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ABSTRACT 
Most literature on time series classification assumes that the 
beginning and ending points of the pattern of interest can be 
correctly identified, both during the training phase and later 
deployment. In this work, we argue that this assumption is 
unjustified, and this has in many cases led to unwarranted 
optimism about the performance of the proposed algorithms. 
As we shall show, the task of correctly extracting individual 
gait cycles, heartbeats, gestures, behaviors, etc., is generally 
much more difficult than the task of actually classifying 
those patterns. We propose to mitigate this problem by 
introducing an alignment-free time series classification 
framework. The framework requires only very weakly 
annotated data, such as “in this ten minutes of data, we see 
mostly normal heartbeats...,” and by generalizing the classic 
machine learning idea of data editing to 
streaming/continuous data, allows us to build robust, fast and 
accurate classifiers. 
We demonstrate on several diverse real-world problems that 
beyond removing unwarranted assumptions and requiring 
essentially no human intervention, our framework is both 
significantly faster and significantly more accurate than 
current state-of-the-art approaches. 

1. INTRODUCTION  
In virtually all time series classification research, long time 
series are processed into short equal-length “template” 
sequences that are representative of the class.  For example, 
individual and complete gait cycles for biometric 
classification[1][7][11][16], individual and complete 
heartbeats for cardiological classification [5][12], individual 
and complete gestures for gesture recognition [37],  etc.  
In most cases, the segmentation of long time series into these 
idealized snippets is done by hand [7][11][16][17]. However, 
for many real-world problems this either cannot be done, or 
only done with great effort [10][18][23].  
As a concrete example, consider the famous Gun/Point 
problem [13][30], which has appeared in at least one hundred 
works [6][14][20]. To create this dataset, the original authors 
[29][30] used a metronome that signaled every three seconds 
to cue both the actor’s behavior and the start/stop of the 
recording apparatus [29]. This allowed the extraction of 
perfectly aligned data, containing all of the target behavior 
and only the target behavior. Unsurprisingly, dozens of papers 
report less than 10% classification error rate on this problem. 
However, does such an error rate reflect our abilities with 
real-world data?    
Such contriving of time series datasets seems to be the norm. 
For example, [37] notes, “one subject performed one trial of 
an action (in exactly) 10 seconds.” and [22] tells us that 
human editors should carefully discard “all transient activities 
between performing different activities.” Likewise, a recent 
paper states: “We assume that the trajectories are segmented 

in time such that the first and last frames are already aligned 
(and) the resulting model has the same length” [34]. Note that 
these authors are to be commended for stating their 
assumptions so concretely. In many cases, no such statements 
are made, but we suspect that similar “massaging” of the data 
has occurred.   
We believe that such contriving of the data has led to 
unwarranted optimism about how well we can classify real- 
time series data streams.  For real-world problems, we cannot 
always expect the training data to be so idealized, and we 
certainly cannot expect the testing data to be so perfect.  
A more realistic idea for data gathering is to capture data “in 
the wild” as in [2][25][31], etc. However, this opens the 
problem of data editing and cleaning. For example, a one-
hour trace of data labeled “walking” will almost certainly 
contain non-representative subsequences, such as the subject 
pausing at a crosswalk, or introducing a temporary 
asymmetry into her gait as she answers her phone. The 
current solution to preprocess such data requires human 
intervention to examine and edit such traces, and keeping data 
that demonstrates the sought-after variability (walking 
uphill, downhill, level, walking fast, normal, 
slow), while discarding data that is atypical of the class.  
Moreover, in virtually all time series classification research, 
the data must be arranged to have equal length [34]. For 
example, in the world’s largest collection of time series 
datasets, the UCR classification archive, all forty-five time 
series datasets contain only equal-length data [13]. 
Finally, most of the literature assumes that all objects to be 
classified belong to exactly one of two or more well-defined 
classes. For example, in the Gun/Point problem, every one of 
the instances is either a gun-aiming or a finger-pointing 
(unarmed) behavior. However, the vast majority of normal 
human actions are clearly neither. How well do current 
techniques work when most of the data is not from the well-
defined classes?  
To summarize, much of the progress in time series 
classification from streams in the last decade is almost 
certainly optimistic, given that most of the literature implicitly 
or explicitly assumes one or more of the following: 
1. Copious amounts of perfectly aligned atomic patterns can 

be obtained [11][35][37]. 
2. The patterns are all of equal length [11][13][16][23][31].  
3. Every item that we attempt to classify belongs to exactly 

one of our well-defined classes [10][13][23][30].  
In this work, we demonstrate a time series classification 
framework that does not make any of these assumptions. 
Our approach requires only very weakly-labeled data, such as 
“This ten-minute trace of ECG data consists mostly of 
arrhythmias, and that three-minute trace seems mostly free of 
them”, removing assumption (1). Using this data we 
automatically build a “data dictionary”, which contains only 
the minimal subset of the original data to span the concept 
space. This is because the data dictionary can contain, say, 
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one example of walking fast, one example of walking 
normal, etc. This mitigates assumption (2). 
As a byproduct of building this data dictionary, we learn a 
rejection threshold, which allows us to address assumption 
(3). A query item further than this threshold to its nearest 
neighbor is assumed to be in the other class. Finally, we 
show that using the Uniform Scaling distance measure [15] 
instead of Euclidean distance also addresses assumption (2). 
The rest of this paper is organized as follows: In Section 2, we 
introduce definitions and notation used in this paper. In 
Section 3.1, we show how classification is achieved with our 
data dictionary model. In Section 3.2, we illustrate how to 
actually learn the data dictionary by utilizing data editing 
techniques [21][28][33][36]. In Section 4, we present a 
detailed empirical evaluation of our ideas. We discuss related 
work in Section 5. Finally, in Section 6 we offer conclusions 
and directions for future work. 
2. DEFINITIONS AND NOTATION 
We begin with the definition of time series: 

Definition 1: Time Series: T = t1,… tm  is an ordered set   
of m real-valued variables. 

We are only interested in local properties of a time series, 
thus we confine our interest to subsequences: 

Definition 2: Subsequence: Given a time series T of length 
m, a subsequence Sk of T is a sampling of length n ≤ m of 
contiguous position from T with starting position at k, Sk = 
tk,…tk+n-1 for  1 ≤ k ≤ m-n+1. 

The extraction of subsequences from a time series can be 
achieved by use of a sliding window: 

Definition 3: Sliding Window: Given a time series T of 
length m, and a user-defined subsequence length of n, all 
possible subsequences can be extracted by sliding a 
window of size n across T and extracting each 
subsequence, Sk. For a time series T with length m, the 
number of all possible subsequences of length n is m-n+1. 

For concreteness, we take the step of explicitly defining 
training data, as our definition of training data explicitly 
removes the assumptions inherent in most works 
[7][11][13][16][23][31][34].  

Definition 4: Training Data: A Training Data C is a 
collection of the weakly-labeled time series annotated by 
behavior/state or some other mapping to the ground truth.   

By weakly-labeled we simply mean that each long data 
sequence has a single global label and not lots of local labeled 
pointers to every beginning and ending of individual patterns, 
e.g., individual gestures. There are two important properties 
of such data that we must consider: 
• Weakly-labeled training data may contain 

extraneous/irrelevant sections. For example, after a subject 
reaches down to turn on an ankle sensor to record her gait, 
there may be a few seconds before she actually begins to 
walk [31]. Moreover, during the recording session, the 
subject may pause to shop, or jump to avoid a puddle. It 
seems very unlikely that such recordings could avoid 
having such spurious data. Note that this claim is not mere 
speculation; we observed this phenomenon in the first few 
seconds of the BIDMC Congestive Heart Failure dataset 

[3] as shown in Figure 1, and similar phenomena occur in 
all the datasets we examined. 

• Weakly-labeled training data will almost certainly contain 
significant redundancies. While we want lots of data in 
order to learn the inherent variability of the concept we 
wish to learn, significant redundancy will make our 
classification algorithms slow when deployed. Consider 
Figure 1 once more. Once we have a single normal 
heartbeat, say pattern A, then there is little utility in adding 
any of the 14 or so other very similar patterns, including 
pattern B. However, to robustly learn this concept (beats 
belonging to Record-08), we must add either example of 
the Premature Ventricular Contraction (PVC).  

 
Figure 1: A snippet of BIDMC Congestive Heart Failure 
Database ECG - Record-08 [3]. (a) is weakly-labeled data,  
which exhibits both extraneous data, a section of recording 
when the machine was not plugged in, and redundant data 
(only one pair of redundancies are shown in bold (red/green). 
(b) A minimally redundant set of representative heartbeats (a 
data dictionary) could be used as training data 

Rather than these large weakly-labeled training datasets, we 
desire a smaller “smart” training data subset that does not 
contain spurious data, while maintaining coverage of the 
target concept by having one (ideally, exactly one) instance of 
each of the many ways the targeted behavior is manifest. For 
example, from the training data shown in Figure 1, we want 
just one PVC example and just one example of a normal 
heartbeat (perhaps either A or B). However, we do not want 
to require costly human effort to obtain this. While the time 
series shown in Figure 1 would be fairly easy to edit by hand, 
it is only 0.16% of the full ECG dataset we consider in 
Section 4. Therefore, our objective is to build this idealized 
subset of the training data automatically. We begin by 
defining it more concretely as a data dictionary. 

Definition 5: A Data Dictionary D is a (potentially very 
small) “smart” subset of the training data. We allow an 
input parameter x, where x is the percentage of the training 
data C used in data dictionary D. The range of x is 
(0,100%], and a dictionary with the percentage x of the 
original data is denoted as Dx.  

As the Data Dictionary is at the heart of our contribution, we 
will take the time to discuss it in detail. 
2.1 A Discussion of Data Dictionaries 
As defined above, there are a huge number of possible data 
dictionaries for any percentage x, as any random subset of C 
satisfies the definition. However, we obviously wish to create 
one with some desirable properties.  
Clearly, the classification error rate obtained from using just 
D should be no worse than that obtained from using all the 
training data. We do not wish to sacrifice accuracy. As we 
shall show, this is a surprisingly easy objective to achieve. In 
fact, as we shall show later, the classification error rate using 
a judiciously chosen D is generally significantly lower than 
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using all of C. This is because the data dictionary contains 
less spurious −and therefore, potentially misleading−data. 
Another desirable property of D is that it be a very small 
percentage of the training data. This is to allow real-time 
deployment of the classifier, especially on resource limited 
devices (embedded devices, smartphones, etc. [2][9]). This 
requirement may be seen as conflicting with the above 
classification error rate requirement; however, again we will 
show that in most real-world problems we can judiciously 
throw away more than 95% of C to obtain a D5% that is at 
least as accurate as using all the data in C. 
Note that the number of subsequences within each class in D 
may be different. That is to say, our algorithm for building D 
is not round-robin; rather the algorithm adaptively adds more 
subsequences to cover the more “complicated” classes of D. 
For example, the ECG data from Record-08 shown in Figure 
1 is relatively simple. In contrast, the ECG of Record-03 
shown in Figure 2 has a more complicated trace, and at least 
four kinds of beats (normal, S, PVC and Q). Therefore, we 
might expect the number of subsequences for Record-03 in D 
to be greater than that for Record-08, something that is 
empirically borne out in our experiments (Section 4). 

 
Figure 2: A snippet of BIDMC Congestive Heart Failure 
Database ECG: Record-03 [3]. Note that this section of ECG 
data exhibits more variability than the data in Figure 1 

Finally, there is the question of what value we should set x to. 
In fact, we can largely bypass this issue by providing an 
algorithm that produces a “spectrum” of data dictionaries in 
the range of x = (0,100%], together with an estimate of their 
error rate on unseen data. The user can examine this error rate 
vs. value-of-x curve to make the necessary trade-offs. Note 
that these data dictionaries are “nested”, that is to say, for any 
value of x we have Dx ⊆ Dx+ɛ. Thus, we can consider our data 
dictionary creation algorithm an anyspace algorithm [36].   
Given the above considerations, how can we build the best 
data dictionary? As we will later show, we can heuristically 
search the space of data dictionaries using the simple 
algorithm in Section 3.2. 
2.2 An Additional Insight On Data Redundancy  
Based on our experience with real-world time series 
problems, we noted the following: in many cases, D contains 
many patterns that appear to be simply (linearly) rescaled 
versions of each other. For clarity, we illustrate our point with 
a synthetic example in Figure 3; however, we will later show 
some real examples.  
This situation is a consequence of our requirement that data 
dictionary D has the most representative subsequences of 
training data C. For example, if one class contains examples 
of walk, we hope to have at least one representative of each 
type of walk—perhaps one example of a leisurely-
amble, one example of a normal-paced-walk, one 
example of a brisk-walk, etc. It is important to note that 
in this example, the three walking styles are not simply 
linearly rescaled versions of each other. They have different 

foot strike patterns, and thus produce different prototypical 
time series templates [4][19]. Nevertheless, within each sub-
class of walk，there may also be a need to allow some linear 
rescaling of the time series. Using the Euclidean distance our 
search algorithm can achieve this by attempting to ensure that 
the data dictionary contains each gait pattern over a range of 
speeds. This is what our toy example in Figure 3 illustrates.  

 
Figure 3: left) A toy example data dictionary which was 
condensed from a large dataset. These seven subsequences 
in data dictionary A span the concept space of the 
bulls/bears problem. right) Note that if we had a distance 
measure that was invariant to linear scaling, we could 
further reduce data dictionary A to data dictionary B 

For example, when reducing a dataset of daily human 
activities, we may have to extract examples of a brisk- 
walk at 6.0km/h, 6.1km/h, 6.2km/h, etc. However, by 
generalizing from the Euclidean distance to the Uniform 
Scaling distance [15], we allow our algorithm to keep just one 
example of the walk, and still achieve coverage of the target 
concept by using a flexible measure instead of lots of data. 
The Uniform Scaling distance is a simple generalization of the 
Euclidean distance that allows limited invariance of the 
length of the patterns being matched [15]. The maximum 
amount of linear scaling allowed is a user-defined parameter 
[15]. As we later show, allowing just a small amount of 
scaling, say 25%, can greatly improve accuracy. 
To see this in a real dataset, consider Figure 4.left which 
shows one of fifteen classes that was processed into a data 
dictionary in an experiment we performed in Section 4.2. At 
first glance, the two patterns seem redundant1, violating one 
of the requirements stated above. 
 
 
 
 

Figure 4: left) A data dictionary learned from a 15-class 
ECG classification problem (just class 01 is shown here). At 
first glance, the two exemplars seem redundant apart from 
their (irrelevant) phases. right) By using the Euclidean 
distance between the two patterns we can see that the 
misalignment of the beats would cause a large error. The 
problem solved by using the Uniform Scaling distance [15] 

Instead of having two similar but different scaled patterns, 
just a single pattern is kept using the Uniform Scaling 
distance. We have found that using the Uniform Scaling 
distance allows us to have a significantly smaller data 
dictionary. In Figure 4, we could delete either one of the two 

                                                           
1 Note the fact that the two patterns are out of phase does not make them non-redundant, 
as at query time only queries half their length are used, and they are sliding across the 
entire length of the patterns. Details in Section 4.2. 
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patterns and cover the space of possible heartbeats from 
Record-01. For example, in Figure 3, we could further delete 
patterns I, II and IV and still cover the space of possible 
“bulls”. 
However, beyond reducing the size of data dictionaries (thus 
speeding up classification), there is an additional advantage of 
using Uniform Scaling; it allows us to achieve a lower error 
rate.  How is this possible? It is possible because we can 
generalize to patterns not seen in the training data. 
Imagine the training data does contain some examples of gaits 
at speeds from 6.1 to 6.5km/h. As noted above, if the data 
dictionary has enough examples to cover this range of speeds, 
we should expect to do well. However, suppose the unseen 
data contains some walking at 6.7km/h. This is only slightly 
faster than we have seen in the training data, but the 
Euclidean distance is very sensitive to such changes [15]. 
Using the Uniform Scaling distance allows us to generalize 
our labeled example at 6.5km/h to the brisker 6.7km/h instance. 
This idea is more than speculation. As we show in Section 4, 
using the Uniform Scaling distance does produce a 
significantly lower error rate. 
2.3 On the Need for a Threshold 
As noted above, the training set may have extraneous data. 
Likewise, in most realistic deployment scenarios, we expect 
some (often most) of the data to be classified as the other 
class. In these cases, we wish our algorithm to label the 
objects as such. To achieve this, the data dictionary must have 
a distance threshold r beyond which we reject the query as 
unclassifiable (i.e., the other class). As we will show, we 
can learn this threshold as we build the dictionary. 
3. ALGORITHMS 
In order to best explain our framework, we first assume a data 
dictionary with the appropriate threshold has already been 
created and begin by explaining how our classification model 
works. Later, in Section 3.2, we revisit the more difficult task 
of learning the data dictionary. 
3.1 Classification using a Data Dictionary 
Our classification model requires just a data dictionary with 
its accompanying threshold distance, r. 
For an incoming object to be classified q, we classify it with 
the data dictionary using the classic nearest neighbor 
algorithm [33]. In Table 1, we show how to determine the 
class membership of this query, including the possibility that 
this query does not belong to any class in this data dictionary. 
For our purposes, there are exactly two possibilities of 
interest:  
• If the query’s nearest neighbor distance is larger than the 

threshold distance, we say this query does not belong to 
any class in this data dictionary (line 12).  

• If the query’s nearest neighbor distance is smaller than 
the threshold distance, then it is assigned to the same 
class as its nearest neighbor (line 14). 

The algorithm begins by initializing the bsf distance to 
infinity and the predicted class_label to NaN in lines 1 
and 2. From lines 3 to 9, we find the nearest neighbor of the 
query q in data dictionary D. The subroutine NN_search 
(shown in Table 2) returns the nearest neighbor distance of q 
within a time series. If the nearest neighbor distance within a 

time series in line 4 is smaller than the bsf, then in lines 6 
and 7 we update the bsf and the class_label.  

Table 1:  Classification Algorithm using Data Dictionary 
Input: 
 
 
 
Output: 

D, a data dictionary that has N classes; The 
total number of time series in D is k  
r, a threshold distance of D 
q, a query 
The class membership of q, including  the 
possibility of a special class ‘other’ 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 

bsf = ∞;  //initialize the best-so-far distance 
class_label = NaN; 
for i = 1 to k 
    dist = NN_search(q, D(i)); 
    if dist < bsf 

   bsf = dist; 
   class_label = class of D(i); 
endif 

endfor  
NN_dist = bsf;  
if  NN_dist  > r 
  return q belongs to ‘other’ class; 
elseif NN_dist <= r  
  return q belongs to ‘class_label’th class; 
endif 

From lines 11 to 15, we compare the nearest neighbor 
distance to the threshold distance r. If the nearest neighbor 
distance is smaller than r, then this query belongs to the same 
class as its nearest neighbor. Otherwise, this query does not 
belong to any class within this data dictionary and is thus 
classified as the other class. 
As we show in Table 1 line 4, the function NN_search is 
slightly different from the classic nearest neighbor search 
algorithm [13]. NN_search returns not only the nearest 
neighbor distance of a query, but also a distance vector that 
contains distances between the query and all the possible 
subsequences in a time series. This distance vector is not 
exploited at classification time, but as we show in Section 3.2, 
it is exploited when building the data dictionary. For 
concreteness, we briefly discuss the NN_search function in 
Table 2 below. 

Table 2: Nearest Neighbor Search within a Time Series 
Input: 
Output: 
 

q, a query                T, a time series  
dist_vector,a vector that contains distances 
between q and all possible subsequences in T 
NN_dist, the nearest neighbor distance 

1 
2 
3 
4 
5 

          6 
          7 
          8 

w = set of all possible subsequences in T; 
dist_vector = zeros(1,|w|); 
for i = 1 to |w| 

 dist_vector(i) = distance(q,w(i)); 
endfor 
NN_dist = minimum(dist_vector); 
return dist_vector ; 
return NN_dist ; 

In line 1, using a sliding window (cf. Definition 3), we extract 
all the subsequences of the same length as the query. From 
lines 3 to 5, the distances between q and all the possible 
subsequences are calculated. We calculate the nearest 
neighbor distance in line 6. Note that in line 4, the distance 
could be Euclidean distance [13], or Uniform Scaling distance 
[15], etc. We will revisit this choice in Section 4. 
In addition to finding the nearest neighbor, this function also 
returns a distance vector. This additional information is 
exploited by the dictionary building algorithm discussed later 
in Section 3.2. Figure 5.bottom shows an example of such a 
distance vector.  
Having demonstrated how the classification model works in 
conjuction with the data dictionary, we are in position to 



illustrate how to actually build the data dictionary, which is a 
more difficult task. 

 
Figure 5: top) A snippet of BIDMC Congestive Heart 
Failure Database ECG data: Record-08 [3]. bottom) the 
distance vector of an incoming query.The nearest neighbor 
and its distance of q is colored in red/bold 

3.2 Building the Data Dictionary 
As discussed in Section 2, we want to build the data 
dictionary automatically. Using human effort to manually edit 
the training data into a data dictionary is clearly not a realistic 
solution: as it is not scalable to large datasets and invites 
human bias into the process.  
Before introducing our dictionary building algorithm, we will 
show a worked example on a toy dataset in the discrete 
domain. We use a small discrete domain example simply 
because is it easy to write intuitively; our real goal remains 
large real-valued time series data.    

1) The intuition behind data dictionary building 
Suppose we have a training dataset that contains two classes, 
C1 and C2: 

      C1 = { dpacekfjklwalkflwalkklpacedalyutekwalksfj} 
      C2 = { jhjhleapashljumpokdjklleaphfleapfjjumpacgd}   

In this toy example, the data is weakly-labeled. The colored/ 
bolded text is for the reader’s introspection only; it is not 
available to the algorithm. Here the reader can see that in C1, 
there appears to be two ways a shorter subsequence query 
might belong to this class; if it contains the word pace or 
walk. This is similar to the situation shown in Figure 1 where 
a query will be classified to the class of Record-08 if it 
contains pattern A or pattern PVC.  
We want to know whether any incoming queries belong to 
either class in this training data or not. In our proposed 
framework, we search just the data dictionary. 
Recall that one of the desired properties of the data dictionary 
is that it contains a minimally redundant set of patterns that is 
representative of the training data. In this example for C1, 
these are clearly the substrings pace and walk. Likewise for 
C2, leap and jump seem to completely define the class. Thus, 
the data dictionary D should be the following: 
        D = C1:{ pace ; walk  } C2: { leap ;  jump}, r = 1 
Consider now two incoming queries ieap and kklp. The former 
is a noisy version of a pattern found in our dictionary, but as it 
is within our rejection threshold of (hamming) distance r of 1, 
it is correctly labeled as C2. In contrast kklp has a distance of 
3 to its nearest neighbor in D, so it is correctly rejected. 
Note that had we attempted to classify against the raw data 
rather than the dictionary, the query kklp would have been 
classified as C1 (it appears in the middle of ..lwalkklpaced.). 
This misclassification is clearly contrived, but it does happen 
frequently in the real data. Consider the flat section of time 
series at the beginning of Figure 1. As noted above, it is 
extraneous data, due to a temporary disconnection of the 

sensor. However, many other patients’ ECG traces also have 
these flat sections, but clearly that does not mean we should 
classify them as belonging to patient Record-08.    
In our example, we have considered two separate queries; 
however a closer analogue of our real-valued problem is to 
imagine an endless stream that needs to be classified: 
    .. ttgpacedgrteweerjumpwalkflqrafertwqhafhfahfahfbseew.. 
Up to this point we have not explained how we built our toy 
dictionary. The answer is simply to use the results of leaving-
one-out classification to score candidate substrings. For 
example, by using leaving-one-out to classify the first 
substring of length 4 in C1 dpac, it is incorrectly classified as 
C2 (it matches the middle of ..umpacgd.. with a distance of 1). 
In contrast, when we attempt to classify the second substring 
of length 4 in C1, pace, we find it is correctly classified. By 
collecting statistics about which substrings are often used for 
correct predictions, but rarely used for wrong predictions, we 
find that the four substrings shown in our data dictionary 
emerge as the obvious choices. This basic idea is known as 
data editing [21][24][33]. In the next section, we formalize 
this idea, and generalize it to real-valued data streams.  

2) Building the data dictionary 
The high-level intuition behind building the data dictionary is 
to use a ranking function to score every subsequence in C. 
These “scores” rate the subsequences by their expected utility 
for classification of future unseen data. We use these scores to 
guide a greedy search algorithm, which iteratively selects the 
best subsequence and places it in D. How do we know this 
utility? We simply estimate it by cross validation, e.g. looking 
at the classification error rate and some additional information 
as explained below.   
As previously hinted, our algorithm iteratively adds 
subsequences to the data dictionary. Each iteration has three 
steps. In Step 1, the algorithm scores the subsequences in C. 
In Step 2, the highest scoring subsequence is extracted and 
placed in D. Finally, in Step 3, we identify all the queries that 
cannot be correctly classified by the current D. These 
incorrectly classified items are passed back to Step 1 to re-
score the subsequences in C. 
There is an important caveat. Once we have removed the best 
subsequence in Step 2, the scores of all the other 
subsequences may change in the next iteration. To return to 
our running example in Figure 1, either subsequence A and B 
would rank highly. However once we have placed one, say A, 
in D, there is little utility in adding B, since having A in D is 
sufficient to correctly classify similar patterns in Step 3. Thus 
we expect the scores of B will be low in the next iteration, 
given that the correctly classified queries by the current D 
will not be used to re-score C in the next iteration. 
The process iterates until we run out of subsequences to add 
to D or the unlikely event of perfect training error rate having 
been achieved. In the dozens of problems we have considered, 
the training error rate plateaus well before 10% of the training 
data has been added to the data dictionary.   
Below we consider each step in detail. 
Step 1 : In order to rank every point in the time series, we use  
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the leaving-one-out classification algorithm2. However, we do 
not want to use just the classification error rate to score the 
subsequences. Imagine we have two subsequences S1 and S2, 
either of which is found to correctly predict 70% of the 
queries tested with them. Either appears to be a good 
candidate to add to D. However, suppose that in addition to 
being close enough to many objects with the same class label 
(friends), allowing its 30% error rate, further suppose that S1 
is also very close to many objects with different class labels 
(enemies). If S2 keeps a larger distance from its enemy class 
objects, it is a much better choice for inclusion in D. 
This idea, that instead of using just the error rate of 
classification, you must also consider the relative distance to 
“friends” and “enemies” has been investigated extensively in 
the field of data editing [24][33].  
Given a query length l, we randomly choose a query q from 
the training data C3. In Table 3, lines 2 and 3, we first split the 
training data into two parts, Part A (friends only) and Part B 
(enemies only). Using the NN_search algorithm in Table 2, 
we find nearest neighbor friend in Part A (lines 5 to 13) and 
nearest neighbor enemy (lines 14 to 22) in Part B.  
In lines 23 to 27, the nearest neighbor friend distance and the 
nearest neighbor enemy distance are compared. If the nearest 
neighbor friend distance is smaller than the nearest neighbor 
enemy distance, we discover all the distances of the query q 
in Part A that are also smaller than the nearest neighbor 
enemy distance. Such subsequences are likely true positives. 
That is to say, our confidence that these subsequences can 
produce correct classifications of unseen data has increased.   
Similarly, if the nearest neighbor friend distance is larger than 
the nearest neighbor enemy distance, we find all the distances 
of the query q in Part B that are also smaller than the nearest 
neighbor friend distance. We call the corresponding 
subsequences likely false positives. 

Table 3: Classification of Training Data 
Input: 
Output: 

C, the training data 
likely true/false positive subsequences 

   1 
   2 
 
   3 
   4 
   5 
   6 
   7 
   8       
   9 
   10 
   11  
   12 
   13 
   14 
   15 
   16 
   17 
   18 
   19 
   20 
   21 
   22 
   23 
   24 
   25 
   26 
   27 

q = a randomly selected subsequence in C; 
A = friends ;  //all the time series in C that have the same class as q, q 
is removed from A;  
B = enemies ; // all the time series in C that have different class from q; 
dists_A = [];  dists_B = [];  
bsf = ∞;       //initialize the best-so-far distance 
for i = 1 to |A| 
[dist_vector, NN_dist] = NN_search(q, A(i)); 
if NN_dist < bsf  
   bsf = NN_dist; 
endif 
dists_A = [dists_A ; dist_vector]; 
endfor 
NN_friend_dist = bsf;  // nearest neighbor distance in same class 
bsf = ∞;                //initialize the best-so-far distance 
for j = 1 to |B| 
[dist_vector, NN_dist] = NN_search(q, B(j)); 
if NN_dist < bsf  
   bsf = NN_dist; 
endif 
dists_B = [dists_B ; dist_vector]; 
endfor 
NN_enemy_dist = bsf; // nearest neighbor distance in different class 
if NN_friend_dist < NN_enemy_dist  
likely_true_positives = find(dists_A < NN_enemy_dist) 
elseif NN_friend_dist >= NN_enemy_dist 
likely_false_positives = find(dists_B < NN_friend_dist) 
endif 

                                                           
2 Where tractably is an issue, we may sample a subset of the queries. 
3 We defer the discussion on how to choose a query length to Section 6. 

Given the likely true/false positives found in Table 3, we are 
now in a position to discuss how to rank them. 
By utilizing the simple rank function introduced in [33], we 
generalize an algorithm that gives positive score to likely true 
positives and negative score to the likely false positives. 

( ) 2 / ( _ _ 1),rank S num of class likely false positives= − −∑  
Note that subsequences that are not used to classify any 
queries (correctly or not) get a zero score. Using a large 
number of queries, we compute a score vector for every time 
series in C. We denote rank(S) as the score for a subsequence 
S in the time series.  
In the next step, we demonstrate how to extract the current 
best subsequence using the score vectors.  
Step 2: We extract the highest scoring subsequence and place 
it in D. We demonstrate this step by using the example in 
Figure 6. Suppose in one of the iterations in Step 1, the 
starting point of the red/bold heartbeat has the highest score. 
We therefore need to extract this heartbeat. Because the 
Euclidean distance is very sensitive to even slight 
misalignments, and our scoring function is somewhat “blurred” 
as to its exact location in the x-axis. Extracting exactly the 
subsequence with query length l would be very brittle. 
Therefore, we “pad” the chosen subsequence some time series 
from the left and to the right, in particular with the l/2 data 
points to either side. 

 
Figure 6: top) A snippet of BIDMC Congestive Heart Failure 
Database ECG data: Record-08 [3]. bottom) the extracted 
subsequence has twice the query length  
Note that there is a slight difference between the first iteration 
and the subsequent iterations. Before the first iteration, D is 
empty. After the first iteration, D should contain exactly one 
subsequence from each class. This is the smallest D logically 
possible. Therefore instead of splitting C to the friends part 
and the enemies part, the algorithm finds the most 
representative subsequence in each class in Step 1, and then 
adds them into D in Step 2.  
After the first iteration, we extract only the one subsequence 
that holds the highest score in C and add it into D. Thus the 
class sizes in D can be skewed, as the algorithm adds more 
exemplars to the more diverse/complicated classes. While we 
are iteratively building D, the size of C becomes smaller, as 
the extracted subsequence is removed from C in each iteration.  
Step 3 : The algorithm examines the quality of the current D 
by doing classification using all the queries. The queries that 
are correctly classified by the current D will not be used to re-
score C in the next iteration Step 1, since the current D is 
sufficient to correctly classify them. Only the misclassified 
queries will proceed back to Step 1 to re-score C. In each 
iteration Step 3, we redo classification experiments on D 
using all the queries, since the correctly classified queries in 
Dx may become misclassified in Dx+ɛ.   
After building a data dictionary for a training data, our last 
obligation is to learn the distance threshold.  
3.3 Learning the Threshold Distance 

ll/2 l/2

the point that has the highest score

the extracted subsequence



After the data dictionary is built, we learn a threshold to allow 
us to reject future queries which do not belong to any of our 
learned classes. We begin by recording a histogram of the 
nearest neighbor distances of testing queries that are correctly 
classified using D, as shown in Figure 7. Next, we compute a 
similar histogram for the nearest neighbor distances of queries 
which should not have a valid and meaningful match within D 
(i.e., the other class). Where can we get such queries? In the 
example shown in Figure 7, we simply used gesture data as 
the other class, knowing gestures should not match a set of 
heartbeats. Note that it is occasionally possible that a gesture 
might match a heartbeat by coincidence; but our approach is 
robust to such spurious matches so long as they are relatively 
rare. If external datasets are in short supply, we can also 
simply permute subsequences of D to produce the other 
class, for example flipping heartbeats upside-down and 
backwards.   
Given the two histograms, we choose the location that gives 
the equal-error-rate as the threshold (about 7.1 in Figure 7). 
However, based on their tolerance to false negatives, users 
may choose a more liberal or conservative decision boundary. 

 
Figure 7: The green/left histogram contains the nearest 
neighbor distances of correctly classified queries for the ECG 
datas used in Section 4.2. The red/right histogram shows 
nearest neighbor distances for queries from the other class 

3.4 Uniform Scaling Technique 
Finally we can trivially replace the Euclidean distance with 
Uniform Scaling 4  distance in the above data dictionary 
building and threshold learning process [15]. We choose the 
maximum scaling factor based on the variability of time series 
in the domain at hand, see discussion in Section 4. A naive 
implementation of Uniform Scaling would be slow, but [15] 
shows that it can be computed in essentially the same time as 
Euclidean distance. 
4. EXPERIMENTAL EVALUATION 
We begin by discussing our experimental philosophy. To 
ensure that our experiments are easily reproducible, we have 
built a website, which contains all the datasets and code [38]. 
In addition, this website contains additional experiments 
which are omitted here for brevity. Our experimental results 
support our claim that using only the data dictionary is more 
accurate and faster than using all the available training data.  
We compare our algorithm with several widely used rival 
approaches. The most widely used rival approach extracts 
feature vectors from the data and reports the best result 
among multiple models [2][25][31]. In addition, we compare 
with the obvious strawman of using all the training data, 

                                                           
4 The reader may ask why not Dynamic Time Warping?  Empirically, we tried it 
and it does not help. Moreover we should not expect it to help this problem [38]. 

which is just a special case of our framework, in which all the 
training data is used (i.e. D100%).  
To support our claim that the real-world streaming data is not 
as clean as the contrived datasets used in most literature, we 
report the percentage of the rejected queries produced by the 
learned threshold and show some examples5.   
We report the error rate using both Euclidean distance and 
Uniform Scaling distance to support our claim that the latter 
can be very useful for time series classification problems. 
While we are ultimately interested in the testing error rate, we 
also report the training error rate, as this can be used to 
predict the best size of the data dictionary for a given 
problem. However, for completeness, we build and test the 
data dictionary Dx for every value of x, from the smallest 
logically possible size to whatever value minimizes the 
holdout error rate (this is generally much less than x = 10%).  
The reader may object that error rate is not the correct 
measure here. Imagine that our rejection threshold is so high 
that we reject 999 of 1,000 queries, and just happen to get one 
classified object correct. In this case, reporting a 0% error rate 
would be dubious at best. This is of course what 
precision/recall and similar measurements are designed to be 
robust to. However, in all our case studies, our rejection rate 
is much less than 10%, so reporting just the error rate is 
reasonable, and allows us to present more visually intuitive 
figures. Moreover, we will show experiments where we 
consider the correctness of rejections made by our algorithm. 
Finally, we defer experiments that consider the scalability of 
dictionary building to [38], noting in passing that this is done 
offline, and that in any case we can do this faster than real-
time. In other words we can learn the dictionary for an hour 
heartbeats in much less than one hour.  
4.1 An Example Application in Physiology 
We consider a physical activity dataset containing eight 
subjects performing activities such as: normal-walking, 
walking-very-slow, descending-stairs, 
cycling, and inactivity (an umbrella term for lying-
in-bed/sitting-still/standing-still), etc [22]. Approximately 
eight hours of data at 110Hz was collected from wearable 
sensors on the subjects’ wrist, chest and shoes.  
For simplicity of exposition, we consider only a single time 
series, recording the roll-axis from the sensor placed in the 
subjects’ shoe. However, our algorithm trivially extends to 
multi-dimensional data (examples appear at [38]). Note that 
although our algorithm only uses a single axis from the sensor, 
we demonstrate that our results are significantly better than 
rival algorithms that use all three-axis data (roll, pitch and 
yaw) from the same sensor [31]. 
We randomly choose 60% of the data as training data, and 
treat the rest as testing data. In Figure 8, we show the 
training/testing error rates as our algorithm grows D from the 
smallest logically possible size (about 0.39% of all the 
training data) to the point where it is clear that our algorithm 
can no longer improve. Although our algorithm bottoms out 
earlier in the plot, we wish to demonstrate that the output is 
very smooth over a wide range of values. 

                                                           
5 Due to space limitations we only show the rejected queries in the first case 
study. See [38] for examples of rejected queries from the other case studies.  
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We compare with the widely-used rival approach [2][25][31], 
which extracts signal features from the sliding windows. For 
fairness to this method, we used their suggested window size 
[31], and tested all of the following classifiers: K-nearest 
neighbors (K=5), SVM, Naïve Bayes, boosted decision trees 
and C4.5 decision tree [2][25][31]. The best classification 
result is 0.364 achieved by the C4.5 decision tree.  
For the commonly used strawman of using all the training        
data, the testing error rate is 0.221. However, our framework 
equals this testing error rate using only 1.6% (i.e.D1.6%) of the 
training data and obtains the significantly lower error rate of 
0.152 at D8.3%.  Moreover, given that we are using only about 
one twelfth the data, we are able to classify the data about 
twelve times faster.  
Our algorithm is clearly highly competitive, but does it owe 
its performance to choice of which subsequences are placed in 
D by our algorithm? To test this, we built another D by 
randomly extracting subsequences from C. As Figure 8 also 
shows, our systematic method for ranking subsequences is 
significantly better than random selection.  

 
Figure 8: The classification error rates for D from D0.39% to 
D14.2% for the physical activity dataset [22] 

A final observation about these results is that the training 
error rate is a very good predictor of the test error rate. As 
Figure 8 shows, the training error is only slightly optimistic.    
We are now ready to test our claim that Uniform Scaling (c.f. 
Section 2.2) can help in datasets containing signals acquired 
from human behavior/physiology. We repeated the 
experiments above under the exact same conditions, except 
we replaced Euclidean distance with Uniform Scaling 
distance in both the training and testing phases.   
Based on studies of variability for human locomotion 
[1][4][19], we chose a maximum scaling factor of 15%; that is 
to say, queries are tested at every scale from 85% to 115% of 
their original length. Uniform Scaling obtains a 0.085 testing 
error rate at D8.1%, significantly better than Euclidean 
distance, as shown in Figure 9. 

 
Figure 9: The pink/green(bold) curves are train/test error 
rates obtained when we replaced Euclidean distance with 
Uniform Scaling distance 

We learned a threshold distance of 14.5 for D6. With this 
threshold, our algorithm rejects 9.5% of the testing queries. In 
Figure 10, we see that the vast majority of rejected queries do 
belong to the other class and are thus correctly rejected.  

                                                           
6Experimental results show that the threshold distances for D built with 
Euclidean distance and Uniform Scaling distance are almost identical. 
Therefore, we only report one threshold distance. 

 
Figure 10: Two examples of rejected queries. Both queries 
contain significant amount of noise  

We do not present formal numerical results for the rejected 
queries, as the weakly-annotated format of the original data 
does not provide the label of the objects with certainty. 
This dataset draws from sporting activities. We also consider 
a similar but independent dataset [2], which considers more 
quotidian activities such as tooth-brushing etc. We 
achieve near identical improvements on this dataset, thus we 
relegate a discussion of it to [38].    
4.2 An Example Application in Cardiology  
We apply our framework to a large ECG dataset: the BIDMC 
Congestive Heart Failure Database [3]. The dataset includes 
ECG recordings from fifteen subjects with severe congestive 
heart failure. The individual recordings are each about 20 
hours in duration, sampled at 250 Hz.  
Ultimately, the medical community wants to classify patient-
independent types of heartbeats. However in this experiment, 
we classify individuals’ heartbeats. This is simply because we 
are able to obtain huge amounts of labeled data this way. Note 
that as hinted at in Figure 2, the data is complex and noisy. 
Moreover, a single (unhealthy) individual may have many 
different types of beats. Cardiologist Helga Van Herle from 
USC informs us this is a perfect proxy problem. 
We use a randomly selected 150 minutes of data for training, 
and 450 minutes of data for testing.  
In Figure 11, we show the training/testing error rates as our 
algorithm grows the data dictionary from the smallest 
possible size (D0.28%) to the point where it is clear that our 
algorithm can no longer improve.  
Note that the testing error rate is 0.102 using the strawman of 
using all the training data, which is significantly better than 
the default error rate 0.933. However, our framework 
duplicates this error rate using only 2.1% (i.e. D2.1%) of the 
training data, and obtains the much lower error rate of 0.076 
at D4.5%.  From Figure 11 we again see that our method for 
building dictionaries is much better than random selection. 

 
Figure 11: The classification error rates for D from D0.28% to 
D5.82% for BIDMC Congestive Heart Failure Database[3] 

We again test the Uniform Scaling distance instead of 
Euclidean distance in both the training/testing phases.   Based 
on studies of variability for human heartbeats [3][8] and 
advice from a cardiologist, we chose a maximum scaling 
factor of 25%. In Figure 12 , Uniform Scaling obtains a 0.035 
testing error rate at D4.6%, significantly better than using the 
Euclidean distance. 
As illustrated in Figure 7, the threshold distance for D is 7.1. 
With this threshold, the algorithm rejects 4.8% of the testing 
queries. Once again, these rejections (which can be seen at 
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[38]) all seem like reasonable rejections due to loss of signal 
or extraordinary amounts of noise/machine artifacts. 

 
Figure 12: The pink/green(bold) curves are train/test error 
rates obtained when we replaced Euclidean distance with 
Uniform Scaling distance  

5. RELATED WORK 
There is significant literature on time series classification 
[2][6][9][20][30][32] both in the data mining community and 
beyond. However, almost all of these works make the three 
assumptions we relaxed in this work, and are thus orthogonal 
to the contributions here. Our algorithm can be seen as 
building a data dictionary of primitives for the very long 
streaming/continuous time series [26][27]. Other works have 
also done this, such as [27], but they use significant amount of 
human effort to hand-edit the time series into patterns. In 
contrast, we build dictionaries automatically, with no human 
intervention.    

6. CONCLUSION AND FUTURE WORK 
We introduced a novel framework that requires only very 
weakly-labeled data and removes the unjustified assumptions 
made in virtually all time series classification research. We 
demonstrated over several large, real-world datasets that our 
method is significantly more accurate than several common 
strawman algorithms. Moreover, with less than one tenth of 
the original data kept in D, we are at least ten times faster at 
classification time.  
Our algorithm has just one parameter, the length of queries. In 
our activity datasets, we simply used the original authors 
values [2][22], and for ECGs we used a cardiologist’s 
suggestion. By changing these suggested values we 
empirically found that we are not sensitive to this parameter. 
Nevertheless in future work, we plan to learn it from the data. 
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