
Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista2,
Brandon Westover1, Qiang Zhu, Jesin Zakaria, Eamonn Keogh
 UC Riverside,

1
Brigham and Women's Hospital,

2
University of São Paulo

{rakthant, bcampana, mueen, qzhu, jzaka, eamonn}@cs.ucr.edu, gbatista@icmc.usp.br, mwestover@partners.org

ABSTRACT

Most time series data mining algorithms use similarity search as a

core subroutine, and thus the time taken for similarity search is the

bottleneck for virtually all time series data mining algorithms. The

difficulty of scaling search to large datasets largely explains why

most academic work on time series data mining has plateaued at

considering a few millions of time series objects, while much of

industry and science sits on billions of time series objects waiting

to be explored. In this work we show that by using a combination

of four novel ideas we can search and mine truly massive time

series for the first time. We demonstrate the following extremely

unintuitive fact; in large datasets we can exactly search under

DTW much more quickly than the current state-of-the-art

Euclidean distance search algorithms. We demonstrate our work on

the largest set of time series experiments ever attempted. In

particular, the largest dataset we consider is larger than the

combined size of all of the time series datasets considered in all data

mining papers ever published. We show that our ideas allow us to

solve higher-level time series data mining problem such as motif

discovery and clustering at scales that would otherwise be

untenable. In addition to mining massive datasets, we will show

that our ideas also have implications for real-time monitoring of

data streams, allowing us to handle much faster arrival rates

and/or use cheaper and lower powered devices than are currently

possible.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Application — Data

Mining

General Terms

Algorithm, Experimentation

Keywords

Time series, Similarity Search, Lower Bounds

1. INTRODUCTION

Time series data is pervasive across almost all human endeavors,

including medicine, finance, science and entertainment. As such,

it is hardly surprising that time series data mining has attracted

significant attention and research effort. Most time series data

mining algorithms require similarity comparisons as a subroutine,

and in spite of the consideration of dozens of alternatives, there is

increasing evidence that the classic Dynamic Time Warping

(DTW) measure is the best measure in most domains [6].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

KDD’12, August 12–16, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1462-6/12/08...$15.00.

It is difficult to overstate the ubiquity of DTW. It has been used in

robotics, medicine [5], biometrics, music/speech processing

[1][27][41], climatology, aviation, gesture recognition [3][38],

user interfaces [16][22][29][38], industrial processing,

cryptanalysis [7], mining of historical manuscripts [15], geology,

astronomy [20][31], space exploration, wildlife monitoring, etc.

As ubiquitous as DTW is, we believe that there are thousands of

research efforts that would like to use DTW, but find it too

computationally expensive. For example, consider the following:

“Ideally, dynamic time warping would be used to achieve this, but

due to time constraints…” [5]. Likewise, [3] bemoans DTW is

“still too slow for gesture recognition systems”, and [1] notes,

even “a 30 fold speed increase may not be sufficient for scaling

DTW methods to truly massive databases.” As we shall show, our

subsequence search suite of four novel ideas (called the UCR

suite) removes all of these objections. We can reproduce all the

experiments in all these papers in well under a second.

We make an additional claim for our UCR suite which is almost

certainly true, but hard to prove, given the variability in how

search results are presented in the literature. We believe our exact

DTW sequential search is much faster than any current

approximate search or exact indexed search. In a handful of

papers the authors are explicit enough with their experiments to

see this is true. Consider [28], which says it can answer queries of

length 1,000 under DTW with 95% accuracy, in a random walk

dataset of one million objects in 5.65 seconds. We can exactly

search this dataset in 3.8 seconds (on a very similar machine).

Likewise, a recent paper that introduced a novel inner product

based DTW lower bound greatly speeds up exact subsequence

search for a wordspotting task in speech. The authors state: “the

new DTW-KNN method takes approximately 2 minutes” [41];

however, we can reproduce their results in less than a second. An

influential paper on gesture recognition on multi-touch screens

laments that “DTW took 128.26 minutes to run the 14,400 tests for

a given subject’s 160 gestures” [38]. However, we can reproduce

these results in under 3 seconds.

1.1 A Brief Discussion of a Trillion

Since we use the word “trillion” in this work and to our

knowledge, it has never appeared in a data mining/database paper,

we will take the time to briefly discuss this number. By a trillion,

we mean the short scale version of the word [14], one million

million, or 1012, or 1,000,000,000,000.

If we have a single time series T of length one trillion, and we

assume it takes eight bytes to store each value, it will require 7.2

terabytes to store. If we sample a electrocardiogram at 256Hz, a

trillion data points would allow us to record 123 years of data,

every single heartbeat of the longest lived human [37].

A time series of length one trillion is a very large data object. In

fact, it is more than all of the time series data considered in all

papers ever published in all data mining conferences combined.

This is easy to see with a quick back-of-the-envelope calculation.

Up to 2011 there have been 1,709 KDD/SIGKDD papers

(including industrial papers, posters, tutorial/keynote abstracts,

etc. [9]). If every such paper was on time series, and each had

looked at five hundred million objects, this would still not add up

to the size of the data we consider here). However, the largest

time series data considered in a SIGKDD paper was a “mere” one

hundred million objects [35].

As large as a trillion is, there are thousands of research labs and

commercial enterprises that have this much data. For example,

many research hospitals have trillions of data points of EEG data,

NASA Ames has tens of trillions of datapoints of telemetry of

domestic flights, the Tennessee Valley Authority (a power

company) records a trillion data points every four months, etc.

1.2 Explicit Statement of our Assumptions

Our work is predicated on several assumptions that we will now

enumerate and justify.

1.2.1 Time Series Subsequences must be Normalized

In order to make meaningful comparisons between two time

series, both must be normalized. While this may seem intuitive,

and was explicitly empirically demonstrated a decade ago in a

widely cited paper [19], many research efforts do not seem to

realize this. This is critical because some speedup techniques only

work on the un-normalized data; thus, the contributions of these

research efforts may be largely nullified [8][28].

To make this clearer, let us consider the classic Gun/NoGun

classification problem which has been in the public domain for

nearly a decade. The data, which as shown in Figure 1.center is

extracted from a video sequence, was Z-normalized. The problem

has a 50/150 train/test split and a DTW one-nearest-neighbor

classifier achieves an error rate of 0.087.

Suppose the data had not been normalized. As shown in Figure

1.left and Figure 1.right, we can simulate this by adding a tiny

amount of scaling/offset to the original video. In the first case we

randomly change the offset of each time series by ± 10%, and in

the second case we randomly change the scale (amplitude) by ±

10%. The new one-nearest-neighbor classifier error rates,

averaged over 1,000 runs, are 0.326 and 0.193, respectively,

significantly worse than the normalized case.

Figure 1: Screen captures from the original video from which the

Gun/NoGun data was culled. The center frame is the original size; the

left and right frames have been scaled by 110% and 90% respectively.

While these changes are barely perceptible, they double the error rate

if normalization is not used. (Video courtesy of Dr. Ratanamahatana)

It is important to recognize that these tiny changes we made are

completely dwarfed by changes we might expect to see in a real

world deployment. The apparent scale can be changed by the

camera zooming, by the actor standing a little closer to the

camera, or by an actor of a different height. The apparent offset

can be changed by this much by the camera tilt angle, or even by

the actor wearing different shoes.

While we did this experiment on a visually intuitive example, all

forty-five datasets in the UCR archive increase their error rate by

at least 50% if we vary the offset and scale by just ± 5%.

It is critical to avoid a common misunderstanding. We must

normalize each subsequence before making a comparison, it is not

sufficient to normalize the entire dataset.

1.2.2 Dynamic Time Warping is the Best Measure

It has been suggested many times in the literature that the problem

of time series data mining scalability is only due to DTW’s oft-

touted lethargy, and that we could solve this problem by using

some other distance measure. As we shall later show, this is not

the case. In fact, as we shall demonstrate, our optimized DTW

search is much faster than all current Euclidean distance searches.

Nevertheless, the question remains, is DTW the right measure to

speed up? Dozens of alternative measures have been suggested.

However, recent empirical evidence strongly suggests that none of

these alternatives routinely beats DTW. When put to the test on a

collection of forty datasets, the very best of these measures are

sometimes a little better than DTW and sometimes a little worse

[6]. In general, the results are consistent with these measures

being minor variants or “flavors” of DTW (although they are not

typically presented this way). In summary, after an exhaustive

literature search of more than 800 papers [6], we are not aware of

any distance measure that has been shown to outperform DTW by

a statistically significant amount on reproducible experiments

[6][19]. Thus, DTW is the measure to optimize (recall that DTW

subsumes Euclidean distance as a special case).

1.2.3 Arbitrary Query Lengths cannot be Indexed

If we know the length of queries ahead of time we can mitigate at

least some of the intractability of search by indexing the data

[2][11][35]. Although to our knowledge no one has built an index

for a trillion real-valued objects (Google only indexed a trillion

webpages as recently as 2008), perhaps this could be done.

However, what if we do not know the length of the queries in

advance? At least two groups have suggested techniques to index

arbitrary length queries [18][23]. Both methods essentially build

multiple indexes of various lengths, and at query time search the

shorter and longer indexes, “interpolating” the results to produce

the nearest neighbor produced by a virtual index of the correct

length. This is an interesting idea, but it is hard to imagine it is the

answer to our problem. Suppose we want to support queries in the

range of, say, 16 to 4096. We must build indexes that are not too

different in size, say MULTINDEX-LENGTHS = {16, 32, 64, .., 1024,

2048, 4096}1. However, for time series data the index is typically

about one-tenth the size of the data [6][18]. Thus, we have doubled

the amount of disk space we need. Moreover, if we are interested in

tackling a trillion data objects we clearly cannot fit any index in the

main memory, much less all of them, or any two of them.

There is an underappreciated reason why this problem is so hard;

it is an implication of the need for normalization discussed above.

Suppose we have a query Q of length 65, and an index that

supports queries of length 64. We search the index for Q[1:64] and

find that the best match for it has a distance of, say, 5.17. What can

we say about the best match for the full Q? The answer is

surprisingly little: 5.17 is neither an upper bound nor a lower bound

to the best match for Q. This is because we must renormalize the

subsequence when moving from Q[1:64] to the full Q. If we do not

normalize any data, the results are meaningless (cf. Section 1.2.1),

and the idea might be faster than sequential search. However, if

we normalize the data we get so little information from indexes of

the wrong length that we are no better off than sequential search.

In summary, there are no known techniques to support similarity

search of arbitrary lengths once we have datasets in the billions.

1 This collection of sizes is very optimistic. The step size should be at

most 100, creating two orders of magnitude space overhead.

1.2.4 There Exists Data Mining Problems that we

are Willing to Wait Some Hours to Answer

This point is almost self-evident. If a team of entomologists has

spent three years gathering 0.2 trillion datapoints [35], or

astronomers have spent billions dollars to launch a satellite to

collect one trillion datapoints of star-light curve data per day [20],

or a hospital charges $34,000 for a daylong EEG session to collect

0.3 trillion datapoints (c.f. Section 5.2) [26], then it is not

unreasonable to expect that these groups would be willing to

spend hours of CPU time to glean knowledge from their data.

2. RELATED WORK
Our review of related work on time series indexing is necessarily

superficial, given the vast amount of work on the topic and page

limits. Instead, we refer the interested reader to two recent papers

[6][28], which have comprehensive reviews of existing work. It

has now become common (although not yet routine) to see papers

indexing/mining datasets with millions of objects. For example,

Jegou et al. have demonstrated very fast approximate main

memory search of 10 million images [17]. However, this work

and much of the current work that addresses multi-million object

datasets focus on approximate search, whereas we are only

considering exact search here. Moreover, we are interested in

datasets which are five to six orders of magnitude larger than

anything else considered in the literature [6]. Thus, comparisons

to related work are very difficult to do meaningfully.

3. BACKGROUND AND NOTATIONS

3.1 Definitions and Notations
We begin by defining the data type of interest, time series:

Definition 1: A Time Series T is an ordered list: T=t1,t2,...,tm.

While the source data is one long time series, we ultimately wish

to compare it to shorter regions called subsequences:

Definition 2: A subsequence Ti,k of a time series T is a shorter

time series of length k which starts from position i. Formally,

Ti,k = ti,ti+1,..,ti+k-1 , 1≤ i ≤ m-k+1.

Where there is no ambiguity, we may refer to subsequence Ti,k as

C, as in a Candidate match to a query Q . We denote |Q| as n.

Definition 3: The Euclidean distance (ED) between Q and C,

where |Q| =|C|, is defined as:

We illustrate these definitions in Figure 2.

Figure 2: A long time series T can have a subsequence Ti,k extracted

and compared to a query Q under the Euclidean distance, which is

simply the square root of the sum of the squared hatch line lengths

The Euclidean distance, which is a one-to-one mapping of the two

sequences, can be seen as a special case of DTW, which allows a

one-to-many alignment, as illustrated in Figure 3.

To align two sequences using DTW, an n-by-n matrix is

constructed, with the (ith, jth) element of the matrix being the

Euclidean distance d(qi, cj) between the points qi and cj.

A warping path P is a contiguous set of matrix elements that

defines a mapping between Q and C. The tth element of P is

defined as pt = (i, j)t so we have:

P = p1, p2, …, pt, …, pT n ≤ T ≤ 2n-1

The warping path that defines the alignment between the two time

series is subject to several constraints. For example, the warping

path must start and finish in diagonally opposite corner cells of

the matrix, the steps in the warping path are restricted to adjacent

cells, and the points in the warping path must be monotonically

spaced in time. In addition, virtually all practitioners using DTW

also constrain the warping path in a global sense by limiting how

far it may stray from the diagonal [6][28]. A typical constraint is

the Sakoe-Chiba Band which states that the warping path cannot

deviate more than R cells from the diagonal [6][28][32].

Figure 3: left) Two time series which are similar but out of phase.
right) To align the sequences we construct a warping matrix, and
search for the optimal warping path (red/solid squares). Note that
Sakoe-Chiba Band with width R is used to constrain the warping path

4. ALGORITHMS

4.1 Known Optimizations

We begin by discussing previously known optimizations of

sequential search under ED and/or DTW.

4.1.1 Using the Squared Distance

Both DTW and ED have a square root calculation. However, if we

omit this step, it does not change the relative rankings of nearest

neighbors, since both functions are monotonic and concave.

Moreover, the absence of the square root function will make later

optimizations possible and easier to explain. Note that this is only

an internal change in the code; the user can still issue range

queries with the original units, as the code simply internally

squares the desired value, does the search, and after finding the

qualifying objects, takes the square root of the distances for the

qualifying objects and presents the answers to the user.

Where there is no ambiguity below, we will still use ‘DTW’ and

‘ED’; however, the reader may assume we mean the squared

versions of them.

4.1.2 Lower Bounding

A classic trick to speed up sequential search with an expensive

distance measure such as DTW is to use a cheap-to-compute

lower bound to prune off unpromising candidates [6][20]. Figure

4 shows two such lower bounds, one of which we have modified.

Figure 4: left) The LB_KimFL lower bound is O(1) and uses the distances
between the First (Last) pair of points from C and Q as a lower bound.
It is a simplification of the original LB_Kim [21]. right) The LB_Keogh
lower bound is O(n) and uses the Euclidean distance between the
candidate sequence C and the closer of {U,L} as a lower bound

C= Ti,k
Q

T

C

Q

R

Similar, but out of phase peaks …

… produce a large Euclidean distance.

However this can be corrected by DTWs
nonlinear alignment.

CQ

CQ

C
U

L

CQ

The original definition of LB_Kim also uses the distances between

the maximum values from both time series and the minimum

values between both time series in the lower bound, making it

O(n). However, for normalized time series these two extra values

tend to be tiny and it does not pay to compute them, and ignoring

them allows the bound to be O(1), a fact we will exploit below.

The LB_Keogh bound is well-documented elsewhere, for brevity we

ask the unfamiliar reader to refer to [11][20][6] for a review.

4.1.3 Early Abandoning of ED and LB_Keogh

During the computation of the Euclidean distance or the LB_Keogh

lower bound, if we note that the current sum of the squared

differences between each pair of corresponding datapoints

exceeds the best-so-far, then we can stop the calculation, secure in

the knowledge that the exact distance or lower bound, had we

calculated it, would have exceeded the best-so-far, as in Figure 5.

Figure 5: An illustration of ED early abandoning. We have a best-so-
far value of b. After incrementally summing the first nine (of thirty-
two) individual contributions to the ED we have exceeded b, thus it is
pointless to continue the calculation [20]

4.1.4 Early Abandoning of DTW

If we have computed a full LB_Keogh lower bound, but we find that

we must calculate the full DTW, there is still one trick left up our

sleeves. We can incrementally compute the DTW from left to

right, and as we incrementally calculate from 1 to K, we can sum

the partial DTW accumulation with the LB_Keogh contribution

from K+1 to n. Figure 6 illustrates this idea.

Figure 6: left) At the top we see a completed LB_Keogh calculation, and
below it we are about to begin a full DTW calculation. right) We can
imagine the orange/dashed line moving from left to right. If we sum
the LB_Keogh contribution from the right of dashed line (top) and the
partial (incrementally calculated) DTW contribution from the left side
of the dashed line (bottom), this is will be a lower bound to DTW(Q,C)

This sum of DTW(Q1:K,C1:K) + LB_Keogh(QK+1:n,CK+1:n) is a lower

bound to the true DTW distance (i.e., DTW(Q1:n,C1:n)). Moreover,

with careful implementation the overhead costs are negligible. If

at any time this lower bound exceeds the best-so-far distance we

can admissibly stop the calculation and prune this C.

4.1.5 Exploiting Multicores

It is important to note that while we can get essentially linear

speedup using multicores, the software improvements we will

present in the next section completely dwarf the improvements

gained by multicores. As a concrete example, a recent paper shows

that a search of a time series of length 421,322 under DTW takes

“3 hours and 2 minutes on a single core. The (8-core version) was

able to complete the computation in 23 minutes” [34]. However,

using our ideas, we can search a dataset of this size in just under

one second on a single core. Nevertheless, as it is simple to port to

the now ubiquitous multicores, we consider them below.

4.2 Novel Optimizations: The UCR Suite

We are finally in a position to introduce our four original

optimizations of search under ED and/or DTW.

4.2.1 Early Abandoning Z-Normalization

To the best of our knowledge, no one has ever considered

optimizing the normalization step. This is surprising, since it takes

slightly longer than computing the Euclidean distance itself.

Our insight here is that we can interleave the early abandoning

calculations of Euclidean distance (or LB_Keogh) with the online Z-

normalization. In other words, as we are incrementally computing

the Z-normalization, we can also incrementally compute the

Euclidean distance (or LB_Keogh) of the same datapoint. Thus, if

we can early abandon, we are pruning not just distance calculation

steps as in Section 4.1.3, but also normalization steps.

Recall that the mean and standard deviation of a sample can be

computed from the sums of the values and their squares.

Therefore, it takes only one scan through the sample to compute

the mean and standard deviation, using the equations below.

 im
x1

2212 im
x

In similarity search, every subsequence needs to be normalized

before it is compared to the query (c.f. Section 1.2.1). The mean

of the subsequence can be obtained by keeping two running sums

of the long time series which have a lag of exactly m values. The

sum of squares of the subsequence can be similarly computed.

The formulas are given below for clarity.

mk

i

i

k

i

im
xx

11

1

2

1

2

1

212

mk

i

i

k

i

im
xx

The high-level outline of the algorithm is presented in Table 1.

Table 1: Subsequence search with online Z-normalization

Algorithm Similarity Search

Procedure [nn] = SimilaritySearch (T,Q)
1 best-so-far ← ∞, count← 0
2 Q ← z-normalize(Q)
3 while !next(T)
4 i← mod(count,m)
5 X[i] ←next(T)
6 ex← ex+X[i], ex2← ex2+X[i]2

7

if count ≥ m-1
8

 µ← ex/m, σ← sqrt(ex2/m - µ 2)

9

 j← 0, dist← 0
10

 while j < m and dist < best-so-far

11 dist← dist + (Q[j]-(X[mod(i+1+j,m)]-µ)/σ)2
12 j← j+1
13 if dist < best-so-far
14 best-so-far ←dist, nn← count
15 ex← ex-X[mod(i+1,m)]
16 ex2← ex2-X[mod(i+1,m)]2
17 count ← count+1

Note the online normalization in line 11 of the algorithm, which

allows the early abandoning of the distance computation in

addition to the normalization.

In the above algorithm, we use a circular buffer (X) to store the

current subsequence being compared with the query Q.

One potential problem of this method of maintaining the statistics is

the accumulation of the floating-point error [13]. The effect of such

error accumulation is more profound if all of the numbers are

positive, as in our case with sum of squares. With the “mere”

millions of datapoints the rest of the community has dealt with

this effect is negligible, however when dealing with billions of

datapoints it will affect the answer. Our simple solution is that

once every one million subsequences, we force a complete Z-

normalization to “flush out” any accumulated error.

CQ

We can early abandon at this point

CQ

C
U

L

Fully calculated LBKeogh

About to begin calculation of DTW

Partial
calculation of

DTW

Partial truncation of
LBKeogh

K = 0 K = 11

4.2.2 Reordering Early Abandoning

In the previous section, we saw that the idea of early abandoning

discussed in Section 4.1.3 can be generalized to the Z-

normalization step. In both cases, we assumed that we

incrementally compute the distance/normalization from left to

right. Is there a better ordering?

Consider Figure 7.left, which shows the normal left-to-right

ordering in which the early abandoning calculation proceeds. In

this case nine of the thirty-two calculations were performed before

the accumulated distance exceeded b and we could abandon. In

contrast, Figure 7.right uses a different ordering and was able to

abandon earlier, with just five of the thirty-two calculations.

Figure 7: left) ED early abandoning. We have a best-so-far value of b.

After incrementally summing the first nine individual contributions to

the ED, we have exceeded b; thus, we abandon the calculation. right)

A different ordering allows us to abandon after just five calculations

This example shows what is obvious: on a query-by-query basis,

different orderings produce different speedups. However, we want

to know if there is a universal optimal ordering that we can

compute in advance. This seems like a difficult question because

there are n! possible orderings to consider.

We conjecture that the universal optimal ordering is to sort the

indices based on the absolute values of the Z-normalized Q. The

intuition behind this idea is that the value at Qi will be compared

to many Ci’s during a search. However, for subsequence search,

with Z-normalized candidates, the distribution of many Ci’s will

be Gaussian, with a mean of zero. Thus, the sections of the query

that are farthest from the mean, zero, will on average have the

largest contributions to the distance measure.

To see if our conjecture is true we took the heartbeat discussed in

Section 5.4 and computed its full Euclidean distance to a million

other randomly chosen ECG sequences. With the conceit of

hindsight we computed what the best ordering would have been.

For this we simply take each Ci and sort them, largest first, by

their sum of their contributions to the Euclidean distance. We

compared this empirically optimal ordering with our predicted

ordering (sorting the indices on the absolute values of Q) and

found the rank correlation is 0.999. Note that we can use this trick

for both ED and LB_Keogh, and we can use it in conjunction with

the early abandoning Z-normalization technique (Section 4.2.1).

4.2.3 Reversing the Query/Data Role in LB_Keogh

Normally the LB_Keogh lower bound discussed in Section 4.1.2

builds the envelope around the query, a situation we denote

LB_KeoghEQ for concreteness, and illustrate in Figure 8.left. This

only needs to be done once, and thus saves the time and space

overhead that we would need if we built the envelope around each

candidate instead, a situation we denote LB_KeoghEC.

Figure 8: left) Normally the LB_Keogh envelope is built around the
query (see also Figure 4.right), and the distance between C and the
closer of {U,L} acts as a lower bound. right) However, we can reverse
the roles such that the envelope is built around C and the distance
between Q and the closer of {U,L} is the lower bound

However, as we show in the next section, we can selectively

calculate LB_KeoghEC in a “just-in-time” fashion, only if all other

lower bounds fail to prune. This removes space overhead, and as

we will see, the time overhead pays for itself by pruning more full

DTW calculations. Note that in general, LB_KeoghEQ ≠ LB_KeoghEC

and that on average each one is larger about half the time.

4.2.4 Cascading Lower Bounds

One of the most useful ways to speed up time series similarity

search is the use of lower bounds to admissibly prune off

unpromising candidates [6][11]. This has led to a flurry of

research on lower bounds, with at least eighteen proposed for

DTW [1][6][20][21][33][40][41][42]. In general, it is difficult to

state definitively which is the best bound to use, since there is a

tradeoff between the tightness of the lower bound and how fast it

is to compute. Moreover, different datasets and even different

queries can produce slightly different results. However, as a

starting point, we implemented all published lower bounds and

tested them on fifty different datasets from the UCR archive,

plotting the (slightly idealized for visual clarity) results in Figure

9. Following the literature [20], we measured the tightness of each

lower bound as LB(A,B)/DTW(A,B) over 100,000 randomly

sampled subsequences A and B of length 256.

Figure 9: The mean tightness of selected lower bounds from the
literature plotted against the time taken to compute them

The reader will appreciate that a necessary condition for a lower

bound to be useful is for it to appear on the “skyline” shown with

a dashed line; otherwise there exists a faster-to-compute bound

that is at least as tight, and we should use that instead. Note that

the early abandoning DTW discussed in Section 4.1.4 is a special

case in that it produces a spectrum of bounds, as at every stage of

computation it is incrementally computing the DTW until the last

computation gives the final true DTW distance.

Which of the lower bounds on the skyline should we use? Our

insight is that we should use all of them in a cascade. We first use

the O(1) LB_KimFL, which while a very weak lower bound prunes

many objects. If a candidate is not pruned at this stage we

compute the LB_KeoghEQ. Note that as discussed in Sections 4.1.3,

4.2.1 and 4.2.2, we can incrementally compute this; thus, we may

be able to abandon anywhere between O(1) and O(n) time. If we

complete this lower bound without exceeding the best-so-far, we

reverse the query/data role and compute LB_KeoghEC (cf. Section

4.2.3). If this bound does not allow us to prune, we then start the

early abandoning calculation of DTW (cf. Section 4.1.4).

Space limits preclude detailed analysis of which lower bounds

prune how many candidates. Moreover, the ratios depend on the

query, data and size of the dataset. However, we note the

following: Detailed analysis is available at [43], lesion studies tell

us that all bounds do contribute to speedup; removing any lower

bound makes search at least twice as slow; and finally, using this

technique we can prune more than 99.9999% of DTW

calculations for a large-scale search.

5. EXPERIMENTAL RESULTS
We begin by noting that we have taken extraordinary measures to

ensure our experiments are reproducible. In particular, all data and

code will be available in perpetuity, archived at [43]. Moreover,

the site contains several videos which visualize some of the

experiments in real time. We consider the following methods:

 Naive: Each subsequence is Z-normalized from scratch. The

full Euclidean distance or the DTW is used at each step.

CC

Q Q

1
3

2 4

6
5

7

9
8

3
5

1 42

Standard early abandon ordering Optimized early abandon ordering

C
U

L

UQ

L

0

1

O(1) O(n) O(nR)

LB_KimFL
LB_KeoghEQ

max(LB_KeoghEQ, LB_KeoghEC)

Early_abandoning_DTW

LB_Kim

LB_Yi

T
ig

h
tn

es
s

of

lo
w

er
 b

o
u

nd

LB_Ecorner

LB_FTW DTW

LB_PAA

Approximately 2/3 of the papers in the literature do (some

minor variant of) this.

 State-of-the-art (SOTA): Each sequence is Z-normalized

from scratch, early abandoning is used, and the LB_Keogh

lower bound is used for DTW. Approximately 1/3 of the

papers in the literature do (some minor variant of) this.

 UCR Suite: We use all of our applicable speedup techniques.

DTW uses R = 5% unless otherwise noted. For experiments where

Naive or SOTA takes more than 24 hours to finish, we terminate

the experiments and present the interpolated values, shown in

gray. Where appropriate we also compare to an oracle algorithm:

 GOd’s ALgorithm (GOAL) is an algorithm that only

maintains the mean and standard deviation using the online

O(1) incremental calculations.

It is easy to see that, short of an algorithm that precomputes and

stores a massive amount of data (quadratic in m), GOAL is a

lower bound on the fastest possible algorithm for either ED or

DTW subsequence search with unconstrained and unknown

length queries. The acronym reminds us that we would like to be

as close to this goal value as possible.

It is critical to note that our implementations of Naive, SOTA and

GOAL are incredibly efficient and tightly optimized, and they are

not “crippled” in any way. For example, had we wanted to claim

spurious speedup, we could implement SOTA recursively rather

than iteratively, and that would make SOTA at least an order of

magnitude slower. In particular, the code for Naive, SOTA and

GOAL is exactly the same code as the UCR suite, except the

relevant speedup techniques have been commented out.

While very detailed spreadsheets of all of our results are archived

in perpetuity at [43], we present subsets of our results below. We

consider wall clock time on a 2 Intel Xeon Quad-Core E5620

2.40GHz with 12GB 1333MHz DDR3 ECC Unbuffered RAM

(using just one core unless otherwise explicitly stated).

5.1 Baseline Tests on Random Walk

We begin with experiments on random walk data. Random walks

model financial data very well and are often used to test similarity

search schemes. More importantly for us, they allow us to do

reproducible experiments on massive datasets without the need to

ship large hard drives to interested parties. We have simply

archived the random number generator and the seeds used. We

have made sure to use a very high-quality random number

generator that has a period longer than the longest dataset we

consider. In Table 2 we show the length of time it takes to search

increasingly large datasets with queries of length 128. The

numbers are averaged over 1000, 100 and 10 queries, respectively.

Table 2: Time taken to search a random walk dataset with |Q| =128

 Million (Seconds) Billion (Minutes) Trillion (Hours)

UCR-ED 0.034 0.22 3.16

SOTA-ED 0.243 2.40 39.80

UCR-DTW 0.159 1.83 34.09

SOTA-DTW 2.447 38.14 472.80

These results show a significant difference between SOTA and

UCR suite. However, this is for a very short query; what happens

if we consider longer queries? As we show in Figure 10, the ratio

of SOTA-DTW over UCR-DTW improves for longer queries.

To reduce visual clutter we have only placed one Euclidean

distance value on the figure, for queries of length 4,096.

Remarkably, UCR-DTW is even faster than SOTA Euclidean

distance. As we shall see in our EEG and DNA examples below,

even though 4,096 is longer than any published query lengths in

the literature, there is a need for even longer queries.

Figure 10: The time taken to search random walks of length 20

million with increasingly long queries, for three variants of DTW. In

addition, we include just length 4,096 with SOTA-ED for reference

It is also interesting to consider the results of the 128-length DTW

queries as a ratio over GOAL. Recall that the cost for GOAL is

independent of query length, and this experiment is just 23.57

seconds. The ratios for Naive, SOTA and UCR suite are 5.27,

2.74 and 1.41, respectively. This suggests that we are

asymptomatically closing in on the fastest possible subsequence

search algorithm for DTW. Another interesting ratio to consider is

the time for UCR-DTW over UCR-ED, which is just 1.18. Thus,

the time for DTW is not significantly different than that for ED,

an idea which contradicts an assumption made by almost all

papers on time series in the last decade (including papers by the

current authors).

5.2 Supporting Long Queries: EEG

The previous section shows that we gain the greatest speedup for

long queries, and here we show that such long queries are really

needed. The first user of the UCR suite was Dr. Sydney Cash,

who together with author B.W. wants to search massive archives

of EEG data for examples of epileptic spikes, as shown Figure 11.

Figure 11: Query Q shown with a match from the 0.3 trillion EEG dataset

From a single patient S.C. gathered 0.3 trillion datapoints and

asked us to search for a prototypical epileptic spike Q he created

by averaging spikes from other patients. The query length was

7,000 points (0.23 seconds). Table 3 shows the results.

Table 3: Time to search 303,523,721,928 EEG datapoints, |Q| = 7000

Note that only ED is considered here because DTW

may produce false positives caused by eye blinks

 UCR-ED SOTA-ED

EEG 3.4 hours 494.3 hours

This data took multiple sessions over seven days to collect, at a

cost of approximately $34,000 [43], so the few hours of CPU time

we required to search the data are dwarfed in comparison.

5.3 Supporting Very Long Queries: DNA
Most work on time series similarity search (and all work on time

series indexing) has focused on relatively short queries, less than

or equal to 1,024 data points in length. Here we show that we can

efficiently support queries that are two orders of magnitude

longer.

Table 4: An algorithm to convert DNA to time series

T1 = 0, for i = 1 to |DNAstring|
 if DNAstringi = A, then Ti+1 = Ti + 2
 if DNAstringi = G, then Ti+1 = Ti + 1
 if DNAstringi = C, then Ti+1 = Ti - 1
 if DNAstringi = T, then Ti+1 = Ti - 2

Naïve DTW

100

1000

10000

seconds

SOTA DTW

OPT DTW

(SOTA ED)

For query lengths of 4,096
(rightmost part of this graph)

The times are:
Naïve DTW : 24,286

SOTA DTW : 5,078

SOTA ED : 1,850

OPT DTW : 567

Query Length

UCR DTW
UCR DTW

0 1000 2000 3000 4000 5000 6000 7000

Recorded with platinum-tipped silicon

micro-electrode probes inserted 1.0 mm

into the cerebral cortex

Recordings made from 96 active

electrodes, with data sampled at

30kHz per electrode

Continuous Intracranial EEG

Q

We consider experiments with DNA that has been converted to

time series. However, it is important to note that we are not

claiming any particular bioinformatics utility for our work; it is

simply the case that DNA data is massive, and the ground truth

can be obtained through other means. As in [35], we use the

algorithm in Table 4 to convert DNA to time series2.

We chose a section of Human chromosome 2 (H2) to experiment

with. We took a subsequence beginning at 5,709,500 and found its

nearest neighbor in the genomes of five other primates, clustering

the six sequences with single linkage to produce the dendrogram

shown in Figure 12.

Figure 12: A subsequence of DNA from Human chromosome 2, of

length 72,500 beginning at 5,709,500 is clustered using single linkage

with its Euclidean distance nearest neighbors from five other primates

Pleasingly, the clustering is the correct grouping for these

primates [24]. Moreover, because Human chromosome 2 is

widely accepted to be a result of an end-to-end fusion of two

progenitor ancestral chromosomes 2 and 3 [24], we should expect

that the nearest neighbors for the non-human apes come from one

of these two chromosomes, and that is exactly what we found.

Our query is of length 72,500, and the genome chimp is

2,900,629,179 base pairs in length. The single-core nearest

neighbor search in the entire chimp genome took 38.7 days using

Naive, 34.6 days using SOTA, but only 14.6 hours using the UCR

suite. As impressive as this is, as we shall show in the next

section, we can do even better.

5.3.1 Can we do better than UCR Suite?

We claim that for the problem of exact similarity search with

arbitrary length queries, our UCR suite is close to optimal.

However, it is instructive to consider an apparent counterexample

and its simple “patch.”

Consider the search for a query of length 64 considered in Section

5.1. Using GOAL took 9.18 seconds, but UCR suite took only a

little longer, just 10.64 seconds. Assume that the original query was:

 Q = [2.34, 2.01, 1.99,...]

But we make it three times longer by padding it like this:

 QP = [2.34, 2.34, 2.34, 2.01, 2.01, 2.01, 1.99, 1.99, 1.99,...]

Further assume that we do the same to database T, to get TP,

which is three times longer. What can we now say about the time

taken for the algorithms? GOAL will take exactly three times

longer, and Naive takes exactly nine times longer, because each

ED calculation takes three times longer and there are three times

as many calculations to do. Our UCR suite does not take nine

times longer, as it can partly exploit the “smoothness” of the data;

2 To preserve the reversible one-to-one mapping between time series and DNA we

normalize the offset by subtracting round(mean) and we do not divide by the STD.

however, its overhead is greater than three. Clearly, if we had

known that the data was contrived in this manner, we could have

simply made a one-in-three downsampled version of the data and

query, done the search on this data, and reported the location and

distance back in the TP space by multiplying each by three.

Of course, this type of pathological contrived data does not occur

in nature. However, some datasets are richly oversampled, and

this has a very similar effect. For example, a decade ago, most

ECGs were sampled at 256Hz, and that seems to be adequate for

virtually all data analysis applications [4]. However, current

machines typically sample at 2,048 Hz which, given the above

reasoning, would take up to sixty-four times longer to search

((2,048/256)2) with almost certainly identical results.

We believe that oversampled data can be searched more quickly

by exploiting a provisional search in a downsampled version of

the data that can quickly provide a low best-so-far, which, when

projected back into the original space can be used to “prime” the

search by setting a low best-so-far at the beginning of the search,

thus allowing the early abandoning techniques to be more

efficient.

To test this idea, we repeated the experiment in the previous

section, with a one-in-ten downsampled version of the chimp

genome / human query. The search took just 475 seconds. We

denoted the best matching subsequence distance rD. We reran the

full resolution search after initializing the best-so-far to rD*10.

This time the search fell from 14.64 hours to 4.17 hours, and we

found the same answer, as we logically must.

Similar ideas have been proposed under the name of Iterative

Deepening DTW [1] or Multi Scale DTW [27][42]; thus, we will

not further develop this idea here. We simply caution the reader

that oversampled (i.e., “smooth”) data may allow more speedup

than a direct application of the UCR suite may initially suggest.

5.4 Realtime Medical and Gesture Data

The proliferation of inexpensive low-powered sensors has

produced an explosion of interest in monitoring real time streams

of medical telemetry and/or Body Area Network (BAN) data [22].

There are dozens of research efforts in this domain that explicitly

state that while monitoring under DTW is desirable, it is

impossible [38]. Thus, approximations of, or alternatives to DTW

are used. Dozens of suggested workarounds have been suggested.

For example, [16] resorts to only “dealing with shorter test and

class templates, as this is more efficient”; many research efforts

including [36] resort to a low cardinality version of DTW using

integers, or DTW approximations that operate on piecewise linear

approximations of the signals [20][29], or drastically

downsampled versions of the data [12][30]. In spite of some

progress from existing ideas such as lower bounding, [3] bemoans

DTW is “still too slow for gesture recognition systems”, [29]

laments that the “problem of searching with DTW (is)

intractable”, [12] says “Clearly (DTW) is unusable for real-time

recognition purposes” and [34] notes “Processing of one hour of

speech using DTW takes a few hours.”

We believe that the UCR suite makes all of these objections moot.

DTW can be used to spot gestures/brainwaves/musical

patterns/anomalous heartbeats in real-time, even on low-powered

devices, even with multiple channels of data, and even with

multiple simultaneous queries.

To see this, we created a dataset of one year of electrocardiograms

(ECGs) sampled at 256Hz. We created this data by concatenating

the ECGs of more than two hundred people, and thus we have a

highly diverse dataset, with 8,518,554,188 datapoints. We created

a query by asking USC cardiologist Dr. Helga Van Herle to

Chromosome 2: BP 5709500:5782000

Human

Chimp

Gorilla

Orangutan

Gibbon

Rhesus

macaque

Catarrhines

Hominidae

Homininae

Hominini

Hominoidea

produce a query she searches for on a regular basis, she created an

idealized Premature Ventricular Contraction (PVC). The results

are shown in Table 5. While this was on our multi-core desktop

machine, the fact that our results are 29,219 times faster than real-

time (256Hz) suggests that real-time DTW is tenable even on low-

power devices.

Table 5: Time taken to search one year of ECG data with |Q| = 421

 UCR-ED SOTA-ED UCR-DTW SOTA-DTW

ECG 4.1 minutes 66.6 minutes 18.0 minutes 49.2 hours

5.5 Speeding up Existing Mining Algorithms
In this section, we demonstrate that we can speed up much of the

code in the time series data mining literature with minimal effort,

simply by replacing their distance calculation subroutines with the

UCR suite. In many cases, the difference is small, because the

algorithms in question already typically try to prune as many

distance calculations as possible. As an aside, in at least some

cases we believe that the authors could benefit from redesigning

the code in light of the drastically reduced cost for similarity

search that UCR suite offers. Nevertheless, even though the

speedups are relatively small (1.5X to 16X), they are “free”,

requiring just minutes of cut-and-paste code editing.

Time Series Shapelets have garnered significant interest since

their introduction in 2009 [39]. We obtained the original code and

tested it on the Face (four) dataset, finding it took 18.9 minutes to

finish. After replacing the similarity search routine with UCR

suite, it took 12.5 minutes to finish.

Online Time Series Motifs generalize the idea of mining

repeated patterns in a batch time series to the streaming case [25].

We obtained the original code and tested it on the EEG dataset

used in the original paper. The fastest running time for the code

assuming linear space is 436 seconds. After replacing the distance

function with UCR suite, it took just 156 seconds.

Classification of Historical Musical Scores [10]. This dataset

has 4,027 images of musical notes converted to time series. We

used the UCR suite to compute the rotation-invariant DTW leave-

one-out classification. It took 720.6 minutes. SOTA takes 142.4

hours. Thus, we have a speedup factor of 11.8.

Classification of Ancient Coins [15]. 2,400 irregularly shaped

coins are converted to time series of length 256, and rotation-

invariant DTW is used to search the database, taking 12.8 seconds

per query. Using the UCR suite, this takes 0.8 seconds per query.

Clustering of Star Light Curves is an important problem in

astronomy [20], as it can be a preprocessing step in outlier

detection [31]. We consider a dataset with 1,000 (purportedly)

phase-aligned light curves of length 1,024, whose class has been

determined by an expert [31]. Doing spectral clustering on this data

with DTW (R = 5%) takes about 23 minutes for all algorithms, and

averaged over 100 runs we find the Rand-Index is 0.62. While this

time may seem slow, recall that we must do 499,500 DTW

calculations with relatively long sequences. As we do not trust the

original claim of phase alignment, we further do rotation-invariant

DTW that dramatically increases Rand-Index to 0.76. Using

SOTA, this takes 16.57 days, but if we use the UCR suite, this time

falls by an order of magnitude, to just 1.47 days on a single core.

6. DISCUSSION AND CONCLUSIONS

While our work has focused on fast sequential search, we believe

that for DTW, our work is faster than all known indexing efforts.

Consider [2], which indexes a random walk time series of length

250,000 to support queries of length 256. They built various

indexes to support DTW queries, noting that the fastest of the four

carefully tuned approaches requires approximately 15,000 pages

accesses to answer a query. These disk accesses are necessarily

random accesses. While they did not give wall clock time, if we

assume an HDD spindle speed of 7,200 rpm (average rotational

latency = 4.17ms), then just the disk I/O time to answer this query

must be at least 62.55 seconds. However, as we have shown, we

can load all of the data into the main memory with more efficient

sequential disk accesses and answer these queries in 0.4 seconds,

including disk I/O time, on a single core machine.

Note that all experiments in this paper include the time taken to read

the data from disk. However, for more than a few million objects

this time is inconsequential thus we did not report it separately.

We have made a strong and unintuitive claim in the abstract. We

said that our UCR-DTW is faster than all current Euclidean

distance searches. In Table 5, for example, we show that DTW

can be three times faster than state-of-the-art ED searching. How

is this possible? Recall that all Euclidean searches in the literature

require an O(n) data normalizing step to be performed for each

subsequence. Thus, no matter how effective the pruning/search

strategy used, the amortized time for a single sequence must be at

least O(n). In contrast, using the ideas developed in this work, the

vast majority of potential DTW calculations are pruned with O(1)

work, while some require up to O(n) work, and only a vanishingly

small fraction require O(nR) work. The weighted average of these

possibilities is less than O(n).

To put our results in perspective, we compare them with a very

recent state-of-the art embedding-based DTW search technique,

called EBSM (including the variant called BSE) [28]. This is an

excellent paper to use as a benchmark, as it exhaustively

compares to almost all other methods in the literature, and it tests

its contributions over different datasets, query lengths, warping

widths, etc. In contrast to EBSM:

 Our method is exact; EBSM is approximate.

 EBSM requires setting some parameters (number of

reference sequences, dimensionality, number of split points,

etc.). Our method requires zero parameters.

 EBSM requires offline preprocessing that takes over 3 hours

for just 1 million objects. We have zero preprocessing time.

 The EBSM method does not, and cannot, Z-normalize. As

noted in Section 1.2.1, we believe that Z-normalizing is

critical, and we have shown that failure to do it hurts on 45

out of 45 of the UCR time series classification datasets.

 EBSM can support queries in a predetermined range, which

must be predetermined and limited for efficiently. In

contrast, we have no minimum/maximum query length.

 We can also handle exact queries under uniform scaling [11].

 Finally, we are simply much faster! (c.f. Section 1)

Note, however, that there can be great utility in fast approximate

search. There exist data mining algorithms that can use a

combination of (hopefully few) exact distance measures and

(hopefully much faster) approximate searches to produce overall

exact results [35]. However an approximate search method being

faster than our approach is a very high threshold to meet.

We have shown our suite of ideas is 2 to 164 times faster than the

true state-of-the-art, depending on the query/data. However, based

on the quotes from papers that we have sprinkled throughout this

work, we are sometimes more than 100,000 times faster than

recent papers; how is this possible? The answer seems to be that it

is possible to produce very naive implementations of DTW. For

example, the recursive version of DTW can be one to three orders

of magnitude slower than the iterative version, depending on the

computer language and query length. Thus, the contributions of

this paper are twofold. First, we have shown that much of the

recent pessimism about using DTW for real-time problems was

simply unwarranted [6]. Existing techniques, especially lower

bounding, if carefully implemented can make DTW tractable for

many problems. Our second contribution is the introduction of the

UCR suite of techniques that make DTW and Euclidean distance

subsequence search significantly faster than current state-of-the-

art techniques.

We regret that the page limitations preclude full pseudo-code;

however, full pseudo-code (and source-code) is available at [43].

In future work we plan to revisit algorithms for time series motif

discovery [25][26], anomaly detection [35][31], time series

summarization, shapelet extraction [39], clustering, and

classification [6] in light of the results presented in this work.

7. ACKNOWLEDGEMENTS

We thank all the donors of code and data. We would like to

acknowledge the financial support for our research provided by

NSF grants 0803410 and 0808770, FAPESP award 2009/06349-0,

and Royal Thai Government scholarship.

8. REFERENCES

[1] N. Adams, D. Marquez, and G. Wakefield. 2005. Iterative
deepening for melody alignment and retrieval. ISMIR, 199-206.

[2] I. Assent, R. Krieger, F. Afschari, and T. Seidl. 2008. The TS-
Tree: efficient time series search and retrieval. EDBT, 252-63.

[3] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff. 2009. A unified
framework for gesture recognition and spatiotemporal gesture
segmentation. IEEE PAMI 31, 9, 1685-1699.

[4] T. Bragge, M.P. Tarvainen, and P. A. Karjalainen. 2004. High-
Resolution QRS Detection Algorithm for Sparsely Sampled ECG
Recordings. Univ. of Kuopio, Dept. of Applied Physics Report.

[5] N. Chadwick, D. McMeekin, and T. Tan. 2011. Classifying eye
and head movement artifacts in EEG Signals. DEST.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J.
Keogh. 2008. Querying and mining of time series data:
experimental comparison of representations and distance
measures. PVLDB 1, 2, 1542-52.

[7] B. Dupasquier and S. Burschka. 2011. Data mining for hackers –
encrypted traffic mining. The 28

th
 Chaos Comm’ Congress.

[8] Y. Chen, G. Chen, K. Chen, and B. C. Ooi. 2009. Efficient
processing of warping time series join of motion capture data.
ICDE, 1048-1059.

[9] Faceted DBLP. 2011. http://dblp.l3s.de

[10] A. Fornés, J. Lladós, and G. Sanchez. 2007. Old handwritten
musical symbol classification by a dynamic time warping based
method. Graphics Recognition 5046, 51-60.

[11] A. Fu, E. Keogh, L. Lau, C. Ratanamahatana, and R. Wong.
2008. Scaling and time warping in time series querying. VLDB J.
17, 4, 899-921.

[12] N. Gillian, R. Knapp, and S. O’Modhrain. 2011. Recognition of
multivariate temporal musical gestures using n-dimensional
dynamic time warping. Proc of the 11

th
 Int'l conference on New

Interfaces for Musical Expression.

[13] D. Goldberg. 1991. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys 23, 1.

[14] G. Guitel. 1975. Histoire comparée des numérations écrites.
Chapter: “Les grands nombres en numération parlée,” Paris:
Flammarion, 566–574.

[15] R. Huber-Mörk, S. Zambanini, M. Zaharieva, and M. Kampel.
2011. Identification of ancient coins based on fusion of shape
and local features. Mach. Vis. Appl. 22, 6, 983-994.

[16] M. Hsiao, K. West, and G. Vedatesh. 2005. Online context
recognition in multisensor system using dynamic time warping.
ISSNIP, 283-288.

[17] H. Jegou, M. Douze, C. Schmid, and P. Perez. 2010. Aggregating
local descriptors into a compact image representation. IEEE
CVPR, San Francisco, CA, USA.

[18] T. Kahveci and A. K. Singh. 2004. Optimizing similarity search
for arbitrary length time series queries. IEEE Trans. Knowl.
Data Eng. 16, 4, 418-433.

[19] E. Keogh and S. Kasetty. 2003. On the need for time series data
mining benchmarks: a survey and empirical demonstration. Data
Mining and Knowledge. Discovery 7, 4, 349-371.

[20] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.H. Lee, and P.
Protopapas. 2009. Supporting exact indexing of arbitrarily
rotated shapes and periodic time series under Euclidean and
warping distance measures. VLDB J. 18, 3, 611-630.

[21] S. Kim, S Park, and W. Chu. 2001. An index-based approach for
similarity search supporting time warping in large sequence
databases. ICDE, 607–61.

[22] K. Laerhoven, E. Berlin, and B. Schiele. 2009. Enabling efficient
time series analysis for wearable activity data. ICMLA, 392-397.

[23] S. H. Lim, H. Park, and S. W. Kim. 2007. Using multiple
indexes for efficient subsequence matching in time-series
databases. Inf. Sci. 177, 24, 5691-5706.

[24] D. P. Locke, L. W. Hillier, W. C. Warren, et al. 2011.
Comparative and demographic analysis of orangutan genomes.
Nature 469, 529-533.

[25] A. Mueen and E. Keogh. 2010. Online discovery and
maintenance of time series motifs. KDD, 1089-1098.

[26] A. Mueen, E. Keogh, Q. Zhu, S. Cash, M. B. Westover, and N.
Shamlo. 2011. A disk-aware algorithm for time series motif
discovery. Data Min. Knowl. Discov. 22, 1-2, 73-105.

[27] M. Muller. 2009. Analysis and retrieval techniques for motion
and music data. EUROGRAPHICS tutorial.

[28] P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D.
Gunopulos. 2011. Embedding-based subsequence matching in
time-series databases. ACM TODS 36, 3, 17

*
.

[29] W. Pressly. 2008. TSPad: a Tablet-PC based application for
annotation and collaboration on time series data. ACM Southeast
Regional Conference, 527-52.

[30] B. Raghavendra, D. Bera, A. Bopardikar, and R. Narayanan.
2011. Cardiac arrhythmia detection using dynamic time warping
of ECG beats in e-healthcare systems. WOWMOM, 1-6.

[31] U. Rebbapragada, P. Protopapas, C. Brodley, and C. Alcock.
2009. Finding anomalous periodic time series. Machine
Learning 74, 3, 281-313.

[32] Y. Sakurai, C. Faloutsos, and M. Yamamuro. 2007. Stream
monitoring under the time warping distance. ICDE, 1046-55.

[33] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. 2005. FTW: fast
similarity search under the time warping distance. PODS’05.

[34] S. Srikanthan, A.Kumar, and R. Gupta. 2011. Implementing the
dynamic time warping algorithm in multithreaded environments
for real time and unsupervised pattern discovery. IEEE ICCCT,
394-398.

[35] J. Shieh and E. J. Keogh. 2008. iSAX: indexing and mining
terabyte sized time series. KDD, 623-631.

[36] T. Stiefmeier, D. Roggen, and G. Tröster. 2007. Gestures are
strings: efficient online gesture spotting and classification using
string matching. Proceedings of the ICST 2

nd
 international

conference on Body area networks.

[37] C. R. Whitney. 1997. Jeanne Calment, World's elder, dies at 122.
New York Times (August 5

th
, 1997).

[38] J. O. Wobbrock, A. D. Wilson, and Y. Li. 2007. Gestures
without libraries, toolkits or training: a $1 recognizer for user
interface prototypes. ACM UIST, 159-168.

[39] L. Ye and E. Keogh. 2009. Time series shapelets: a new
primitive for data mining. KDD, 947-956.

[40] B. Yi, H. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of
similar time sequences under time warping. ICDE, 201-208.

[41] Y. Zhang and J. Glass. 2011. An inner-product lower-bound
estimate for dynamic time warping. ICASSP, 5660-5663.

[42] A. Zinke and D. Mayer. 2006. Iterative Multi Scale Dynamic
Time Warping. Universität Bonn, Tech Report # CG-2006-1.

[43] Project Website: www.cs.ucr.edu/~eamonn/UCRsuite.html

 *The paper [28] omits to mention the length of the test data we mention in the Introduction Section. The first author was kind enough to give us the one million figures by email

on 11/16/2011.

	OLE_LINK7
	OLE_LINK8
	OLE_LINK1
	OLE_LINK2
	OLE_LINK5
	OLE_LINK6
	OLE_LINK3
	OLE_LINK4

