
Probabilistic Discovery of Time Series Motifs
KDD ID 281
 Bill Chiu

Eamonn Keogh Stefano Lonardi

Computer Science & Engineering Department
University of California - Riverside

Riverside, CA 92521

{bill, eamonn, stelo }@cs.ucr.edu

ABSTRACT
Several important time series data mining problems reduce to the
core task of finding approximately repeated subsequences in a
longer time series. In an earlier work, we formalized the idea of
approximately repeated subsequences by introducing the notion
of time series motifs. Two limitations of this work were the poor
scalability of the motif discovery algorithm, and the inability to
discover motifs in the presence of noise.

Here we address these limitations by introducing a novel
algorithm inspired by recent advances in the problem of pattern
discovery in biosequences. Our algorithm is probabilistic in
nature, but as we show empirically and theoretically, it can find
time series motifs with very high probability even in the presence
of noise or “don’t care” symbols. Not only is the algorithm fast,
but it is an anytime algorithm, producing likely candidate motifs
almost immediately, and gradually improving the quality of
results over time.

Keywords
Time Series, Data Mining, Motifs, Randomized Algorithms.

1. INTRODUCTION
Several important time series data mining problems reduce to the
core task of finding approximately repeated subsequences in a
longer time series. In an earlier work, we formalized the idea of
approximately repeated subsequences by introducing the notion of
time series motifs [26]. We will define motifs more formally later
in this work. In the meantime a simple graphic example will serve
to develop the reader’s intuition. Figure 1 illustrates an example
of a motif discovered in a complex dataset.

Examples of algorithms that utilize motifs (typically under
different names and with variants of definitions) include the
following:

• Mining association rules in time series requires the discovery
of motifs. These are referred to as primitive shapes in [7] and
frequent patterns in [18].

• Several time series classification algorithms work by
constructing typical prototypes of each class [22, 15]. These
prototypes may be considered motifs.

• Many time series anomaly/interestingness detection
algorithms essentially consist of modeling normal behavior
with a set of typical shapes (which we see as motifs), and
detecting future patterns that are dissimilar to all typical
shapes [8].

• In robotics, Oates et al. [27], have introduced a method to
allow an autonomous agent to generalize from a set of
qualitatively different experiences gleaned from sensors. We
see these “experiences” as motifs.

• Much of the work on finding approximate periodic patterns
in time series can viewed as an attempt to discover motifs
that occur at constrained intervals [14]. For example, the
astute reader may have noticed that the motif in Figure 1
appears at approximately equal intervals, suggesting an
unexpected regularity.

• In medical data mining, Caraca-Valente and Lopez-
Chavarrias have introduced a method for characterizing a
physiotherapy patient’s recovery based of the discovery of
similar patterns [5]. Once again, we see these “similar
patterns” as motifs.

In addition to the application domains mentioned above, motif
discovery can be very useful in its own right as an exploratory
tool to allow hypothesis generation [11].

Winding Dataset
(The angular speed of reel 2)

0 500 1000 1500 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

A B C

A B C

Figure 1: Above) An example of a motif that occurs three times in
a complex and noisy industrial dataset. Below) a zoom-in reveals
just how similar the three occurrences are to each other Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC.

Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

There exists a vast body of work on efficiently locating known
patterns in time series [1, 6, 12, 23, 35, 36, 37]. Here, however,
we must be able to discover motifs without any prior knowledge
about the regularities of the data under study.

The obvious, nested-loop, brute force approach to motif discovery
would require a number of comparisons quadratic in the length of

the database. Optimizations based on the triangular inequality can
mitigate the time complexity by a large constant factor [26], but
this approach is still untenable for large and massive datasets. All
the works listed above introduce methods to discover some form
of motifs, but the definitions are application specific, scalability is
not addressed, and more importantly they completely disregard
the problem of noise.

The importance of noise when attempting to discover motifs
cannot be overstated. Consider the two sequences shown in Figure
2. While they are extremely similar, one of them has a downward
spike at time 38.

Figure 2: Two subsequences from an industrial dataset. Although
they appear to very similar, the noisy downward spike at time
period 38 in one of the sequences will make it difficult for
algorithms to discover this potential motif

One could assume that one outlier in a sequence of length 100
data points would not make much difference. However even small
amounts of noise can dominate distance measures, including the
most commonly used data mining distance measures, such as the
Euclidean distance [6, 7, 8, 21, 36]. Figure 3 shows that the spike
can cause one of our candidate motifs to appear to be much more
similar to an artificial sequence which just happens to have spike
in the same place.

Figure 3: Left) The two sequences from Figure 2 clustered
together with a synthetic sequence, using Euclidean distance. The
synthetic sequence does not particularly resemble the two real
sequences, but happens to have noise in the same place as
sequence 2. This dendrogram demonstrates that a single piece of
noise can dominate a distance function. Right) If we allow the
distance function to have “don’t care” sections (denoted by the
gray bar), more intuitive results can be obtained

There is still hope for us if we wish to mine noisy datasets. Figure
3 also shows that allowing small don’t care subsections (that is,
sections which are ignored by the distance function), allows much
more intuitive results to be obtained. We note that the utility of
allowing don’t care sections in time series has been documented
before [1, 22], and it is a cornerstone of text and Biosequences
data mining [3, 24, 25, 28, 30, 34].
The previous example illustrates the dangers of mining in the
presence of noise. Indeed, this single spike might be best taken
care of with a simple smoothing algorithm. More generally,
however, we may have a potential motif if we are willing to

overlook the fact that a small valley in one sequence is mirrored
by a small peak in another, otherwise similar, sequence.
Robustness to such situations is non-trivial [1].

Our contributions in this paper are twofold. We generalize the
definition of time series motifs to allow for don’t-care
subsections, and we introduce a novel time- and space-efficient
algorithm to discover motifs. Our method is based on a recent
algorithm for pattern discovery in DNA sequences [34]. The
intuition behind the algorithm is to project the data objects (in our
case, time series), onto lower dimensional subspaces, based on a
randomly chosen subset of the objects features. The lower
dimensional space can be quickly post-processed to discover
likely candidates for motifs, while the candidates can be quickly
checked against the original data.

0 20 40 60 80 100

W inding Dataset
(Tension in the web between reel 2 and 3)

The rest of this paper is organized as follows. In Section 2 we
formally define the time series motif problem. In Section 3 we
briefly review related work in time series data mining, and in
bioinformatics. Section 4 sees an extensive review of the work of
Buhler and Tompa [34], upon which our algorithm is based.
Section 5 considers the problem of adapting an intrinsically
discrete algorithm to the continuous domain of time series. In
Section 6 we provide the results of a comprehensive experimental
evaluation. Finally in Section 7 we summarize our findings and
offer directions for future work.

2. DEFINITIONS AND NOTATION
We made some initial progress in defining time series motifs in a
previous paper [26], here we generalize the definition to allow for
matching under the presence of noise, and to eliminate a special,
degenerate case of a motif.

For concreteness, we begin with a definition of our data type of
interest, time series:

E u c lid e a n D is ta n c e
w ith a “ d o n ’ t c a re ”
s e c tio n f ro m 3 5 to 4 5

E u c lid e a n
D is ta n c e

1

2

3

1

2

3 Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Time series can be very long, sometimes containing trillions of
observations [12, 32]. We are typically not interested in any of the
global properties of a time series; rather, we are interested in
subsections of the time series, which are called subsequences.

Definition 2. Subsequence: Given a time series T of length m,
a subsequence C of T is a sampling of length n≤m of
contiguous position from T, that is, C = tp,…,tp+n-1 for 1≤ p ≤
m – n + 1.

Since all subsequences may be a potential motif, any motif
discovery algorithm will eventually have to extract all of them,
this can be achieved by use of a sliding window [7, 23, 36].

Definition 3. Sliding Window: Given a time series T of length
m, and a user-defined subsequence length of n, a matrix S of
all possible subsequences can be built by sliding a window of
size n across T and placing subsequence Cp in the pth row of
S. The size of matrix S is (m – n + 1) by n.

A task commonly associated with subsequences is to determine if
a given subsequence is similar to other subsequences under some
distance measure D(C,M) [21]. This idea is formalized in the
definition of a match.

Definition 4. Match: Given a positive real number R (called
range) and a time series T containing a subsequence C
beginning at position p and a subsequence M beginning at q,
if D(C, M) ≤ R, then M is called a matching subsequence of C.

The first three definitions are summarized in Figure 4, illustrating
a time series of length 1,000, and two subsequences of length 128.

Definition 6 does not allow for don’t care subsections [1], but it
can easily extended.

0 100 200 300 400 500 600 700 800 900 1000

T M

C Space Shuttle STS-57 Telemetry
(Inertial Sensor)

Definition 7. K-Motif(n,R,d): The Kth most d-significant motif
in T (hereafter called the K-Motif(n,R,d)) is the subsequence
CK that has the highest count of non-trivial matches, and
satisfies D(CK, Ci) > 2R where d (possibly non-contiguous)
datapoints can be ignored while calculating the distance
between CK, Ci, for all 1 ≤ i < K. In general we have d < n,
and typically d << n.

Deciding which d datapoints to ignore is easy. Since we want to
minimize the calculated distance, we can sort the indices i in
increasing order of |Ci –Mi|, and ignore the first d.

Figure 4: A visual intuition of a time series T (light line), a
subsequence C (bold line) and a subsequence M that is a match to
C (C is overlaid as a bold gray line)

Whereas the definition of a match is rather obvious and intuitive,
we also need for the definition of a trivial match. One can observe
that the best matches to a subsequence (apart from itself) tend to
be located one or two points to the left or the right of the
subsequence in question. Figure 5 shows the situation.

We note that this definition has a close analogue in classic motif
discovery in biosequences [28, 34]. In the bioinformatics
community, the (w,d)-motif problem is to discover a reoccurring
sequence of length w, where each occurrence may differ in d
positions. Note that in the discrete case, there is no R parameter,
since it is implicit the use of Hamming distance.

0 100 200 300 400 500 600 700 800 900 1000

T

Space Shuttle STS-57 Telemetry
(Inertial Sensor)

Trivial
Matches

C

There is one final consideration we must address if we wish to
have a meaningful definition of motif. The problem is best
illustrated with a visual example.

Figure 6: Left) Three subsequences of length 16 that can be
modeled well by a straight line. Right) After normalization, all
such subsequences become virtually indistinguishable

500 0 5 10 15
-2

-1

0

1

2

Space Shuttle STS-57 Telemetry
(Inertial Sensor)

0 100 200 300 400

a

b c

Zoom-in of
subsequences a,
b and c after
normalization

Figure 5: For almost any subsequence C in a time series, the best
matches are the trivial subsequences immediately to the left and
right of C

Intuitively, any definition of motif should exclude the possibility
of over-counting these trivial matches, which we define more
concretely below.

Definition 5. Trivial Match: Given a time series T, containing
a subsequence C beginning at position p and a matching
subsequence M beginning at q, we say that M is a trivial
match to C if either p = q or there does not exist a
subsequence M’ beginning at q’ such that D(C, M’) > R, and
either q < q’< p or p < q’< q.

Figure 6 shows that the subsequences that can be well-
approximated by a straight line with a positive slope will look
almost identical after normalization. Since almost all time series
can be modeled well by piecewise linear functions if the
subsequences are short enough [12, 22], then the most common
motifs will likely correspond to an upward trend or a downward
trend of arbitrary angles. These “degenerate motifs” are unlikely
to be of interest to anyone, and in any case, are trivial to
enumerate with a simple algorithm [19]. We will therefore
exclude them from further consideration. This can easily be
achieved at the feature extraction stage, when using sliding
windows to extract the subsequences. As the window is moved
across the time series, the subsequences “straightness” can be
measured by doing a least squares linear fit, and recording the
residual error [21, 23]. Only those subsequences that have a
residual error greater that some epsilon are extracted and passed
to the motif discovery algorithm. With a careful implementation
that reuses partial results from the previous windows, this can be
achieved in amortized constant time per subsequence.

Each time series is normalized to have mean zero and a standard
deviation of one before calling the distance function, because it is
well understood that it is meaningless to compare time series with
different offsets and amplitudes [6, 21, 35, 36].
We can now define the problem of enumerating the K most
significant motifs in a time series.

Definition 6. K-Motif(n,R): Given a time series T, a
subsequence length n and a range R, the most significant
motif in T (hereafter called the 1-Motif(n,R)) is the
subsequence C1 that has highest count of non-trivial matches
(ties are broken by choosing the motif whose matches have
the lower variance). The Kth most significant motif in T
(hereafter called the K-Motif(n,R)) is the subsequence CK that
has the highest count of non-trivial matches, and satisfies
D(CK, Ci) > 2R, for all 1 ≤ i < K.

3. RELATED WORK Note that this definition forces the set of subsequences in each
motif to be mutually exclusive. This is important because
otherwise two motifs might share the majority of their elements,
and thus be essentially the same. To gain more intuition for these
definitions, Figure 1 shows the 1-Motif(128,4) discovered in the
Winding dataset.

In order to frame our contribution in its proper context we will
briefly consider related work.

To date the majority of work in time series data mining has
focused indexing time series, the efficient discovery of known
patterns in time series [1, 6, 12, 21, 22, 23, 31, 35, 36, 37].

The innovative work of Oates et al. considers the problem of
learning “qualitatively different experiences” (which we see as
motifs), but the authors are working with relatively small datasets,
and thus did not address scalability issues [27].

Others have considered using clustering as a technique to generate
“motifs” [7, 18]. However, apart form the scalability issues, we
cannot meaningfully cluster subsequences extracted by a sliding
window, because the effect of trivial matches. Since slowly
changing, relatively noise-free sections of time series have orders
of magnitude more matches, than complex and/or noisy shapes,
clustering of the subsequences extracted by sliding windows is
highly biased towards these simple shapes.

Pattern discovery algorithms for biosequences have recently
received increased attention from researchers, in particular after
the challenge by Pevzner and Sze [28] (see below). We mention,
in no particular order and without pretending to be exhaustive,
TEIRESIAS [30], GIBBSSAMPLER [24], MEME [3], WINNOWER [28],
VERBUMCULUS [2], PROJECTION [34], among others.

Of particular interest is the PROJECTION algorithm by Buhler and
Tompa [34]. They applied random projection in their paper to find
motif in nucleotide sequences. The most important contribution
was in formulating the number of random trials to run in order to
achieve some specific bucket richness. Since this work is the
cornerstone of our contribution, we will discuss the contribution
of Buhler and Tompa in more detail in the next section.

4. MOTIF DISCOVERY AND THE
RANDOM PROJECTION ALGORITHM
The projection algorithm by Buhler and Tompa was designed to
attack the planted (w,d)-motif problem, which was proposed by
Pevzner and Sze [28].

Planted (w,d)-motif problem. You are given t strings of
length n, initially generated at random (i.e., each symbol
generated i.i.d. with the equal probability). Each string is
planted with exactly one approximate occurrence of an
unknown motif y of length w, that is, an occurrence with
exactly d substitutions. Find the unknown motif y.

The initial challenge by Pevzner and Sze was to solve the (15,4)-
motif problem on t=20 sequences of n=600 symbols over the
DNA alphabet (i.e., 4Σ =). This problem turned out to be
extremely hard to solve for commonly used pattern discovery
algorithms. We need a few definitions to explain why.

Definition 8. Given two strings y1 and y2, |y1|=|y2|, the
Hamming distance H(y1,y2) is given by the number of
mismatches between y1 and y2.

Definition 9. Given a string y, all strings at Hamming
distance at most d from y are in its d-neighborhood.

Observe that if you consider two approximate occurrences of the
unknown motif y, the Hamming distance between them may be as
large as 2d. In fact, it very likely that we will never observe y in
the t sequences. Figure 7 illustrates the problem from a geometric
perspective.

2d

y3 y1

d
y

y2

Figure 7: the string y is the (unknown) motif, d is the number of
allowed mismatches, and y1,y2,y3 belongs to the d-neighborhood
of y. The problem is to find y from y1,y2,y3

To make the problem even more difficult, even if we were able to
determine exactly all the yi in the d-neighborhood of y, there is no
guarantee to find the unknown model y. Suppose w=4, d=1 and
that we found the strings {AAAA,TATA,CACA}. The pair wise
Hamming distance is 2 but there is no string at Hamming distance
1 to each of these.
The brute force strategy of building all possible substrings in the
2d-neighboorshood of all the substrings of the sequence under
analysis is doomed to fail. In fact, the size of the size N(m,d) of
the d-neighborhood of a string y is

() () ()
0

, 1
d j d d

j

y
N y d O y

j=

= Σ − ∈ Σ

∑ , (1)

and grows exponentially with d.
In order to reduce the huge search space, Buhler and Tompa used
random projection to “guess” at least some of occurrences of the
unknown planted motif.
Buhler and Tompa projection algorithm carries out i iterations, in
each of which it chooses k distinct positions uniformly at random
out the w possible. The k positions become a sort of “mask” that is
superimposed at all positions on the sequences under study. Each
substring of size w in the sequence is therefore mapped to a string
of size k, called the projection, by reading the symbols though the
mask.
The frequency of the projected strings is collected into a hash
table. If k is chosen such that then it is likely that some
of the occurrences of the planted motif will hash together in the
same entry. Entries in the hash table whose count is higher than a
specified threshold s are therefore selected, and they become the
seed for a refinement process that uses expectation maximization
(EM) [25].

-k w d<

Crucial factors in the success of PROJECTION are the choices of the
projection size k, the number of iteration i, and the threshold s.
The parameter k has to be chosen such that k w - d< and

(- 1)k t n wΣ > + in order to sample from the non-varying positions
(first constraint) and to filter out the noise (second constraint).
The number of iteration i can be estimated from w, t, d, k, and s
(see [34] for more details).

5. ADAPTING RANDOM PROJECTION
TO TIME SERIES DATA
In order to leverage off the work in motif discovery in discrete
domains, we must use a discrete representation of the time series.
Although there are literally hundreds of techniques to symbolize

time series (see [9] for a comprehensive review), none of them are
suitable for our purposes for two reasons:

Once the breakpoints have been obtained we can discretize a time
series in the following manner. We first obtain a PAA of the time
series. All PAA coefficients that are below the smallest
breakpoint are mapped to the symbol “a”, all coefficients greater
than or equal to the smallest breakpoint and less than the second
smallest breakpoint are mapped to the symbol “b”, etc. Figure 8
illustrates the idea.

• they all discretize the time series into a finite alphabet, but
do not reduce its dimensionality [6, 23]. However, to take
advantage of the PROJECTION algorithm we need to be able to
significantly reduce the dimensionality of the subsequences.

• the distance measures defined on the symbolic sequences
typically have little correlation with the true distances
between the original “raw” time series [9]. To take advantage
of the PROJECTION algorithm we must have not only have
high correlation, we must have the distance calculated on the
symbolic sequences lower bound the true distance.

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b
a

a

b
c c

b

c

In the next section, we will define a symbolic representation that
allows dimensionality reduction and lower bounding.

Figure 8: A time series (thin black line) is discretized by first
obtaining a PAA approximation (heavy gray line) and then
using predetermined breakpoints to map the PAA coefficients
into symbols (bold letters). In the example above, with n = 128,
w = 8 and a = 3, the time series is mapped to the word
cbccbaab

5.1 Symbolizing Time Series
A time series C of length n can be represented in a w-dimensional
space by a vector wcc ,,1 K=C . The ith element of C is
calculated by the following equation:

Note that in this example the 3 symbols, “a”, “b” and “c” are
approximately equiprobable as we desired. We call the
concatenation of symbols that represent a subsequence a word.

∑
+−=

=
i

ij
jn

w
i

w
n

w
n

cc
1)1(

 (2)

Definition 11. Word: A subsequence C of length n can be
represented as a word w1 as follows. Let αi denote
the ith element of the alphabet, i.e., α1 = a and α2 = b. Then
the mapping from a PAA approximation

ccC ˆ,,ˆˆ K=

C to a word is
obtained as follows:

Ĉ

In other words, to reduce the time series from n dimensions to w
dimensions, the data is divided into w equal sized “frames”. The
average value of the data falling within a frame is calculated and a
vector of these values becomes the dimensionality-reduced
representation. This simple representation, known as Piecewise
Aggregate Approximation (PAA) [23] or Segmented Means [36]
been shown to rival more sophisticated dimensionality reduction
techniques like Fourier transforms and wavelets [6] for the task of
indexing and compressing time series [21].

1ˆ iff i i j ic c jα β − β= ≤ < (3)
We have now completely defined our symbolic representation.
We simply need to define an appropriate distance measure on it.
By far the most common distance measure for time series is the
Euclidean distance [6, 7, 21, 31]. Given two time series Q and C
of the same length n, Eq. 4 defines their Euclidean distance. Having transformed a time series into the PAA representation we

can apply a further transformation to obtain a discrete
representation. It is desirable to have a discretization technique
that will produce symbols with equiprobability [2]. Given that
normalized subsequences have highly Gaussian distribution, we
can simply determine the “breakpoints” that will produce equal-
sized areas under Gaussian curve.

() ()∑ −≡
n

ii cqCQD 2, (4)
=i 1

If we further transform the data into the symbolic representation,
we can define a MINDIST function that returns the minimum
distance between the original time series of two words:

()∑ =
≡

w

i iiw
n cqdistCQMINDIST

1
2)ˆ,ˆ()ˆ,ˆ((5) Definition 10. Breakpoints: breakpoints are a sorted list of

numbers Β = β1,…,βa-1 such that the area under a N(0,1)
Gaussian curve from βi to βi+1 = 1/a (β0 and βa are defined as
-∞ and ∞, respectively).

The function resembles Eq. 4 except for the multiplication by the
square root of the compression rate, and the fact that the distance
between individual points has been replaced with the sub-function
dist(). The dist() function can be implemented using a table
lookup as illustrated in Table 2.

These breakpoints may be determined by looking them up in a
statistical table. For example Table 1 gives the breakpoints for
values of a from 3 to 6. Table 2: A lookup table used by the MINDIST function. This

table is for an alphabet of cardinality of 4, i.e. a = 4. The distance
between two symbols can be read off by examining the
corresponding row and column. For example dist(a,b) = 0 and
dist(a,c) = 0.67.

Table 1: A lookup table that contains the breakpoints that divides
a Gaussian distribution in an arbitrary number (from 3 to 6) of
equiprobable regions

βi a 3 4 5 6

β1 -0.43 -0.67 -0.84 -0.97

β2 0.43 0 -0.25 -0.43

β3 0.67 0.25 0

β4 0.84 0.43

β5 0.97

 a b c d

a 0 0 0.67 1.34

b 0 0 0 0.67

c 0.67 0 0 0

d 1.34 0.67 0 0

The value in cell (r,c) for any lookup table can be calculated by
the following expression.

a
b
:
:
a
:
b
1

c
c
:
:
c
:
c
2

b
a
:
:
c
:
c
3

a
b
:
:
a
:
c
4

1

2
:
:

58
:

985

457

:

1 58

2 985

1 2 : 58 : 985

1

2
:

:
58

985

1

1

−
≤−

=
− otherwise

crif
cell

crcr
cr

,
1,0

),min(1),max(
,

ββ
 (6)

For a given value of the alphabet size a, the table needs only be
calculated once, then stored for fast lookup.

For any two time series C and M, with symbolic
representationsC and with any cardinality a and any word
size w, we have MINDIST(C ,) ≤ D(C,M). The proof is a
straightforward but quite lengthy algebraic argument, we omit it
for brevity.

ˆ M̂
ˆ M̂

Figure 10: Left) A mask {1,2} was randomly chosen, so the
values in columns {1,2} were used to project matrix into
buckets. Right) Collisions are recorded by incrementing the
appropriate location in the collision matrix

Ŝ

If two words corresponding to subsequences i and j are hashed to
the same bucket, we increase the count of cell (i,j) in a collision
matrix, which has been previously initialized to all zeros. In the
example above, i=58 and j=1.

5.2 TIME SERIES PROJECTION
Our time series motif discovery algorithm is best elucidated with
a worked example. For simplicity, we illustrate the algorithm with
naïve data structures that would be untenable in practice, and
without a discussion of parameter choices. We will address these
issues in a later section. Also for simplicity of exposition, we will
consider the simple K-Motif(n,R) case.

Note that the words corresponding to subsequences 2 and 985 are
also hashed into a common bucket, yet they do not correspond to
motif. They may be regarded as a false alarm. Of course, it is also
possible that our true motifs could have mapped to different
buckets, had we chosen a different mask. This problem can be
solved simply by repeating the hashing process i times, with new,
randomly chosen masks. Figure 11 shows the result of another
iteration, this time with {2, 4} as the chosen mask.

Suppose we have a time series T of 1,000 data points which
contains two occurrences of a motif of length 16 at time T1 and
time T58. The second occurrence of the motif is corrupted by some
noise in positions 8 to 12, and that there are no other high quality
motifs in the dataset.

1 2 : 58 : 985

1

2
:

:
58

985

2

1

a
b
:
:
a
:
b
1

c
c
:
:
c
:
c
2

b
a
:
:
c
:
c
3

a
b
:
:
a
:
c
4

1

2
:
:

58
:

985

2

:

1 58

985

a
b
:
:
a
:
b

c
c
:
:
c
:
c

b
a
:
:
c
:
c

a
b
:
:
a
:
c

1

2

:
:

58

:
985

0 500 1000

a c b a

T (m= 1000)

a = 3 {a,b,c}
n = 16
w = 4

S ^

C1

C1 ^

Figure 11: Left) A mask {2,4} was randomly chosen, so the
values in columns {2,4} were used to project matrix into
buckets. Right) Once again, collisions are recorded by
incrementing the appropriate location in the collision matrix

Ŝ

It is important to note that the buckets cannot be reused from one
iteration to another. We can only record collisions in the
appropriate place in the matrix.

After repeating the process an appropriate number of times, we
examine the collision matrix. If the entries in matrix were
relatively uniform, it would suggest that there are no motifs to be
found in our dataset. However for the example above, it is very
likely that the cell (58,1) will have a large value. A more precise
definition of what can be considered “large enough” (i.e.,
statistically significant) will be given later. A large value in a cell
is not a guarantee of the existence of a corresponding motif, but it
is a strong indicator. To confirm we must make an access to the
original data.

Figure 9: A time series is preprocessed ready for the random
projection stage. A sliding window removes the first subsequence
C1, which is converted into the symbolic version 1C , then placed
in the matrix S . Note that the index of points back to the
original location of the subsequence

ˆ
ˆ Ŝ

We begin by extracting subsequences using a sliding window,
converting them into symbolic form, and placing them into matrix

. Note that each row index of points back to the original
location of the subsequence. Figure 9 illustrates the process.
Ŝ Ŝ

We begin by retrieving the two original time series subsequences
corresponding to the indices of the largest value cell in our
collision matrix, in our example, C1 and C58. We can measure the
distance between them using the Euclidean distance (Eq. 4).
Assuming that the two sequences are within R of each other, they
form a tentative motif. However there may be other subsequences
which are also within R of the subsequences, and thus need to be

Once the matrix has been constructed, we are ready to begin
random projection. We randomly select 2 columns of S to act as
a mask. For example in Figure 10, columns {1,2} were chosen to
act as the mask, therefore the k=985 words in the matrix are
hashed into buckets based only on their values in the 1st and 2nd
columns.

Ŝ
ˆ

Ŝ

added to this provisional motif. How should we find them? We
actually have several options, depending on how our original time
series T is stored.

If T is stored in main memory, we can simply do a sliding
window scan to find additional members of the motif. If T resides
on disk, we want to avoid as many costly disk accesses as
possible. We can easily achieve this by using the collision matrix
as a heuristic. If a subsequence Ci is similar to C1 and C58 then the
cells of collision matrix at (i,1) and (i,58) must have values which
are statistically significant. So we can examine the collision
matrix to find promising candidates for retrieval.

We can enumerate these additional promising candidates, ready
for retrieval from disk. However we may not have to retrieve
them! Assume for the moment that the data structure is in main
memory (At the moment, this seems unrealistic, since as defined
above, is as large as T. However in the next section we will
show that is much smaller that T.). Since we know R, and we
know the words that correspond to all the subsequences, we need
to retrieve Ci if and only if MINDIST i 1

or
i 58

, which we can quickly determine in main
memory. Because our MINDIST function lower bounds the true
distance, any sequence that fails this test, must be more that R
away from both sequences.

Ŝ

C ,ˆ

Ŝ
Ŝ

Ĉ(
RC ≤)ˆ(

RCMINDIST ≤)ˆ,

Once we have discovered all matching subsequences within R of
C1 and C58 we can report them to the user, and begin iteratively
examining the collision matrix for the next largest value which
has not been previously examined, and which is not within R of a
previously reported motif.

We still have to address the stopping criteria. There are three
possibilities.

• We can do a fixed number i of iterations.

• We can stop when the user is not willing to wait more time.
Since the algorithm is an anytime algorithm, the users may
be satisfied with the first few motifs they see, or be
dissatisfied and wish to change parameters, e.g.,
increasing/decreasing the length of the subsequences.

• We can stop when the largest value in the collision matrix is
no greater than we would have expected by chance. In order
to do this we need to be able to calculate what values we
should expect to find in the collision matrix, assuming there
are no motifs, for any given set of parameters. Fortunately,
as we shown in the next section, this number can be
analytically approximated.

5.3 Statistical Significance of Time Series Motifs
In order to determine the statistical significance of the entries in
the collision matrix, we need to estimate how many hits we
expect on average in each entry. Following [34, 4], we observe
that given two randomly-generated words of size w over an
alphabet of size a, the probability that they match with up to d
errors is

0

1 1 (, ,) .
i wd

i

w ap a w d
i a a

−

=

 − =
∑

i
 (7)

The expression (8) assumes that each symbol of the alphabet has
equal probability, which is guaranteed by our discretization

procedure. Since random string projection is a locality-sensitive
hashing scheme in the sense defined by [20], we have the
probability of two words of projecting to the same value as

0

(, ,) 1-
td

i

iq w d t
w=

 =

∑ , (8)

where t is the length of the projected string. We conclude that if
we have k random strings of size w, an entry of the similarity
matrix will be hit on average

0

1 1 E(, , , ,) 1-
2

t id

i

k wi ak a w d t
iw a a

w i−

=

 − =
∑ (9)

times (in each iteration).

5.4 Time and Space Complexity
As explained above, our algorithm appears lethargic in time
requirements and bloated in space requirements. In this section we
will explain why this is not so.

For simplicity we illustrate the matrix with m-n+1 rows (recall
that m is the length of the time series T). However, in general, the
matrix is much smaller. There are two reasons why this is so.
First, as noted at the end of Section 2, subsequences which are
close to straight lines should not be included in the S matrix. The
second reason is related to the fact that the symbolic
representation allows for admissible numerosity reduction. This
reduction can be explained with an example. Suppose that we are
beginning the sliding windows extraction and the first word is
cabcab. If we shift the sliding window by one position, and find
the next word is also cabcab, we can omit it from the S matrix,
without any loss of information, so long as we have kept the index
to the first occurrence. For example, suppose we are examining
the word bbccaa in , and its index back to the original time
series is 555, if we look at the (now guaranteed to be distinct)
word in next row, and find that its index back to the original time
series is 559, then we know that the subsequences beginning at
556, 557 and 558 must also map onto the word bbccaa. This
optimization is essentially the classic run-length-encoding data
compression algorithm.

Ŝ

ˆ

ˆ

Ŝ

Exactly how much these two optimizations help depend on the
choice of parameters and the data itself. As a concrete example,
when the Space Shuttle Telemetry data shown in Figure 4 is
processed (with n = 128, w = 16 and a = 4), the number of rows in
the matrix is only 22% of the length of the original time series.
Also note that we only need

2w bits per word. In our
preliminary experiments the size of S is much less than one tenth
the size of the original time series.

Ŝ
log a

ˆ

The collision matrix also appears to be quite demanding in terms
of space requirments. In general, however, we can expect it to be
extremely sparse, and thus worth the slight time overhead to
implement it as a sparse matrix. In the worst case, the number of
cells which have a non-zero entry is Ŝ times the number of
iterations i (in practice, it is much less), since a reasonable value
for i is on the order of 10 to 100. The size of the sparse collision
matrix it is linear in |T|.

To summarize, the time complexity of noise TIME SERIES
PROJECTION is O(i | S |), which is O(|T|). In contrast, the time ˆ

complexity of the brute force approach is O(|T|2). Both algorithms
have O(|T|) space complexity.

6. EXPERIMENTAL RESULTS
We begin with a simple demonstration of the algorithm.

6.1 A “Sanity Check”: Finding Planted Motifs
As a “sanity check” we attempt to recover two planted motifs,
each with two occurrences, from a small dataset. The two planted
motifs are shown in Figure 12. Note that they are by no means
identical to each other. For example, consider the AB motif.
During time period 30 to 40, subsequence A is mostly flat with a
single dramatic upward spike. In contrast, subsequence B is
characterized by a relatively smooth valley in this region. In
addition, all the subsequences are noisy along their entire length.

Figure 12: Two motifs which will be planted into a longer
dataset as a simple test of our algorithm. Left) The AB motif,
Right) the CD motif

We embedded the four subsequences into a random walk dataset
of length 1128. The dataset was scaled such that the average
standard deviation in any subsequence of length 128 was about
the standard deviation of our embedded motifs. Figure 13
illustrates the dataset.

 1200
Figure 13: A random walk time series with implanted motifs.
The subsequences were randomly imbedded in the following
locations {A, 191}, {B, 649}, {C, 351} and {D, 812}

We ran our algorithm with n = 128, w = 16, a = 4 for 100
iterations. For ease of visualization we did not perform the
numerosity reduction step discussed in Section 5.3. Because this
is a relatively small dataset, we can visualize the collision matrix
as a contour plot as in Figure 14.

Figure 14: The collision matrix visualized as a contour plot. Only
values which are at least 10 times the expected value (cf. 5.4) are
shown

100

900

800

700

600

500

400

300
C

200
A

C 100

A
100 200 300 400 500 600 700 B 800 900 100

These preliminary results are extremely encouraging. The
locations of the planted motifs are clearly seen as dark smudges.
Note that the location of the planted motifs appears to be slightly
“smeared” at a 45 degree angle. This is simply the result of not
doing the numerosity reduction step, because if location (i, j) has
strong motif, the locations (i +1, j +1) and (i -1, j -1) will have a
slightly weaker one, etc.

The diligent reader may have noted that there are some additional
regions of interest in the matrix, in particular around locations
(560, 130) and (750, 460). Although it turns out that these regions
have counts at most ¼ of the values corresponding to the planted
motifs, they clearly have values much higher than the significance
threshold. We therefore extracted the corresponding subsequences
at these locations. Figure 15 shows the relevant subsequences.

Figure 15: The spurious motifs discovered. Left) Subsequences
beginning at 560 and 130. Right) Subsequences beginning at 750
and 460

While these subsequences are not as similar as our planted motifs,
they are clearly quite similar to each other, and it is not surprising
that they were (weakly) flagged by our algorithm.

Finally, we tested the sensitivity of the algorithm to the parameter
n,w and a. In practice, one would like to be able to recover the
motifs without knowing the exact length of the planted motifs.
We discovered that we could make n much shorter than 128 and
still trivially find (a subsection) of our planted motifs. This is not
surprising since it is very likely that a portion of a motif is also a
motif. A more satisfying result is the fact that we could set n to be

0 20 40 B
60 80 100 120 0 20

D D

40 60 80 100 120

200 400 600 800 0 1000

0 20 40 0 20 40 60 80 100 120 60 80 100 120

larger that 128 (at least 150), and still easily recover the planted
motif. Regarding parameters w and a, we found we could vary
them greatly and still easily recover the planted motifs. The only
significant difference was a slight change in the efficiency of the
algorithm.

6.2 Sensitivity to Noise
The experiment in the previous section suggests that our
algorithm is reasonably robust to noise. The planted motifs which
were so easily recovered were actually quite noisy, as was the
dataset into which they were imbedded. Nevertheless, it is natural
to ask how sensitive to noise TIME SERIES PROJECTION is.

To answer the question we performed the following experiment.
We took the dataset used in Section 6.1 and kept adding noise to
it until the largest value in the collision matrix no longer
corresponded to one of the planted motifs. We used Gaussian
random noise, which was added to the entire length of the dataset.
We began with noise which had a standard deviation that was a
tiny fraction the standard deviation of the original data, and kept
doubling the noise level until the average value of the planted
motifs was no greater than the largest other value. Figure 16
shows a typical amount of noise that can be tolerated by our
algorithm. If this noise level is doubled again, the planted motif is
not anymore the 1-motif and 2-motif (although even when the
noise level shown is quadruped, we still typically find the planted
motifs in the first 4 or 5 motifs reported).

Figure 16: Even when noise is added to the test dataset
introduced in Section 6.1, the TIME SERIES PROJECTION
algorithm can still discover the planted motifs. Although noise is
added to the entire dataset, here we only show the planted AB
motif with an amount of noise that our algorithm can handle. If
the amount of noise is doubled again, our algorithm fails to find
this motif as the most promising candidate in the collision matrix

6.3 Efficiency of TIME SERIES PROJECTION
To test the scalability of our algorithm, we began by measuring
the time taken for the experiment discussed in Section 6.1. We
then repeatedly concatenated an additional 1,000 length of
random walk data, and measured the increase in time required.
We tested two variants of our algorithm. In the first, we ran the
algorithm for 100 iterations. In the second, we stopped after the
largest value in the collision matrix was at least ten times larger
than expected by chance (as measured by Eq. 9). As a comparison
we tested against the obvious brute force algorithm. We highly
optimized the brute force algorithm (including removing the
square root from the Euclidean distance function, “early
abandonment”, triangular inequality pruning, etc [21]). In
contrast, as TIME SERIES PROJECTION is still in the development
stage, we did not optimize it. The results are shown in Figure 17.

The results seems to confirm the theoretical analysis in Section
5.4, brute force is quadratic, TIME SERIES PROJECTION is linear, in

the length of the time series. Note that for every experiment, we
compared the result of both variants of our algorithm with the
results from brute force. In every case the top 3 motifs were the
same.

Figure 17: The scalability of various motif discovery algorithms

10k

Se
co

nd
s Brute Force8k

6k
TS-P i = 100

4k
TS-P Exp2k

0
1000 2000 3000 4000 5000

Length of Time Series

6.4 Examples of Motifs in Real Datasets
We conclude this section with some examples of motifs
discovered in real datasets. While we discovered interesting
motifs in several datasets, we will only show examples where the
motifs happen to occur relatively close to each other (so we can
visualize them in context).

Figure 18 shows an example of a motif discovered in an industrial
dataset. Because we noted that this dataset had many spikes, we
use the definition of 1-Motif(128,1,3) to specify the desire to find
a motif of length 128, with 3 “don’t care” subsections.

Figure 18: Left) An industrial dataset. Right) A motif was
discovered in the data, even in the presence of a spike

Motor 1 (DC Current)

2000 0 500 1000 1500

BA

Since this was a relatively small dataset, we used brute force
search to confirm that the proposed motif is indeed the true 1-
Motif(128,1,3). Note that the presence of a spike did not prevent
our algorithm from finding this motif.

0 20 40 60 80 100 120 0 20 40 60 80 100 120

We also examined an astrophysical dataset of length 29,000 [32].
Initially we examined the K-Motif(128,10) for the first few K.
However all the motifs on that scale were single valleys or peaks,
when we lengthened the subsequence length to 256 we discovered
more interesting motifs such as the one shown in Figure 19.

Figure 19: Left) An astrophysical dataset, Note that only a
fraction of the dataset is shown. Right) A motif discovered in an
astrophysical dataset

Astrophysics (Photon Count)

2500 3500 450 5500 6500

7. CONCLUSIONS AND FUTURE WORK
In this work we have formalized the problem of finding time
series motifs, with arbitrary “don’t care” subsections. We
introduced a novel, scalable algorithm for discovering these
motifs. Our algorithm is much faster than the brute force
algorithm, and as a further benefit, is an anytime algorithm,
producing rapid approximate results very quickly, and using
additional computational time to refine the results.

Several directions for future research suggest themselves. A more
detailed theoretical analysis with allow us to prove bounds on our
algorithm. It may be interesting to extend our work to the
discovery of motifs in multidimensional time series [35], and to
the discovery of motifs under different distance measures such as
Dynamic Time Warping [37].

Reproducible Research Statement: All datasets and code used
in this work are freely available by emailing the authors.

8. REFERENCES
[1] Agrawal, R., Lin, K. I., Sawhney, H. S. & Shim, K. (1995). Fast

similarity search in the presence of noise, scaling, and translation in
time-series databases. In proceedings of the 21st Int'l Conference on
Very Large Databases. Zurich, Switzerland, Sept. pp 490-50.

[2] Apostolico, A., Bock, M. E. & Lonardi, S. (2002). Monotony of
surprise and large-scale quest for unusual words. In proceedings of
the 6th Int’l Conference on Research in Computational Molecular
Biology. Washington, DC, April 18-21. pp 22-31.

[3] Bailey, T & Elkan, C. (1995). Unsupervised learning of multiple
motifs in biopolymers using expectation maximization, Machine
Learning, 21 (1/2), pp 51-80.

[4] Buhler, J. (2001). Efficient large-scale sequence comparison by
locality-sensitive hashing, Bioinformatics 17: pp 419-428.

[5] Caraca-Valente., J.P. & Lopez-Chavarrias. I. (2000). Discovering
similar patterns in time series. In Proceedings of the Association for
Computing Machinery 6th International Conference on Knowledge
Discovery and Data Mining, pp 497-505.

[6] Chan, K. & Fu, A. W. (1999). Efficient time series matching by
wavelets. In proceedings of the 15th IEEE Int'l Conference on Data
Engineering. Sydney, Australia, Mar 23-26. pp 126-133.

[7] Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P. (1998).
Rule discovery from time series. In proceedings of the 4th Int'l
Conference on Knowledge Discovery and Data Mining. New York,
NY, Aug 27-31. pp 16-22.

[8] Dasgupta., D. & Forrest, S. (1999). Novelty detection in time series
data using ideas from immunology. In Proceedings of the 5th

International Conference on Intelligent Systems (1999).
[9] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001). Symbolic

analysis of experimental data. Review of Scientific Instruments.
[10] Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. (1998). Biological

sequence analysis: probabilistic models of proteins and nucleic acids.
Cambridge University Press.

[11] Engelhardt, B., Chien, S. &Mutz, D. (2000). Hypothesis generation
strategies for adaptive problem solving. In Proceedings of the IEEE
Aerospace Conference, Big Sky, MT.

[12] Ge, X. & Smyth, P. (2000). Deformable Markov model templates for
time-series pattern matching. In proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. Boston, MA, Aug 20-23. pp 81-90.

[13] Gionis, A., Indyk, P., Motwani, R. (1999). Similarity search in high
dimensions via hashing. In proceedings of 25th Int’l Conference on
Very Large Databases. Edinburgh, Scotland.

[14] Han, J. Dong, G. & Yin., Y. (1999). Efficient mining partial periodic
patterns in time series database. In Proceedings of the 15th
International Conference on Data Engineering, Sydney, Australia.
pp 106-115.

[15] Hegland, M., Clarke, W. & Kahn, M. (2002). Mining the MACHO
dataset, Computer Physics Communications, Vol 142(1-3),
December 15. pp. 22-28.

[16] Hertz, G. & Stormo, G. (1999). Identifying DNA and protein
patterns with statistically significant alignments of multiple
sequences. Bioinformatics, Vol. 15, pp 563-577.

[17] van Helden, J., Andre, B., & Collado-Vides, J. (1998) Extracting
regulatory sites from the upstream region of the yeast genes by
computational analysis of oligonucleotides. J. Mol. Biol., Vol. 281,
pp 827-842.

[18] Höppner, F. (2001). Discovery of temporal patterns -- learning rules
about the qualitative behavior of time series. In Proceedings of the

5th European Conference on Principles and Practice of Knowledge
Discovery in Databases. Freiburg, Germany, pp 192-203.

[19] Indyk, P., Koudas, N. & Muthukrishnan, S. (2000). Identifying
representative trends in massive time series data sets using sketches.
In proceedings of the 26th Int'l Conference on Very Large Data
Bases. Cairo, Egypt, Sept 10-14. pp 363-372.

[20] Indyk, P., and Motwani. R, Raghavan. R. & Vempala, S. (1997).
Locality-preserving hashing in multidimensional spaces. In
Proceedings of the 29th Annual ACM Symposium on Theory of
Computing. pp. 618-625.

[21] Keogh, E. and Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In the
8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. July 23 - 26, 2002. Edmonton, Alberta,
Canada. pp 102-111.

[22] Keogh, E. and Pazzani, M. (1998). An enhanced representation of
time series which allows fast and accurate classification clustering
and relevance feedback. In 4th International Conference on
Knowledge Discovery and Data Mining. New York, NY, Aug 27-31.
pp 239-243

[23] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000).
Dimensionality reduction for fast similarity search in large time
series databases. Journal of Knowledge and Information Systems. pp
263-286.

[24] Lawrence, C.E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald,
A. F. & Wootton, J. C. (1993). Detecting subtle sequence signals: A
Gibbs sampling strategy for multiple alignment. Science, Oct. Vol.
262, pp 208-214.

[25] Lawrence. C. &. Reilly. A. (1990). An expectation maximization
(EM) algorithm for the identification and characterization of
common sites in unaligned biopolymer sequences. Proteins, Vol. 7,
pp 41-51.

[26] Lin, J. Keogh, E. Patel, P. & Lonardi, S. (2002). Finding motifs in
time series. In the 2nd Workshop on Temporal Data Mining, at the 8th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Edmonton, Alberta, Canada.

[27] Oates, T., Schmill, M. & Cohen, P. (2000). A Method for Clustering
the Experiences of a Mobile Robot that Accords with Human
Judgments. In Proceedings of the 17th National Conference on
Artificial Intelligence. pp 846-851.

[28] Pevzner, P. A. & Sze, S. H. (2000). Combinatorial approaches to
finding subtle signals in DNA sequences. In proceedings of the 8th
International Conference on Intelligent Systems for Molecular
Biology. La Jolla, CA, Aug 19-23. pp 269-278.

[29] Reinert, G., Schbath, S. & Waterman, M. S. (2000). Probabilistic and
statistical properties of words: An overview. J. Comput. Bio., Vol. 7,
pp 1-46.

[30] Rigoutsos, I. & Floratos, A. (1998) Combinatorial pattern
discovery in biological sequences: The Teiresias algorithm,
Bioinformatics, 14(1), pp. 55-67.

[31] Roddick, J. F., Hornsby, K. & Spiliopoulou, M. (2001). An Updated
Bibliography of Temporal, Spatial and Spatio-Temporal Data Mining
Research. Lecture Notes in Artificial Intelligence. 2007. pp 147-163.

[32] Scargle, J., (2000). Bayesian Blocks, A new method to analyze
structure in photon counting data, Astrophysical Journal, 504, pp
405-418.

[33] Staden, R. (1989). Methods for discovering novel motifs in nucleic
acid sequences. Comput. Appl. Biosci., Vol. 5(5). pp 293-298.

[34] Tompa, M. & Buhler, J. (2001). Finding motifs using random
projections. In proceedings of the 5th Int’l Conference on
Computational Molecular Biology. Montreal, Canada, Apr 22-25.
pp 67-74.

[35] Vlachos, M., Kollios, G. & Gunopulos, G. (2002). Discovering
similar multidimensional trajectories. In proceedings 18th
International Conference on Data Engineering. pp 673-684.

[36] Yi, B, K., & Faloutsos, C. (2000). Fast time sequence indexing for
arbitrary Lp norms. In proceedings of the 26st Intl Conference on
Very Large Databases. pp 385-394.

[37] Yi, B,K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of
similar time sequences under time warping. IEEE International
Conference on Data Engineering. pp 201-208.

	INTRODUCTION
	DEFINITIONS AND NOTATION
	RELATED WORK
	MOTIF DISCOVERY AND THE RANDOM PROJECTION ALGORITHM
	ADAPTING RANDOM PROJECTION TO TIME SERIES DATA
	Symbolizing Time Series
	Time Series Projection
	Statistical Significance of Time Series Motifs
	Time and Space Complexity

	EXPERIMENTAL RESULTS
	A “Sanity Check”: Finding Planted Motifs
	Sensitivity to Noise
	Efficiency of Time Series Projection
	Examples of Motifs in Real Datasets

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

