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Abstract— Unsupervised semantic segmentation in the time 

series domain is a much-studied problem due to its potential to 

detect unexpected regularities and regimes in poorly understood 

data. However, the current techniques have several 

shortcomings, which have limited the adoption of time series 

semantic segmentation beyond academic settings for three 

primary reasons. First, most methods require setting/learning 

many parameters and thus may have problems generalizing to 

novel situations. Second, most methods implicitly assume that all 

the data is segmentable, and have difficulty when that 

assumption is unwarranted. Finally, most research efforts have 

been confined to the batch case, but online segmentation is 

clearly more useful and actionable. To address these issues, we 

present an algorithm which is domain agnostic, has only one 

easily determined parameter, and can handle data streaming at a 

high rate. In this context, we test our algorithm on the largest 

and most diverse collection of time series datasets ever 

considered, and demonstrate our algorithm’s superiority over 

current solutions. Furthermore, we are the first to show that 

semantic segmentation may be possible at superhuman 

performance levels. 

Keywords—Time Series; Semantic Segmentation; Online 

Algorithms; 

I. INTRODUCTION 

The ubiquity of sensors and the plunging cost of storage 
has resulted in increasing amounts of time series data being 
captured. One of the most basic analyses one can perform on 
such data is to segment it into homogenous regions. We note 
that the word “segmentation” is somewhat overloaded in the 
literature. It can refer to the approximation of a signal with 
piecewise polynomials [13], or the division of a time series into 
internally consistent regimes. For clarity, this latter task is 
sometimes called “semantic segmentation” [1][31]; where 
there is no danger of confusion, and we will refer to it as 
segmentation. Sometimes, it can be fruitful to see segmentation 
as a special type of clustering with the additional constraint that 
the elements in each cluster are contiguous in time. 

The utility of segmentation is myriad. For example, if one 
can segment a long time series into k regions (where k is a 
small), then it may be sufficient to show only k short 
representative patterns to a human or a machine annotator in 
order to produce labels for the entire dataset. Moreover, as an 
exploratory tool, sometimes we can find unexpected and 
actionable regularities in our data. 

While there are many techniques for segmentation [1][15] 
[17][19][25], they all have one or more limitations that have 
prevented their utilization in real world settings. This 
observation has motivated us to introduce FLOSS (Fast Low-
cost Online Semantic Segmentation), a novel algorithm which, 
to the best of our knowledge, is unique in offering all the 
following features: 

• Domain Agnosticism: Most techniques in the literature are 
implicitly or explicitly suited to a single domain, including 
motion capture [1][16], motion capture of upper-body only 
[3], electroencephalography [15], music [28], automobile 
trajectories [11], or electrical power demand [25]. For 
example, the detailed survey in [17] notes that for almost 
all methods “some prior knowledge of the nature of the 
motion is required.” In contrast, FLOSS is a domain 
agnostic technique that makes essentially no assumptions 
about the data.   

• Streaming: Many segmentation algorithms are only 
defined for batch data [1][15]. However, a streaming 
segmentation of data may provide actionable real-time 
information. For example, it could allow for medical 
intervention [30] or a preemptive repair to a machine that 
has entered a failure mode [22].  

• Real World Data Suitability: Most techniques assume 
that every region of the data belongs to a well-defined 
semantic segment. However, that may not be the case. 
Consider a wrist-worn accelerometer data worn by an 
athlete working out at a gym. Examined at the scale of tens 
of seconds, there will be many well-defined homogenous 
regions of behavior, corresponding to various repetitions 
on the apparatus (see Fig. 1). However, it is probable that 
there are many minutes of behavior that accumulated 
while the athlete was waiting her turn to use a machine. 
These periods may be devoid of structure. Any model that 
insists on attempting to explain all of the data may be 
condemned to poor results. In contrast, FLOSS can 
effectively mark these difficult sections as “don’t know”.   

Beyond introducing the FLOSS algorithm, we claim the 
following contributions to the literature: 

• Most research efforts in this domain test on limited datasets 
[1][15]. The authors of [19] and [32] are both to be 
commended for considering three datasets, but they are 
exceptional, considering one dataset is the norm. In 
contrast, we test on a data repository of thirty-two datasets 



from diverse domains. We believe that this free public 
archive will accelerate progress in this area, just as the 
TREC datasets have done for text retrieval and the UCR 
archive has done for time series classification [8].   

• While classification, clustering, compression etc. all have 
formal and universally accepted metrics to assess progress 
and allow meaningful comparison of rival methods, the 
evaluation of segmentation algorithms has often been 
anecdotal [17]. Evaluation often reduces to the authors 
asking us to visually compare the output of their algorithm 
with the ground truth. While there is nothing wrong with 
visually compelling examples or anecdotes, it is clearly 
desirable to have more formal metrics. In [19], the authors 
adapt precision/recall, but in some contexts, this is 
unsuitable for semantic segmentation. In Section III-D, we 
introduce a metric that allows us to meaningfully score 
segmentations given some external ground truth.  

The rest of this paper is organized as follows. In Section II, 
we provide a summary of the background and related work 
along with the necessary definitions.  In Section III-A, we 
introduce a batch algorithm for semantic segmentation before 
generalizing it to the streaming case in Section III-C. Section 0 
illuminates a detailed quantitative and qualitative evaluation of 
our ideas. Finally, in Section IV, we offer conclusions and 
directions for future work. 

II. BACKGROUND AND RELATED WORK 

In this section, we introduce all the necessary definitions 
and notations and consider related work. Because the term 
segmentation is so overloaded, even in the limited context of 
time series, we also explicitly state what we are not attempting 
to do in this work.  

Note that for clarity and brevity, our definitions and 
algorithms only consider the one-dimensional cases; however 
the generalizations to the multidimensional case are trivial, and 
we have archived multidimensional examples and code in [4]. 

A. Definitions 

Here, we introduce the necessary definitions and 
terminology, beginning with the definition of a time series: 

Definition 1: A time series T = t1, t2, t3, … ,tn is a continuous 

ordered sequence of real values in equally spaced time 

intervals of length n. 

Our segmentation algorithm will exploit the similarity of 
local patterns within T, called subsequences: 

Definition 2: A subsequence Ti,L of a T is a continuous 

subset of the values from T of length L starting from position 

i. Ti,L = ti, ti+1,…, ti+L-1, where 1 ≤ i ≤ n-L+1. 

The time series T is ultimately recorded, because it is 
measuring some aspect of a system S (perhaps indirectly 
measuring the phenomenon in some instances).  

Definition 3: A system S is a physical or logical process 

containing two or more discrete states separated by one or 

more boundaries b. 

We further discuss and justify our assumption that S is 
intrinsically discrete in Section III. 

The algorithms we present are built on the recently 
introduced Matrix Profile (MP) representation as well as  the 
STAMP and STAMPI (the online variation) algorithms used to 
compute it [31]. We briefly review of these in the next section.   

B. Matrix Profile Background 

STAMP is a time series all-pairs one-nearest-neighbor 
search (also known as similarity join) algorithm that leverages 
the Fast Fourier Transform for speed and scalability.  The input 
parameters are the time series data T and a subsequence length 
L, where L is the desired length of the time series pattern to 
search for. For output, it returns two vectors, MPValues and 
MPIndex, both of which are the same length of T and can be 
seen as annotating it.  At the index i of the data structure…  

•  MPValues, is the Euclidean distance of the subsequence 
Ti:i+L to its nearest neighbor elsewhere in T.  To prevent 
trivial matches, where the subsequence matches to itself, 
an exclusion region is enforced such that the distance 
between Ti:i+L and any subsequence begins at [i - L/2: i + 

L/2] and is assumed to be infinity. 

• MPIndex is the location of i’s nearest neighbor in T.  Note 
that in general, this nearest neighbor information is not 
symmetric, i’s nearest neighbor may be j, but j’s nearest 
neighbor may be k. 

This review is necessarily brief, so we refer the reader to 
the original paper for more details [31]. 

C. What FLOSS is Not 

Even within the narrow context of time series analytics, the 
term segmentation is overloaded; thus, it is necessary to 
explicitly explain some tasks we are not addressing. 

Change point detection is a method for detecting various 
changes in the statistical properties of time series, such as the 
mean, variance, or spectral density.  A good representation of 
the literature on this problem is surveyed in detail in a recent 
paper in [1]. In contrast to change point detection, we are 
interested in regimens that are defined by changes in the 
shapes of the time series subsequences, which can change 
without any obvious effect on the statistical properties. 

Similar to our stated goals, recent work on change point 
detection has begun to stress the need to be parameter-free and 
have few assumptions [21]. However, scalability is rarely a 
priority; therefore, a typical dataset considered in this domain 
is a few hundred data points. This indicates that human 
inspection is often a competitive algorithm. However, due the 
scale of the data we wish to consider and the necessity to detect 
regime changes where they would be difficult to discern 
visually on the screen, an algorithm that is competitive with or 
even surpasses human inspection is necessary. 

Another interpretation of segmentation refers to Piecewise 
Linear Approximation (PLA).  The goal is to approximate a 
time series T with a more compact representation by fitting k 
piecewise polynomials using linear interpolation or linear 



regression, while minimizing the error with respect to the 
original T [11] [29].  Success here is measured in terms of root-
mean-squared-error, and it does not indicate any semantic 
meaning of the solution. 

Finally, we are not interested in segmenting individual 
phrases/gestures/phonemes etc. This type of work is almost 
always heavily domain dependent and requires substantial 
training data [3]. For example, there is a significant amount of 
work that attempts to segment the time series equivalent of the 
string nowthatchersdead to produce now thatchers dead (and 
not now that chers dead). In contrast, we are interested in 
segmenting at a higher level, which would be the equivalent of 
segmenting an entire book into chapters or themes.   

D. Related Work 

Hidden Markov Models (HMMs) have been successfully 
used to segment discrete strings. Examples of this include 
segmenting a DNA strand into coding and non-coding regions, 
and the efforts to use HMMs in the real-valued space (but they 
are almost always tied to a single domain, such as seismology 
[7]). We have considered and dismissed HMMs for several 
reasons. To use HMMs with real-valued time series, we must 
set at least two parameters, the level of cardinality reduction 
(the number of states to discretize to) and the level of 
dimensionality reduction (the number of values to average) [7]. 
This is in addition to specifying the HMM architecture, which 
is tricky even for domain experts [7] and contrary to our hope 
for a domain agnostic algorithm. 

The work that most closely aligns with our goals is 
Autoplait [19], which segments time series using Minimum 
Description Length (MDL) to score alterative HMMs of the 
data. This work also stresses the need for domain independence 
and few parameters. The most significant limitation of 
Autoplait is that it is only defined for the batch case. It would 
not be trivial to convert it to handle streaming data. This 
approach requires discrete data, which is obtained by an equal 
division of the range bound by the smallest and largest value 
seen. In the streaming case, wandering baseline or linear drift 
ensures that at some point all the incoming values are greater 
(or smaller) than the values the model can process. This is 
surely not unfixable, but it is also not simple to address, and it 
is only one of the many issues that must be overcome to allow 
an Autoplait variant handle streaming data. 

The authors of Autoplait (and various subsets thereof) have 
many additional papers in this general space. However, to the 
best of our understanding, none of them offer a solution for the 
task-at-hand. For example while StreamScan is a streaming 
algorithm [20], the authors note the need to train it: “we trained 
several basic motions, such as ‘walking’, ‘jumping’..”, and the 
algorithm has at least six parameters. 

III. SEMANTIC SEGMENTATION 

We are finally able to formally define the task-at-hand. 
Assume we have a system S, which can be in two or more 
discrete states. Examples of such systems include: 

• The heart of a patient recovering from open heart surgery. 
The patient’s heart may be in the state of tamponade or 
normal [9]. 

• A music performance may be envisioned a system that 
moves between the states of intro, verse, chorus, bridge, 
and outro [28]. 

• Fractional Distillation of petrochemicals consists of cycles 
of heating, vaporizing, condensing, and collecting [24]. 

• An exercise routine often consists of warm-up, stretching, 
resistance training, and cool-down.  This special case of 
treating human behavior as a switching linear dynamic 
system (SLDS) [27] has become an increasingly popular 
tool for modeling human dynamics [6][26].   

We can monitor most of these systems with sensors. For 
the cases mentioned above, a photoplethysmograph, a 
microphone, a thermocouple, and a wrist mounted 
accelerometer (smartwatch) are obvious choices. In most cases, 
we would expect the time series from the sensors to reflect the 
current state of the underlying system. This understanding 
allows us to produce the following definition of the problem 
regarding the time series semantic segmentation task: 

Definition 4: Given a time series T, monitoring some aspect of 

a system S, infer the boundaries b between changes of state. 

We recognize that this definition makes some simplifying 
assumptions. Some systems are not naturally in discrete states, 
but may be best modelled as having a degree of membership to 
various states. For example, Hypokalemia, a disease where the 
heart system is deficient in potassium, is often diagnosed by 
examining ECGS for increased amplitude and width of the P-
wave [30]. Hypokalemia can manifest itself continuously at 
any level from mild to severe. In fact, our example of 
tamponade is one of the few intrinsically discrete heart 
conditions. Nevertheless, many systems do switch between 
discrete classes, and these are our domains of interest. 
Moreover, even though hypokalemia can change continuously, 
in practice it often changes fast enough (in response to 
intravenous or oral potassium supplements) to be detectible as 
a regimen change in a window of ten minutes, and we can 
easily support windows of this length. 

Note that even in systems that do have some mechanism to 
“snap” the system to discrete behaviors, there is often another 
ill-defined “other” class. For example, consider the short 
section of time series shown in Fig. 1. Here the need for 
precise movements forces the exercise repetitions to be highly 
conserved. However, there is no reason the transitions between 
the repetition sets need to be conserved. 

60,000 60,800 61,600

Knees bending (crouching)

Knees (alternating) 
bending forward

Left Upper Arm Accelerometer X 

 
Fig. 1: A snippet of time series collected during an exercise routine. Both the 
first and last third are well-defined motions, but the section in the middle is 

less structured, representing a transition between apparatuses.  

Similar remarks apply to many other domains. In fact, in 
many cases, the majority of the data examined may consist of 
ill-defined and high entropy regions. Note that we cannot use 
these observations to conclude that the underlying system is 



not in any state. It may simply be the case that the view given 
by our sensor is not adequate to make this a determination. For 
example, a sensor on the ankle will help distinguish between 
the states of walking and running, but it will presumably offer 
little information when the system (the human) is toggling 
between typing and mouse-use.   

A. Introducing FLUSS 

We begin by introducing FLUSS (Fast Low-cost Unipotent 
Semantic Segmentation), an algorithm that extends and 
modifies the (unnamed) algorithm hinted at in [31]. Later, in 
Section III-C, we will show how we can take this intrinsically 
batch algorithm and make it a streaming algorithm. 

The task of FLUSS is to produce a companion time series 
called the Arc Curve (AC), which annotates the raw time series 
with information about the likelihood of a regime change at 
each location. We also need to provide an algorithm to 
examine this Arc Curve and decide how many (if any) regimes 
exist. We consider that issue separately in Section III-B. 

FLUSS takes both a time series T and a user provided 
subsequence length in as input, and outputs an AC vector of 
length n, where at each index i contains the number of “arcs” 
that cross over i.  We define an “arc” as follows.  The ith entry 
in the MPIndex vector contains a positive integer j, which 
indicates the nearest neighbor location.  So, for the ith entry, 
containing a positive integer j, the nearest neighbor for the time 
series subsequence beginning at index i is the time series 
subsequence beginning at index j. We can visualize each entry 
pair (i,j) as an arc drawn from location i to j.  The spatial layout 
of the arcs along with the number of “arc” crossing over of 
each index i is summarized by the Arc Curve.  Specifically, 
index i of the Arc Curve contains a non-negative integer 
indicating the number of arcs that cross over i.  Fig. 2 below 
illustrates this notation. 

0 1000 2000 3000 4000 5000

1892

1270 1892

1270 4039

3450

4607

4039  

Fig. 2: Selected arcs illustrated with the corresponding Matrix Profile indices 
indicated.  Note that nearest neighbor subsequences indices can be symmetric, 
e.g., 1270 and 1892, but this is not generally true.  A subsequence’s nearest 
neighbors can be located to the left or to the right.    

Note that every index has exactly one arc leaving it; 
however, each index may have zero, one, or multiple arcs 
pointing to it. We define the Arc Curve more formally below: 

Definition 5: The Arc Curve (AC) for a time series T of 

length n is itself a time series of length n containing non-

negative integer values.  The ith index in the AC specifics 

how many nearest neighbor arcs from the MPIndex spatially 

cross over location i.   

Now, we can state the intuition of our segmentation 
algorithms. 

Our Overarching Intuition: Suppose a time series T has 

a regime change at location i. We would expect few arcs to 

cross i, as most subsequences will find their nearest 

neighbor within their host regime. Thus, the height of the 

Arc Curve should be the lowest at the location of the 

boundary between the change of regimes/states. 

In Fig. 3, we show the AC plot for the dataset shown in Fig. 
2, which will be used as a running example.   
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Fig. 3: top) The ABP of a reclining male. At time 2400, he was rotated into a 

standing position.  bottom) The AC plot for this dataset shows a clear valley at 

time of system change. 

We consider the Arterial Blood Pressure (ABP) of a 
healthy volunteer resting on a medical tilt table [12]. At time 
2400, the table was tilted upright, invoking a response from the 
homeostatic reflex mechanism. While the figure above hints at 
the utility of FLUSS, it also highlights a weakness. Note that 
while the Arc Curve has a satisfyingly low value at the location 
of the regime change, it also has low values at both the leftmost 
and rightmost edges. This occurs because there are simply 
fewer candidate arcs that can cross a given location at the 
edges. We need to compensate for this bias, or we are likely to 
report false positives near the edges.   

This compensation is easy to achieve. We begin by 
imagining the case where there is no locality structure in the 
time series under consideration; for example, imagine we are 
examining a random vector. Under such circumstances, we 
would expect the arcs from each subsequence to point to an 
effectively random location. Given this null case, with no 
structure, what would an Idealized Arc Curve (IAC) look like?  
With a little introspection, we can see that, as shown in Fig. 4, 
it would be an inverted parabola with its height ½n (we 
relegate the derivation of this fact to [4]). 

Theoretical Empirical 

0 1000 2000 3000 4000 5000
0

2500

The number of arcs that cross a given index, if the links are assigned randomly
 

Fig. 4: The Idealized Arc Curve (IAC) for a time series with no localized 
similarity structure is an inverted parabola with a height ½n. An empirical 

curve shows close agreement. As we will see later, it is actually a special case 

of beta (2, 2, a, c). 

To compensate for the edge effect bias in the Arc Curve, 
for each location i, we consider the actual number of observed 
arc crossings relative to the number of expected arc crossings 
predicted by our parabolic model (1), to obtain the Corrected 
Arc Crossings (CAC): 

AC
CAC min ,1

IAC

i
i

i

 
  

 

 (1) 



The min function is used to keep the CAC bounded 
between 0 and 1 in the logically possible (but never empirically 
observed) case that ACi > IACi. 

This normalized and bounded measure is useful because it 
allows the following: 

• Commensurate comparisons across streams monitored at 
different sampling rates. 

• The possibility to learn domain specific threshold values. 
For example, suppose we learn in ECG training data, that 
for a patient in an ICU recovering from heart surgery, a 
CAC value less than 0.2 is rarely seen unless the patient 
has cardiac tamponade. Now we can monitor and alert for 
this condition. 

In Fig. 5, we show the CAC for our running example. Note 
that the issue of the edge bias of AC has been resolved, and the 
curve minimizes at the correct location of 2400. 
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Fig. 5: (contrast with Fig. 3). top) Our running ABP example. bottom) The 

CAC minimizes in the correct place and avoids the “edge-effect” false 

positives of the AC curve. 

Before continuing, we will demonstrate the invariance of 
the CAC to several issues commonly encountered during real-
world uses. We recomputed the CAC for our running example 
after modifying the original data in several ways, including: 

• Downsampling from the original 250 Hz to 125 Hz (red). 

• Reducing the bit depth from 64-bit to 8-bit (blue). 

• Adding a linear trend of ten degrees (cyan). 

• Adding 20dB of white noise (black). 

• Smoothing, with MATLAB’s default settings (pink). 

• Randomly deleting 3% of the data, and filling it back in 
with simple linear interpolation (green). 

As Fig. 6 suggests for this example, the CAC is quite 
robust in regard to these issues, and the minimum value of the 
CAC still occurs in the same place.   
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Fig. 6: The CAC computed for our running example after it was distorted in 

various ways (best viewed in color; the key is above). Compare it to Fig. 5. 

The only distortion to appreciably change the CAC is 
noise; however, as Fig. 7 shows, we added an enormous 
amount of noise, and we still found the correct segmentation. 

0 1,000 2,000 3,000 4,000 5,000  

Fig. 7: A comparison of the original TiltABP (top) and the data with twenty 
dB of noise added (bottom). 

We have shown that the CAC is robust to many variations 
of time series data, and are now ready to fully explain the 
algorithm for obtaining the CAC.  While the construction of 
the CAC is straightforward, given the discussion above, we 
formalize it on TABLE I for clarity. 

In lines 1 to 2, we obtain the length of the MPIndex and 
zero initialize three vectors.  Next, we iterate over the MPIndex 
to count the number of arcs that cross over index i in lines 3 
through 7.  This information is stored in nnmark.  Then, we 
iterate over nnmark and cumulatively sum its values 
consecutively for each index i.  The cumulative sum at i is 
stored in ACi.  This is accomplished in lines 10 to 13.  Finally, 
in lines 15 to 18, we normalize AC with the corresponding 
parabolic curve to obtain the CAC. 

TABLE I: Algorithm for constructing CAC 

  Procedure CAC (MPIndex, L) 
  Input-  MPIndex: the matrix profile index for the time series of interest 
              L: the subsequence length 

  Output- CAC: a corrected Arc Curve 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

n = length(MPIndex) 

AC = CAC = nnmark = zero initialize array of size n 
for i=1:n 

   j = MPIndex[i] 

   nnmark[min(i,j)] = nnmark[min(i,j)] + 1 
   nnmark[max(i,j)] = nnmark[max(i,j)] - 1 

end 

 

numArcs = 0 

for i=1:n 

   numArcs = numArcs + nnmark[i] 
   AC[i] = numArcs 

end 

 
IAC = parabolic curve of length n and height ½ n 

CAC = min (AC/IAC, 1) 

Set the L length in the beginning and end of CAC to 1 
return CAC 

B. Extracting Regimes from the CAC 

With our CAC defined, we are now ready to explain how 
we extract the locations of the regime changes from the CAC.  
Our basic regime extracting algorithm requires the user to input 
k, the number of regimes.  This is similar to many popular 
clustering algorithms, such as k-means, which require the user 
to input the k number of clusters. However, later we will show 
a technique to remove the need to specify k when given some 
training data to learn from.  

As suggested in Fig. 5, a small value for the lowest “valley” 
at location x is strong evidence of a regime change at that 
location. This is based on the intuition that significantly fewer 
number of arcs would cross location x if x is a boundary point 
between two discrete states [31].  Note that this intuition is 
somewhat asymmetric. A large value for the lowest valley 
indicates that there is no evidence of a regime change, not that 



there is positive evidence of no regime change. This is a subtle 
distinction, but it is worth stating explicitly. 

At a high level, the regime extracting algorithm (REA) 
searches for k lowest “valley” points in the CAC.  However, 
we need to avoid the trivial minimum; if x is the lowest point, 
then it is almost certain that either x+1 or x-1 is the second 
lowest point. To avoid this, FLUSS does not return the k 
minimum values.  Instead, it obtains one minimum “valley” 
value at location x.  Then, FLUSS sets up an exclusion zone 
surrounding x.  For simplicity, we have defined the zone as five 
times the subsequence length before and after x.  This 
exclusion zone is based on an assumption that regimes will 
have multiple repetitions; FLUSS is not able to segment single 
gesture patterns.  With the first exclusion zone in place, 
FLUSS repeats the process described above until all k 
boundary points are found. 

While this algorithm is obvious and intuitive, for concreteness, 

we formally outline in TABLE II. 

TABLE II: REA: Algorithm for Extracting Regimes 

Procedure ExtractRegimes  (CAC, numRegimes, L) 

Input- CAC: a corrected Arc Curve 

           numRegimes: number of regime changes 

           L: length of the subsequence 

Output- locRegimes: the locations of the regimes 

1 
2 

3 

4 
5 

6 

locRegimes = empty array of length numRegimes 

for i=1:numRegimes 

locRegimes(i) = indexOf(min(CAC)) 

Set exclusion zone of 5*L 

end 

return locRegimes 

C. Introducing FLOSS 

In the previous sections, we have shown that at least in our 
running example, FLUSS can detect changes of regimes in 
batch datasets. Now we consider the streaming case, in which 
we maintain the CAC over a sliding window; an example of 
this could be the last ten minutes of a patient recovering from 
heart surgery. In principle, this seems simple. At every time 
stamp, we need to ingress the newly arriving point, and egress 
the oldest point, updating all the arcs in the Matrix Profile 
index and adjusting the CAC as needed. However, there is a 
large asymmetry in the time complexity for ingress and egress. 

• Ingress: When the new point arrives, we must find its 
nearest neighbor in the sliding window, and determine 
whether any item currently in the sliding window needs to 
change its nearest neighbor to the newly arrived 
subsequence. Using the MASS algorithm, this takes just 
O(nlogn) [23]. 

• Egress: When a point is ejected, we must update all 
subsequences in the sliding window that currently point to 
that departing subsequence (if any). This is a problem, 
because while pathological unlikely, almost all 
subsequences could point to the disappearing subsequence. 
This would force us to do O(n2) work, forcing us to 
recompute the Matrix Profile [31].  

This issue would not exist if the arcs in the Matrix Profile 
only went in one direction, to a previous time. In that case, 

when we egress a data point, for the corresponding 
subsequence being removed: 

• As the arcs only go to a previous time, we do not have to 
delete arcs that point to it, since it does not have one.  

• As for the arcs that point away from it, we could delete that 
arc by removing the first element in the matrix profile 
index in O(1). 

This would indicate that the overall time to maintain the 1-
Direction on CAC (CAC1D) would be only O(nlogn) for 
ingress plus O(1) for egress, for a total of O(nlogn). 

However, this begs the question, would using the CAC1D 
yield similar results to using the CAC? To test this, we begin 
by computing the empirical one directional IAC (IAC1D). The 
empirical IAC1D is shown with the theoretical original (bi-
directional) IAC in Fig. 8.  
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Fig. 8: The one-directional IAC (IAC1D) is a right skewed distribution with 
shorter height than the original IAC. 

Compared to the original IAC, IAC1D has a somewhat 
similar shape, but it is shorter and skewed to the right. The 
skewness is caused by the fact that it is more likely for arcs to 
cross later in time, since all the arcs are pointing forward in 
time.  By theoretical modeling/visual inspection [4], we claim 
the distribution of IAC1D can be modeled by a beta distribution. 
The empirical IAC1D and a sample generated by the beta 
distribution is shown in Fig. 9. Note that in retrospect, we can 
see the parabolic curve of Fig. 4 as a special case of the beta 
distribution with α = β = 2. 
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Fig. 9: The empirical IAC1D is modeled closely by a beta distribution. 

As a result of this difference, IAC1D is used instead of IAC 
when computing CAC1D. Below, we computed the CAC1D on 
our running example, as shown in Fig. 10. 
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Fig. 10: top) Our running ABP example. bottom) the CAC (red) from Fig. 5 
and the CAC1D (green). 



As we can see, the CAC1D minimum value is very close to 
that of the CAC. Moreover, this is a short “toy” example. As 
the datasets get larger, the two curves become essentially 
indistinguishable.   

D. Scoring Function 

Most of the evaluation of segmentation algorithms has been 
largely anecdotal (see [17] for a detailed survey), and indeed 
we also show visually convincing examples in Section 0. 
However, because of the scale of the experiments, i.e. 
examining thirty-two datasets, we need to have a scoring 
metric.  

Many research efforts have used the familiar 
precision/recall or measures derived from them. However, as 
[17]  points out,  this  presents  a  problem. Suppose the ground 
truth for transition between two semantic regimes is at location 
10,700. If an algorithm predicts the location of the transition at 
say 10,701, should we score this as a success? What about say 
10,759? To mitigate this brittleness, several authors have 
independently suggested a “Temporal Tolerance” parameter to 
bracket the ground truth [17]. However, this only slightly 
mitigates the issue. Suppose we bracket our running example 
with a range of 100, and reward any prediction in the range 
10,700 ± 100. Would we penalize an algorithm that predicted 
10,801, but reward an algorithm that predicted 10,800?
  

Ground Truth (GT) 

Experimental (E)

GT 1 GT 2 GT 3 GT 4

E 1 E 2 E 3 E 4  

Fig. 11: An example of our scoring function in action.  The top line illustrates 

the locations of the ground truth locations (GT1, GT2, GT3, GT4), and the 

bottom line illustrates the boundary locations (E1, E2, E3, E4) reported by an 
algorithm.  Note that multiple proposed boundary points may be mapped to a 

single ground truth point. 

Another issue we face in creating a scoring function is 
rewarding a solution that has k boundaries predictions, in 
which most of the predictions are good, but just one (or a few) 
are poor. If we insist on a one-to-one mapping of the 
predictions with the ground truth, we over-penalize any 
solution for missing one boundary while accurately detecting 
others (a similar matching issue is understood in many 
biometric matching algorithms). 

TABLE III: Scoring Function Algorithm 

Procedure ScoreRegimes(locRegimes, gtRegimes, n) 

Input-  locRegimes: extracted regimes  
           gtRegimes: ground truth regimes 
           n: length of the time series 

Output- score: [0,1], with 0 being the best score 

1 

2 

3 
4 

5 

6 
7 

8 

9 

sumDiff = 0 

numRegimes = length(gtRegimes) 

for i=1:numRegimes 
Find the gtRegimes[j] closest to locRegimes[i] 

diff = | locRegimes[i] – gtRegimes[j] | 

sumDiff = sumDiff + diff 
end 

score = sumDiff/n 

return score 

Our solution is visually explained in Fig. 11, and formally 
outlined in TABLE III. It gives 0 as the best score, and 1 as the 
worst.  The function sums the distances between the ground 
truth boundary points and the boundary points suggested by an 
algorithm.  Dividing that sum by the product of the number of 
segments and the length of the time series to normalize the 
range to [0, 1].  

EXPERIMENTAL EVALUATION 

We begin by stating our experimental philosophy. We have 
designed all experiments such that they are easily reproducible. 
To this end, we have built a web page [4] that contains all of 
the datasets and code used in this work as well as the 
spreadsheets containing the raw numbers and some supporting 
videos. The thirty-two segmentation test datasets we created 
will be archived in perpetuity at [4], independent of this work. 
We hope the archive will grow as the community donates 
additional datasets. 

E. Datasets 

We created an extremely diverse collection of test datasets. 
The biological datasets include time series taken from humans, 
birds, rats, pigs, and insects. The mechanical datasets include 
data taken from robots and electrical power demand (both from 
a single building and an entire city). The datasets fall into three 
categories: 

• Synthetic: There is one completely synthetic dataset, which 
is mostly for calibration and sanity checks. 

• Real: The majority of our datasets are real. In most cases, 
the ground truth boundaries are confidently known 
because of external information. For example, for the 
Pulsus Paradoxus datasets [9], the boundaries were 
determined by the attending physician viewing the 
patient’s Echocardiogram. 

• Semi-Real: In some cases, we contrived real data to have 
boundaries. For example, we took calls from a single 
species of bird that were recorded at different locations 
(thus they were almost certainly different individuals) and 
concatenated them. Thus, we expect the change of 
individual to also be a change of regime.  

As Fig. 12 suggests, some of the boundaries are obvious 
visually. However, we can also see that many are so subtle that 
finding the boundary is a non-trivial challenge for humans, 
including domain experts (in fairness, these are only snippets, 
the excluded data would probably give the human more 
context).  

For brevity, we omit further discussion of these datasets. 
However, we have created a visual key, which gives detailed 
information on the provenance of each dataset and placed it in 
perpetuity at [4]. 

We set the only parameter, the subsequence length L, by 
visual inspection. We set it to be about one period length (i.e. 
one heartbeat, one gait cycle, etc.). As we will show in Section 
IV-0, our algorithm is not sensitive to this choice.  
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Fig. 12: Snippets (not the full traces) from a random selection of the test 
datasets. The snippets are centered on a boundary (change of background 
color). There are no axes in this figure, as the data are at different scales.  

F. Rival Methods 

The most obvious rival method is Autoplait [19]. As noted 
above, while there are dozens of segmentation algorithms, it is 
often difficult or unfair to compare to them because: 

• They are designed only for a limited domain; thus if they 
are not competitive, it might be because they are just not 
suited for some or most of the diverse datasets considered. 

• They require setting many parameters; thus if they are not 
competitive, it might be because we tuned the parameters 
poorly. 

• The code is not publicly available; if they are not 
competitive, it might be because of our unconscious 
implementation bias [14]. 

In contrast to all of the above, Autoplait is domain agnostic, 
parameter-free, and the authors make their high-quality 
implementation freely available. Autoplait segments time 
series by using MDL to recursively test if a region is best 
modeled by one HMM or two (this is a simplification of this 
innovative work, we refer the interested reader to refer to [19]). 

After confirming that we had the code working correctly by 
testing over the authors’ own datasets and some toy datasets, 
we found that Autoplait only produced a segmentation on 12 
out of our 32 test datasets. The underlying MDL model is too 
conservative.  To fix this issue, for every dataset we carefully 
hand-tuned a parameter W, which we used to reduce the weight 
of their Cost(T|M), making the splits “cheaper,” encouraging 
the production of k regimes. This is the only change we made 
to the Autoplait code. With this change, most, but not all, 
datasets produced a segmentation. We found that we could 
perfectly replicate the results in the original Autoplait paper, on 
the authors own chosen benchmark datasets. However, because 
these datasets are not very challenging, we confine these 
results to our supporting webpage [4]. 

We also compared it to the HOG1D algorithm [32], which 
has similar goals/motivations to FLOSS, but is batch only. 

G. Case Study: Hemodynamics 

In this case study, we revisit our running example in more 
depth. Recall that in Section III-A, we suggested that in some 

domains it may be possible to use training data to learn a value 
for the CAC score that indicates a change of regime, and we 
expect that value to generalize to unseen data from the same 
domain. To test this notion, we consider the Physiologic 
Response to Changes in Posture (PRCP) dataset [12]. 

The PRCP dataset consists of continuously monitored 
Arterial Blood Pressure (ABP) of ten healthy volunteers (five 
of each sex). During sessions lasting approximately one hour 
each, the subject’s posture was changed in two ways; by 
rotating the medical tilt table they rested on, or by asking the 
subject to arise from the reclined table under their own power. 
Each of these posture-change events (just ‘events’ in the 
below) was separated by five minutes in the resting supine 
position. Because the timing of these events was carefully 
recorded, this dataset offers an objective ground truth for 
regime change. As Fig. 13 shows, this data is quite complex. 
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Fig. 13: Four random examples of “no-regime-change.” Even these regions of 
“no change” include sensor artifacts, wandering baseline, noise, and short 
disconnection artifacts.  

To avoid cherry picking, we chose the first subject (in the 
original archive), a male, to use as the training data. Likewise, 
to avoid parameter tuning, we Googled “normal resting bpm.” 
The first result, from the Mayo Clinic, suggested “60 to 
100bpm,” so we set the subsequence length to 187.5, which at 
250hz corresponds to the mean of these values. 

As we are attempting to learn from only negative examples, 
we selected 20 regions, each one-minute long (possibly with 
overlaps) from the regions that do not include any event. For 
our testing data, we selected 140 negative and 60 positive 
(regions that straddle an event) from the remaining 9 traces. 

We ran FLUSS on the twenty training objects and recorded 
the minimum CAC value encountered. As shown in Fig. 14 
(left), the mean value was 0.671 with a standard deviation 
0.194. Using the classic statistical-process-control heuristic, we 
set the threshold for the testing phase to the mean minus three 
standard deviations, or 0.089. As we can see in Fig. 14 (right), 
this gives us an accuracy of 93.5%, with one false negative and 
twelve false positives. 
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Fig. 14: The positive and negative holdout data can be classified by a simple 
decision threshold; the mean of the training negative examples minus three 

standard deviations. 

Note that we cannot guarantee here that the false positives 
are really “false.”  Independent of the externally imposed 
interventions, the subject may have induced a regime change 
by just thinking about a stressful situation [18]. Further note 



that we could have improved these results significantly with a 
little work. For example, we could have tuned L, the only 
parameter, we could have built a separate model for females, or 
for overweight individuals, we could have removed noise or 
wandering baseline (a common practice for such data) etc. 
Nevertheless, this experiment bodes well for our claim that we 
can learn a domain dependent threshold for flagging regime 
changes, and then it will generalize to unseen data. 

H. User Study: Super-human Performance 

As noted above, the evaluation of semantic segmentation 
algorithms has often been anecdotal and visual [17]. In 
essence, many researchers overlay the results of the 
segmentation on the original data, and we invite the reader to 
confirm that it matches human intuition [1][5][17][19]. While 
we are not discounting the utility of such sanity checks (see 
Fig. 15), by definition, such demonstrations can only offer 
evidence that the system is par-human [2]. It is natural to 
wonder if semantic segmentation can achieve super-human 
performance. To test this, we performed a small user-study. 
We asked graduate students in a data mining class to 
participate. Participation was voluntary and anonymous; 
however, to ensure that the participants were motivated to give 
their best effort, a cash prize was given for the best 
performance. 

The study was conducted as follows. The participants were 
briefed on the purpose and meaning of semantic segmentation 
and where shown some simple annotated examples (This 
briefing is archived in [4]). Then they were given access to an 
interface that showed twelve random examples1, in a serial 
fashion from the archive discussed in Section IV-E. The 
interface allowed the participants to explore the data at their 
leisure, then click on the screen to denote their best guess as to 
the location of the regime change. 

Because our scoring function is fine-grained, we only count 
a method as wining if its score is less than half the score of its 
rival. Otherwise, we report a tie. TABLE IV summarizes the 
outcomes. 

TABLE IV: The Performance of Fluss vs. Humans 

 
FLUSS 

Best 

Human 
Ave Human 

Mean Score 0.013 0.011 0.120 

win | lose | draw over FLUSS NA 2 | 4 | 6 0.81 | 9.5 | 2.0 

While the scale of this experiment was modest, these 
results suggest that we are at, or are approaching, super-human 
performance for semantic segmentation of time series. 

I. Comparisions to Rival Methods 

Despite our best efforts, we could not get the original 
Autoplait algorithm to produce any segmentation on 20 of our 
32 test datasets. We counted this as a “loss” for 
“Autoplait_Classic.” By carefully adapting the algorithm (see 
Section IV-F), we could get Autoplait to produce a 
segmentation on thirteen additional datasets 

                                                           
1 We only considered a subset of twelve from the full dataset to be respectful 

of the participant’s time and attention. 

(“Autoplait_Adapted”). On the datasets it did predict 
segmentations for, sometimes it predicted too many or too few 
segments. In those cases, we allowed both versions to “cheat.” 
If it predicted too few segments, we took only the closest 
matches, and gave it all the missing matches with no penalty. If 
it predicted too many segments, we only considered the best 
interpretation of a subset of its results without penalizing the 
spurious segments. In contrast, HOG1D only refused to produce 
a segmentation on 2 of our 32 datasets. For the rest, it was able 
to produce the required k splits. 

Recall that we tested twenty-two humans on a subset of the 
data. We invited the best scoring individual to segment all of 
the data. Finally, for calibration, similarly to the default-rate of 
classification, we considered a random algorithm, which was 
allowed 100 attempts at guessing the segmentation and reports 
the average of all attempts. As we noted above, we set the only 
parameter, the subsequence length L, to be about one period 
length before conducting any experiments. The performance of 
FLUSS is shown in TABLE V. 

TABLE V: The Performance of four rivals compared to FLUSS 

 AutoplaitClassic AutoplaitAdapted HOG1D Best Human Random 

win | lose | draw 

over FLUSS 
3 | 26 | 3 3 | 25 | 4 8 | 15 | 9 11 | 9 | 12 0 | 32 | 0 

A post-mortem analysis showed that if we had instead chosen 

between ¼ to ½ a period length, we would have cut the number of 

wins by all rivals by more than half. Nevertheless, these results 

strongly support our claim of the superiority of FLUSS.  

J. Robustness of FLUSS to the only Parameter Choice 

The performance of FLUSS is highly robust to the choice 
of its only parameter, the subsequence length L. To 
demonstrate this, we consider two random datasets, TiltABP 
and DutchFactory, changing the subsequence length to span an 
order of magnitude, from 100 to 400 in TiltABP and from 25 to 
250 in DutchFactory. As shown in Fig. 15, this variation of 
subsequence length has insignificant effect on the 
segmentation.  
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Fig. 15: The CAC computed for (top) TiltABP with L = {100, 150, 200, 250, 

300, 350, 400} and (bottom) DutchFactory for L = {25, 50, 200, 250}. Even for 

this vast range of values for L, the output of FLUSS is essentially unchanged.  

K. The Speed and Utility of FLOSS 

Our evaluation of FLOSS is brief, since it essentially 
inherits all the qualities of FLUSS but allows for online 
segmentation. However, to demonstrate the speed and utility of 
FLOSS, we performed the following experiment. We 



considered the Y-axis shoe acceleration from Subject 3 from 
the PAMAP dataset’s [26] outdoor activity. The data is 
270,000 data points sampled at 100Hz, giving us 45 minutes of 
wall-clock time. We used FLOSS to maintain a sliding window 
of the last 20-seconds of the subject’s behavior, using a 65 
subsequence length (suggested by [26]). We discovered: 

• It took us only 73.7 seconds to process the data; thus, we 
can process the data about 36 times faster than in real time. 

• In a post-hoc sanity check, we examined the three lowest 
values of the CAC in this trace. By comparing the 
locations to the ground truth provided, we discovered that 
the Top-3 regimes changes correspond exactly to the 
following transitions: Normal-Walking|Transient-
Activities, Nordic-Walking|Transient-Activities and 
Running|Transient-Activities.  

IV. SUMMARY AND FUTURE WORK 

We have introduced a fast, domain-independent, online 
segmentation algorithm and have shown its utility and its 
versatility by applying it to dozens of diverse datasets. We 
further demonstrated that our algorithm is insensitive to the 
value of the only input parameter. Moreover, we have made all 
code and data freely available to the community to confirm, 
extend, and exploit our work. Finally, we are interested in 
applications of our ideas, for example, to learning from weakly 
labeled-data [10]. 
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