
 Monitoring and Mining Insect Sounds in Visual Space
Yuan Hao Bilson Campana Eamonn Keogh

University of California, Riverside

{yhao, bcampana, eamonn}@cs.ucr.edu

ABSTRACT
Monitoring animals by the sounds they produce is an

important and challenging task, whether the application

is outdoors in a natural habitat, or in the controlled

environment of a laboratory setting.

In the former case the density and diversity of animal

sounds can act as a measure of biodiversity. In the

latter case, researchers often create control and

treatment groups of animals, expose them to different

interventions, and test for different outcomes. One

possible manifestation of different outcomes may be

changes in the bioacoustics of the animals.

With such a plethora of important applications, there

have been significant efforts to build bioacoustic

classification tools. However, we argue that most

current tools are severely limited. They often require

the careful tuning of many parameters (and thus huge

amounts of training data), they are too computationally

expensive for deployment in resource-limited sensors,

they are specialized for a very small group of species,

or they are simply not accurate enough to be useful.

In this work we introduce a novel bioacoustic

recognition/classification framework that mitigates or

solves all of the above problems. We propose to

classify animal sounds in the visual space, by treating

the texture of their spectrograms as an acoustic

fingerprint using a recently introduced parameter-free

texture measure as a distance measure. We further

show that by searching for the most representative

acoustic fingerprint we can significantly outperform

other techniques in terms of speed and accuracy.

Keywords
Classification, Spectrogram, Texture, Bioacoustics

1. INTRODUCTION
Monitoring animals by the sounds they produce is an

important and challenging task, whether the application

is outdoors in a natural habitat [4], or in the controlled

environment of a laboratory setting.

In the former case the density and variety of animal

sounds can act as a measure of biodiversity and of the

health of the environment. Algorithms are needed here

not only because they are (in the long term) cheaper

than human observers, but also because in at least some

cases algorithms can be more accurate than even the

most skilled and motivated observers [21].

In addition to field work, researchers working in

laboratory settings frequently create control and

treatment groups of animals, expose them to different

interventions, and test for different outcomes. One

possible manifestation of different outcomes may be

changes in the bioacoustics of the animals. To obtain

statistically significant results researchers may have to

monitor and hand-annotate the sounds of hundreds of

animals for days or weeks, a formidable task that is

typically outsourced to students [23].

There are also several important commercial

applications of acoustic animal detection. For example,

the US imports tens of billions of dollars worth of

timber each year. It has been estimated that the

inadvertent introduction of the Asian Longhorn Beetle

(Anoplophora glabripennis) with a shipment of lumber

could cost the US lumber industry tens of billions of

dollars [22]. It has been noted that different beetle

species have subtlety distinctive chewing sounds, and

ultra sensitive sensors that can detect these sounds are

being produced [17]. As a very recent survey of

acoustic insect detection noted, “The need for

nondestructive, rapid, and inexpensive means of

detecting hidden insect infestations is not likely to

diminish in the near future” [22].

With such a plethora of important applications, there

have been significant efforts to build bioacoustic

classification tools [4]. However, we argue that current

tools are severely limited. They often require the

careful tuning of many parameters (as many as eighteen

[8]) and thus huge amounts of training data, they are

too computationally expensive for use with resource-

limited sensors that will be deployed in the field [7],

they are specialized for a very small group of species,

or they are simply not accurate enough to be useful.

In this work we introduce a novel bioacoustic

recognition/classification framework that mitigates or

solves all of the above problems. We propose to

classify animal sounds in the visual space, by treating

the texture of their spectrograms as an acoustic

“fingerprint” and using a recently introduced

parameter-free texture measure as a distance measure.

We further show that by searching for the smallest

representative acoustic fingerprint (inspired by the

shapelet concept in time series domain [28]) in the

training set, we can significantly outperform other

techniques in terms of both speed and accuracy.

Note that monitoring of animal sounds in the wild

opens up a host of interesting problems in sensor

placement, wireless networks, resource-limited

computation [7], etc. For simplicity, we gloss over such

considerations, referring the interested reader to [4]

and the references therein. In this work we assume all

such problems have been addressed, and only the

recognition/classification steps remain to be solved.

2. RELATED WORK / BACKGROUND

2.1 A Brief Review of Spectrograms
As hinted at above, we intend to do

recognition/classification in the visual space, by

examining the spectrogram of the animal sounds. As

shown in Figure 1, a spectrogram is a time-varying

spectral representation that shows how the spectral

density of a signal varies with time.

Forty seconds

F
re

q
u

en
cy

 (
k

H
z)

0

3
Common Virtuoso Katydid

(Amblycorypha longinicta)

Figure 1: A spectrogram of the call of an insect. Note
the highly repetitious nature of the call. In this case,
capturing just two “busts” may be sufficient to
recognize the insect

There is a huge amount of literature leveraging off

manual inspection of such spectrograms; see [12] and

the references therein for some examples. However, as

we shall see, algorithmic analysis of spectrograms

remains an open problem, and an area of active

research. Beyond the problems that plague attempts to

define a distance measure in any domain, including

invariance to offset, scaling, uniform scaling, non-

uniform warping, etc., spectrograms almost always

have significant noise artifacts, even when obtained in

tightly controlled conditions in a laboratory setting.

One avenue of research is to “clean” the spectrograms

using various techniques [2], and then apply shape

similarity measures to the cleaned shape primitives.

Some types of specialized cleaning may be possible;

for example, removing the 60Hz noise is commonly

encountered
1
. However, algorithms to robustly clean

general spectrograms seem likely to elude us for the

foreseeable future.

As we shall see in Section 3, our solution to this

problem is to avoid any type of data cleaning or

explicit feature extraction, and use the raw spectrogram

directly.

1 American domestic electricity is at 60Hz (most of the rest of the

world is 50Hz) and inadequate filtering in power transformers

often allows some 60Hz signal to bleed into the sound recording.

2.2 General Animal Sound Classification
The literature on the classification of animal sounds is

vast; we refer the interested reader to [20][1] for useful

surveys. At the highest level, most research efforts

advocate extracting sets of features from the data, and

using these features as inputs to standard classification

algorithms such as a decision tree, a Bayesian classifier

or a neural network. As a concrete representative

example, consider [24], which introduces a system to

recognize Orthoptera (the order of insects that includes

grasshoppers, crickets, katydids2 and locusts). This

method requires that we extract multiple features from

the signal, including distance-between-consecutive-

pulses, pulse-length, frequency-contour-of-pulses,

energy-contour-of-pulses, time-encoded-signal-of-

pulses, etc. However, robustly extracting these features

from noisy field recordings is non-trivial, and while

these features seem to be defined for many Orthoptera,

it is not clear that they generalize to other insects, much

less to other animals. Moreover, a significant number

of parameters need to be set, both for the feature

extraction algorithms, and the classification algorithm.

For more complex animal sounds (essentially all non-

insect animals), once again features are extracted from

the raw data; however, because the temporal transitions

between features are themselves a kind of meta-feature,

techniques such as Hidden Markov Models are

typically used to model these transitions [20][5][1].

This basic idea has been applied with varying degrees

of success to birds [14], frogs and mammals [5].

One major limitation of Hidden Markov Model-based

systems is that they require careful tuning of their many

parameters. This in turn requires a huge amount of

labeled training data, which may be difficult to obtain

in many circumstances for some species.

Many other approaches have been attempted in the last

decade. For example, in a series of papers, Dietrich et

al. introduce several classification methods for insect

sounds, some of which require up to eighteen

parameters, and which were trained on a dataset

containing just 108 exemplars [8].

It is important to note that our results

are completely automatic. Numerous papers report

high accuracies for the classification of animal sounds,

but upon careful reading it appears (or it is explicitly

admitted) that human effort was required to extract the

right data to give to the classifier. Many authors do not

seem to fully appreciate that “extracting the right data”

is at least as difficult as the classification step.

For example, a recent paper on the acoustic

classification of Australian anurans (frogs and toads)

claims a technique that is “capable to identify the

2 In British English, katydids are known as bush-crickets.

species of the frogs with an average accuracy of 98%.”

[10]. This technique requires extracting features from

syllables, and the authors note, “Once the syllables

have been properly segmented, a set of features can be

calculated to represent each syllable” (our emphasis).

However, the authors later make it clear that the

segmentation is done by careful human intervention.

In contrast, we do not make this unrealistic assumption

that all the data has been perfectly segmented. We do

require sound files that are labeled with the species

name, but nothing else. For example, most of the sound

files we consider contain human voiceover annotations

such as “June 23
th

, South Carolina, Stagmomantis

carolina, temperature is ...” and many contain spurious

additional sounds such as distant bird calls, aircraft, the

researcher tinkering with equipment, etc. The raw

unedited sound file is the input to our algorithm; there

is no need for costly and subjective human editing.

2.3 Sound Classification in Visual Space
A handful of other researchers have suggested using

the visual space to classify sounds (see [19][18]).

However, this work has mostly looked at the relatively

simple task of recognizing musical instruments or

musical genres [29], etc. More recent work has

considered addressing problems in bioacoustics in the

visual space. In [19] the authors consider the problem

of recognizing whale songs using spectrograms. The

classification of an observed acoustic signal is

determined by the maximum cross-correlation

coefficient between its spectrogram and the specified

template spectrogram [19]. However, this method is

rather complicated and indirect: a “correlation kernel”

is extracted from the spectrogram, the image is divided

into sections which are piecewise constant, and a cross-

correlation is computed from some subsets of these

sections and thresholded to obtain a detection event.

Moreover, at least ten parameters must be set, and it is

not clear how best to set them, other than using a brute

force search through the parameter space. This would

require a huge amount of labeled training data. In [18]

the authors propose similar ideas for bird calls.

However, beyond the surfeit of parameters to be tuned,

these methods have a weakness that we feel severely

limits their applicability. Both these efforts (and most

others we are aware of) use correlation as the

fundamental tool to gauge similarity. By careful

normalization, correlation can be made invariant to

shifts of pitch and amplitude. However, because of its

intrinsically linear nature, correlation cannot be made

invariant to global or local differences in time (in a

very slightly different context, these are called uniform

scaling and time warping, respectively [9]). There is

significant evidence that virtually all real biological

signals have such distortions, and that unless it is

explicitly addressed in the representation or

classification algorithm, we are doomed to poor

accuracy. As we shall show empirically in the

experimental section below, our proposed method is

largely invariant to uniform scaling and time warping.

2.4 A Review of the Campana-Keogh (CK)

distance Measure
The CK distance measure is a recently introduced

measure of texture similarity [6]. Virtually all other

approaches in the vast literature of texture similarity

measures work by explicitly extracting features from

the images, and computing the distance between

suitably represented feature vectors. Many possibilities

for features have been proposed, including several

variants of wavelets, Fourier transforms, Gabor filters,

etc. [3]. However, one drawback of such methods is

that they all require the setting of many parameters. For

example, at a minimum, Gabor filters require the

setting of scale, orientation, and filter mask size

parameters. This has led many researchers to bemoan

the fact that “the values of (Gabor filters parameters)

may significantly affect the outcome of the

classification procedures...”[3].

In contrast, the CK distance measure does not require

any parameters, and does not require the user to create

features of any kind. Instead, the CK measure works in

the spirit of Li and Vitanyi’s idea that two objects can

be considered similar if information garnered from one

can help compress the other [15][13]. The theoretical

implications of this idea have been heavily explored

over the last eight years, and numerous applications for

discrete data (DNA, natural languages) have emerged.

The CK measure expands the purview of the

compression-based similarity measurements to real-

valued images by exploiting the compression technique

used by MPEG video encoding [6]. In essence, MPEG

attempts to compress a short video clip by taking the

first frame as a template, and encoding only the

differences of subsequent frames. Thus, if we create a

trivial “video” consisting of just the two images we

wish to compare, we would expect the video file size to

be small if the two images are similar, and large if they

are not. Assuming x and y are two equally-sized

images; Table 1 shows the code to achieve this.

Table 1: The CK Distance Measure

function dist = CK(x, y)

dist = ((mpegSize(x,y) + mpegSize(y,x)) /(mpegSize(x,x) + mpegSize(y,y))) - 1;

It is worth explicitly stating that this is not pseudo

code, but the entire actual Matlab code needed to

calculate the CK measure.

The CK measure has been shown to be very effective

on images as diverse as moths, nematodes, wood

grains, tire tracks, etc. [6]. However, this is the first

work to consider its utility on spectrograms.

2.5 Notation
In this section we define the necessary notation for our

sound fingerprint finding algorithm. We begin by

defining the data type of interest, a sound sequence:

Definition 1: A sound sequence is a continuous

sequence S = (S1, S2, …, St) of t real-valued data

points, where St is the most recent value. The data

points are typically generated in temporal order and

spaced at uniform time intervals.

As with other researchers [19][18], we are interested in

the sound sequence representation in the visual space,

which is called the spectrogram.

Definition 2: A spectrogram is a visual spectral

representation of an acoustic signal that shows the

relationship between spectral density and the

corresponding time.

A more detailed discussion of spectrograms is beyond

the scope of this paper, so we refer the reader to [1]

and the references therein.

We are typically interested in the local properties of

the sound sequence rather than the global properties,

because the entire sound sequence may be

contaminated with extraneous sounds (human voice

annotations, passing aircraft, etc.). Moreover, as we

shall see, our ultimate aim is to find the smallest

possible sound snippet to represent a species. A local

subsection of a spectrogram can be extracted with a

sliding window:

Definition 3: A sliding window (W) contains the

latest w data points (St-w+1, St-w+2,…, St) in the sound

sequence S.

Within a sliding window, a local subsection of the

sound sequence we are interested in is termed as a

subsequence.

Definition 4: A subsequence (s) of length m of a

sound sequence s = (s1, s2, …, st) is a time series si,m

= (si, si+1,…, si+m-1), where 1 ≤ i ≤ t-m+1.

Since our algorithm attempts to find the prototype of a

sound sequence S, ultimately, a local sound

subsequence s should be located with a distance

comparison between S and s, which may be of vastly

different lengths. Recall that the CK distance is only

defined for two images of the same size.

Definition 5: The distance d between a subsequence

s and a longer sound sequence S is the minimum

distance between s and all possible subsequences in S

that are the same length as s.

Our algorithm needs some evaluation mechanism for

splitting datasets into two groups (target class, denoted

as P, everything else, denoted as U). We use the classic

machine learning idea of information gain to evaluate

candidate splitting rules. To allow discussion of

information gain, we must first review entropy:

Definition 6: The entropy for a given sound

sequence dataset D is E(D) = -p(X)log(p(X))-

p(Y)log(p(Y)), where X and Y are two classes in D,

p(X) is the proportion of objects in class X and p(Y) is

the proportion of objects in class Y.

The information gain is for a given splitting strategy

and is just the difference in entropy before and after

splitting. More formally:

Definition 7: The information gain of a partitioning

of dataset D is:

 Gain = E(D) – E’(D),

where E(D) and E’(D) are the entropy before and

after partitioning D into D1 and D2, respectively.

E’(D) = f(D1)E(D1) + f(D2)E(D2),

where f(D1) is the fraction of objects in D1, and f(D2)

is the fraction of objects in D2.

As noted above, we wish to find a sound fingerprint

such that most or all of the objects in P of the dataset

have a subsequence that is similar to the fingerprint,

whereas most of the sound sequences in U do not. To

find such a fingerprint from all possible candidates, we

compute the distance between each candidate and

every subsequence of the same size in the dataset, and

use this information to sort the objects on a number

line, as shown in Figure 2. Given such a linear

ordering, we can define the best splitting point for a

given sound fingerprint:

Definition 8: Given an annotated (by one of two

classes, P and U) linear ordering of the objects in D,

there exists at most3 |D|-1 distinct splitting points

which divide the number line into two distinct sets.

The splitting point which produces the largest

information gain is denoted as the best splitting point.

In Figure 2 we illustrate the best splitting point with a

bold/yellow vertical line.

We are finally in a position to define the sound

fingerprint using the above definitions:

Definition 9: The sound fingerprint for a species is

the subsequence from P, together with its

corresponding best splitting point, which produces

the largest information gain when measured against

the universe set U.

Note that we may expect ties, which must be broken by

some policy. We defer a discussion of tie-breaking

policies to later in this section.

3 Note that there can be duplicate values in the ordering.

0 1

Candidate
being tested

1 23 45

ABC D
Split point

(threshold)
Figure 2: A candidate sound fingerprint, the boxed
region in spectrogram 1, is evaluated by finding its
nearest neighbor subsequence within both P and the
four representatives of U and then sorting all objects
on a number line

We can concretely illustrate the definition of a sound

fingerprint using the example shown in Figure 2. Note

that there are a total of nine objects, five from P, and

four from U. This gives us the entropy for the unsorted

data of:

 [-(5/9)log(5/9)-(4/9)log(4/9)] = 0.991

If we used the split point shown by the yellow/bold

vertical bar in Figure 2, then four objects from P are

the only four objects on the left side of the split point.

Of the five objects to the right of the split point we

have four objects from U and just one from P. This

gives us an entropy of:

 (4/9)[-(4/4)log(4/4)]+(5/9)[-(4/5)log(4/5)-(1/5)log(1/5)] = 0.401

Thus, we have an information gain of 0.590 = 0.991-

0.401. Note that our algorithm will calculate the

information gain many times as it searches through the

candidate space, and ties are very likely. Thus, we must

define a tie-breaking policy. Here we have several

options. The intuition is that we want to produce the

maximum separation (“margin”) between the two

classes. We could measure this margin by the absolute

distance between the rightmost positive and the

leftmost universe distances. However, this measure

would be very brittle to a single mislabeled example.

To be more robust to this possibility (which frequently

occurs in our data) we define the margin as the

absolute distance between the medians of two classes.

Figure 3 illustrates this idea.

10

0 1

Figure 3: Two order lines that have the same
information gain. Our tie-breaking policy reflects the
intuition that the top line achieves less separation than
the bottom line

Even though these two fingerprints have the same

information gain of 0.590 as the example shown in

Figure 2, the bottom one is preferable, because it

achieves a larger margin between P and U.

Before moving on, we preempt a possible question

from the reader. Why optimize the information gain,

rather than just optimizing the tie-breaking function

itself? The answer is twofold. Just optimizing the tie-

breaking function allows pathological solutions that do

not generalize well. More critically, as we shall see

later, optimizing the information gain will allow

admissible pruning techniques that can make our

algorithm two orders of magnitude faster.

3. SOUND FINGERPRINTS
As the dendrogram we will later show in Figure 5 hints

at, the CK measure can be very accurate in matching

(carefully extracted) examples of animal sounds.

However, our task at hand is much more difficult than

this. We do not have carefully extracted prototypes for

each class, and we do not have a classification problem

where every sound must correspond to some animal we

have previously observed.

Rather, for each species we have a collection of sound

files which contain within them one or more

occurrences of a sound produced by the target. We do

not know how long the animal call is, or how many

occurrences of it appear in each file. Moreover, since

most of the recordings are made in the wild, we must

live with the possibility that some of the sound files are

“contaminated” with other sounds. For example, a

twenty-second recording of a frog we examined also

contains a few seconds of Strigiform (owl) calls and

several cricket chirps.

In addition, as we later use our sound fingerprints to

monitor audio streams we must generally expect that

the vast majority of sounds are not created by any of

the target species, and thus we have a large amount of

data that could produce false positives.

3.1 The Intuition of Sound Fingerprints
We begin by xpanding on the intuition behind sound

fingerprints. For ease of exposition we will give

examples using discrete text strings, but the reader will

appreciate that we are really interested in streams of

real-valued sounds. Assume we are giving a set of three

observations that correspond to a particular species, let

us say Maua affinis (a cicada from South West Asia):
 Ma = {rrbbcxcfbb, rrbbfcxc, rrbbrrbbcxcbcxcf}

We are also given access to the universe of sounds that

are known not to contain examples of a Maua affinis.
 ¬Ma = {rfcbc, crrbbrcb, rcbbxc, rbcxrf,..,rcc}

In practice, the universe set may be so large that we

will just examine a small fraction of it, perhaps just

sounds that are likely to be encountered and could be

confused for the target insect. Our task is to monitor an

audio stream (or examine a large offline archive) and

flag any occurrences of the insect of interest.

Clearly it would be quite naive to examine the data for

exact occurrences of the three positive examples we

have been shown, even under a suitably flexible

measure such as edit distance. Our positively labeled

data is only guaranteed to have one or more samples of

the insect call, and it may have additional sections of

sounds from other animals or anthropogenic sounds

before and/or after it.

Instead, we can examine the strings for shorter

substrings that seem diagnostic of the insect. The first

candidate template that appears promising is T1 =

rrbb, which appears in every Ma insect example.

However, this substring also appears in the second

example in ¬Ma, in crrbbrcb, and thus this pattern

is not unique to Maua affinis.

We could try to specialize the substring by making it

longer; if we use T2 = rrbbc, this does not appear in

¬Ma, removing that false positive. However, rrbbc

only appears in two out of three examples in Ma, so

using it would incur a risk of false negatives. As it

happens, the substring template T3 = cxc does appear

in all examples in MA at least once, and never in ¬Ma,

and is thus the best candidate for a prototypical

template for the class.

As the reader may appreciate, the problem at hand is

significantly more difficult that this toy example. First,

because we are dealing with real-value data we cannot

do simple tests for equality; rather, we must also learn

an accept/reject threshold for the template. Moreover,

we generally cannot be sure that every example in the

positive class really has one true high-quality example

call from the target animal. Some examples could be

mislabeled, of very low quality, or simply atypical of

the species for some reason. Furthermore, we cannot be

completely sure that U does not contain any example

from P. Finally, because strings are discrete, we only

have to test all possible substrings of length one, then

of length two, etc, up to the length of the shortest string

in the target class. However, in the real-valued domain

in which we must work, the search space is immensely

larger. We may have recordings that are minutes in

length, sampled at 44,100Hz.

Thus far we have considered this problem abstractly: is

it really the case that small amounts of spurious sounds

can dwarf the similarity of related sounds? To see this

we took six pairs of recording of various Orthoptera

and visually determined and extracted one-second

similar regions. The group average hierarchical

clustering of the twelve snippets is shown in Figure 4.

The results are very disappointing, given that only one

pair of sounds is correctly grouped together, in spite of

the fact that human observers can do much better.

We believe this result is exactly analogous to the

situation elucidated above with strings. Just as

rrbbcxcfbb must be stripped of its spurious prefix

and suffix to reveal cxc, the pattern that is actually

indicative of the class, so too must we crop the

irrelevant left and right edges of the spectrograms.

3 4 2 1 8 10 11 5 12 9 6 7

One Second
Figure 4: A clustering of six pairs of one-second
recordings of various katydids and crickets using the
CK texture measure. Only one species pair {3,4} is
correctly grouped. Ideally the pairs {1,2}, {5,6}, {7,8},
{9,10} and {11,12} should also be grouped together

For the moment, let us do this by hand. As the resulting

images may be of different lengths, we have to slightly

redefine the distance measure. To compute the distance

between two images of different lengths, we slide the

shorter one along the longer one (i.e. definition 5), and

report the minimal distance. Figure 5 shows the

resulting clustering.

GrylloideaTettigonioidea

11 12 7 8 9 10 1 2 3 4 5 6

One Second

Figure 5: A clustering of the same data used in Figure
4, after trimming irrelevant prefix and suffix data. All
pairs are correctly grouped, and at a higher level the
dendrogram separates katydids and crickets

The trimming of spurious data produces a dramatic

improvement. However, it required careful human

inspection. In the next section we will show our novel

algorithm which can do this automatically.

3.2 Formal Problem Statement and Assumptions
Informally, we wish to find a snippet of sound that is

most representative of a species, on the assumption that

we can use this snippet as a template to recognize

future occurrences of that species. Since we cannot

know the exact nature of the future data we must

monitor, we will create a dataset which contains

representatives of U, non-target species sounds.

Given this heterogeneous dataset U, and dataset P

which contains only examples from the “positive”

species class, our task reduces to finding a subsequence

of one of the objects in P which is close to at least one

subsequence in each element of P, but far from all

subsequences in every element of U. Recall that Figure

2 shows a visual intuition of this.

This definition requires searching over a large space of

possibilities. How large of a space? Suppose the

dataset P contains a total of k sound sequences. Users

have the option to define the minimum and maximum

(Lmin, Lmax) length of sound fingerprint candidates. If

they decline to do so we default to Lmax= infinity and to

Lmin= 16, given that 16 by 16 is the smallest size video

MPEG-1 is defined for [6]. Assume for the moment

that the following relationship is true:

Lmax ≤ min(Mi)

That is to say, the longest sound fingerprint is no

longer than the shortest object in P, where Mi is the

length of Si from P, 1≤ i ≤ k.

The total number of sound fingerprint candidates of all

possible lengths is then:
max

min { }

(1)
i

L

i

l L S P

M l

 ,

where l is a fixed length of a candidate. It may appear

that we must test every integer pixel size from Lmin to

Lmax; however, we know that the “block size” of

MPEG-1 [6] in a CK measure is eight-by-eight pixels,

and pixels remaining after tiling the image with eight-

by-eight blocks are essentially ignored. Thus, there is

no point in testing non-multiples of eight image sizes.

As a result, the above expression can be modified to

the one below:
max

min

max min

8(1) { }

(1), 1,2,..., () / 8
i

L

i

l L i S P

M l i L L

While this observation means we can reduce the search

space by a factor of eight, there is still a huge search

space that will require careful optimization to allow

exploration in reasonable time.

For concreteness, let us consider the following small

dataset, which we will also use as a running example to

explain our search algorithms in the following sections.

We created a small dataset with P containing ten two-

second sound files from Atlanticus dorsalis (Gray

shieldback), and U containing ten two-second sound

files from other random insects. If we just consider

fingerprints of length 16 (i.e. Lmin= Lmax = 16), then

even in this tiny dataset there are 830 candidate

fingerprints to be tested, requiring 1,377,800 calls to

the CK distance function.

3.3 A Brute-Force Algorithm
For ease of exposition, we begin by describing the

brute force algorithm for finding the sound fingerprint

for a given species and later consider some techniques

to speed this algorithm up.

The brute force algorithm is described in Table 2. We

are given a dataset D, in which each sound sequence is

labeled either class P or class U, and a user defined

length Lmin to Lmax (optional: we default to the range

sixteen to infinity).

The algorithm begins by initializing bsf_Gain, a

variable to track the best candidate encountered thus

far, to zero in line 1. Then all possible sound

fingerprint candidates Sk,l for all legal subsequence

lengths are generated in the nested loops in lines 2, 4,

and 5 of the algorithm.

As each candidate is generated, the algorithm checks

how well each candidate Sk,l can be used to separate

objects into class P and class U (lines 2 to 9), as

illustrated in Figure 2. To achieve this, in line 6 the

algorithm calls the subroutine CheckCandidates() to

compute the information gain for each possible

candidate. If the information gain is larger than the

current value of bsf_Gain, the algorithm updates the

bsf_Gain and the corresponding sound fingerprint in

lines 7 to 9. The candidate checking subroutine is

outlined in the algorithm shown in Table 3.

Table 2: Brute-Force Sound Fingerprint Discovery
SoundFP_Discovery(D, Lmin, Lmax)

Require: A dataset D (P and U) of sound sequence’s spectrogram,
user defined minimum length and maximum length of sound
fingerprint

Ensure: Return the sound fingerprint

1
2
3
4
5
6
7
8
9
10
11
12
13
14

bsf_Gain ← 0
For i ← 1 to |P| do {every spectrogram in P}
 S ← Pi

 For l ← Lmin to Lmax do {every possible length}

 For k ← 1 to |S| - l + 1 do {every start position}
 gain ← CheckCandidates(D, Sk,l)
 If gain > bsf_Gain
 bsf_Gain ← gain
 bsfFingerprint ← Sk,l

 EndIf

 EndFor

 EndFor

EndFor

Return bsfFingerprint

In the subroutine CheckCandidates(), shown in Table

3, we compute the order line L according to the

distance from the sound sequence to the candidate

computed in minCKdist() procedure, which is shown in

Table 4. In essence, this is the procedure illustrated in

Figure 2. Given L, we can find the optimal split point

(definition 8) in lines 10 to 15 by calculating all

possible splitting points and recording the best.

While the splitting point can be any point on the

positive real number line, we note that the information

gain cannot change in the region between any two

adjacent points. Thus, we can exploit this fact to

produce a finite set of possible split positions. In

particular, we need only test |D|-1 locations.

In the subroutine CheckCandidates() this is achieved

by only checking the mean value (the “halfway point”)

of each pair of adjacent points in the distance ordering

as the possible positions for the split point. In

CheckCandidates(), we call the subroutine minCKdist()

to find the best matching subsequence for a given

candidate under consideration.

Table 3: Check the Utility of Single Candidate
CheckCandidates (D or Dist, candidate Sk,l)
Require: A dataset D of spectrogram (or distance ordering), sound
fingerprint candidate Sk,l

Ensure: Information Gain gain

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16

L ← ∅
If first input is D
 For j ← 1 to |D| do {compute distance of every
spectrogram to the candidate sound fingerprint Sk,l}
 dist ← minCKdist(Dj, Sk,l)
 insert Dj into L by the key dist
 EndFor
Else

dist ← Dist
EndIf

 I(D) ← new information gain after split computed by def’ 7

 For split ← 1 to |D|-1do
 Count N1, N2 for both the partitions
 I’(D).split ← new information gain after split computed by def’ 7
 gain(D) = max(I(D) – I’(D).split)
 EndFor

Return gain(D)

We do this for every spectrogram in D, including the

one from which the candidate was culled. This

explains why in each order line at least one

subsequence is at zero (c.f. Figure 2 and Figure 7).

In minCKdist() (Table 4), we use the CK measure [6]

as the distance measurement between a candidate

fingerprint and a generally much longer spectrogram.

Table 4: Compute Minimum Subsequence CK Distance
minCKdist (Dj, candidate Sk,l)
Require: A sound sequence’s spectrogram Dj, sound fingerprint
candidate Sk,l
Ensure: Return the minimum distance computed by CK
1
2
3
4
5
6
7
8

minDist ← Infinity
 For i ← 1 to | Dj, i | - |Sk,l| + 1 do {every start position}
 CKdist ← CK(Dj,i ,Sk,l)
 If CKdist < minDist
 minDist ← CKdist
 EndIf

 EndFor

Return minDist

In Figure 6 we show a trace of the brute force

algorithm on the Atlanticus dorsalis problem.

0 8000.2

0.4

0.6

0.8

1

Brute-force search

terminates

Number of calls to the CK distance measure

In
fo

rm
a
ti
o
n
 G

a
in

Figure 6: A trace of value of the bsf_Gain variable
during brute force search on the Atlanticus dorsalis
dataset. Only sound fingerprints of length 16 are
considered here for simplicity

Note that the search continues even after an

information gain of one is achieved in order to break

ties. The 1,377,800 calls to the CK function dominate

the overall cost of the search algorithm (99% of the

CPU time is spent on this) and require approximately 8

hours. This is not an unreasonable amount of time,

considering the several days of effort needed for an

entomologist to collect the data in the field. However,

this is a tiny dataset. We wish to examine datasets that

are orders of magnitude larger. Thus, in the next

section we consider speedup techniques.

3.4 Admissible Entropy Pruning
The most expensive computation in the brute force

search algorithm is obtaining the distances between the

candidates and their nearest matching subsequences in

each of the objects in the dataset. The information gain

computations (including the tie breaking computations)

are inconsequential in comparison. Therefore, our

intuition in speeding up the brute force algorithm is to

eliminate as many distance computations as possible.

Recall that in our algorithm, we have to obtain the

annotated linear ordering of all the candidates in P. As

we are incrementally doing this, we may notice that a

particular candidate looks very unpromising. Perhaps

when we are measuring the distance from the current

candidate to the first object in U we find that it is a

small number (recall that we want the distances to P to

be small and to U large), and when we measure the

distance to the next object in U we again find it to be

small. Must we continue to keep testing this

unpromising candidate? Fortunately, the answer may

be “no”. Under some circumstances we can admissibly

prune unpromising fingerprints; without having to

check all the objects in the universe U.

The key observation is that we can cheaply compute

the upper bound of the current partially computed

linear ordering at any time. If the upper bound we

obtain is less than the best-so-far information gain (i.e.

the bsf_Gain of Table 2), we can simply eliminate the

remaining distance computations in U and prune this

particular fingerprint candidate from consideration.

To illustrate this pruning policy, we consider a

concrete example. Suppose that during a search the

best-so-far information gain is currently 0.590, and we

are incrementally beginning to compute the sound

fingerprint shown in Figure 2. Assume that the partially

computed linear ordering is shown in Figure 7. We

have computed the distances to all five objects in P,

and to the first two objects in U.

0 1

Figure 7: The order line of all the objects in P and just

the first two objects in U

Is it possible that this candidate will yield a score better

than our best-so-far? It is easy to see that the most

optimistic case (i.e., the upper bound) occurs if all of

the remaining objects in U map to the far right, as we

illustrate in Figure 8.

0 1
 Figure 8: The logically best possible order line based

on the distances that have been calculated in Figure 7.
The best split point is shown by the yellow/heavy line

Note that of the three objects on the left side of the

split point, all three are from P. Of the six objects on

the right side, two are from P and four are from U.

Given this, the entropy of the hypothetical order line

shown in Figure 8 is:

 (3/9)[-(3/3)log(3/3)]+(6/9)[-(4/6)log(4/6)-(2/6)log(2/6)] = 0.612

Therefore, the best possible information gain we could

obtain from the example shown in Figure 7 is just

0.612, which is lower than the best-so-far information

gain. In this case, we do not have to consider the

ordering of the remaining objects in U. In this toy

example we have only pruned two invocations of the

CheckCandidates() subroutine shown in Table 3.

However, as we shall see, this simple idea can prune

more than 95% of the calculations for more realistic

problems.

The formal algorithm of admissible entropy pruning is

shown in Table 5. After the very first sound fingerprint

candidate check, for all the remaining candidates, we

can simply insert EntropyUBPrune() in line 4 of Table

3, and eliminate the remaining CK distance and

information gain computation if the current candidate

satisfies the pruning condition, as we discussed in this

section. EntropyUBPrune() takes the best-so-far

information gain, current distance ordering from class

P and class U, and remaining objects in U, and returns

the fraction of the distance measurements computed to

see how much elimination we achieved.

Table 5: Entropy Upper Bound Pruning
EntropyUBPrune (Um, currentDist, Sk,l, bsf_Gain)
Require: A sound sequence’s spectrogram Um, current distance
ordering, sound fingerprint candidate Sk,l, best-so-far information gain
Ensure: Return fraction of distance computations in U
1
2
3
4
5
6
7
8
9
10
11

fraction ← 0
counter ← 0
rightmostDist ← largest distance value in currentDist + 1
bestDist ← Add rightmostDist for Um to currentDist
gain ← CheckCandidates(bestDist, Sk,l)
 If gain >bsf_Gain

Return False and increment counter
 Else

Return True
 EndIf

Return fraction ← counter/|U|, gain

We can get a hint as to the utility of this optimization

by revisiting the Atlanticus dorsalis problem we

considered above. Figure 9 shows the difference

entropy pruning makes in this problem.

0 8000.2

0.4

0.6

0.8

1

Brute-force search

terminates
Entropy pruning

search terminates

Number of calls to the CK distance measure

In
fo

rm
a
ti
o
n
 G

a
in

Figure 9: A trace of the bsf_Gain variable during
brute force and entropy pruning search on the
Atlanticus dorsalis dataset

Note that not only does the algorithm terminate earlier

(with the exact same answer), but it converges faster, a

useful property if we wish to consider the algorithm in

an anytime framework [27].

3.5 Euclidean Distance Ordering Heuristic
In both the brute force algorithm and the entropy-based

pruning extension introduced in the last section, we

generate and test candidates; from left to right; and top

to bottom based on the given lexical order of the

objects’ label (i.e., the file names used by the

entomologist).

There are clearly other possible orders we could use to

search, and it is equally clear that for entropy-based

pruning, some orders are better than others. In

particular, if we find a candidate which has a relatively

high information gain early in the search, our pruning

strategy can prune much more effectively.

However, this idea appears to open a “chicken and

egg” paradox. How can we know the best order; until

we have finished the search? Clearly, we cannot.

However, we do not need to find the optimal ordering;

we just need to encounter a relatively good candidate

relatively early in the search. Table 6 outlines our idea

to achieve this. We simply run the entire brute force

search using the Euclidean distance as a proxy for the

CK distance, and sort the candidates based on the

information gain achieved using the Euclidean

distance.

Concretely, we can insert EuclideanOrder() between

lines 4 and 5 in Table 2 to obtain a better ordering to

check all the candidates.

Table 6: Euclidean Distance Measure Order Pruning
EuclideanOrder (D, minLen, maxLen)
Require: A dataset D (P and U) of sound sequence’s spectrogram,
user defined minimum/maximum length of sound fingerprint
Ensure: Return the new order of candidates
1
2
3
4

Replace CK measure with Euclidean distance measure
newGain ← CheckCandidates (D or Dist, candidate Sk,l)
newOrder ← sort the candidates by decreasing newGain
Return newOrder

Running this preprocessing step adds some overhead;

however, it is inconsequential because the Euclidean

distance is at least two orders of magnitude faster than

the CK distance calculation. For this idea to work well,

the Euclidean distance must be a good proxy for the

CK distance calculation. To see if this is the case, we

randomly extracted 1,225 pairs of insect sounds and

measured the distance between them under both

measures, using the two values to plot points in a 2D

scatter plot, as shown in Figure 10. The results suggest

that Euclidean distance is a very good surrogate for CK

distance.

To measure the effect of this reordering heuristic we

revisited our running example shown in Figure 6/

Figure 9.

0.4 0.5 0.6 0.7 0.8 0.9 1
1000

3000

5000

7000

9000

11000

CK distance
E

u
c
li

d
e
a
n

 d
is

ta
n

c
e

Figure 10: The relationship between Euclidean and
CK distance for 1,225 pairs of spectrograms

The Euclidean distance reordering heuristic is shown in

Figure 11.

0 8000.2

0.4

0.6

0.8

1

Brute-force search

terminates
Entropy pruning

search terminates

Search with reordering
optimization terminates

Number of calls to the CK distance measure

In
fo

rm
a
ti
o
n
 G

a
in

Figure 11: A trace of value of the bsf_Gain variable

during brute force, entropy pruning, and reordering

optimized search on the Atlanticus dorsalis dataset

As we can see, our heuristic has two positive effects.

First, the absolute time to finish (with the identical

answer as a brute force search) has significantly

decreased. Secondly, we converge on high quality

solution faster. This is a significant advantage if we

wanted to cast the search problem as an anytime

algorithm [27]. As impressive as the speedup results

are, as we shall show in the next section, they are

pessimistic due to the small size of our toy problem.

4. EXPERIMENTAL EVALUATION
We have created a supporting webpage [11], which

contains all code/data used in this work. Moreover, the

webpage contains addition experiments, along with

videos and sounds files that allow the interested reader

to get a better appreciation of the scale and complexity

of the data we are working with.

4.1 CK as a Tool for Taxonomy
We begin by noting that beyond the utility of our ideas

for monitoring wildlife, the CK measure may be useful

as a taxonomic tool. Consider the insect shown in

Figure 12. As noted in a National Geographic article,

“the sand field cricket (Gryllus firmus) and the

southeastern field cricket (Gryllus rubens) look nearly

identical and inhabit the same geographical areas”

[25]. Thus, even if handling a living specimen, most

entomologists could not tell them apart without

resorting to DNA analysis.

We suspected that we might be able to tell them apart

by sound
4
. While we do not have enough data to do

forceful and statistically significant experiments, we

4 In brief, it is well known that the acoustic behavior of insects is

important in insect speciation, especially for sympatric speciation,

where new species evolve from a single ancestral species while

inhabiting the same geographic region [26].

can do two tentative tests. As shown in Figure 12, we

projected twenty-four examples from the two species

into two-dimensional space using multi-dimensional

scaling, and we also clustered eight random examples,

four from each class.

Gryllus rubens Gryllus

firmus

Gryllidae

-0.4 0 0.4

-0.2

0

0.2
Gryllus rubens

Gryllus firmus

Figure 12: top left) An insect found in Florida: is it a
G. rubens or G. firmus? top right) Projecting one-
second snippets of songs from both insects into 2D
space suggests they are almost linearly separable, a
possibility reflected by their clusterability (bottom)

The results suggest that these congeneric
5
 species are

almost linearly separable in two-dimensional space

(they are linearly separable in three-dimensional

space).

4.2 Insect Classification
There are currently no benchmark problems for insect

classification. Existing datasets are either too small to

make robust claims about accuracy, or were created by

authors unwilling to share their data. To redress this we

created and placed into the public domain a large

classification dataset [11]. The data consists of twenty

species of insects, eight of which are Gryllidae

(crickets) and twelve of which are Tettigoniidae

(katydids)6. Thus, we can treat the problem as either a

twenty-class species level problem, or two-class genus

level problem. For each class we have ten training and

ten testing examples. It is important to note that we

assembled these datasets before attempting

classification, explicitly to avoid cherry-picking. Note

that because of convergent evolution, mimicry and the

significant amounts of noise in the data (which were

collected in the field) we should not expect perfect

accuracy here. Moreover, this group of insects requires

some very subtle distinctions to be made; for example,

Neoconocephalus bivocatus, Neoconocephalus

retusus, and Neoconocephalus maxillosus are

obviously in the same genus, and are visually

indistinguishable at least to our untrained eye.

5 Species belonging to the same genus are congeneric.
6 A full description of the data is at [11].

Likewise, we have multiple representatives from both

the Belocephalus and Atlanticus genera.

We learned twenty sound fingerprints using the

algorithm in Section 3. We then predicted the testing

exemplars class label by sliding each fingerprint across

it and recording the fingerprint that produced the

minimum value as the exemplar’s nearest neighbor.

The classification accuracies are shown in Table 7.

Table 7: Insect Classification Accuracy

species-level problem genus-level problem

default rate fingerprint default rate fingerprint

10 species 0.10 0.70 0.70 0.93

20 species 0.05 0.44 0.60 0.77

The results are generally impressive. For example, in

the ten-class species-level problem the default accuracy

rate is only 10%, but we can achieve 70%. It is worth

recalling the following when considering these results.

 The testing data does not consist of carefully

extracted single utterances of an insect’s call. Rather,

it consists of one or two-minute sound files known to

contain at least one call, together with human voice

annotations and miscellaneous environmental sounds

that can confuse the classification algorithm.

 As noted above, our dataset has multiple congeneric

species; that, at least to our eyes and ears, look and

sound identical. This is an intrinsically hard problem.

 The reader can be assured that the results are not due

to overfitting, because we did not fit any parameters

in this experiment7. These are “black box” results.

 We can do a little better by weighting the nearest

neighbor information with the threshold information

(which we ignore in the above). Since this does

introduce a (weighting) parameter to be tuned, in the

interest of brevity, given page limits and our already

excellent results, we defer such discussions to future

work.

4.3 Monitoring with Sound Fingerprints
To test our ability to monitor an audio stream in real

time for the presence of a particular species of insects,

we learned the sound fingerprints for three insect

species of insects native to Florida. In each case we

learned from training sets consisting of ten insects.

To allow visual appreciation of our method, as shown

in Figure 13 we produced an eight-second sequence of

audio by concatenating snippets of four different

species, including holdout (i.e. not seen in the training

set) examples from our three species of interest. While

each fingerprint has a different threshold, for simplicity

and visual clarity we show just the averaged threshold.

7
 The minimum fingerprint length is set to 16, a hard limit due to the

way MPEG is coded. The maximum length is set to infinity.

As we can see in Figure 13, this method achieves three

true positives, and more remarkably, no false positives.
Recall that the CK distance measure exploits the

compression technique used by MPEG video encoding,

which is among the most highly optimized computer

code available. Thus, we can do this monitoring

experiment in real time, even on an inexpensive laptop.

0.2

0.4

0.6

0

C
K

 D
istan

ce valu
eRecognition Threshold

Figure 13: (Image best viewed in color) far left) Three
insect sound fingerprints are used to monitor an eight-
second audio clip. In each case, the fingerprint
distance to the sliding window of audio dips below the
threshold as the correct species sings, but not when a
different species is singing

4.4 Scalability of Fingerprint Discovery
Recall the experiments shown in Section 3, when our

toy example had only ten objects in both P and U. We

showed a speedup of about a factor of five, although

we claimed this is pessimistic because we expect to be

able to prune more aggressively with larger datasets.

To test this, we reran these experiments with a more

realistically-sized U, containing 200 objects from other

insects, birds, trains, helicopters, etc. As shown in

Figure 14, the speedup achieved by our reordering

optimization algorithm is a factor of 93 in this case.

0 15000.2

0.4

0.6

0.8

1

Brute-force search
terminates

Entropy pruning

search terminates

Search with reordering
optimization terminates

Number of calls to the CK distance measure

In
fo

rm
a
ti
o
n
 G

a
in

Figure 14: A trace of value of the bsf_Gain variable
during brute force, entropy pruning, and reordering
optimized search on the Atlanticus dorsalis dataset
with the 200-object universe

4.5 Archived Experiments
Page limitations make it difficult to show all our

extensive empirical work. We urge the interested

reader to visit [11], where we have more than one-

hundred additional experiments. Among the questions

we consider are: Do sound fingerprints work for other

vocal animals such as frogs/birds? (yes); is our method

robust to mislabeled training data? (so long as the

majority of data in P is correctly labeled, yes); are we

robust to noisy environments, such as aircraft noise in

the background as a monitored cricket chirps? (so long

as the target signal is a significant fraction of the

overall signal, yes).

Moreover, at [11] we have embedded sound and video

files to allow a more direct appreciation of the subtlety

of the distinctions our system can make.

5. CONCLUSION AND FUTURE WORK
In this work we have introduced a novel bioacoustic

recognition/classification framework. We feel that

unlike other work in this area, our ideas have a real

chance to be adopted by domain practitioners, because

our algorithm is essentially a “black box”, requiring

only that the expert can label some data. We have

shown through extensive experiments that our method

is accurate, robust and efficient enough to be used in

real time in the field.

In future work we will explore expanding the

representational power of sound fingerprints with

logical operators, such as classifying a sound as feline

if we hear a “hiss” OR a “mew”. We are also beginning

to explore the spatiotemporal data mining problems

inherent in monitoring large sites with multiple sensors.

ACKNOWLEDGMENTS

We thank the Cornell Lab of Ornithology for donating

much of the data used in [16], Jesin Zakaria for help

projecting snippets of sounds into 2D space, and Dr.

Agenor Mafra-Neto for entomological advice. This

work was funded by NSF awards 0803410 and

0808770.

6. REFERENCES
[1] R. Bardeli, Similarity search in animal sound databases, IEEE

Transactions on Multimedia, vol. 11, no. 1, pp. 68–76, 2009.

[2] Y. Beiderman, Y. Azani, Y. Cohen, C. Nisankoren, M.

Teicher, V. Mico, , J. Garcia, Z. Zalevsky, Cleaning and

quality classification of optically recorded voice signals,

Recent Patents on Signal Proc’ 6-11, 2010.

[3] F. Bianconi, A. Fernandez, Evaluation of the effects of Gabor

filter parameters on texture classification. Pattern Recognition

40(12), 3325–35 (2007).

[4] D. T. Blumstein et.al, Acoustic monitoring in terrestrial

environments using microphone arrays: applications,

technological considerations, and prospectus, J. Appl Ecol

48:758–767, 2001.

[5] J. C. Brown, P. Smaragdis, Hidden Markov and Gaussian

mixture models for automatic call classification. J. Acoust.

Soc. Am, (6):221–22, 2009.

[6] B. J. L. Campana, E. J. Keogh, A compression-based distance

measure for texture, Statistical Analysis and Data Mining 3(6):

381-398 (2010)

[7] T. Dang, N. Bulusu, W. C. Feng, W. Hu, RHA: A Robust

Hybrid Architecture for Information Processing in Wireless

Sensor Networks, In 6th ISSNIP 2010.

[8] C. Dietrich, F. Schwenker, G. Palm, Classification of Time

Series Utilizing Temporal and Decision Fusion, Proceedings

of Multiple Classifier Systems (MCS), pp 378-87, 2001.

[9] A. Fu, E. Keogh, L. Lau, C. A. Ratanamahatana, R. C.-W.

Wong, Scaling and time warping in time series querying.

VLDB J. 17(4): 899-921 (2008).

[10] N. C. Han, S. V. Muniandy, J. Dayou, Acoustic classification

of Australian anurans based on hybrid spectral-entropy

approach, Applied Acoustic, 72(9): 639-645, 2011

[11] Y, Hao. Animal sound fingerprint Webpage.

www.cs.ucr.edu/~yhao/animalsoundfingerprint.html

[12] T. E. Holy, Z. Guo, Ultrasonic songs of male mice, PLoS Biol

3:e386, 2005.

[13] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S. Lee,

J. Handley, Compression-based data mining of sequential

data, DMKD. 14(1): 99-129, 2007.

[14] J. A. Kogan, D. Margoliash, Automated recognition of bird song

elements from continuous recordings using dynamic time warping

and hidden markov models: a comparative study, J. Acoust. Soc.

Am. 103(4):2185–219, 1998.

[15] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi, The similarity

metric, Proc’of the 14th Symposium on Discrete Algorithms,

pp: 863 -72, 2003.

[16] Macaulay Library, Cornell Lab of Ornithology,

www.macaulaylibrary.org/index.do

[17] R. Mankin, D. Hagstrum, M. Smith, A. Roda, M. Kairo,

Perspective and Promise: a Century of Insect Acoustic

Detection and Monitoring, Amer. Entomol. 57: 30-44.

[18] M. Marcarini, G. A. Williamson, L. de S. Garcia, Comparison

of methods for automated recognition of avian nocturnal

flight calls, ICASSP 2008: 2029-32.

[19] D. K. Mellinger, C. W. Clark, Recognizing transient low-

frequency whale sounds by spectrogram correlation, J. Acoust.

Soc. Am., 107: 6, pp. 3518-29, 2000.

[20] D. Mitrovic, M. Zeppelzauer, C. Breiteneder, Discrimination

and Retrieval of Animal Sounds, In Proc. of IEEE Multimedia

Modelling Conference, Beijing, China, 339-343, 2006.

[21] A. Celis-Murillo, J. L. Deppe, M. F. Allen, Using soundscape

recordings to estimate bird species abundance, richness, and

composition, Journal of Field Ornithology, 80, 64–78, 2009.

[22] D. J. Nowak, J. E. Pasek, R. A. Sequeira, D. E. Crane, V. C.

Mastro, Potential effect of Anoplophora glabripennis on

urban trees in the United States, Journal of Entomology.

94(1): 116-122, 2001.

[23] J. B. Panksepp, K. A. Jochman, J. U. Kim, J. J. Koy, E. D.

Wilson, Q. Chen, C. R. Wilson, G. P. Lahvis, Affiliative

behavior, ultrasonic communication and social reward are

influenced by genetic variation in adolescent mice, PLoS ONE

4:e351 (2007).

[24] K. Riede, F. Nischk, C. Thiel, F. Schwenker, Automated

annotation of Orthoptera songs: first results from analysing

the DORSA sound repository, Journal of Orthoptera Research

15(1), 105-113, 2006.

[25] J. Roach, Cricket, Katydid Songs Are Best Clues to Species'

Identities. National Geographic News, (URL)

news.nationalgeographic.com/news/2006/09/060905-

crickets.html

[26] M. M. Wells, C. S. Henry, Songs, reproductive isolation, and

speciation in cryptic species of insect: a case study using

green lacewings, In Endless Forms: species and speciation,

Oxford Univ. Press, NY, 1998.

[27] X. Xi, K.Ueno, E. Keogh, D.J Lee, Converting non-parametric

distance-based classification to anytime algorithms. Pattern

Anal. Appl. 11(3-4): 321-36 (2008).

[28] L.Ye and E.Keogh. Time series shapelets: a new primitive for

data mining. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data

mining, KDD, pages 947-956, 2009.

[29] G. Yu, J.-J. Slotine, Audio classification from time-frequency

texture, IEEE ICASSP, 2009, pp. 1677-80.

http://www.informatik.uni-ulm.de/ni/mitarbeiter/FSchwenker.html
http://www.informatik.uni-ulm.de/ni/mitarbeiter/GPalm.html

