
changes in the statistical properties of time series, such as the
mean, variance, or spectral density. A good representation of
the literature on this problem is surveyed in detail in a recent
paper in [1]. In contrast to change point detection, we are
interested in regimens that are defined by changes in the
shapes of the time series subsequences, which can change
without any obvious effect on the statistical properties.

Similar to our stated goals, recent work on change point
detection has begun to stress the need to be parameter-free and
have few assumptions [21]. However, scalability is rarely a
priority; therefore, a typical dataset considered in this domain
is a few hundred data points. This indicates that human
inspection is often a competitive algorithm. However, due the
scale of the data we wish to consider and the necessity to detect
regime changes where they would be difficult to discern
visually on the screen, an algorithm that is competitive with or
even surpasses human inspection is necessary.

Another interpretation of segmentation refers to Piecewise
Linear Approximation (PLA). The goal is to approximate a
time series T with a more compact representation by fitting k
piecewise polynomials using linear interpolation or linear

regression, while minimizing the error with respect to the
original T [11] [29]. Success here is measured in terms of root-
mean-squared-error, and it does not indicate any semantic
meaning of the solution.

Finally, we are not interested in segmenting individual
phrases/gestures/phonemes etc. This type of work is almost
always heavily domain dependent and requires substantial
training data [3]. For example, there is a significant amount of
work that attempts to segment the time series equivalent of the
string nowthatchersdead to produce now thatchers dead (and
not now that chers dead). In contrast, we are interested in
segmenting at a higher level, which would be the equivalent of
segmenting an entire book into chapters or themes.

D. Related Work

Hidden Markov Models (HMMs) have been successfully
used to segment discrete strings. Examples of this include
segmenting a DNA strand into coding and non-coding regions,
and the efforts to use HMMs in the real-valued space (but they
are almost always tied to a single domain, such as seismology
[7]). We have considered and dismissed HMMs for several
reasons. To use HMMs with real-valued time series, we must
set at least two parameters, the level of cardinality reduction
(the number of states to discretize to) and the level of
dimensionality reduction (the number of values to average) [7].
This is in addition to specifying the HMM architecture, which
is tricky even for domain experts [7] and contrary to our hope
for a domain agnostic algorithm.

The work that most closely aligns with our goals is
Autoplait [19], which segments time series using Minimum
Description Length (MDL) to score alterative HMMs of the
data. This work also stresses the need for domain independence
and few parameters. The most significant limitation of
Autoplait is that it is only defined for the batch case. It would
not be trivial to convert it to handle streaming data. This
approach requires discrete data, which is obtained by an equal
division of the range bound by the smallest and largest value
seen. In the streaming case, wandering baseline or linear drift
ensures that at some point all the incoming values are greater
(or smaller) than the values the model can process. This is
surely not unfixable, but it is also not simple to address, and it
is only one of the many issues that must be overcome to allow
an Autoplait variant handle streaming data.

The authors of Autoplait (and various subsets thereof) have
many additional papers in this general space. However, to the
best of our understanding, none of them offer a solution for the
task-at-hand. For example while StreamScan is a streaming
algorithm [20], the authors note the need to train it: “we trained
several basic motions, such as ‘walking’, ‘jumping’..”, and the
algorithm has at least six parameters.

III. SEMANTIC SEGMENTATION

We are finally able to formally define the task-at-hand.
Assume we have a system S, which can be in two or more
discrete states. Examples of such systems include:

• The heart of a patient recovering from open heart surgery.
The patient’s heart may be in the state of tamponade or
normal [9].

• A music performance may be envisioned a system that
moves between the states of intro, verse, chorus, bridge,
and outro [28].

• Fractional Distillation of petrochemicals consists of cycles
of heating, vaporizing, condensing, and collecting [24].

• An exercise routine often consists of warm-up, stretching,
resistance training, and cool-down. This special case of
treating human behavior as a switching linear dynamic
system (SLDS) [27] has become an increasingly popular
tool for modeling human dynamics [6][26].

We can monitor most of these systems with sensors. For
the cases mentioned above, a photoplethysmograph, a
microphone, a thermocouple, and a wrist mounted
accelerometer (smartwatch) are obvious choices. In most cases,
we would expect the time series from the sensors to reflect the
current state of the underlying system. This understanding
allows us to produce the following definition of the problem
regarding the time series semantic segmentation task:

Definition 4: Given a time series T, monitoring some aspect of

a system S, infer the boundaries b between changes of state.

We recognize that this definition makes some simplifying
assumptions. Some systems are not naturally in discrete states,
but may be best modelled as having a degree of membership to
various states. For example, Hypokalemia, a disease where the
heart system is deficient in potassium, is often diagnosed by
examining ECGS for increased amplitude and width of the P-
wave [30]. Hypokalemia can manifest itself continuously at
any level from mild to severe. In fact, our example of
tamponade is one of the few intrinsically discrete heart
conditions. Nevertheless, many systems do switch between
discrete classes, and these are our domains of interest.
Moreover, even though hypokalemia can change continuously,
in practice it often changes fast enough (in response to
intravenous or oral potassium supplements) to be detectible as
a regimen change in a window of ten minutes, and we can
easily support windows of this length.

Note that even in systems that do have some mechanism to
“snap” the system to discrete behaviors, there is often another
ill-defined “other” class. For example, consider the short
section of time series shown in Fig. 1. Here the need for
precise movements forces the exercise repetitions to be highly
conserved. However, there is no reason the transitions between
the repetition sets need to be conserved.

60,000 60,800 61,600

Knees bending (crouching)

Knees (alternating)
bending forward

Left Upper Arm Accelerometer X

Fig. 1: A snippet of time series collected during an exercise routine. Both the
first and last third are well-defined motions, but the section in the middle is

less structured, representing a transition between apparatuses.

Similar remarks apply to many other domains. In fact, in
many cases, the majority of the data examined may consist of
ill-defined and high entropy regions. Note that we cannot use
these observations to conclude that the underlying system is

not in any state. It may simply be the case that the view given
by our sensor is not adequate to make this a determination. For
example, a sensor on the ankle will help distinguish between
the states of walking and running, but it will presumably offer
little information when the system (the human) is toggling
between typing and mouse-use.

A. Introducing FLUSS

We begin by introducing FLUSS (Fast Low-cost Unipotent
Semantic Segmentation), an algorithm that extends and
modifies the (unnamed) algorithm hinted at in [31]. Later, in
Section III-C, we will show how we can take this intrinsically
batch algorithm and make it a streaming algorithm.

The task of FLUSS is to produce a companion time series
called the Arc Curve (AC), which annotates the raw time series
with information about the likelihood of a regime change at
each location. We also need to provide an algorithm to
examine this Arc Curve and decide how many (if any) regimes
exist. We consider that issue separately in Section III-B.

FLUSS takes both a time series T and a user provided
subsequence length in as input, and outputs an AC vector of
length n, where at each index i contains the number of “arcs”
that cross over i. We define an “arc” as follows. The ith entry
in the MPIndex vector contains a positive integer j, which
indicates the nearest neighbor location. So, for the ith entry,
containing a positive integer j, the nearest neighbor for the time
series subsequence beginning at index i is the time series
subsequence beginning at index j. We can visualize each entry
pair (i,j) as an arc drawn from location i to j. The spatial layout
of the arcs along with the number of “arc” crossing over of
each index i is summarized by the Arc Curve. Specifically,
index i of the Arc Curve contains a non-negative integer
indicating the number of arcs that cross over i. Fig. 2 below
illustrates this notation.

0 1000 2000 3000 4000 5000

1892

1270 1892

1270 4039

3450

4607

4039

Fig. 2: Selected arcs illustrated with the corresponding Matrix Profile indices
indicated. Note that nearest neighbor subsequences indices can be symmetric,
e.g., 1270 and 1892, but this is not generally true. A subsequence’s nearest
neighbors can be located to the left or to the right.

Note that every index has exactly one arc leaving it;
however, each index may have zero, one, or multiple arcs
pointing to it. We define the Arc Curve more formally below:

Definition 5: The Arc Curve (AC) for a time series T of

length n is itself a time series of length n containing non-

negative integer values. The ith index in the AC specifics

how many nearest neighbor arcs from the MPIndex spatially

cross over location i.

Now, we can state the intuition of our segmentation
algorithms.

Our Overarching Intuition: Suppose a time series T has

a regime change at location i. We would expect few arcs to

cross i, as most subsequences will find their nearest

neighbor within their host regime. Thus, the height of the

Arc Curve should be the lowest at the location of the

boundary between the change of regimes/states.

In Fig. 3, we show the AC plot for the dataset shown in Fig.
2, which will be used as a running example.

0 1,000 2,000 3,000 4,000 5,000

0

500

1,000

1,500

Fig. 3: top) The ABP of a reclining male. At time 2400, he was rotated into a

standing position. bottom) The AC plot for this dataset shows a clear valley at

time of system change.

We consider the Arterial Blood Pressure (ABP) of a
healthy volunteer resting on a medical tilt table [12]. At time
2400, the table was tilted upright, invoking a response from the
homeostatic reflex mechanism. While the figure above hints at
the utility of FLUSS, it also highlights a weakness. Note that
while the Arc Curve has a satisfyingly low value at the location
of the regime change, it also has low values at both the leftmost
and rightmost edges. This occurs because there are simply
fewer candidate arcs that can cross a given location at the
edges. We need to compensate for this bias, or we are likely to
report false positives near the edges.

This compensation is easy to achieve. We begin by
imagining the case where there is no locality structure in the
time series under consideration; for example, imagine we are
examining a random vector. Under such circumstances, we
would expect the arcs from each subsequence to point to an
effectively random location. Given this null case, with no
structure, what would an Idealized Arc Curve (IAC) look like?
With a little introspection, we can see that, as shown in Fig. 4,
it would be an inverted parabola with its height ½n (we
relegate the derivation of this fact to [4]).

Theoretical Empirical

0 1000 2000 3000 4000 5000
0

2500

The number of arcs that cross a given index, if the links are assigned randomly

Fig. 4: The Idealized Arc Curve (IAC) for a time series with no localized
similarity structure is an inverted parabola with a height ½n. An empirical

curve shows close agreement. As we will see later, it is actually a special case

of beta (2, 2, a, c).

To compensate for the edge effect bias in the Arc Curve,
for each location i, we consider the actual number of observed
arc crossings relative to the number of expected arc crossings
predicted by our parabolic model (1), to obtain the Corrected
Arc Crossings (CAC):

AC
CAC min ,1

IAC

i
i

i

 (1)

The min function is used to keep the CAC bounded
between 0 and 1 in the logically possible (but never empirically
observed) case that ACi > IACi.

This normalized and bounded measure is useful because it
allows the following:

• Commensurate comparisons across streams monitored at
different sampling rates.

• The possibility to learn domain specific threshold values.
For example, suppose we learn in ECG training data, that
for a patient in an ICU recovering from heart surgery, a
CAC value less than 0.2 is rarely seen unless the patient
has cardiac tamponade. Now we can monitor and alert for
this condition.

In Fig. 5, we show the CAC for our running example. Note
that the issue of the edge bias of AC has been resolved, and the
curve minimizes at the correct location of 2400.

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Fig. 5: (contrast with Fig. 3). top) Our running ABP example. bottom) The

CAC minimizes in the correct place and avoids the “edge-effect” false

positives of the AC curve.

Before continuing, we will demonstrate the invariance of
the CAC to several issues commonly encountered during real-
world uses. We recomputed the CAC for our running example
after modifying the original data in several ways, including:

• Downsampling from the original 250 Hz to 125 Hz (red).

• Reducing the bit depth from 64-bit to 8-bit (blue).

• Adding a linear trend of ten degrees (cyan).

• Adding 20dB of white noise (black).

• Smoothing, with MATLAB’s default settings (pink).

• Randomly deleting 3% of the data, and filling it back in
with simple linear interpolation (green).

As Fig. 6 suggests for this example, the CAC is quite
robust in regard to these issues, and the minimum value of the
CAC still occurs in the same place.

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

Fig. 6: The CAC computed for our running example after it was distorted in

various ways (best viewed in color; the key is above). Compare it to Fig. 5.

The only distortion to appreciably change the CAC is
noise; however, as Fig. 7 shows, we added an enormous
amount of noise, and we still found the correct segmentation.

0 1,000 2,000 3,000 4,000 5,000

Fig. 7: A comparison of the original TiltABP (top) and the data with twenty
dB of noise added (bottom).

We have shown that the CAC is robust to many variations
of time series data, and are now ready to fully explain the
algorithm for obtaining the CAC. While the construction of
the CAC is straightforward, given the discussion above, we
formalize it on TABLE I for clarity.

In lines 1 to 2, we obtain the length of the MPIndex and
zero initialize three vectors. Next, we iterate over the MPIndex
to count the number of arcs that cross over index i in lines 3
through 7. This information is stored in nnmark. Then, we
iterate over nnmark and cumulatively sum its values
consecutively for each index i. The cumulative sum at i is
stored in ACi. This is accomplished in lines 10 to 13. Finally,
in lines 15 to 18, we normalize AC with the corresponding
parabolic curve to obtain the CAC.

TABLE I: Algorithm for constructing CAC

 Procedure CAC (MPIndex, L)
 Input- MPIndex: the matrix profile index for the time series of interest
 L: the subsequence length

 Output- CAC: a corrected Arc Curve

1

2
3

4

5
6

7

8
9

10

11
12

13

14
15

16

17
18

n = length(MPIndex)

AC = CAC = nnmark = zero initialize array of size n
for i=1:n

 j = MPIndex[i]

 nnmark[min(i,j)] = nnmark[min(i,j)] + 1
 nnmark[max(i,j)] = nnmark[max(i,j)] - 1

end

numArcs = 0

for i=1:n

 numArcs = numArcs + nnmark[i]
 AC[i] = numArcs

end

IAC = parabolic curve of length n and height ½ n

CAC = min (AC/IAC, 1)

Set the L length in the beginning and end of CAC to 1
return CAC

B. Extracting Regimes from the CAC

With our CAC defined, we are now ready to explain how
we extract the locations of the regime changes from the CAC.
Our basic regime extracting algorithm requires the user to input
k, the number of regimes. This is similar to many popular
clustering algorithms, such as k-means, which require the user
to input the k number of clusters. However, later we will show
a technique to remove the need to specify k when given some
training data to learn from.

As suggested in Fig. 5, a small value for the lowest “valley”
at location x is strong evidence of a regime change at that
location. This is based on the intuition that significantly fewer
number of arcs would cross location x if x is a boundary point
between two discrete states [31]. Note that this intuition is
somewhat asymmetric. A large value for the lowest valley
indicates that there is no evidence of a regime change, not that

there is positive evidence of no regime change. This is a subtle
distinction, but it is worth stating explicitly.

At a high level, the regime extracting algorithm (REA)
searches for k lowest “valley” points in the CAC. However,
we need to avoid the trivial minimum; if x is the lowest point,
then it is almost certain that either x+1 or x-1 is the second
lowest point. To avoid this, FLUSS does not return the k
minimum values. Instead, it obtains one minimum “valley”
value at location x. Then, FLUSS sets up an exclusion zone
surrounding x. For simplicity, we have defined the zone as five
times the subsequence length before and after x. This
exclusion zone is based on an assumption that regimes will
have multiple repetitions; FLUSS is not able to segment single
gesture patterns. With the first exclusion zone in place,
FLUSS repeats the process described above until all k
boundary points are found.

While this algorithm is obvious and intuitive, for concreteness,

we formally outline in TABLE II.

TABLE II: REA: Algorithm for Extracting Regimes

Procedure ExtractRegimes (CAC, numRegimes, L)

Input- CAC: a corrected Arc Curve

 numRegimes: number of regime changes

 L: length of the subsequence

Output- locRegimes: the locations of the regimes

1
2

3

4
5

6

locRegimes = empty array of length numRegimes

for i=1:numRegimes

locRegimes(i) = indexOf(min(CAC))

Set exclusion zone of 5*L

end

return locRegimes

C. Introducing FLOSS

In the previous sections, we have shown that at least in our
running example, FLUSS can detect changes of regimes in
batch datasets. Now we consider the streaming case, in which
we maintain the CAC over a sliding window; an example of
this could be the last ten minutes of a patient recovering from
heart surgery. In principle, this seems simple. At every time
stamp, we need to ingress the newly arriving point, and egress
the oldest point, updating all the arcs in the Matrix Profile
index and adjusting the CAC as needed. However, there is a
large asymmetry in the time complexity for ingress and egress.

• Ingress: When the new point arrives, we must find its
nearest neighbor in the sliding window, and determine
whether any item currently in the sliding window needs to
change its nearest neighbor to the newly arrived
subsequence. Using the MASS algorithm, this takes just
O(nlogn) [23].

• Egress: When a point is ejected, we must update all
subsequences in the sliding window that currently point to
that departing subsequence (if any). This is a problem,
because while pathological unlikely, almost all
subsequences could point to the disappearing subsequence.
This would force us to do O(n2) work, forcing us to
recompute the Matrix Profile [31].

This issue would not exist if the arcs in the Matrix Profile
only went in one direction, to a previous time. In that case,

when we egress a data point, for the corresponding
subsequence being removed:

• As the arcs only go to a previous time, we do not have to
delete arcs that point to it, since it does not have one.

• As for the arcs that point away from it, we could delete that
arc by removing the first element in the matrix profile
index in O(1).

This would indicate that the overall time to maintain the 1-
Direction on CAC (CAC1D) would be only O(nlogn) for
ingress plus O(1) for egress, for a total of O(nlogn).

However, this begs the question, would using the CAC1D
yield similar results to using the CAC? To test this, we begin
by computing the empirical one directional IAC (IAC1D). The
empirical IAC1D is shown with the theoretical original (bi-
directional) IAC in Fig. 8.

One-directional IACBi-directional IAC

0

2,500

0 1,000 2,000 3,000 4,000 5,000

Fig. 8: The one-directional IAC (IAC1D) is a right skewed distribution with
shorter height than the original IAC.

Compared to the original IAC, IAC1D has a somewhat
similar shape, but it is shorter and skewed to the right. The
skewness is caused by the fact that it is more likely for arcs to
cross later in time, since all the arcs are pointing forward in
time. By theoretical modeling/visual inspection [4], we claim
the distribution of IAC1D can be modeled by a beta distribution.
The empirical IAC1D and a sample generated by the beta
distribution is shown in Fig. 9. Note that in retrospect, we can
see the parabolic curve of Fig. 4 as a special case of the beta
distribution with α = β = 2.

0 1,000 2,000 3,000 4,000 5,000

0

2,000

Empirical IAC1D

Sampled IAC1D

Fig. 9: The empirical IAC1D is modeled closely by a beta distribution.

As a result of this difference, IAC1D is used instead of IAC
when computing CAC1D. Below, we computed the CAC1D on
our running example, as shown in Fig. 10.

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

Fig. 10: top) Our running ABP example. bottom) the CAC (red) from Fig. 5
and the CAC1D (green).

As we can see, the CAC1D minimum value is very close to
that of the CAC. Moreover, this is a short “toy” example. As
the datasets get larger, the two curves become essentially
indistinguishable.

D. Scoring Function

Most of the evaluation of segmentation algorithms has been
largely anecdotal (see [17] for a detailed survey), and indeed
we also show visually convincing examples in Section 0.
However, because of the scale of the experiments, i.e.
examining thirty-two datasets, we need to have a scoring
metric.

Many research efforts have used the familiar
precision/recall or measures derived from them. However, as
[17] points out, this presents a problem. Suppose the ground
truth for transition between two semantic regimes is at location
10,700. If an algorithm predicts the location of the transition at
say 10,701, should we score this as a success? What about say
10,759? To mitigate this brittleness, several authors have
independently suggested a “Temporal Tolerance” parameter to
bracket the ground truth [17]. However, this only slightly
mitigates the issue. Suppose we bracket our running example
with a range of 100, and reward any prediction in the range
10,700 ± 100. Would we penalize an algorithm that predicted
10,801, but reward an algorithm that predicted 10,800?

Ground Truth (GT)

Experimental (E)

GT 1 GT 2 GT 3 GT 4

E 1 E 2 E 3 E 4

Fig. 11: An example of our scoring function in action. The top line illustrates

the locations of the ground truth locations (GT1, GT2, GT3, GT4), and the

bottom line illustrates the boundary locations (E1, E2, E3, E4) reported by an
algorithm. Note that multiple proposed boundary points may be mapped to a

single ground truth point.

Another issue we face in creating a scoring function is
rewarding a solution that has k boundaries predictions, in
which most of the predictions are good, but just one (or a few)
are poor. If we insist on a one-to-one mapping of the
predictions with the ground truth, we over-penalize any
solution for missing one boundary while accurately detecting
others (a similar matching issue is understood in many
biometric matching algorithms).

TABLE III: Scoring Function Algorithm

Procedure ScoreRegimes(locRegimes, gtRegimes, n)

Input- locRegimes: extracted regimes
 gtRegimes: ground truth regimes
 n: length of the time series

Output- score: [0,1], with 0 being the best score

1

2

3
4

5

6
7

8

9

sumDiff = 0

numRegimes = length(gtRegimes)

for i=1:numRegimes
Find the gtRegimes[j] closest to locRegimes[i]

diff = | locRegimes[i] – gtRegimes[j] |

sumDiff = sumDiff + diff
end

score = sumDiff/n

return score

Our solution is visually explained in Fig. 11, and formally
outlined in TABLE III. It gives 0 as the best score, and 1 as the
worst. The function sums the distances between the ground
truth boundary points and the boundary points suggested by an
algorithm. Dividing that sum by the product of the number of
segments and the length of the time series to normalize the
range to [0, 1].

EXPERIMENTAL EVALUATION

We begin by stating our experimental philosophy. We have
designed all experiments such that they are easily reproducible.
To this end, we have built a web page [4] that contains all of
the datasets and code used in this work as well as the
spreadsheets containing the raw numbers and some supporting
videos. The thirty-two segmentation test datasets we created
will be archived in perpetuity at [4], independent of this work.
We hope the archive will grow as the community donates
additional datasets.

E. Datasets

We created an extremely diverse collection of test datasets.
The biological datasets include time series taken from humans,
birds, rats, pigs, and insects. The mechanical datasets include
data taken from robots and electrical power demand (both from
a single building and an entire city). The datasets fall into three
categories:

• Synthetic: There is one completely synthetic dataset, which
is mostly for calibration and sanity checks.

• Real: The majority of our datasets are real. In most cases,
the ground truth boundaries are confidently known
because of external information. For example, for the
Pulsus Paradoxus datasets [9], the boundaries were
determined by the attending physician viewing the
patient’s Echocardiogram.

• Semi-Real: In some cases, we contrived real data to have
boundaries. For example, we took calls from a single
species of bird that were recorded at different locations
(thus they were almost certainly different individuals) and
concatenated them. Thus, we expect the change of
individual to also be a change of regime.

As Fig. 12 suggests, some of the boundaries are obvious
visually. However, we can also see that many are so subtle that
finding the boundary is a non-trivial challenge for humans,
including domain experts (in fairness, these are only snippets,
the excluded data would probably give the human more
context).

For brevity, we omit further discussion of these datasets.
However, we have created a visual key, which gives detailed
information on the provenance of each dataset and placed it in
perpetuity at [4].

We set the only parameter, the subsequence length L, by
visual inspection. We set it to be about one period length (i.e.
one heartbeat, one gait cycle, etc.). As we will show in Section
IV-0, our algorithm is not sensitive to this choice.

EEGRat2

TiltECG

RoboticDogActivityX

SuddenCardiacDeath2

GreatBarbet1

PulsusParadoxusSP02

PulsusParadoxusECG1

PigInternalBleedingDatasetCVP

PigInternalBleedingDatasetArtPressureFluidFilled

Fig. 12: Snippets (not the full traces) from a random selection of the test
datasets. The snippets are centered on a boundary (change of background
color). There are no axes in this figure, as the data are at different scales.

F. Rival Methods

The most obvious rival method is Autoplait [19]. As noted
above, while there are dozens of segmentation algorithms, it is
often difficult or unfair to compare to them because:

• They are designed only for a limited domain; thus if they
are not competitive, it might be because they are just not
suited for some or most of the diverse datasets considered.

• They require setting many parameters; thus if they are not
competitive, it might be because we tuned the parameters
poorly.

• The code is not publicly available; if they are not
competitive, it might be because of our unconscious
implementation bias [14].

In contrast to all of the above, Autoplait is domain agnostic,
parameter-free, and the authors make their high-quality
implementation freely available. Autoplait segments time
series by using MDL to recursively test if a region is best
modeled by one HMM or two (this is a simplification of this
innovative work, we refer the interested reader to refer to [19]).

After confirming that we had the code working correctly by
testing over the authors’ own datasets and some toy datasets,
we found that Autoplait only produced a segmentation on 12
out of our 32 test datasets. The underlying MDL model is too
conservative. To fix this issue, for every dataset we carefully
hand-tuned a parameter W, which we used to reduce the weight
of their Cost(T|M), making the splits “cheaper,” encouraging
the production of k regimes. This is the only change we made
to the Autoplait code. With this change, most, but not all,
datasets produced a segmentation. We found that we could
perfectly replicate the results in the original Autoplait paper, on
the authors own chosen benchmark datasets. However, because
these datasets are not very challenging, we confine these
results to our supporting webpage [4].

We also compared it to the HOG1D algorithm [32], which
has similar goals/motivations to FLOSS, but is batch only.

G. Case Study: Hemodynamics

In this case study, we revisit our running example in more
depth. Recall that in Section III-A, we suggested that in some

domains it may be possible to use training data to learn a value
for the CAC score that indicates a change of regime, and we
expect that value to generalize to unseen data from the same
domain. To test this notion, we consider the Physiologic
Response to Changes in Posture (PRCP) dataset [12].

The PRCP dataset consists of continuously monitored
Arterial Blood Pressure (ABP) of ten healthy volunteers (five
of each sex). During sessions lasting approximately one hour
each, the subject’s posture was changed in two ways; by
rotating the medical tilt table they rested on, or by asking the
subject to arise from the reclined table under their own power.
Each of these posture-change events (just ‘events’ in the
below) was separated by five minutes in the resting supine
position. Because the timing of these events was carefully
recorded, this dataset offers an objective ground truth for
regime change. As Fig. 13 shows, this data is quite complex.

0 1,000 2,000 3,000

Fig. 13: Four random examples of “no-regime-change.” Even these regions of
“no change” include sensor artifacts, wandering baseline, noise, and short
disconnection artifacts.

To avoid cherry picking, we chose the first subject (in the
original archive), a male, to use as the training data. Likewise,
to avoid parameter tuning, we Googled “normal resting bpm.”
The first result, from the Mayo Clinic, suggested “60 to
100bpm,” so we set the subsequence length to 187.5, which at
250hz corresponds to the mean of these values.

As we are attempting to learn from only negative examples,
we selected 20 regions, each one-minute long (possibly with
overlaps) from the regions that do not include any event. For
our testing data, we selected 140 negative and 60 positive
(regions that straddle an event) from the remaining 9 traces.

We ran FLUSS on the twenty training objects and recorded
the minimum CAC value encountered. As shown in Fig. 14
(left), the mean value was 0.671 with a standard deviation
0.194. Using the classic statistical-process-control heuristic, we
set the threshold for the testing phase to the mean minus three
standard deviations, or 0.089. As we can see in Fig. 14 (right),
this gives us an accuracy of 93.5%, with one false negative and
twelve false positives.

0 0.5 1

Mean value of CAC

on negative training

data samplesDecision Threshold

Negative

Positive

Fig. 14: The positive and negative holdout data can be classified by a simple
decision threshold; the mean of the training negative examples minus three

standard deviations.

Note that we cannot guarantee here that the false positives
are really “false.” Independent of the externally imposed
interventions, the subject may have induced a regime change
by just thinking about a stressful situation [18]. Further note

that we could have improved these results significantly with a
little work. For example, we could have tuned L, the only
parameter, we could have built a separate model for females, or
for overweight individuals, we could have removed noise or
wandering baseline (a common practice for such data) etc.
Nevertheless, this experiment bodes well for our claim that we
can learn a domain dependent threshold for flagging regime
changes, and then it will generalize to unseen data.

H. User Study: Super-human Performance

As noted above, the evaluation of semantic segmentation
algorithms has often been anecdotal and visual [17]. In
essence, many researchers overlay the results of the
segmentation on the original data, and we invite the reader to
confirm that it matches human intuition [1][5][17][19]. While
we are not discounting the utility of such sanity checks (see
Fig. 15), by definition, such demonstrations can only offer
evidence that the system is par-human [2]. It is natural to
wonder if semantic segmentation can achieve super-human
performance. To test this, we performed a small user-study.
We asked graduate students in a data mining class to
participate. Participation was voluntary and anonymous;
however, to ensure that the participants were motivated to give
their best effort, a cash prize was given for the best
performance.

The study was conducted as follows. The participants were
briefed on the purpose and meaning of semantic segmentation
and where shown some simple annotated examples (This
briefing is archived in [4]). Then they were given access to an
interface that showed twelve random examples1, in a serial
fashion from the archive discussed in Section IV-E. The
interface allowed the participants to explore the data at their
leisure, then click on the screen to denote their best guess as to
the location of the regime change.

Because our scoring function is fine-grained, we only count
a method as wining if its score is less than half the score of its
rival. Otherwise, we report a tie. TABLE IV summarizes the
outcomes.

TABLE IV: The Performance of Fluss vs. Humans

FLUSS

Best

Human
Ave Human

Mean Score 0.013 0.011 0.120

win | lose | draw over FLUSS NA 2 | 4 | 6 0.81 | 9.5 | 2.0

While the scale of this experiment was modest, these
results suggest that we are at, or are approaching, super-human
performance for semantic segmentation of time series.

I. Comparisions to Rival Methods

Despite our best efforts, we could not get the original
Autoplait algorithm to produce any segmentation on 20 of our
32 test datasets. We counted this as a “loss” for
“Autoplait_Classic.” By carefully adapting the algorithm (see
Section IV-F), we could get Autoplait to produce a
segmentation on thirteen additional datasets

1 We only considered a subset of twelve from the full dataset to be respectful

of the participant’s time and attention.

(“Autoplait_Adapted”). On the datasets it did predict
segmentations for, sometimes it predicted too many or too few
segments. In those cases, we allowed both versions to “cheat.”
If it predicted too few segments, we took only the closest
matches, and gave it all the missing matches with no penalty. If
it predicted too many segments, we only considered the best
interpretation of a subset of its results without penalizing the
spurious segments. In contrast, HOG1D only refused to produce
a segmentation on 2 of our 32 datasets. For the rest, it was able
to produce the required k splits.

Recall that we tested twenty-two humans on a subset of the
data. We invited the best scoring individual to segment all of
the data. Finally, for calibration, similarly to the default-rate of
classification, we considered a random algorithm, which was
allowed 100 attempts at guessing the segmentation and reports
the average of all attempts. As we noted above, we set the only
parameter, the subsequence length L, to be about one period
length before conducting any experiments. The performance of
FLUSS is shown in TABLE V.

TABLE V: The Performance of four rivals compared to FLUSS

 AutoplaitClassic AutoplaitAdapted HOG1D Best Human Random

win | lose | draw

over FLUSS
3 | 26 | 3 3 | 25 | 4 8 | 15 | 9 11 | 9 | 12 0 | 32 | 0

A post-mortem analysis showed that if we had instead chosen

between ¼ to ½ a period length, we would have cut the number of

wins by all rivals by more than half. Nevertheless, these results

strongly support our claim of the superiority of FLUSS.

J. Robustness of FLUSS to the only Parameter Choice

The performance of FLUSS is highly robust to the choice
of its only parameter, the subsequence length L. To
demonstrate this, we consider two random datasets, TiltABP
and DutchFactory, changing the subsequence length to span an
order of magnitude, from 100 to 400 in TiltABP and from 25 to
250 in DutchFactory. As shown in Fig. 15, this variation of
subsequence length has insignificant effect on the
segmentation.

0 2,000 4,000 6,000 8,000

0

1

0 40,000

0

1
Tilt ABP

Dutch Factory

Fig. 15: The CAC computed for (top) TiltABP with L = {100, 150, 200, 250,

300, 350, 400} and (bottom) DutchFactory for L = {25, 50, 200, 250}. Even for

this vast range of values for L, the output of FLUSS is essentially unchanged.

K. The Speed and Utility of FLOSS

Our evaluation of FLOSS is brief, since it essentially
inherits all the qualities of FLUSS but allows for online
segmentation. However, to demonstrate the speed and utility of
FLOSS, we performed the following experiment. We

considered the Y-axis shoe acceleration from Subject 3 from
the PAMAP dataset’s [26] outdoor activity. The data is
270,000 data points sampled at 100Hz, giving us 45 minutes of
wall-clock time. We used FLOSS to maintain a sliding window
of the last 20-seconds of the subject’s behavior, using a 65
subsequence length (suggested by [26]). We discovered:

• It took us only 73.7 seconds to process the data; thus, we
can process the data about 36 times faster than in real time.

• In a post-hoc sanity check, we examined the three lowest
values of the CAC in this trace. By comparing the
locations to the ground truth provided, we discovered that
the Top-3 regimes changes correspond exactly to the
following transitions: Normal-Walking|Transient-
Activities, Nordic-Walking|Transient-Activities and
Running|Transient-Activities.

IV. SUMMARY AND FUTURE WORK

We have introduced a fast, domain-independent, online
segmentation algorithm and have shown its utility and its
versatility by applying it to dozens of diverse datasets. We
further demonstrated that our algorithm is insensitive to the
value of the only input parameter. Moreover, we have made all
code and data freely available to the community to confirm,
extend, and exploit our work. Finally, we are interested in
applications of our ideas, for example, to learning from weakly
labeled-data [10].

ACKNOWLEDGEMENTS:

We gratefully acknowledge funding from NSF 1510741

and MERL labs.

REFERENCES

[1] Aminikhanghahi, S. and Cook, D.J., 2016. A survey of methods for time
series change point detection. Knowledge and Information Systems,
pp.1-29.

[2] Anon. Progress_in_artificial_intelligence. Retrieved January 19, 2017
from en.wikipedia.org/wiki/Progress_in_artificial_intelligence.

[3] Aoki, T., Lin, J., Kulić, D. and Venture, G., 2016,. Segmentation of
human upper body movement using multiple IMU sensors. In
Engineering in Medicine and Biology Society pp. 3163-66.

[4] Authors. (2017). Supporting website for this paper
https://sites.google.com/site/onlinesemanticsegmentation/

[5] Bouchard, D. and Badler, N., 2007, September. Semantic segmentation
of motion capture using laban movement analysis. In International
Workshop on Intelligent Virtual Agents (pp. 37-44). Springer Berlin.

[6] Bregler, C., 1997. Learning and Recognizing Human Dynamics in
Video Sequences. In Proc. Int. Conference on Computer Vision and
Pattern Recognition, 1997.

[7] Cassisi, C., et. al. 2016. Probabilistic Reasoning Over Seismic Time
Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna.
Pure and Applied Geophysics.

[8] Chen, Y., et al. 2015. The UCR Time Series Classification Archive.
URL www.cs.ucr.edu/~eamonn/time_series_data/

[9] Chuttani, K., et al., 1994. Diagnosis of cardiac tamponade after cardiac
surgery: relative value of clinical, echocardiographic, and hemodynamic
signs. American Heart Journal, 127(4), pp. 913-918.

[10] Hao, Y., Chen, Y., Zakaria, J., Hu, B., Rakthanmanon, T. and Keogh, E.,
2013, August. Towards never-ending learning from time series streams.
In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 874-882). ACM.

[11] Harguess, J. and Aggarwal, J.K., 2009, November. Semantic labeling of
track events using time series segmentation and shape analysis. In Image
Processing (ICIP), 2009 16th IEEE International Conference on (pp.
4317-4320).

[12] Heldt, T., Oefinger, M.B., Hoshiyama, M. and Mark, R.G., 2003,
September. Circulatory response to passive and active changes in
posture. In IEEE Computers in Cardiology, 2003 (pp. 263-266).

[13] Keogh, E., Chu, S., Hart, D. and Pazzani, M., 2004. Segmenting time
series: A survey and novel approach. Data mining in time series
databases, 57, pp.1-22.

[14] Keogh, E., Kasetty, Sh., 2003. On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration, Data
Mining and knowledge discovery, 7(4), pp.349-371.

[15] Lainscsek, C., et. al., 2013. Non-linear dynamical analysis of EEG
distinguishes patients with Parkinson’s disease from healthy individuals.
Frontiers in neurology, 4, 200.

[16] Lan, R. and Sun, H., 2015. Automated human motion segmentation via
motion regularities. The Visual Computer, 31(1), pp.35-53.

[17] Lin, J.F.S., Karg, M. and Kulić, D., 2016. Movement Primitive
Segmentation for Human Motion Modeling: A Framework for Analysis.
IEEE Transactions on Human-Machine Systems, 46(3), pp.325-339.

[18] Maschke, G.W. and Scalabrini, G.J., 2005. (URL, Retrieved 12-12-16)
The lie behind the lie detector. Antipolygraph. org.

[19] Matsubara, Y., Sakurai, Y. and Faloutsos, C., 2014, June. Autoplait:
Automatic mining of co-evolving time sequences. In Proceedings of the
2014 ACM SIGMOD (pp. 193-204).

[20] Matsubara, Y., Sakurai, Y., Ueda, N. and Yoshikawa, M., 2014,
December. Fast and exact monitoring of co-evolving data streams. In
2014 IEEE International Conference on Data Mining (pp. 390-399).

[21] Matteson, D.S. and James, N.A., 2014. A nonparametric approach for
multiple change point analysis of multivariate data. Journal of the
American Statistical Association, 109(505), pp.334-345.

[22] Molina, J.M., Garcia, J., Garcia, A.B., Melo, R. and Correia, L., 2009,.
Segmentation and classification of time-series: Real case studies.
In International Conference on Intelligent Data Engineering and
Automated Learning (pp. 743-750).

[23] Mueen, A., Viswanathan, K., Gupta, C. K., and Keogh, E., 2015. The
Fastest Similarity Search Algorithm for Time Series Subsequences
under Euclidean Distance, URL:
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

[24] Nishino, J., Itoh, M., Ishinomori, T., Kubota, N. and Uemichi, Y., 2003.
Development of a catalytic cracking process for converting waste
plastics to petrochemicals. Journal of Material Cycles and Waste
Management, 5(2), pp.89-93.

[25] Reinhardt, A., Christin, D. and Kanhere, S.S., 2013, November.
Predicting the power consumption of electric appliances through time
series pattern matching. In Proceedings of the 5th ACM Workshop on
Embedded Systems For Energy-Efficient Buildings (pp. 1-2). ACM.

[26] Reiss, A. and Stricker, D., 2012. Introducing a new benchmarked dataset
for activity monitoring. In 16th International Symposium on Wearable
Computers (ISWC), 2012, pages 108– 109. IEEE, 2012.

[27] Pavlovic, V., Rehg, J.M. and MacCormick, J., 2000, March. Learning
switching linear models of human motion. In NIPS (Vol. 2, p. 4).

[28] Serra, J., Müller, M., Grosche, P. and Arcos, J.L., 2014. Unsupervised
music structure annotation by time series structure features and segment
similarity. IEEE Transactions on Multimedia, 16(5), pp.1229-1240.

[29] Wang, P., Wang, H. and Wang, W., 2011,. Finding semantics in time
series. In Proc’ of 2011 ACM SIGMOD International Conference on
Management of Data, pp. 385-96.

[30] Weiner, I.D. and Wingo, C.S., 1997. Hypokalemia--consequences,
causes, and correction. Journal of the American Society of Nephrology,
8(7), pp.1179-1188.

[31] Yeh, C.-C. M., et. al., 2016. Matrix Profile I: All Pairs Similarity Joins
for Time Series: A Unifying View that Includes Motifs, Discords and
Shapelets. IEEE ICDM 2016.

[32] Zhao, J., Itti, L., 2016. Decomposing Time Series with application to
Temporal Segmentation, In Proceedings of the IEEE Winter Conference
on Applications of Computer Vision (WACV), Lake Placid, NY, pp.1-9.

