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ABSTRACT   
Several important time series data mining problems reduce to the 
core task of finding approximately repeated subsequences in a 
longer time series. In an earlier work, we formalized the idea of 
approximately repeated subsequences by introducing the notion 
of time series motifs. Two limitations of this work were the poor 
scalability of the motif discovery algorithm, and the inability to 
discover motifs in the presence of noise.  

Here we address these limitations by introducing a novel 
algorithm inspired by recent advances in the problem of pattern 
discovery in biosequences. Our algorithm is probabilistic in 
nature, but as we show empirically and theoretically, it can find 
time series motifs with very high probability even in the presence 
of noise or “don’t care” symbols. Not only is the algorithm fast, 
but it is an anytime algorithm, producing likely candidate motifs 
almost immediately, and gradually improving the quality of 
results over time.  
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1. INTRODUCTION 
Several important time series data mining problems reduce to the 
core task of finding approximately repeated subsequences in a 
longer time series. In an earlier work, we formalized the idea of 
approximately repeated subsequences by introducing the notion of 
time series motifs [26]. We will define motifs more formally later 
in this work. In the meantime a simple graphic example will serve 
to develop the reader’s intuition.  Figure 1 illustrates an example 
of a motif discovered in a complex dataset.  

Examples of algorithms that utilize motifs (typically under 
different names and with variants of definitions) include the 
following: 

• Mining association rules in time series requires the discovery 
of motifs. These are referred to as primitive shapes in [7] and 
frequent patterns in [18].  

• Several time series classification algorithms work by 
constructing typical prototypes of each class [22, 15]. These 
prototypes may be considered motifs.  

• Many time series anomaly/interestingness detection 
algorithms essentially consist of modeling normal behavior 
with a set of typical shapes (which we see as motifs), and 
detecting future patterns that are dissimilar to all typical 
shapes   [8]. 

• In robotics, Oates et al. [27], have introduced a method to 
allow an autonomous agent to generalize from a set of 
qualitatively different experiences gleaned from sensors. We 
see these “experiences” as motifs. 

• Much of the work on finding approximate periodic patterns 
in time series can viewed as an attempt to discover motifs 
that occur at constrained intervals [14]. For example, the 
astute reader may have noticed that the motif in Figure 1 
appears at approximately equal intervals, suggesting an 
unexpected regularity.  

• In medical data mining, Caraca-Valente and Lopez-
Chavarrias have introduced a method for characterizing a 
physiotherapy patient’s recovery based of the discovery of 
similar patterns [5]. Once again, we see these “similar 
patterns” as motifs. 

In addition to the application domains mentioned above, motif 
discovery can be very useful in its own right as an exploratory 
tool to allow hypothesis generation [11].   
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Figure 1: Above) An example of a motif that occurs three times in 
a complex and noisy industrial dataset. Below) a zoom-in reveals 
just how similar the three occurrences are to each other Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGKDD ’03, August 24-27, 2003, Washington, DC. 

Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.  

There exists a vast body of work on efficiently locating known 
patterns in time series [1, 6, 12, 23, 35, 36, 37]. Here, however, 
we must be able to discover motifs without any prior knowledge 
about the regularities of the data under study.  

The obvious, nested-loop, brute force approach to motif discovery 
would require a number of comparisons quadratic in the length of 



the database. Optimizations based on the triangular inequality can 
mitigate the time complexity by a large constant factor [26], but 
this approach is still untenable for large and massive datasets. All 
the works listed above introduce methods to discover some form 
of motifs, but the definitions are application specific, scalability is 
not addressed, and more importantly they completely disregard 
the problem of noise.  

The importance of noise when attempting to discover motifs 
cannot be overstated. Consider the two sequences shown in Figure 
2. While they are extremely similar, one of them has a downward 
spike at time 38.   

 

Figure 2: Two subsequences from an industrial dataset. Although 
they appear to very similar, the noisy downward spike at time 
period 38 in one of the sequences will make it difficult for 
algorithms to discover this potential motif 

One could assume that one outlier in a sequence of length 100 
data points would not make much difference. However even small 
amounts of noise can dominate distance measures, including the 
most commonly used data mining distance measures, such as the 
Euclidean distance [6, 7, 8, 21, 36]. Figure 3 shows that the spike 
can cause one of our candidate motifs to appear to be much more 
similar to an artificial sequence which just happens to have spike 
in the same place. 

 

Figure 3: Left) The two sequences from Figure 2 clustered 
together with a synthetic sequence, using Euclidean distance. The 
synthetic sequence does not particularly resemble the two real 
sequences, but happens to have noise in the same place as 
sequence 2. This dendrogram demonstrates that a single piece of 
noise can dominate a distance function. Right) If we allow the 
distance function to have “don’t care” sections (denoted by the 
gray bar), more intuitive results can be obtained 

There is still hope for us if we wish to mine noisy datasets. Figure 
3 also shows that allowing small don’t care subsections (that is, 
sections which are ignored by the distance function), allows much 
more intuitive results to be obtained. We note that the utility of 
allowing don’t care sections in time series has been documented 
before [1, 22], and it is a cornerstone of text and Biosequences 
data mining [3, 24, 25, 28, 30, 34]. 
The previous example illustrates the dangers of mining in the 
presence of noise. Indeed, this single spike might be best taken 
care of with a simple smoothing algorithm. More generally, 
however, we may have a potential motif if we are willing to 

overlook the fact that a small valley in one sequence is mirrored 
by a small peak in another, otherwise similar, sequence. 
Robustness to such situations is non-trivial [1]. 

Our contributions in this paper are twofold. We generalize the 
definition of time series motifs to allow for don’t-care 
subsections, and we introduce a novel time- and space-efficient 
algorithm to discover motifs. Our method is based on a recent 
algorithm for pattern discovery in DNA sequences [34]. The 
intuition behind the algorithm is to project the data objects (in our 
case, time series), onto lower dimensional subspaces, based on a 
randomly chosen subset of the objects features. The lower 
dimensional space can be quickly post-processed to discover 
likely candidates for motifs, while the candidates can be quickly 
checked against the original data.      
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The rest of this paper is organized as follows. In Section 2 we 
formally define the time series motif problem. In Section 3 we 
briefly review related work in time series data mining, and in 
bioinformatics. Section 4 sees an extensive review of the work of 
Buhler and Tompa [34], upon which our algorithm is based. 
Section 5 considers the problem of adapting an intrinsically 
discrete algorithm to the continuous domain of time series. In 
Section 6 we provide the results of a comprehensive experimental 
evaluation. Finally in Section 7 we summarize our findings and 
offer directions for future work.   

2. DEFINITIONS AND NOTATION    
We made some initial progress in defining time series motifs in a 
previous paper [26], here we generalize the definition to allow for 
matching under the presence of noise, and to eliminate a special, 
degenerate case of a motif.  

For concreteness, we begin with a definition of our data type of 
interest, time series: 
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3  Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Time series can be very long, sometimes containing trillions of 
observations [12, 32]. We are typically not interested in any of the 
global properties of a time series; rather, we are interested in 
subsections of the time series, which are called subsequences.   

Definition 2. Subsequence: Given a time series T of length m, 
a subsequence C of T is a sampling of length n≤m of 
contiguous position from T, that is, C = tp,…,tp+n-1 for  1≤ p ≤ 
m – n + 1. 

Since all subsequences may be a potential motif, any motif 
discovery algorithm will eventually have to extract all of them, 
this can be achieved by use of a sliding window [7, 23, 36]. 

Definition 3. Sliding Window: Given a time series T of length 
m, and a user-defined subsequence length of n, a matrix S of 
all possible subsequences can be built by sliding a window of 
size n across T and placing subsequence Cp  in the pth  row of 
S. The size of matrix S is (m – n + 1) by n. 

A task commonly associated with subsequences is to determine if 
a given subsequence is similar to other subsequences under some 
distance measure D(C,M) [21]. This idea is formalized in the 
definition of a match. 

Definition 4. Match: Given a positive real number R (called 
range) and a time series T containing a subsequence C 
beginning at position p and a subsequence M beginning at q, 
if D(C, M) ≤ R, then M is called a matching subsequence of C. 



The first three definitions are summarized in Figure 4, illustrating 
a time series of length 1,000, and two subsequences of length 128. 

Definition 6 does not allow for don’t care subsections [1], but it 
can easily extended. 
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Definition 7. K-Motif(n,R,d): The Kth most d-significant motif 
in T (hereafter called the K-Motif(n,R,d)) is the subsequence 
CK that has the highest count of non-trivial matches, and 
satisfies D(CK, Ci) > 2R where d (possibly non-contiguous) 
datapoints can be ignored while calculating the distance 
between CK, Ci, for all  1 ≤  i < K. In general we have d < n, 
and typically d << n. 

Deciding which d datapoints to ignore is easy. Since we want to 
minimize the calculated distance, we can sort the indices i in 
increasing order of |Ci –Mi|, and ignore the first d. 

Figure 4: A visual intuition of a time series T (light line), a 
subsequence C (bold line) and a subsequence M that is a match to 
C (C is overlaid as a bold gray line) 

Whereas the definition of a match is rather obvious and intuitive, 
we also need for the definition of a trivial match. One can observe 
that the best matches to a subsequence (apart from itself) tend to 
be located one or two points to the left or the right of the 
subsequence in question. Figure 5 shows the situation. 

We note that this definition has a close analogue in classic motif 
discovery in biosequences [28, 34]. In the bioinformatics 
community, the (w,d)-motif problem is to discover a reoccurring 
sequence of length w, where each occurrence may differ in d 
positions. Note that in the discrete case, there is no R parameter, 
since it is implicit the use of Hamming distance. 
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There is one final consideration we must address if we wish to 
have a meaningful definition of motif. The problem is best 
illustrated with a visual example.  
 

Figure 6: Left) Three subsequences of length 16 that can be 
modeled well by a straight line. Right) After normalization, all 
such subsequences become virtually indistinguishable 
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Figure 5: For almost any subsequence C in a time series, the best 
matches are the trivial subsequences immediately to the left and 
right of C 

Intuitively, any definition of motif should exclude the possibility 
of over-counting these trivial matches, which we define more 
concretely below.      

Definition 5. Trivial Match: Given a time series T, containing 
a subsequence C beginning at position p and a matching 
subsequence M beginning at q, we say that M is a trivial 
match to C if either p = q or there does not exist a 
subsequence M’ beginning at q’ such that D(C, M’) > R, and 
either q < q’< p or p < q’< q. 

Figure 6 shows that the subsequences that can be well-
approximated by a straight line with a positive slope will look 
almost identical after normalization. Since almost all time series 
can be modeled well by piecewise linear functions if the 
subsequences are short enough [12, 22], then the most common 
motifs will likely correspond to an upward trend or a downward 
trend of arbitrary angles. These “degenerate motifs” are unlikely 
to be of interest to anyone, and in any case, are trivial to 
enumerate with a simple algorithm [19]. We will therefore 
exclude them from further consideration. This can easily be 
achieved at the feature extraction stage, when using sliding 
windows to extract the subsequences. As the window is moved 
across the time series, the subsequences “straightness” can be 
measured by doing a least squares linear fit, and recording the 
residual error [21, 23]. Only those subsequences that have a 
residual error greater that some epsilon are extracted and passed 
to the motif discovery algorithm. With a careful implementation 
that reuses partial results from the previous windows, this can be 
achieved in amortized constant time per subsequence.     

Each time series is normalized to have mean zero and a standard 
deviation of one before calling the distance function, because it is 
well understood that it is meaningless to compare time series with 
different offsets and amplitudes [6, 21, 35, 36]. 
We can now define the problem of enumerating the K most 
significant motifs in a time series.  

Definition 6. K-Motif(n,R):  Given a time series T, a 
subsequence length n and a range R, the most significant 
motif in T (hereafter called the 1-Motif(n,R)) is the 
subsequence C1 that has highest count of non-trivial matches 
(ties are broken by choosing the motif whose matches have 
the lower variance). The Kth most significant motif in T 
(hereafter called the K-Motif(n,R) ) is the subsequence CK that 
has the highest count of non-trivial matches, and satisfies 
D(CK, Ci) > 2R, for all  1 ≤  i < K. 

3. RELATED WORK  Note that this definition forces the set of subsequences in each 
motif to be mutually exclusive. This is important because 
otherwise two motifs might share the majority of their elements, 
and thus be essentially the same. To gain more intuition for these 
definitions, Figure 1 shows the 1-Motif(128,4) discovered in the 
Winding dataset. 

In order to frame our contribution in its proper context we will 
briefly consider related work. 

To date the majority of work in time series data mining has 
focused indexing time series, the efficient discovery of known 
patterns in time series [1, 6, 12, 21, 22, 23, 31, 35, 36, 37].  

 



The innovative work of Oates et al. considers the problem of 
learning “qualitatively different experiences” (which we see as 
motifs), but the authors are working with relatively small datasets, 
and thus did not address scalability issues [27].  

Others have considered using clustering as a technique to generate 
“motifs” [7, 18]. However, apart form the scalability issues, we 
cannot meaningfully cluster subsequences extracted by a sliding 
window, because the effect of trivial matches. Since slowly 
changing, relatively noise-free sections of time series have orders 
of magnitude more matches, than complex and/or noisy shapes, 
clustering of the subsequences extracted by sliding windows is 
highly biased towards these simple shapes.  

Pattern discovery algorithms for biosequences have recently 
received increased attention from researchers, in particular after 
the challenge by Pevzner and Sze [28] (see below). We mention, 
in no particular order and without pretending to be exhaustive, 
TEIRESIAS [30], GIBBSSAMPLER [24],  MEME [3], WINNOWER [28], 
VERBUMCULUS [2], PROJECTION [34], among others. 

Of particular interest is the PROJECTION algorithm by Buhler and 
Tompa [34]. They applied random projection in their paper to find 
motif in nucleotide sequences. The most important contribution 
was in formulating the number of random trials to run in order to 
achieve some specific bucket richness. Since this work is the 
cornerstone of our contribution, we will discuss the contribution 
of Buhler and Tompa in more detail in the next section. 

4. MOTIF DISCOVERY AND THE 
RANDOM PROJECTION ALGORITHM  
The projection algorithm by Buhler and Tompa was designed to 
attack the planted (w,d)-motif problem, which was proposed by 
Pevzner and Sze [28]. 

Planted (w,d)-motif problem. You are given t strings of 
length n, initially generated at random (i.e., each symbol 
generated i.i.d. with the equal probability). Each string is 
planted with exactly one approximate occurrence of an 
unknown motif y of length w, that is, an occurrence with 
exactly d substitutions. Find the unknown motif y. 

The initial challenge by Pevzner and Sze was to solve the (15,4)-
motif problem on t=20 sequences of n=600 symbols over the 
DNA alphabet (i.e., 4Σ = ). This problem turned out to be 
extremely hard to solve for commonly used pattern discovery 
algorithms. We need a few definitions to explain why. 

Definition 8. Given two strings y1 and y2, |y1|=|y2|, the 
Hamming distance H(y1,y2) is given by the number of 
mismatches between y1 and y2. 

Definition 9. Given a string y, all strings at Hamming 
distance at most d from y are in its d-neighborhood. 

Observe that if you consider two approximate occurrences of the 
unknown motif y, the Hamming distance between them may be as 
large as 2d.  In fact, it very likely that we will never observe y in 
the t sequences. Figure 7 illustrates the problem from a geometric 
perspective.  
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Figure 7: the string y is the (unknown) motif, d is the number of 
allowed mismatches, and y1,y2,y3 belongs to the d-neighborhood 
of y. The problem is to find y from y1,y2,y3 

To make the problem even more difficult, even if we were able to 
determine exactly all the yi in the d-neighborhood of y, there is no 
guarantee to find the unknown model y. Suppose w=4, d=1 and 
that we found the strings {AAAA,TATA,CACA}. The pair wise 
Hamming distance is 2 but there is no string at Hamming distance 
1 to each of these. 
The brute force strategy of building all possible substrings in the 
2d-neighboorshood of all the substrings of the sequence under 
analysis is doomed to fail. In fact, the size of the size N(m,d) of 
the d-neighborhood of a string y is 

( ) ( ) ( )
0

, 1
d j d d

j

y
N y d O y

j=

 
= Σ − ∈ Σ 
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and grows exponentially with d. 
In order to reduce the huge search space, Buhler and Tompa used 
random projection to “guess” at least some of occurrences of the 
unknown planted motif. 
Buhler and Tompa projection algorithm carries out i iterations, in 
each of which it chooses k distinct positions uniformly at random 
out the w possible. The k positions become a sort of “mask” that is 
superimposed at all positions on the sequences under study.  Each 
substring of size w in the sequence is therefore mapped to a string 
of size k, called the projection, by reading the symbols though the 
mask. 
The frequency of the projected strings is collected into a hash 
table. If k is chosen such that  then it is likely that some 
of the occurrences of the planted motif will hash together in the 
same entry. Entries in the hash table whose count is higher than a 
specified threshold s are therefore selected, and they become the 
seed for a refinement process that uses expectation maximization 
(EM) [25]. 

-k w d<

Crucial factors in the success of PROJECTION are the choices of the 
projection size k, the number of iteration i, and the threshold s. 
The parameter k has to be chosen such that  k w - d<  and 

( - 1)k t n wΣ > +  in order to sample from the non-varying positions 
(first constraint) and to filter out the noise (second constraint). 
The number of iteration i can be estimated from w, t, d, k, and s 
(see [34] for more details).  

5. ADAPTING RANDOM PROJECTION 
TO TIME SERIES DATA 
In order to leverage off the work in motif discovery in discrete 
domains, we must use a discrete representation of the time series. 
Although there are literally hundreds of techniques to symbolize 



time series (see [9] for a comprehensive review), none of them are 
suitable for our purposes for two reasons:  

Once the breakpoints have been obtained we can discretize a time 
series in the following manner. We first obtain a PAA of the time 
series. All PAA coefficients that are below the smallest 
breakpoint are mapped to the symbol “a”, all coefficients greater 
than or equal to the smallest breakpoint and less than the second 
smallest breakpoint are mapped to the symbol “b”, etc. Figure 8 
illustrates the idea. 

• they all discretize the time series into a finite alphabet, but 
do not reduce its dimensionality [6, 23]. However, to take 
advantage of the PROJECTION algorithm we need to be able to 
significantly reduce the dimensionality of the subsequences. 

• the distance measures defined on the symbolic sequences 
typically have little correlation with the true distances 
between the original “raw” time series [9]. To take advantage 
of the PROJECTION algorithm we must have not only have 
high correlation, we must have the distance calculated on the 
symbolic sequences lower bound the true distance. 
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In the next section, we will define a symbolic representation that 
allows dimensionality reduction and lower bounding.   

Figure 8: A time series (thin black line) is discretized by first 
obtaining a PAA approximation (heavy gray line) and then 
using predetermined breakpoints to map the PAA coefficients 
into symbols (bold letters). In the example above, with n = 128, 
w = 8 and a = 3, the time series is mapped to the word 
cbccbaab  

5.1 Symbolizing Time Series  
A time series C of length n can be represented in a w-dimensional 
space by a vector wcc ,,1 K=C . The ith element of C is 
calculated by the following equation: 

Note that in this example the 3 symbols, “a”, “b” and “c” are 
approximately equiprobable as we desired. We call the 
concatenation of symbols that represent a subsequence a word. 
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Definition 11. Word: A subsequence C of length n can be 
represented as a word w1 as follows. Let αi denote 
the ith element of the alphabet, i.e., α1 = a and α2 = b. Then 
the mapping from a PAA approximation 

ccC ˆ,,ˆˆ K=

C  to a word  is 
obtained as follows:  

Ĉ

In other words, to reduce the time series from n dimensions to w 
dimensions, the data is divided into w equal sized “frames”. The 
average value of the data falling within a frame is calculated and a 
vector of these values becomes the dimensionality-reduced 
representation. This simple representation, known as Piecewise 
Aggregate Approximation (PAA) [23] or Segmented Means [36] 
been shown to rival more sophisticated dimensionality reduction 
techniques like Fourier transforms and wavelets [6] for the task of 
indexing and compressing time series [21]. 

1ˆ     iff    i i j ic c jα β − β= ≤ <      (3) 
We have now completely defined our symbolic representation. 
We simply need to define an appropriate distance measure on it.   
By far the most common distance measure for time series is the 
Euclidean distance [6, 7, 21, 31]. Given two time series Q and C 
of the same length n, Eq. 4 defines their Euclidean distance. Having transformed a time series into the PAA representation we 

can apply a further transformation to obtain a discrete 
representation. It is desirable to have a discretization technique 
that will produce symbols with equiprobability [2]. Given that 
normalized subsequences have highly Gaussian distribution, we 
can simply determine the “breakpoints” that will produce equal-
sized areas under Gaussian curve. 

( ) ( )∑ −≡
n

ii cqCQD 2,   (4) 
=i 1

If we further transform the data into the symbolic representation, 
we can define a MINDIST function that returns the minimum 
distance between the original time series of two words: 

( )∑ =
≡

w

i iiw
n cqdistCQMINDIST

1
2)ˆ,ˆ()ˆ,ˆ(   (5) Definition 10. Breakpoints: breakpoints are a sorted list of 

numbers Β = β1,…,βa-1 such that the area under a N(0,1) 
Gaussian curve from βi  to βi+1 = 1/a (β0  and βa  are defined as 
-∞ and ∞, respectively). 

The function resembles Eq. 4 except for the multiplication by the 
square root of the compression rate, and the fact that the distance 
between individual points has been replaced with the sub-function 
dist(). The dist() function can be implemented using a table 
lookup as illustrated in Table 2.   

These breakpoints may be determined by looking them up in a 
statistical table. For example Table 1 gives the breakpoints for 
values of a from 3 to 6.  Table 2: A lookup table used by the MINDIST function. This 

table is for an alphabet of cardinality of 4, i.e. a = 4. The distance 
between two symbols can be read off by examining the 
corresponding row and column. For example dist(a,b) = 0 and 
dist(a,c) = 0.67. 

Table 1: A lookup table that contains the breakpoints that divides 
a Gaussian distribution in an arbitrary number (from 3 to 6) of 
equiprobable regions 

βi          a 3 4 5 6 

β1 -0.43 -0.67 -0.84 -0.97 

β2 0.43 0 -0.25 -0.43 

β3  0.67 0.25 0 

β4   0.84 0.43 

β5    0.97 

 a b c d 

a 0 0 0.67 1.34 

b 0 0 0 0.67 

c 0.67 0 0 0 

d 1.34 0.67 0 0 



The value in cell (r,c) for any lookup table can be calculated by 
the following expression.  
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For a given value of the alphabet size a, the table needs only be 
calculated once, then stored for fast lookup.  

For any two time series C and M, with symbolic 
representationsC and with any cardinality a and any word 
size w, we have MINDIST(C , ) ≤ D(C,M). The proof is a 
straightforward but quite lengthy algebraic argument, we omit it 
for brevity. 

ˆ M̂
ˆ M̂

 

Figure 10: Left) A mask {1,2} was randomly chosen, so the 
values in columns {1,2} were used to project matrix into 
buckets. Right) Collisions are recorded by incrementing the 
appropriate location in the collision matrix 

Ŝ

If two words corresponding to subsequences i and j are hashed to 
the same bucket, we increase the count of cell (i,j) in a collision 
matrix, which has been previously initialized to all zeros. In the 
example above, i=58  and j=1.  

5.2 TIME SERIES PROJECTION  
Our time series motif discovery algorithm is best elucidated with 
a worked example. For simplicity, we illustrate the algorithm with 
naïve data structures that would be untenable in practice, and 
without a discussion of parameter choices. We will address these 
issues in a later section. Also for simplicity of exposition, we will 
consider the simple K-Motif(n,R) case.     

Note that the words corresponding to subsequences 2 and 985 are 
also hashed into a common bucket, yet they do not correspond to 
motif. They may be regarded as a false alarm. Of course, it is also 
possible that our true motifs could have mapped to different 
buckets, had we chosen a different mask. This problem can be 
solved simply by repeating the hashing process i times, with new, 
randomly chosen masks. Figure 11 shows the result of another 
iteration, this time with {2, 4} as the chosen mask. 

Suppose we have a time series T of 1,000 data points which 
contains two occurrences of a motif of length 16 at time T1 and 
time T58. The second occurrence of the motif is corrupted by some 
noise in positions 8 to 12, and that there are no other high quality 
motifs in the dataset.  
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Figure 11: Left) A mask {2,4} was randomly chosen, so the 
values in columns {2,4} were used to project matrix into 
buckets. Right) Once again, collisions are recorded by 
incrementing the appropriate location in the collision matrix 

Ŝ

It is important to note that the buckets cannot be reused from one 
iteration to another. We can only record collisions in the 
appropriate place in the matrix.  

After repeating the process an appropriate number of times, we 
examine the collision matrix. If the entries in matrix were 
relatively uniform, it would suggest that there are no motifs to be 
found in our dataset. However for the example above, it is very 
likely that the cell (58,1) will have a large value. A more precise 
definition of what can be considered “large enough” (i.e., 
statistically significant) will be given later. A large value in a cell 
is not a guarantee of the existence of a corresponding motif, but it 
is a strong indicator. To confirm we must make an access to the 
original data. 

 

Figure 9: A time series is preprocessed ready for the random 
projection stage. A sliding window removes the first subsequence 
C1, which is converted into the symbolic version 1C , then placed 
in the matrix S . Note that the index of  points back to the 
original location of the subsequence 

ˆ
ˆ Ŝ

We begin by extracting subsequences using a sliding window, 
converting them into symbolic form, and placing them into matrix 

. Note that each row index of  points back to the original 
location of the subsequence. Figure 9 illustrates the process. 
Ŝ Ŝ

We begin by retrieving the two original time series subsequences 
corresponding to the indices of the largest value cell in our 
collision matrix, in our example, C1 and C58. We can measure the 
distance between them using the Euclidean distance (Eq. 4). 
Assuming that the two sequences are within R of each other, they 
form a tentative motif. However there may be other subsequences 
which are also within R of the subsequences, and thus need to be 

Once the matrix has been constructed, we are ready to begin 
random projection. We randomly select 2 columns of S to act as 
a mask. For example in Figure 10, columns {1,2} were chosen to 
act as the mask, therefore the k=985 words in the matrix are 
hashed into buckets based only on their values in the 1st and 2nd 
columns. 

Ŝ
ˆ

Ŝ



added to this provisional motif. How should we find them? We 
actually have several options, depending on how our original time 
series T is stored. 

If T is stored in main memory, we can simply do a sliding 
window scan to find additional members of the motif. If T resides 
on disk, we want to avoid as many costly disk accesses as 
possible. We can easily achieve this by using the collision matrix 
as a heuristic. If a subsequence Ci is similar to C1 and C58 then the 
cells of collision matrix at (i,1) and (i,58) must have values which 
are statistically significant. So we can examine the collision 
matrix to find promising candidates for retrieval.  

We can enumerate these additional promising candidates, ready 
for retrieval from disk. However we may not have to retrieve 
them! Assume for the moment that the data structure  is in main 
memory (At the moment, this seems unrealistic, since as defined 
above,  is as large as T. However in the next section we will 
show that  is much smaller that T.). Since we know R, and we 
know the words that correspond to all the subsequences, we need 
to retrieve Ci if and only if MINDIST i 1

or 
i 58

, which we can quickly determine in main 
memory. Because our MINDIST function lower bounds the true 
distance, any sequence that fails this test, must be more that R 
away from both sequences.  

Ŝ

C ,ˆ

Ŝ
Ŝ

Ĉ(
RC ≤)ˆ(

RCMINDIST ≤)ˆ,

Once we have discovered all matching subsequences within R of 
C1 and C58 we can report them to the user, and begin iteratively 
examining the collision matrix for the next largest value which 
has not been previously examined, and which is not within R of a 
previously reported motif.  

We still have to address the stopping criteria. There are three 
possibilities. 

• We can do a fixed number i of iterations. 

• We can stop when the user is not willing to wait more time. 
Since the algorithm is an anytime algorithm, the users may 
be satisfied with the first few motifs they see, or be 
dissatisfied and wish to change parameters, e.g., 
increasing/decreasing the length of the subsequences. 

• We can stop when the largest value in the collision matrix is 
no greater than we would have expected by chance. In order 
to do this we need to be able to calculate what values we 
should expect to find in the collision matrix, assuming there 
are no motifs, for any given set of parameters. Fortunately, 
as we shown in the next section, this number can be 
analytically approximated.    

5.3 Statistical Significance of Time Series Motifs 
In order to determine the statistical significance of the entries in 
the collision matrix, we need to estimate how many hits we 
expect on average in each entry. Following [34, 4], we observe 
that given two randomly-generated words of size w over an 
alphabet of size a, the probability that they match with up to d 
errors is 

0

1 1 ( , , ) .
i wd

i

w ap a w d
i a a

−

=

  −   =         
∑

i
   (7) 

The expression (8) assumes that each symbol of the alphabet has 
equal probability, which is guaranteed by our discretization 

procedure. Since random string projection is a locality-sensitive 
hashing scheme in the sense defined by [20], we have the 
probability of two words of projecting to the same value as 

0
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i

iq w d t
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 =  
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where t is the length of the projected string. We conclude that if 
we have k random strings of size w, an entry of the similarity 
matrix will be hit on average 
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times (in each iteration). 

5.4 Time and Space Complexity   
As explained above, our algorithm appears lethargic in time 
requirements and bloated in space requirements. In this section we 
will explain why this is not so.  

For simplicity we illustrate the matrix with m-n+1 rows (recall 
that m is the length of the time series T). However, in general, the 
matrix is much smaller. There are two reasons why this is so. 
First, as noted at the end of Section 2, subsequences which are 
close to straight lines should not be included in the S matrix. The 
second reason is related to the fact that the symbolic 
representation allows for admissible numerosity reduction. This 
reduction can be explained with an example. Suppose that we are 
beginning the sliding windows extraction and the first word is 
cabcab. If we shift the sliding window by one position, and find 
the next word is also cabcab, we can omit it from the S matrix, 
without any loss of information, so long as we have kept the index 
to the first occurrence. For example, suppose we are examining 
the word bbccaa in , and its index back to the original time 
series is 555, if we look at the (now guaranteed to be distinct) 
word in next row, and find that its index back to the original time 
series is 559, then we know that the subsequences beginning at 
556, 557 and 558 must also map onto the word bbccaa. This 
optimization is essentially the classic run-length-encoding data 
compression algorithm.  

Ŝ

ˆ

ˆ

Ŝ

Exactly how much these two optimizations help depend on the 
choice of parameters and the data itself. As a concrete example, 
when the Space Shuttle Telemetry data shown in Figure 4 is 
processed (with n = 128, w = 16 and a = 4), the number of rows in 
the  matrix is only 22% of the length of the original time series. 
Also note that we only need 

2w    bits per word. In our 
preliminary experiments the size of S  is much less than one tenth 
the size of the original time series. 

Ŝ
log a

ˆ


The collision matrix also appears to be quite demanding in terms 
of space requirments. In general, however, we can expect it to be 
extremely sparse, and thus worth the slight time overhead to 
implement it as a sparse matrix. In the worst case, the number of 
cells which have a non-zero entry is Ŝ  times the number of 
iterations i (in practice, it is much less), since a reasonable value 
for i is on the order of 10 to 100. The size of the sparse collision 
matrix it is linear in |T|.  

To summarize, the time complexity of noise TIME SERIES 
PROJECTION is O(i | S |), which is O(|T|). In contrast, the time ˆ



complexity of the brute force approach is O(|T|2). Both algorithms 
have O(|T|) space complexity. 

6. EXPERIMENTAL RESULTS 
We begin with a simple demonstration of the algorithm.  

6.1 A “Sanity Check”: Finding Planted Motifs 
As a “sanity check” we attempt to recover two planted motifs, 
each with two occurrences, from a small dataset. The two planted 
motifs are shown in Figure 12. Note that they are by no means 
identical to each other. For example, consider the AB motif. 
During time period 30 to 40, subsequence A is mostly flat with a 
single dramatic upward spike. In contrast, subsequence B is 
characterized by a relatively smooth valley in this region. In 
addition, all the subsequences are noisy along their entire length. 

 
Figure 12: Two motifs which will be planted into a longer 
dataset as a simple test of our algorithm. Left) The AB motif, 
Right) the CD motif 

We embedded the four subsequences into a random walk dataset 
of length 1128. The dataset was scaled such that the average 
standard deviation in any subsequence of length 128 was about 
the standard deviation of our embedded motifs. Figure 13 
illustrates the dataset.  

 1200
Figure 13: A random walk time series with implanted motifs. 
The subsequences were randomly imbedded in the following 
locations {A, 191}, {B,  649}, {C, 351} and {D, 812} 

We ran our algorithm with n = 128, w = 16, a = 4 for 100 
iterations. For ease of visualization we did not perform the 
numerosity reduction step discussed in Section 5.3. Because this 
is a relatively small dataset, we can visualize the collision matrix 
as a contour plot as in Figure 14. 

 
Figure 14: The collision matrix visualized as a contour plot. Only 
values which are at least 10 times the expected value (cf. 5.4) are 
shown 
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These preliminary results are extremely encouraging. The 
locations of the planted motifs are clearly seen as dark smudges. 
Note that the location of the planted motifs appears to be slightly 
“smeared” at a 45 degree angle. This is simply the result of not 
doing the numerosity reduction step, because if location (i, j) has 
strong motif, the locations (i +1, j +1) and (i -1, j -1) will have a 
slightly weaker one, etc. 

The diligent reader may have noted that there are some additional 
regions of interest in the matrix, in particular around locations 
(560, 130) and (750, 460). Although it turns out that these regions 
have counts at most ¼ of the values corresponding to the planted 
motifs, they clearly have values much higher than the significance 
threshold. We therefore extracted the corresponding subsequences 
at these locations. Figure 15 shows the relevant subsequences.   

 
Figure 15: The spurious motifs discovered. Left) Subsequences 
beginning at 560 and 130. Right) Subsequences beginning at 750 
and 460 

While these subsequences are not as similar as our planted motifs, 
they are clearly quite similar to each other, and it is not surprising 
that they were (weakly) flagged by our algorithm.  

Finally, we tested the sensitivity of the algorithm to the parameter 
n,w and a. In practice, one would like to be able to recover the 
motifs without knowing the exact length of the planted motifs. 
We discovered that we could make n much shorter than 128 and 
still trivially find (a subsection) of our planted motifs. This is not 
surprising since it is very likely that a portion of a motif is also a 
motif. A more satisfying result is the fact that we could set n to be 
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larger that 128 (at least 150), and still easily recover the planted 
motif. Regarding parameters w and a, we found we could vary 
them greatly and still easily recover the planted motifs. The only 
significant difference was a slight change in the efficiency of the 
algorithm.   

6.2 Sensitivity to Noise 
The experiment in the previous section suggests that our 
algorithm is reasonably robust to noise. The planted motifs which 
were so easily recovered were actually quite noisy, as was the 
dataset into which they were imbedded. Nevertheless, it is natural 
to ask how sensitive to noise TIME SERIES PROJECTION is. 

To answer the question we performed the following experiment. 
We took the dataset used in Section 6.1 and kept adding noise to 
it until the largest value in the collision matrix no longer 
corresponded to one of the planted motifs. We used Gaussian 
random noise, which was added to the entire length of the dataset. 
We began with noise which had a standard deviation that was a 
tiny fraction the standard deviation of the original data, and kept 
doubling the noise level until the average value of the planted 
motifs was no greater than the largest other value. Figure 16 
shows a typical amount of noise that can be tolerated by our 
algorithm. If this noise level is doubled again, the planted motif is 
not anymore the 1-motif and 2-motif (although even when the 
noise level shown is quadruped, we still typically find the planted 
motifs in the first 4 or 5 motifs reported).   

 
Figure 16: Even when noise is added to the test dataset 
introduced in Section 6.1, the TIME SERIES PROJECTION 
algorithm can still discover the planted motifs. Although noise is 
added to the entire dataset, here we only show the planted AB 
motif with an amount of noise that our algorithm can handle. If 
the amount of noise is doubled again, our algorithm fails to find 
this motif as the most promising candidate in the collision matrix  

6.3 Efficiency of TIME SERIES PROJECTION  
To test the scalability of our algorithm, we began by measuring 
the time taken for the experiment discussed in Section 6.1. We 
then repeatedly concatenated an additional 1,000 length of 
random walk data, and measured the increase in time required. 
We tested two variants of our algorithm. In the first, we ran the 
algorithm for 100 iterations. In the second, we stopped after the 
largest value in the collision matrix was at least ten times larger 
than expected by chance (as measured by Eq. 9). As a comparison 
we tested against the obvious brute force algorithm. We highly 
optimized the brute force algorithm (including removing the 
square root from the Euclidean distance function, “early 
abandonment”, triangular inequality pruning, etc [21]). In 
contrast, as TIME SERIES PROJECTION is still in the development 
stage, we did not optimize it. The results are shown in Figure 17. 

The results seems to confirm the theoretical analysis in Section 
5.4, brute force is quadratic, TIME SERIES PROJECTION is linear, in 

the length of the time series. Note that for every experiment, we 
compared the result of both variants of our algorithm with the 
results from brute force. In every case the top 3 motifs were the 
same.  

 
Figure 17: The scalability of various motif discovery algorithms 
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6.4 Examples of Motifs in Real Datasets 
We conclude this section with some examples of motifs 
discovered in real datasets. While we discovered interesting 
motifs in several datasets, we will only show examples where the 
motifs happen to occur relatively close to each other (so we can 
visualize them in context). 

Figure 18 shows an example of a motif discovered in an industrial 
dataset. Because we noted that this dataset had many spikes, we 
use the definition of 1-Motif(128,1,3) to specify the desire to find 
a motif of length 128, with 3 “don’t care” subsections.  

 
Figure 18: Left) An industrial dataset. Right) A motif was 
discovered in the data, even in the presence of a spike 
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Since this was a relatively small dataset, we used brute force 
search to confirm that the proposed motif is indeed the true 1-
Motif(128,1,3). Note that the presence of a spike did not prevent 
our algorithm from finding this motif. 

0 20 40 60 80 100 120 0 20 40 60 80 100 120

We also examined an astrophysical dataset of length 29,000 [32]. 
Initially we examined the K-Motif(128,10) for the first few K. 
However all the motifs on that scale were single valleys or peaks, 
when we lengthened the subsequence length to 256 we discovered 
more interesting motifs such as the one shown in Figure 19. 

 
Figure 19: Left) An astrophysical dataset, Note that only a 
fraction of the dataset is shown. Right) A motif discovered in an 
astrophysical dataset 
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7. CONCLUSIONS AND FUTURE WORK 
In this work we have formalized the problem of finding time 
series motifs, with arbitrary “don’t care” subsections. We 
introduced a novel, scalable algorithm for discovering these 
motifs. Our algorithm is much faster than the brute force 
algorithm, and as a further benefit, is an anytime algorithm, 
producing rapid approximate results very quickly, and using 
additional computational time to refine the results. 



Several directions for future research suggest themselves. A more 
detailed theoretical analysis with allow us to prove bounds on our 
algorithm. It may be interesting to extend our work to the 
discovery of motifs in multidimensional time series [35], and to 
the discovery of motifs under different distance measures such as 
Dynamic Time Warping [37].   

Reproducible Research Statement: All datasets and code used 
in this work are freely available by emailing the authors. 
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