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ABSTRACT 

Most time series data mining algorithms use similarity search as a 

core subroutine, and thus the time taken for similarity search is the 

bottleneck for virtually all time series data mining algorithms. The 

difficulty of scaling search to large datasets largely explains why 

most academic work on time series data mining has plateaued at 

considering a few millions of time series objects, while much of 

industry and science sits on billions of time series objects waiting 

to be explored. In this work we show that by using a combination 

of four novel ideas we can search and mine truly massive time 

series for the first time. We demonstrate the following extremely 

unintuitive fact; in large datasets we can exactly search under 

DTW much more quickly than the current state-of-the-art 

Euclidean distance search algorithms. We demonstrate our work on 

the largest set of time series experiments ever attempted. In 

particular, the largest dataset we consider is larger than the 

combined size of all of the time series datasets considered in all data 

mining papers ever published. We show that our ideas allow us to 

solve higher-level time series data mining problem such as motif 

discovery and clustering at scales that would otherwise be 

untenable. In addition to mining massive datasets, we will show 

that our ideas also have implications for real-time monitoring of 

data streams, allowing us to handle much faster arrival rates 

and/or use cheaper and lower powered devices than are currently 

possible.  
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1. INTRODUCTION 

Time series data is pervasive across almost all human endeavors, 

including medicine, finance, science and entertainment. As such, 

it is hardly surprising that time series data mining has attracted 

significant attention and research effort. Most time series data 

mining algorithms require similarity comparisons as a subroutine, 

and in spite of the consideration of dozens of alternatives, there is 

increasing evidence that the classic Dynamic Time Warping 

(DTW) measure is the best measure in most domains [6].  
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It is difficult to overstate the ubiquity of DTW. It has been used in 

robotics, medicine [5], biometrics, music/speech processing 

[1][27][41], climatology, aviation, gesture recognition [3][38], 

user interfaces [16][22][29][38], industrial processing, 

cryptanalysis [7],  mining of historical manuscripts [15], geology, 

astronomy [20][31], space exploration, wildlife monitoring, etc.     

As ubiquitous as DTW is, we believe that there are thousands of 

research efforts that would like to use DTW, but find it too 

computationally expensive. For example, consider the following: 

“Ideally, dynamic time warping would be used to achieve this, but 

due to time constraints…” [5]. Likewise, [3] bemoans DTW is 

“still too slow for gesture recognition systems”, and [1] notes, 

even “a 30 fold speed increase may not be sufficient for scaling 

DTW methods to truly massive databases.” As we shall show, our 

subsequence search suite of four novel ideas (called the UCR 

suite) removes all of these objections. We can reproduce all the 

experiments in all these papers in well under a second.  

We make an additional claim for our UCR suite which is almost 

certainly true, but hard to prove, given the variability in how 

search results are presented in the literature. We believe our exact 

DTW sequential search is much faster than any current 

approximate search or exact indexed search. In a handful of 

papers the authors are explicit enough with their experiments to 

see this is true. Consider [28], which says it can answer queries of 

length 1,000 under DTW with 95% accuracy, in a random walk 

dataset of one million objects in 5.65 seconds. We can exactly 

search this dataset in 3.8 seconds (on a very similar machine). 

Likewise, a recent paper that introduced a novel inner product 

based DTW lower bound greatly speeds up exact subsequence 

search for a wordspotting task in speech. The authors state: “the 

new DTW-KNN method takes approximately 2 minutes” [41]; 

however, we can reproduce their results in less than a second. An 

influential paper on gesture recognition on multi-touch screens 

laments that “DTW took 128.26 minutes to run the 14,400 tests for 

a given subject’s 160 gestures” [38]. However, we can reproduce 

these results in under 3 seconds.   

1.1 A Brief Discussion of a Trillion  

Since we use the word “trillion” in this work and to our 

knowledge, it has never appeared in a data mining/database paper, 

we will take the time to briefly discuss this number. By a trillion, 

we mean the short scale version of the word [14], one million 

million, or 1012, or 1,000,000,000,000.  

If we have a single time series T of length one trillion, and we 

assume it takes eight bytes to store each value, it will require 7.2 

terabytes to store. If we sample a electrocardiogram at 256Hz, a 

trillion data points would allow us to record 123 years of data, 

every single heartbeat of the longest lived human [37].  

A time series of length one trillion is a very large data object. In 

fact, it is more than all of the time series data considered in all 

papers ever published in all data mining conferences combined. 

This is easy to see with a quick back-of-the-envelope calculation. 



 

Up to 2011 there have been 1,709 KDD/SIGKDD papers 

(including industrial papers, posters, tutorial/keynote abstracts, 

etc. [9]). If every such paper was on time series, and each had 

looked at five hundred million objects, this would still not add up 

to the size of the data we consider here). However, the largest 

time series data considered in a SIGKDD paper was a “mere” one 

hundred million objects [35]. 

As large as a trillion is, there are thousands of research labs and 

commercial enterprises that have this much data. For example, 

many research hospitals have trillions of data points of EEG data, 

NASA Ames has tens of trillions of datapoints of telemetry of 

domestic flights, the Tennessee Valley Authority (a power 

company) records a trillion data points every four months, etc.      

1.2 Explicit Statement of our Assumptions  

Our work is predicated on several assumptions that we will now 

enumerate and justify. 

1.2.1 Time Series Subsequences must be Normalized 

In order to make meaningful comparisons between two time 

series, both must be normalized. While this may seem intuitive, 

and was explicitly empirically demonstrated a decade ago in a 

widely cited paper [19], many research efforts do not seem to 

realize this. This is critical because some speedup techniques only 

work on the un-normalized data; thus, the contributions of these 

research efforts may be largely nullified [8][28]. 

To make this clearer, let us consider the classic Gun/NoGun 

classification problem which has been in the public domain for 

nearly a decade. The data, which as shown in Figure 1.center is 

extracted from a video sequence, was Z-normalized. The problem 

has a 50/150 train/test split and a DTW one-nearest-neighbor 

classifier achieves an error rate of 0.087.  

Suppose the data had not been normalized. As shown in Figure 

1.left and Figure 1.right, we can simulate this by adding a tiny 

amount of scaling/offset to the original video. In the first case we 

randomly change the offset of each time series by ± 10%, and in 

the second case we randomly change the scale (amplitude) by ± 

10%. The new one-nearest-neighbor classifier error rates, 

averaged over 1,000 runs, are 0.326 and 0.193, respectively, 

significantly worse than the normalized case.  

 
Figure 1: Screen captures from the original video from which the 

Gun/NoGun data was culled. The center frame is the original size; the 

left and right frames have been scaled by 110% and 90% respectively.  

While these changes are barely perceptible, they double the error rate 

if normalization is not used. (Video courtesy of Dr. Ratanamahatana)   

It is important to recognize that these tiny changes we made are 

completely dwarfed by changes we might expect to see in a real 

world deployment. The apparent scale can be changed by the 

camera zooming, by the actor standing a little closer to the 

camera, or by an actor of a different height. The apparent offset 

can be changed by this much by the camera tilt angle, or even by 

the actor wearing different shoes. 

While we did this experiment on a visually intuitive example, all 

forty-five datasets in the UCR archive increase their error rate by 

at least 50% if we vary the offset and scale by just ± 5%.  

It is critical to avoid a common misunderstanding. We must 

normalize each subsequence before making a comparison, it is not 

sufficient to normalize the entire dataset.  

1.2.2 Dynamic Time Warping is the Best Measure  

It has been suggested many times in the literature that the problem 

of time series data mining scalability is only due to DTW’s oft-

touted lethargy, and that we could solve this problem by using 

some other distance measure. As we shall later show, this is not 

the case. In fact, as we shall demonstrate, our optimized DTW 

search is much faster than all current Euclidean distance searches. 

Nevertheless, the question remains, is DTW the right measure to 

speed up? Dozens of alternative measures have been suggested. 

However, recent empirical evidence strongly suggests that none of 

these alternatives routinely beats DTW. When put to the test on a 

collection of forty datasets, the very best of these measures are 

sometimes a little better than DTW and sometimes a little worse 

[6]. In general, the results are consistent with these measures 

being minor variants or “flavors” of DTW (although they are not 

typically presented this way). In summary, after an exhaustive 

literature search of more than 800 papers [6], we are not aware of 

any distance measure that has been shown to outperform DTW by 

a statistically significant amount on reproducible experiments 

[6][19]. Thus, DTW is the measure to optimize (recall that DTW 

subsumes Euclidean distance as a special case). 

1.2.3 Arbitrary Query Lengths cannot be Indexed  

If we know the length of queries ahead of time we can mitigate at 

least some of the intractability of search by indexing the data 

[2][11][35]. Although to our knowledge no one has built an index 

for a trillion real-valued objects (Google only indexed a trillion 

webpages as recently as 2008), perhaps this could be done.  

However, what if we do not know the length of the queries in 

advance? At least two groups have suggested techniques to index 

arbitrary length queries [18][23]. Both methods essentially build 

multiple indexes of various lengths, and at query time search the 

shorter and longer indexes, “interpolating” the results to produce 

the nearest neighbor produced by a virtual index of the correct 

length. This is an interesting idea, but it is hard to imagine it is the 

answer to our problem. Suppose we want to support queries in the 

range of, say, 16 to 4096. We must build indexes that are not too 

different in size, say MULTINDEX-LENGTHS = {16, 32, 64, .., 1024, 

2048, 4096}1. However, for time series data the index is typically 

about one-tenth the size of the data [6][18]. Thus, we have doubled 

the amount of disk space we need. Moreover, if we are interested in 

tackling a trillion data objects we clearly cannot fit any index in the 

main memory, much less all of them, or any two of them.  

There is an underappreciated reason why this problem is so hard; 

it is an implication of the need for normalization discussed above. 

Suppose we have a query Q of length 65, and an index that 

supports queries of length 64. We search the index for Q[1:64] and 

find that the best match for it has a distance of, say, 5.17. What can 

we say about the best match for the full Q? The answer is 

surprisingly little: 5.17 is neither an upper bound nor a lower bound 

to the best match for Q. This is because we must renormalize the 

subsequence when moving from Q[1:64] to the full Q. If we do not 

normalize any data, the results are meaningless (cf. Section 1.2.1), 

and the idea might be faster than sequential search. However, if 

we normalize the data we get so little information from indexes of 

the wrong length that we are no better off than sequential search. 

In summary, there are no known techniques to support similarity 

search of arbitrary lengths once we have datasets in the billions. 

                                                                 

 

1 This collection of sizes is very optimistic. The step size should be at 

most 100, creating two orders of magnitude space overhead. 



 

1.2.4 There Exists Data Mining Problems that we 

are Willing to Wait Some Hours to Answer 

This point is almost self-evident. If a team of entomologists has 

spent three years gathering 0.2 trillion datapoints [35], or 

astronomers have spent billions dollars to launch a satellite to 

collect one trillion datapoints of star-light curve data per day [20], 

or a hospital charges $34,000 for a daylong EEG session to collect 

0.3 trillion datapoints (c.f. Section 5.2) [26], then it is not 

unreasonable to expect that these groups would be willing to 

spend hours of CPU time to glean knowledge from their data.  

2. RELATED WORK 
Our review of related work on time series indexing is necessarily 

superficial, given the vast amount of work on the topic and page 

limits. Instead, we refer the interested reader to two recent papers 

[6][28], which have comprehensive reviews of existing work. It 

has now become common (although not yet routine) to see papers 

indexing/mining datasets with millions of objects. For example, 

Jegou et al. have demonstrated very fast approximate main 

memory search of 10 million images [17]. However, this work 

and much of the current work that addresses multi-million object 

datasets focus on approximate search, whereas we are only 

considering exact search here. Moreover, we are interested in 

datasets which are five to six orders of magnitude larger than 

anything else considered in the literature [6]. Thus, comparisons 

to related work are very difficult to do meaningfully. 

3. BACKGROUND AND NOTATIONS 

3.1 Definitions and Notations 
We begin by defining the data type of interest, time series:   

Definition 1: A Time Series T is an ordered list: T=t1,t2,...,tm.   

While the source data is one long time series, we ultimately wish 

to compare it to shorter regions called subsequences: 

Definition 2: A subsequence Ti,k of a time series T is a shorter 

time series of length k which starts from position i. Formally, 

Ti,k = ti,ti+1,..,ti+k-1 , 1≤ i ≤ m-k+1.  

Where there is no ambiguity, we may refer to subsequence Ti,k as 

C, as in a Candidate match to a query Q . We denote |Q| as n. 

Definition 3: The Euclidean distance (ED) between Q and C, 

where |Q| =|C|, is defined as: 

                 
 

 

   
 

We illustrate these definitions in Figure 2.  

  

Figure 2: A long time series T can have a subsequence Ti,k extracted 

and compared to a query Q under the Euclidean distance, which is 

simply the square root of the sum of the squared hatch line lengths 

The Euclidean distance, which is a one-to-one mapping of the two 

sequences, can be seen as a special case of DTW, which allows a 

one-to-many alignment, as illustrated in Figure 3.  

To align two sequences using DTW, an n-by-n matrix is 

constructed, with the (ith, jth) element of the matrix being the 

Euclidean distance d(qi, cj) between the points qi and cj. 

A warping path P is a contiguous set of matrix elements that 

defines a mapping between Q and C. The tth element of P is 

defined as pt = (i, j)t so we have: 

P = p1, p2, …, pt, …, pT    n ≤ T ≤ 2n-1 

The warping path that defines the alignment between the two time 

series is subject to several constraints. For example, the warping 

path must start and finish in diagonally opposite corner cells of 

the matrix, the steps in the warping path are restricted to adjacent 

cells, and the points in the warping path must be monotonically 

spaced in time. In addition, virtually all practitioners using DTW 

also constrain the warping path in a global sense by limiting how 

far it may stray from the diagonal [6][28]. A typical constraint is 

the Sakoe-Chiba Band which states that the warping path cannot 

deviate more than R cells from the diagonal [6][28][32].  

 
Figure 3: left) Two time series which are similar but out of phase. 
right) To align the sequences we construct a warping matrix, and 
search for the optimal warping path (red/solid squares). Note that 
Sakoe-Chiba Band with width R is used to constrain the warping path 

4. ALGORITHMS 

4.1 Known Optimizations   

We begin by discussing previously known optimizations of 

sequential search under ED and/or DTW. 

4.1.1 Using the Squared Distance 

Both DTW and ED have a square root calculation. However, if we 

omit this step, it does not change the relative rankings of nearest 

neighbors, since both functions are monotonic and concave. 

Moreover, the absence of the square root function will make later 

optimizations possible and easier to explain. Note that this is only 

an internal change in the code; the user can still issue range 

queries with the original units, as the code simply internally 

squares the desired value, does the search, and after finding the 

qualifying objects, takes the square root of the distances for the 

qualifying objects and presents the answers to the user.   

Where there is no ambiguity below, we will still use ‘DTW’ and 

‘ED’; however, the reader may assume we mean the squared 

versions of them.  

4.1.2 Lower Bounding 

A classic trick to speed up sequential search with an expensive 

distance measure such as DTW is to use a cheap-to-compute 

lower bound to prune off unpromising candidates [6][20]. Figure 

4 shows two such lower bounds, one of which we have modified. 

 
Figure 4: left) The LB_KimFL lower bound is O(1) and uses the distances 
between the First (Last) pair of points from C and Q as a lower bound. 
It is a simplification of the original LB_Kim [21]. right) The LB_Keogh 
lower bound is O(n) and uses the Euclidean distance between the 
candidate sequence C and the closer of {U,L} as a lower bound 
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The original definition of LB_Kim also uses the distances between 

the maximum values from both time series and the minimum 

values between both time series in the lower bound, making it 

O(n). However, for normalized time series these two extra values 

tend to be tiny and it does not pay to compute them, and ignoring 

them allows the bound to be O(1), a fact we will exploit below. 

The LB_Keogh bound is well-documented elsewhere, for brevity we 

ask the unfamiliar reader to refer to [11][20][6] for a review. 

4.1.3 Early Abandoning of ED and LB_Keogh 

During the computation of the Euclidean distance or the LB_Keogh 

lower bound, if we note that the current sum of the squared 

differences between each pair of corresponding datapoints 

exceeds the best-so-far, then we can stop the calculation, secure in 

the knowledge that the exact distance or lower bound, had we 

calculated it, would have exceeded the best-so-far, as in Figure 5. 

 
Figure 5: An illustration of ED early abandoning. We have a best-so-
far value of b. After incrementally summing the first nine (of thirty-
two) individual contributions to the ED we have exceeded b, thus it is 
pointless to continue the calculation [20] 

4.1.4 Early Abandoning of DTW 

If we have computed a full LB_Keogh lower bound, but we find that 

we must calculate the full DTW, there is still one trick left up our 

sleeves. We can incrementally compute the DTW from left to 

right, and as we incrementally calculate from 1 to K, we can sum 

the partial DTW accumulation with the LB_Keogh contribution 

from K+1 to n. Figure 6 illustrates this idea.  

 
Figure 6: left) At the top we see a completed LB_Keogh calculation, and 
below it we are about to begin a full DTW calculation. right) We can 
imagine the orange/dashed line moving from left to right. If we sum 
the LB_Keogh contribution from the right of dashed line (top) and the 
partial (incrementally calculated) DTW contribution from the left side 
of the dashed line (bottom), this is will be a lower bound to DTW(Q,C) 

This sum of DTW(Q1:K,C1:K) + LB_Keogh(QK+1:n,CK+1:n) is a lower 

bound to the true DTW distance (i.e., DTW(Q1:n,C1:n)). Moreover, 

with careful implementation the overhead costs are negligible. If 

at any time this lower bound exceeds the best-so-far distance we 

can admissibly stop the calculation and prune this C.  

4.1.5 Exploiting Multicores 

It is important to note that while we can get essentially linear 

speedup using multicores, the software improvements we will 

present in the next section completely dwarf the improvements 

gained by multicores. As a concrete example, a recent paper shows 

that a search of a time series of length 421,322 under DTW takes 

“3 hours and 2 minutes on a single core. The (8-core version) was 

able to complete the computation in 23 minutes” [34]. However, 

using our ideas, we can search a dataset of this size in just under 

one second on a single core. Nevertheless, as it is simple to port to 

the now ubiquitous multicores, we consider them below.   

4.2 Novel Optimizations: The UCR Suite   

We are finally in a position to introduce our four original 

optimizations of search under ED and/or DTW. 

4.2.1 Early Abandoning Z-Normalization  

To the best of our knowledge, no one has ever considered 

optimizing the normalization step. This is surprising, since it takes 

slightly longer than computing the Euclidean distance itself. 

Our insight here is that we can interleave the early abandoning 

calculations of Euclidean distance (or LB_Keogh) with the online Z-

normalization. In other words, as we are incrementally computing 

the Z-normalization, we can also incrementally compute the 

Euclidean distance (or LB_Keogh) of the same datapoint. Thus, if 

we can early abandon, we are pruning not just distance calculation 

steps as in Section 4.1.3, but also normalization steps. 

Recall that the mean and standard deviation of a sample can be 

computed from the sums of the values and their squares. 

Therefore, it takes only one scan through the sample to compute 

the mean and standard deviation, using the equations below. 
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In similarity search, every subsequence needs to be normalized 

before it is compared to the query (c.f. Section 1.2.1). The mean 

of the subsequence can be obtained by keeping two running sums 

of the long time series which have a lag of exactly m values. The 

sum of squares of the subsequence can be similarly computed. 

The formulas are given below for clarity. 
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The high-level outline of the algorithm is presented in Table 1. 

Table 1: Subsequence search with online Z-normalization 

Algorithm   Similarity Search 

Procedure  [nn] = SimilaritySearch (T,Q) 
1 best-so-far ← ∞, count← 0 
2 Q ← z-normalize(Q) 
3 while !next(T)  
4  i← mod(count,m) 
5  X[i] ←next(T) 
6  ex← ex+X[i],   ex2← ex2+X[i]2  

7 
 

if count ≥ m-1 
8 

 
 µ← ex/m,   σ← sqrt(ex2/m - µ 2) 

9 
 

 j← 0, dist← 0 
10 

 
 while  j < m  and  dist < best-so-far 

11    dist← dist + (Q[j]-(X[mod(i+1+j,m)]-µ)/σ)2 
12    j← j+1 
13   if  dist < best-so-far 
14    best-so-far ←dist,   nn← count 
15   ex← ex-X[mod(i+1,m)] 
16   ex2← ex2-X[mod(i+1,m)]2 
17  count  ← count+1 

Note the online normalization in line 11 of the algorithm, which 

allows the early abandoning of the distance computation in 

addition to the normalization. 

In the above algorithm, we use a circular buffer (X) to store the 

current subsequence being compared with the query Q.   

One potential problem of this method of maintaining the statistics is 

the accumulation of the floating-point error [13]. The effect of such 

error accumulation is more profound if all of the numbers are 

positive, as in our case with sum of squares. With the “mere” 

millions of datapoints the rest of the community has dealt with 

this effect is negligible, however when dealing with billions of 

datapoints it will affect the answer. Our simple solution is that 

once every one million subsequences, we force a complete Z-

normalization to “flush out” any accumulated error.   
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4.2.2 Reordering Early Abandoning  

In the previous section, we saw that the idea of early abandoning 

discussed in Section 4.1.3 can be generalized to the Z-

normalization step. In both cases, we assumed that we 

incrementally compute the distance/normalization from left to 

right. Is there a better ordering? 

Consider Figure 7.left, which shows the normal left-to-right 

ordering in which the early abandoning calculation proceeds. In 

this case nine of the thirty-two calculations were performed before 

the accumulated distance exceeded b and we could abandon. In 

contrast, Figure 7.right uses a different ordering and was able to 

abandon earlier, with just five of the thirty-two calculations. 

 
Figure 7: left) ED early abandoning. We have a best-so-far value of b. 

After incrementally summing the first nine individual contributions to 

the ED, we have exceeded b; thus, we abandon the calculation. right) 

A different ordering allows us to abandon after just five calculations 

This example shows what is obvious: on a query-by-query basis, 

different orderings produce different speedups. However, we want 

to know if there is a universal optimal ordering that we can 

compute in advance. This seems like a difficult question because 

there are n! possible orderings to consider.  

We conjecture that the universal optimal ordering is to sort the 

indices based on the absolute values of the Z-normalized Q. The 

intuition behind this idea is that the value at Qi will be compared 

to many Ci’s during a search. However, for subsequence search, 

with Z-normalized candidates, the distribution of many Ci’s will 

be Gaussian, with a mean of zero. Thus, the sections of the query 

that are farthest from the mean, zero, will on average have the 

largest contributions to the distance measure.  

To see if our conjecture is true we took the heartbeat discussed in 

Section 5.4 and computed its full Euclidean distance to a million 

other randomly chosen ECG sequences. With the conceit of 

hindsight we computed what the best ordering would have been. 

For this we simply take each Ci and sort them, largest first, by 

their sum of their contributions to the Euclidean distance. We 

compared this empirically optimal ordering with our predicted 

ordering (sorting the indices on the absolute values of Q) and 

found the rank correlation is 0.999. Note that we can use this trick 

for both ED and LB_Keogh, and we can use it in conjunction with 

the early abandoning Z-normalization technique (Section 4.2.1). 

4.2.3 Reversing the Query/Data Role in LB_Keogh 

Normally the LB_Keogh lower bound discussed in Section 4.1.2 

builds the envelope around the query, a situation we denote  

LB_KeoghEQ for concreteness, and illustrate in Figure 8.left. This 

only needs to be done once, and thus saves the time and space 

overhead that we would need if we built the envelope around each 

candidate instead, a situation we denote LB_KeoghEC.  

 
Figure 8: left) Normally the LB_Keogh envelope is built around the 
query (see also Figure 4.right), and the distance between C and the 
closer of {U,L} acts as a lower bound. right) However, we can reverse 
the roles such that the envelope is built around C and the distance 
between Q and the closer of {U,L} is the lower bound 

However, as we show in the next section, we can selectively 

calculate LB_KeoghEC in a “just-in-time” fashion, only if all other 

lower bounds fail to prune. This removes space overhead, and as 

we will see, the time overhead pays for itself by pruning more full 

DTW calculations. Note that in general, LB_KeoghEQ ≠ LB_KeoghEC 

and that on average each one is larger about half the time.    

4.2.4 Cascading Lower Bounds  

One of the most useful ways to speed up time series similarity 

search is the use of lower bounds to admissibly prune off 

unpromising candidates [6][11]. This has led to a flurry of 

research on lower bounds, with at least eighteen proposed for 

DTW [1][6][20][21][33][40][41][42]. In general, it is difficult to 

state definitively which is the best bound to use, since there is a 

tradeoff between the tightness of the lower bound and how fast it 

is to compute. Moreover, different datasets and even different 

queries can produce slightly different results. However, as a 

starting point, we implemented all published lower bounds and 

tested them on fifty different datasets from the UCR archive, 

plotting the (slightly idealized for visual clarity) results in Figure 

9. Following the literature [20], we measured the tightness of each 

lower bound as LB(A,B)/DTW(A,B) over 100,000 randomly 

sampled subsequences A and B of length 256. 

 
Figure 9: The mean tightness of selected lower bounds from the 
literature plotted against the time taken to compute them 

The reader will appreciate that a necessary condition for a lower 

bound to be useful is for it to appear on the “skyline” shown with 

a dashed line; otherwise there exists a faster-to-compute bound 

that is at least as tight, and we should use that instead. Note that 

the early abandoning DTW discussed in Section 4.1.4 is a special 

case in that it produces a spectrum of bounds, as at every stage of 

computation it is incrementally computing the DTW until the last 

computation gives the final true DTW distance.  

Which of the lower bounds on the skyline should we use? Our 

insight is that we should use all of them in a cascade. We first use 

the O(1) LB_KimFL, which while a very weak lower bound prunes 

many objects. If a candidate is not pruned at this stage we 

compute the LB_KeoghEQ. Note that as discussed in Sections 4.1.3, 

4.2.1 and 4.2.2, we can incrementally compute this; thus, we may 

be able to abandon anywhere between O(1) and O(n) time. If we 

complete this lower bound without exceeding the best-so-far, we 

reverse the query/data role and compute LB_KeoghEC (cf. Section 

4.2.3). If this bound does not allow us to prune, we then start the 

early abandoning calculation of DTW (cf. Section 4.1.4). 

Space limits preclude detailed analysis of which lower bounds 

prune how many candidates. Moreover, the ratios depend on the 

query, data and size of the dataset. However, we note the 

following: Detailed analysis is available at [43], lesion studies tell 

us that all bounds do contribute to speedup; removing any lower 

bound makes search at least twice as slow; and finally, using this 

technique we can prune more than 99.9999% of DTW 

calculations for a large-scale search.  

5. EXPERIMENTAL RESULTS 
We begin by noting that we have taken extraordinary measures to 

ensure our experiments are reproducible. In particular, all data and 

code will be available in perpetuity, archived at [43]. Moreover, 

the site contains several videos which visualize some of the 

experiments in real time. We consider the following methods: 

 Naive: Each subsequence is Z-normalized from scratch. The 

full Euclidean distance or the DTW is used at each step. 
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Approximately 2/3 of the papers in the literature do (some 

minor variant of) this.    

 State-of-the-art (SOTA): Each sequence is Z-normalized 

from scratch, early abandoning is used, and the LB_Keogh 

lower bound is used for DTW. Approximately 1/3 of the 

papers in the literature do (some minor variant of) this. 

 UCR Suite: We use all of our applicable speedup techniques.  

DTW uses R = 5% unless otherwise noted. For experiments where 

Naive or SOTA takes more than 24 hours to finish, we terminate 

the experiments and present the interpolated values, shown in 

gray. Where appropriate we also compare to an oracle algorithm: 

 GOd’s ALgorithm (GOAL) is an algorithm that only 

maintains the mean and standard deviation using the online 

O(1) incremental calculations.    

It is easy to see that, short of an algorithm that precomputes and 

stores a massive amount of data (quadratic in m), GOAL is a 

lower bound on the fastest possible algorithm for either ED or 

DTW subsequence search with unconstrained and unknown 

length queries. The acronym reminds us that we would like to be 

as close to this goal value as possible.  

It is critical to note that our implementations of Naive, SOTA and 

GOAL are incredibly efficient and tightly optimized, and they are 

not “crippled” in any way. For example, had we wanted to claim 

spurious speedup, we could implement SOTA recursively rather 

than iteratively, and that would make SOTA at least an order of 

magnitude slower. In particular, the code for Naive, SOTA and 

GOAL is exactly the same code as the UCR suite, except the 

relevant speedup techniques have been commented out.  

While very detailed spreadsheets of all of our results are archived 

in perpetuity at [43], we present subsets of our results below. We 

consider wall clock time on a 2 Intel Xeon Quad-Core E5620 

2.40GHz with 12GB 1333MHz DDR3 ECC Unbuffered RAM 

(using just one core unless otherwise explicitly stated).  

5.1 Baseline Tests on Random Walk 

We begin with experiments on random walk data. Random walks 

model financial data very well and are often used to test similarity 

search schemes. More importantly for us, they allow us to do 

reproducible experiments on massive datasets without the need to 

ship large hard drives to interested parties. We have simply 

archived the random number generator and the seeds used. We 

have made sure to use a very high-quality random number 

generator that has a period longer than the longest dataset we 

consider. In Table 2 we show the length of time it takes to search 

increasingly large datasets with queries of length 128. The 

numbers are averaged over 1000, 100 and 10 queries, respectively.  

Table 2: Time taken to search a random walk dataset with |Q| =128 

 Million (Seconds) Billion (Minutes) Trillion (Hours) 

UCR-ED 0.034 0.22 3.16 

SOTA-ED 0.243 2.40 39.80 

UCR-DTW 0.159 1.83 34.09 

SOTA-DTW 2.447 38.14 472.80 

These results show a significant difference between SOTA and 

UCR suite. However, this is for a very short query; what happens 

if we consider longer queries? As we show in Figure 10, the ratio 

of SOTA-DTW over UCR-DTW improves for longer queries.  

To reduce visual clutter we have only placed one Euclidean 

distance value on the figure, for queries of length 4,096. 

Remarkably, UCR-DTW is even faster than SOTA Euclidean 

distance. As we shall see in our EEG and DNA examples below, 

even though 4,096 is longer than any published query lengths in 

the literature, there is a need for even longer queries. 

 
Figure 10: The time taken to search random walks of length 20 

million with increasingly long queries, for three variants of DTW. In 

addition, we include just length 4,096 with SOTA-ED for reference  

It is also interesting to consider the results of the 128-length DTW 

queries as a ratio over GOAL. Recall that the cost for GOAL is 

independent of query length, and this experiment is just 23.57 

seconds. The ratios for Naive, SOTA and UCR suite are 5.27, 

2.74 and 1.41, respectively. This suggests that we are 

asymptomatically closing in on the fastest possible subsequence 

search algorithm for DTW. Another interesting ratio to consider is 

the time for UCR-DTW over UCR-ED, which is just 1.18. Thus, 

the time for DTW is not significantly different than that for ED, 

an idea which contradicts an assumption made by almost all 

papers on time series in the last decade (including papers by the 

current authors).    

5.2 Supporting Long Queries: EEG 

The previous section shows that we gain the greatest speedup for 

long queries, and here we show that such long queries are really 

needed. The first user of the UCR suite was Dr. Sydney Cash, 

who together with author B.W. wants to search massive archives 

of EEG data for examples of epileptic spikes, as shown Figure 11. 

 
Figure 11: Query Q shown with a match from the 0.3 trillion EEG dataset 

From a single patient S.C. gathered 0.3 trillion datapoints and 

asked us to search for a prototypical epileptic spike Q he created 

by averaging spikes from other patients. The query length was 

7,000 points (0.23 seconds). Table 3 shows the results. 

Table 3: Time to search 303,523,721,928 EEG datapoints, |Q| = 7000 

Note that only ED is considered here because DTW 

may produce false positives caused by eye blinks 

 UCR-ED SOTA-ED 

EEG 3.4 hours 494.3 hours 

This data took multiple sessions over seven days to collect, at a 

cost of approximately $34,000 [43], so the few hours of CPU time 

we required to search the data are dwarfed in comparison. 

5.3 Supporting Very Long Queries: DNA 
Most work on time series similarity search (and all work on time 

series indexing) has focused on relatively short queries, less than 

or equal to 1,024 data points in length. Here we show that we can 

efficiently support queries that are two orders of magnitude 

longer.  

Table 4: An algorithm to convert DNA to time series 

T1 = 0,        for i = 1 to |DNAstring| 
                                  if  DNAstringi = A,  then Ti+1 = Ti + 2  
                                  if  DNAstringi = G,  then Ti+1 = Ti + 1  
                                  if  DNAstringi = C,  then Ti+1 = Ti - 1  
                                  if  DNAstringi = T,  then Ti+1 = Ti - 2  
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We consider experiments with DNA that has been converted to 

time series. However, it is important to note that we are not 

claiming any particular bioinformatics utility for our work; it is 

simply the case that DNA data is massive, and the ground truth 

can be obtained through other means. As in [35], we use the 

algorithm in Table 4 to convert DNA to time series2. 

We chose a section of Human chromosome 2 (H2) to experiment 

with. We took a subsequence beginning at 5,709,500 and found its 

nearest neighbor in the genomes of five other primates, clustering 

the six sequences with single linkage to produce the dendrogram 

shown in Figure 12. 

 
Figure 12: A subsequence of DNA from Human chromosome 2, of 

length 72,500 beginning at 5,709,500 is clustered using single linkage 

with its Euclidean distance nearest neighbors from five other primates  

Pleasingly, the clustering is the correct grouping for these 

primates [24]. Moreover, because Human chromosome 2 is 

widely accepted to be a result of an end-to-end fusion of two 

progenitor ancestral chromosomes 2 and 3 [24], we should expect 

that the nearest neighbors for the non-human apes come from one 

of these two chromosomes, and that is exactly what we found. 

Our query is of length 72,500, and the genome chimp is 

2,900,629,179 base pairs in length. The single-core nearest 

neighbor search in the entire chimp genome took 38.7 days using 

Naive, 34.6 days using SOTA, but only 14.6 hours using the UCR 

suite. As impressive as this is, as we shall show in the next 

section, we can do even better.  

5.3.1 Can we do better than UCR Suite? 

We claim that for the problem of exact similarity search with 

arbitrary length queries, our UCR suite is close to optimal. 

However, it is instructive to consider an apparent counterexample 

and its simple “patch.”  

Consider the search for a query of length 64 considered in Section 

5.1. Using GOAL took 9.18 seconds, but UCR suite took only a 

little longer, just 10.64 seconds. Assume that the original query was: 

        Q = [2.34, 2.01, 1.99,... ] 

But we make it three times longer by padding it like this: 

        QP = [2.34, 2.34, 2.34, 2.01, 2.01, 2.01, 1.99, 1.99, 1.99,... ] 

Further assume that we do the same to database T, to get TP, 

which is three times longer. What can we now say about the time 

taken for the algorithms? GOAL will take exactly three times 

longer, and Naive takes exactly nine times longer, because each 

ED calculation takes three times longer and there are three times 

as many calculations to do. Our UCR suite does not take nine 

times longer, as it can partly exploit the “smoothness” of the data; 

                                                                 

 

2 To preserve the reversible one-to-one mapping between time series and DNA we 

normalize the offset by subtracting round(mean) and we do not divide by the STD. 

however, its overhead is greater than three. Clearly, if we had 

known that the data was contrived in this manner, we could have 

simply made a one-in-three downsampled version of the data and 

query, done the search on this data, and reported the location and 

distance back in the TP space by multiplying each by three. 

Of course, this type of pathological contrived data does not occur 

in nature. However, some datasets are richly oversampled, and 

this has a very similar effect. For example, a decade ago, most 

ECGs were sampled at 256Hz, and that seems to be adequate for 

virtually all data analysis applications [4]. However, current 

machines typically sample at 2,048 Hz which, given the above 

reasoning, would take up to sixty-four times longer to search 

((2,048/256)2) with almost certainly identical results.  

We believe that oversampled data can be searched more quickly 

by exploiting a provisional search in a downsampled version of 

the data that can quickly provide a low best-so-far, which, when 

projected back into the original space can be used to “prime” the 

search by setting a low best-so-far at the beginning of the search, 

thus allowing the early abandoning techniques to be more 

efficient.   

To test this idea, we repeated the experiment in the previous 

section, with a one-in-ten downsampled version of the chimp 

genome / human query. The search took just 475 seconds. We 

denoted the best matching subsequence distance rD. We reran the 

full resolution search after initializing the best-so-far to rD*10.  

This time the search fell from 14.64 hours to 4.17 hours, and we 

found the same answer, as we logically must.  

Similar ideas have been proposed under the name of Iterative 

Deepening DTW [1] or Multi Scale DTW [27][42]; thus, we will 

not further develop this idea here. We simply caution the reader 

that oversampled (i.e., “smooth”) data may allow more speedup 

than a direct application of the UCR suite may initially suggest.  

5.4 Realtime Medical and Gesture Data 

The proliferation of inexpensive low-powered sensors has 

produced an explosion of interest in monitoring real time streams 

of medical telemetry and/or Body Area Network (BAN) data [22]. 

There are dozens of research efforts in this domain that explicitly 

state that while monitoring under DTW is desirable, it is 

impossible [38]. Thus, approximations of, or alternatives to DTW 

are used. Dozens of suggested workarounds have been suggested. 

For example, [16] resorts to only “dealing with shorter test and 

class templates, as this is more efficient”; many research efforts 

including [36] resort to a low cardinality version of DTW using 

integers, or DTW approximations that operate on piecewise linear 

approximations of the signals [20][29], or drastically 

downsampled versions of the data [12][30]. In spite of some 

progress from existing ideas such as lower bounding, [3] bemoans 

DTW is “still too slow for gesture recognition systems”, [29] 

laments that the “problem of searching with DTW (is) 

intractable”, [12] says “Clearly (DTW) is unusable for real-time 

recognition purposes” and [34] notes “Processing of one hour of 

speech using DTW takes a few hours.” 

We believe that the UCR suite makes all of these objections moot. 

DTW can be used to spot gestures/brainwaves/musical 

patterns/anomalous heartbeats in real-time, even on low-powered 

devices, even with multiple channels of data, and even with 

multiple simultaneous queries. 

To see this, we created a dataset of one year of electrocardiograms 

(ECGs) sampled at 256Hz. We created this data by concatenating 

the ECGs of more than two hundred people, and thus we have a 

highly diverse dataset, with 8,518,554,188 datapoints. We created 

a query by asking USC cardiologist Dr. Helga Van Herle to 

Chromosome 2: BP 5709500:5782000
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produce a query she searches for on a regular basis, she created an 

idealized Premature Ventricular Contraction (PVC). The results 

are shown in Table 5. While this was on our multi-core desktop 

machine, the fact that our results are 29,219 times faster than real-

time (256Hz) suggests that real-time DTW is tenable even on low-

power devices.   

Table 5: Time taken to search one year of ECG data with |Q| = 421 

 UCR-ED SOTA-ED UCR-DTW SOTA-DTW 

ECG 4.1 minutes 66.6 minutes 18.0 minutes 49.2 hours 

5.5 Speeding up Existing Mining Algorithms 
In this section, we demonstrate that we can speed up much of the 

code in the time series data mining literature with minimal effort, 

simply by replacing their distance calculation subroutines with the 

UCR suite. In many cases, the difference is small, because the 

algorithms in question already typically try to prune as many 

distance calculations as possible. As an aside, in at least some 

cases we believe that the authors could benefit from redesigning 

the code in light of the drastically reduced cost for similarity 

search that UCR suite offers. Nevertheless, even though the 

speedups are relatively small (1.5X to 16X), they are “free”, 

requiring just minutes of cut-and-paste code editing. 

Time Series Shapelets have garnered significant interest since 

their introduction in 2009 [39]. We obtained the original code and 

tested it on the Face (four) dataset, finding it took 18.9 minutes to 

finish. After replacing the similarity search routine with UCR 

suite, it took 12.5 minutes to finish.  

Online Time Series Motifs generalize the idea of mining 

repeated patterns in a batch time series to the streaming case [25]. 

We obtained the original code and tested it on the EEG dataset 

used in the original paper. The fastest running time for the code 

assuming linear space is 436 seconds. After replacing the distance 

function with UCR suite, it took just 156 seconds. 

Classification of Historical Musical Scores [10]. This dataset 

has 4,027 images of musical notes converted to time series. We 

used the UCR suite to compute the rotation-invariant DTW leave-

one-out classification. It took 720.6 minutes. SOTA takes 142.4 

hours. Thus, we have a speedup factor of 11.8. 

Classification of Ancient Coins [15]. 2,400 irregularly shaped 

coins are converted to time series of length 256, and rotation-

invariant DTW is used to search the database, taking 12.8 seconds 

per query. Using the UCR suite, this takes 0.8 seconds per query.   

Clustering of Star Light Curves is an important problem in 

astronomy [20], as it can be a preprocessing step in outlier 

detection [31]. We consider a dataset with 1,000 (purportedly) 

phase-aligned light curves of length 1,024, whose class has been 

determined by an expert [31]. Doing spectral clustering on this data 

with DTW (R = 5%) takes about 23 minutes for all algorithms, and 

averaged over 100 runs we find the Rand-Index is 0.62. While this 

time may seem slow, recall that we must do 499,500 DTW 

calculations with relatively long sequences. As we do not trust the 

original claim of phase alignment, we further do rotation-invariant 

DTW that dramatically increases Rand-Index to 0.76. Using 

SOTA, this takes 16.57 days, but if we use the UCR suite, this time 

falls by an order of magnitude, to just 1.47 days on a single core.  

6. DISCUSSION AND CONCLUSIONS 

While our work has focused on fast sequential search, we believe 

that for DTW, our work is faster than all known indexing efforts. 

Consider [2], which indexes a random walk time series of length 

250,000 to support queries of length 256. They built various 

indexes to support DTW queries, noting that the fastest of the four 

carefully tuned approaches requires approximately 15,000 pages 

accesses to answer a query. These disk accesses are necessarily 

random accesses. While they did not give wall clock time, if we 

assume an HDD spindle speed of 7,200 rpm (average rotational 

latency = 4.17ms), then just the disk I/O time to answer this query 

must be at least 62.55 seconds. However, as we have shown, we 

can load all of the data into the main memory with more efficient 

sequential disk accesses and answer these queries in 0.4 seconds, 

including disk I/O time, on a single core machine.  

Note that all experiments in this paper include the time taken to read 

the data from disk. However, for more than a few million objects 

this time is inconsequential thus we did not report it separately. 

We have made a strong and unintuitive claim in the abstract. We 

said that our UCR-DTW is faster than all current Euclidean 

distance searches. In Table 5, for example, we show that DTW 

can be three times faster than state-of-the-art ED searching. How 

is this possible? Recall that all Euclidean searches in the literature 

require an O(n) data normalizing step to be performed for each 

subsequence. Thus, no matter how effective the pruning/search 

strategy used, the amortized time for a single sequence must be at 

least O(n). In contrast, using the ideas developed in this work, the 

vast majority of potential DTW calculations are pruned with O(1) 

work, while some require up to O(n) work, and only a vanishingly 

small fraction require O(nR) work. The weighted average of these 

possibilities is less than O(n). 

To put our results in perspective, we compare them with a very 

recent state-of-the art embedding-based DTW search technique, 

called EBSM (including the variant called BSE) [28]. This is an 

excellent paper to use as a benchmark, as it exhaustively 

compares to almost all other methods in the literature, and it tests 

its contributions over different datasets, query lengths, warping 

widths, etc. In contrast to EBSM: 

 Our method is exact; EBSM is approximate.  

 EBSM requires setting some parameters (number of 

reference sequences, dimensionality, number of split points, 

etc.). Our method requires zero parameters.  

 EBSM requires offline preprocessing that takes over 3 hours 

for just 1 million objects. We have zero preprocessing time. 

 The EBSM method does not, and cannot, Z-normalize. As 

noted in Section 1.2.1, we believe that Z-normalizing is 

critical, and we have shown that failure to do it hurts on 45 

out of 45 of the UCR time series classification datasets.  

 EBSM can support queries in a predetermined range, which 

must be predetermined and limited for efficiently. In 

contrast, we have no minimum/maximum query length.  

 We can also handle exact queries under uniform scaling [11]. 

 Finally, we are simply much faster! (c.f. Section 1) 

Note, however, that there can be great utility in fast approximate 

search. There exist data mining algorithms that can use a 

combination of (hopefully few) exact distance measures and 

(hopefully much faster) approximate searches to produce overall 

exact results [35]. However an approximate search method being 

faster than our approach is a very high threshold to meet. 

We have shown our suite of ideas is 2 to 164 times faster than the 

true state-of-the-art, depending on the query/data. However, based 

on the quotes from papers that we have sprinkled throughout this 

work, we are sometimes more than 100,000 times faster than 

recent papers; how is this possible? The answer seems to be that it 

is possible to produce very naive implementations of DTW. For 

example, the recursive version of DTW can be one to three orders 

of magnitude slower than the iterative version, depending on the 

computer language and query length. Thus, the contributions of 

this paper are twofold. First, we have shown that much of the 

recent pessimism about using DTW for real-time problems was 



 

simply unwarranted [6]. Existing techniques, especially lower 

bounding, if carefully implemented can make DTW tractable for 

many problems. Our second contribution is the introduction of the 

UCR suite of techniques that make DTW and Euclidean distance 

subsequence search significantly faster than current state-of-the-

art techniques. 

We regret that the page limitations preclude full pseudo-code; 

however, full pseudo-code (and source-code) is available at [43]. 

In future work we plan to revisit algorithms for time series motif 

discovery [25][26], anomaly detection [35][31], time series 

summarization, shapelet extraction [39], clustering, and 

classification [6] in light of the results presented in this work. 
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