
Time Series Classification under More Realistic Assumptions
Bing Hu Yanping Chen Eamonn Keogh

University of California, Riverside
{bhu002, ychen053}@ucr.edu , eamonn@cs.ucr.edu

ABSTRACT
Most literature on time series classification assumes that the
beginning and ending points of the pattern of interest can be
correctly identified, both during the training phase and later
deployment. In this work, we argue that this assumption is
unjustified, and this has in many cases led to unwarranted
optimism about the performance of the proposed algorithms.
As we shall show, the task of correctly extracting individual
gait cycles, heartbeats, gestures, behaviors, etc., is generally
much more difficult than the task of actually classifying
those patterns. We propose to mitigate this problem by
introducing an alignment-free time series classification
framework. The framework requires only very weakly
annotated data, such as “in this ten minutes of data, we see
mostly normal heartbeats...,” and by generalizing the classic
machine learning idea of data editing to
streaming/continuous data, allows us to build robust, fast and
accurate classifiers.
We demonstrate on several diverse real-world problems that
beyond removing unwarranted assumptions and requiring
essentially no human intervention, our framework is both
significantly faster and significantly more accurate than
current state-of-the-art approaches.

1. INTRODUCTION
In virtually all time series classification research, long time
series are processed into short equal-length “template”
sequences that are representative of the class. For example,
individual and complete gait cycles for biometric
classification[1][7][11][16], individual and complete
heartbeats for cardiological classification [5][12], individual
and complete gestures for gesture recognition [37], etc.
In most cases, the segmentation of long time series into these
idealized snippets is done by hand [7][11][16][17]. However,
for many real-world problems this either cannot be done, or
only done with great effort [10][18][23].
As a concrete example, consider the famous Gun/Point
problem [13][30], which has appeared in at least one hundred
works [6][14][20]. To create this dataset, the original authors
[29][30] used a metronome that signaled every three seconds
to cue both the actor’s behavior and the start/stop of the
recording apparatus [29]. This allowed the extraction of
perfectly aligned data, containing all of the target behavior
and only the target behavior. Unsurprisingly, dozens of papers
report less than 10% classification error rate on this problem.
However, does such an error rate reflect our abilities with
real-world data?
Such contriving of time series datasets seems to be the norm.
For example, [37] notes, “one subject performed one trial of
an action (in exactly) 10 seconds.” and [22] tells us that
human editors should carefully discard “all transient activities
between performing different activities.” Likewise, a recent
paper states: “We assume that the trajectories are segmented

in time such that the first and last frames are already aligned
(and) the resulting model has the same length” [34]. Note that
these authors are to be commended for stating their
assumptions so concretely. In many cases, no such statements
are made, but we suspect that similar “massaging” of the data
has occurred.
We believe that such contriving of the data has led to
unwarranted optimism about how well we can classify real-
time series data streams. For real-world problems, we cannot
always expect the training data to be so idealized, and we
certainly cannot expect the testing data to be so perfect.
A more realistic idea for data gathering is to capture data “in
the wild” as in [2][25][31], etc. However, this opens the
problem of data editing and cleaning. For example, a one-
hour trace of data labeled “walking” will almost certainly
contain non-representative subsequences, such as the subject
pausing at a crosswalk, or introducing a temporary
asymmetry into her gait as she answers her phone. The
current solution to preprocess such data requires human
intervention to examine and edit such traces, and keeping data
that demonstrates the sought-after variability (walking
uphill, downhill, level, walking fast, normal,
slow), while discarding data that is atypical of the class.
Moreover, in virtually all time series classification research,
the data must be arranged to have equal length [34]. For
example, in the world’s largest collection of time series
datasets, the UCR classification archive, all forty-five time
series datasets contain only equal-length data [13].
Finally, most of the literature assumes that all objects to be
classified belong to exactly one of two or more well-defined
classes. For example, in the Gun/Point problem, every one of
the instances is either a gun-aiming or a finger-pointing
(unarmed) behavior. However, the vast majority of normal
human actions are clearly neither. How well do current
techniques work when most of the data is not from the well-
defined classes?
To summarize, much of the progress in time series
classification from streams in the last decade is almost
certainly optimistic, given that most of the literature implicitly
or explicitly assumes one or more of the following:
1. Copious amounts of perfectly aligned atomic patterns can

be obtained [11][35][37].
2. The patterns are all of equal length [11][13][16][23][31].
3. Every item that we attempt to classify belongs to exactly

one of our well-defined classes [10][13][23][30].
In this work, we demonstrate a time series classification
framework that does not make any of these assumptions.
Our approach requires only very weakly-labeled data, such as
“This ten-minute trace of ECG data consists mostly of
arrhythmias, and that three-minute trace seems mostly free of
them”, removing assumption (1). Using this data we
automatically build a “data dictionary”, which contains only
the minimal subset of the original data to span the concept
space. This is because the data dictionary can contain, say,

mailto:bhu002,%20ychen053%7D@ucr.edu

one example of walking fast, one example of walking
normal, etc. This mitigates assumption (2).
As a byproduct of building this data dictionary, we learn a
rejection threshold, which allows us to address assumption
(3). A query item further than this threshold to its nearest
neighbor is assumed to be in the other class. Finally, we
show that using the Uniform Scaling distance measure [15]
instead of Euclidean distance also addresses assumption (2).
The rest of this paper is organized as follows: In Section 2, we
introduce definitions and notation used in this paper. In
Section 3.1, we show how classification is achieved with our
data dictionary model. In Section 3.2, we illustrate how to
actually learn the data dictionary by utilizing data editing
techniques [21][28][33][36]. In Section 4, we present a
detailed empirical evaluation of our ideas. We discuss related
work in Section 5. Finally, in Section 6 we offer conclusions
and directions for future work.
2. DEFINITIONS AND NOTATION
We begin with the definition of time series:

Definition 1: Time Series: T = t1,… tm is an ordered set
of m real-valued variables.

We are only interested in local properties of a time series,
thus we confine our interest to subsequences:

Definition 2: Subsequence: Given a time series T of length
m, a subsequence Sk of T is a sampling of length n ≤ m of
contiguous position from T with starting position at k, Sk =
tk,…tk+n-1 for 1 ≤ k ≤ m-n+1.

The extraction of subsequences from a time series can be
achieved by use of a sliding window:

Definition 3: Sliding Window: Given a time series T of
length m, and a user-defined subsequence length of n, all
possible subsequences can be extracted by sliding a
window of size n across T and extracting each
subsequence, Sk. For a time series T with length m, the
number of all possible subsequences of length n is m-n+1.

For concreteness, we take the step of explicitly defining
training data, as our definition of training data explicitly
removes the assumptions inherent in most works
[7][11][13][16][23][31][34].

Definition 4: Training Data: A Training Data C is a
collection of the weakly-labeled time series annotated by
behavior/state or some other mapping to the ground truth.

By weakly-labeled we simply mean that each long data
sequence has a single global label and not lots of local labeled
pointers to every beginning and ending of individual patterns,
e.g., individual gestures. There are two important properties
of such data that we must consider:
• Weakly-labeled training data may contain

extraneous/irrelevant sections. For example, after a subject
reaches down to turn on an ankle sensor to record her gait,
there may be a few seconds before she actually begins to
walk [31]. Moreover, during the recording session, the
subject may pause to shop, or jump to avoid a puddle. It
seems very unlikely that such recordings could avoid
having such spurious data. Note that this claim is not mere
speculation; we observed this phenomenon in the first few
seconds of the BIDMC Congestive Heart Failure dataset

[3] as shown in Figure 1, and similar phenomena occur in
all the datasets we examined.

• Weakly-labeled training data will almost certainly contain
significant redundancies. While we want lots of data in
order to learn the inherent variability of the concept we
wish to learn, significant redundancy will make our
classification algorithms slow when deployed. Consider
Figure 1 once more. Once we have a single normal
heartbeat, say pattern A, then there is little utility in adding
any of the 14 or so other very similar patterns, including
pattern B. However, to robustly learn this concept (beats
belonging to Record-08), we must add either example of
the Premature Ventricular Contraction (PVC).

Figure 1: A snippet of BIDMC Congestive Heart Failure
Database ECG - Record-08 [3]. (a) is weakly-labeled data,
which exhibits both extraneous data, a section of recording
when the machine was not plugged in, and redundant data
(only one pair of redundancies are shown in bold (red/green).
(b) A minimally redundant set of representative heartbeats (a
data dictionary) could be used as training data

Rather than these large weakly-labeled training datasets, we
desire a smaller “smart” training data subset that does not
contain spurious data, while maintaining coverage of the
target concept by having one (ideally, exactly one) instance of
each of the many ways the targeted behavior is manifest. For
example, from the training data shown in Figure 1, we want
just one PVC example and just one example of a normal
heartbeat (perhaps either A or B). However, we do not want
to require costly human effort to obtain this. While the time
series shown in Figure 1 would be fairly easy to edit by hand,
it is only 0.16% of the full ECG dataset we consider in
Section 4. Therefore, our objective is to build this idealized
subset of the training data automatically. We begin by
defining it more concretely as a data dictionary.

Definition 5: A Data Dictionary D is a (potentially very
small) “smart” subset of the training data. We allow an
input parameter x, where x is the percentage of the training
data C used in data dictionary D. The range of x is
(0,100%], and a dictionary with the percentage x of the
original data is denoted as Dx.

As the Data Dictionary is at the heart of our contribution, we
will take the time to discuss it in detail.
2.1 A Discussion of Data Dictionaries
As defined above, there are a huge number of possible data
dictionaries for any percentage x, as any random subset of C
satisfies the definition. However, we obviously wish to create
one with some desirable properties.
Clearly, the classification error rate obtained from using just
D should be no worse than that obtained from using all the
training data. We do not wish to sacrifice accuracy. As we
shall show, this is a surprisingly easy objective to achieve. In
fact, as we shall show later, the classification error rate using
a judiciously chosen D is generally significantly lower than

(b)0 1000 2000 3000

PVC1 PVC2

A
B

(a)

A
Extraneous data PVC2

using all of C. This is because the data dictionary contains
less spurious −and therefore, potentially misleading−data.
Another desirable property of D is that it be a very small
percentage of the training data. This is to allow real-time
deployment of the classifier, especially on resource limited
devices (embedded devices, smartphones, etc. [2][9]). This
requirement may be seen as conflicting with the above
classification error rate requirement; however, again we will
show that in most real-world problems we can judiciously
throw away more than 95% of C to obtain a D5% that is at
least as accurate as using all the data in C.
Note that the number of subsequences within each class in D
may be different. That is to say, our algorithm for building D
is not round-robin; rather the algorithm adaptively adds more
subsequences to cover the more “complicated” classes of D.
For example, the ECG data from Record-08 shown in Figure
1 is relatively simple. In contrast, the ECG of Record-03
shown in Figure 2 has a more complicated trace, and at least
four kinds of beats (normal, S, PVC and Q). Therefore, we
might expect the number of subsequences for Record-03 in D
to be greater than that for Record-08, something that is
empirically borne out in our experiments (Section 4).

Figure 2: A snippet of BIDMC Congestive Heart Failure
Database ECG: Record-03 [3]. Note that this section of ECG
data exhibits more variability than the data in Figure 1

Finally, there is the question of what value we should set x to.
In fact, we can largely bypass this issue by providing an
algorithm that produces a “spectrum” of data dictionaries in
the range of x = (0,100%], together with an estimate of their
error rate on unseen data. The user can examine this error rate
vs. value-of-x curve to make the necessary trade-offs. Note
that these data dictionaries are “nested”, that is to say, for any
value of x we have Dx ⊆ Dx+ɛ. Thus, we can consider our data
dictionary creation algorithm an anyspace algorithm [36].
Given the above considerations, how can we build the best
data dictionary? As we will later show, we can heuristically
search the space of data dictionaries using the simple
algorithm in Section 3.2.
2.2 An Additional Insight On Data Redundancy
Based on our experience with real-world time series
problems, we noted the following: in many cases, D contains
many patterns that appear to be simply (linearly) rescaled
versions of each other. For clarity, we illustrate our point with
a synthetic example in Figure 3; however, we will later show
some real examples.
This situation is a consequence of our requirement that data
dictionary D has the most representative subsequences of
training data C. For example, if one class contains examples
of walk, we hope to have at least one representative of each
type of walk—perhaps one example of a leisurely-
amble, one example of a normal-paced-walk, one
example of a brisk-walk, etc. It is important to note that
in this example, the three walking styles are not simply
linearly rescaled versions of each other. They have different

foot strike patterns, and thus produce different prototypical
time series templates [4][19]. Nevertheless, within each sub-
class of walk，there may also be a need to allow some linear
rescaling of the time series. Using the Euclidean distance our
search algorithm can achieve this by attempting to ensure that
the data dictionary contains each gait pattern over a range of
speeds. This is what our toy example in Figure 3 illustrates.

Figure 3: left) A toy example data dictionary which was
condensed from a large dataset. These seven subsequences
in data dictionary A span the concept space of the
bulls/bears problem. right) Note that if we had a distance
measure that was invariant to linear scaling, we could
further reduce data dictionary A to data dictionary B

For example, when reducing a dataset of daily human
activities, we may have to extract examples of a brisk-
walk at 6.0km/h, 6.1km/h, 6.2km/h, etc. However, by
generalizing from the Euclidean distance to the Uniform
Scaling distance [15], we allow our algorithm to keep just one
example of the walk, and still achieve coverage of the target
concept by using a flexible measure instead of lots of data.
The Uniform Scaling distance is a simple generalization of the
Euclidean distance that allows limited invariance of the
length of the patterns being matched [15]. The maximum
amount of linear scaling allowed is a user-defined parameter
[15]. As we later show, allowing just a small amount of
scaling, say 25%, can greatly improve accuracy.
To see this in a real dataset, consider Figure 4.left which
shows one of fifteen classes that was processed into a data
dictionary in an experiment we performed in Section 4.2. At
first glance, the two patterns seem redundant1, violating one
of the requirements stated above.

Figure 4: left) A data dictionary learned from a 15-class
ECG classification problem (just class 01 is shown here). At
first glance, the two exemplars seem redundant apart from
their (irrelevant) phases. right) By using the Euclidean
distance between the two patterns we can see that the
misalignment of the beats would cause a large error. The
problem solved by using the Uniform Scaling distance [15]

Instead of having two similar but different scaled patterns,
just a single pattern is kept using the Uniform Scaling
distance. We have found that using the Uniform Scaling
distance allows us to have a significantly smaller data
dictionary. In Figure 4, we could delete either one of the two

1 Note the fact that the two patterns are out of phase does not make them non-redundant,
as at query time only queries half their length are used, and they are sliding across the
entire length of the patterns. Details in Section 4.2.

400020000 6000

PVCS Q

class bears

left) Data dictionary A

class bulls

right) Data dictionary B

class bears

class bulls

III.

IV.

I.
II.

Euclidean
Distance
Uniform
Scaling
Distance

200 400 0

patterns and cover the space of possible heartbeats from
Record-01. For example, in Figure 3, we could further delete
patterns I, II and IV and still cover the space of possible
“bulls”.
However, beyond reducing the size of data dictionaries (thus
speeding up classification), there is an additional advantage of
using Uniform Scaling; it allows us to achieve a lower error
rate. How is this possible? It is possible because we can
generalize to patterns not seen in the training data.
Imagine the training data does contain some examples of gaits
at speeds from 6.1 to 6.5km/h. As noted above, if the data
dictionary has enough examples to cover this range of speeds,
we should expect to do well. However, suppose the unseen
data contains some walking at 6.7km/h. This is only slightly
faster than we have seen in the training data, but the
Euclidean distance is very sensitive to such changes [15].
Using the Uniform Scaling distance allows us to generalize
our labeled example at 6.5km/h to the brisker 6.7km/h instance.
This idea is more than speculation. As we show in Section 4,
using the Uniform Scaling distance does produce a
significantly lower error rate.
2.3 On the Need for a Threshold
As noted above, the training set may have extraneous data.
Likewise, in most realistic deployment scenarios, we expect
some (often most) of the data to be classified as the other
class. In these cases, we wish our algorithm to label the
objects as such. To achieve this, the data dictionary must have
a distance threshold r beyond which we reject the query as
unclassifiable (i.e., the other class). As we will show, we
can learn this threshold as we build the dictionary.
3. ALGORITHMS
In order to best explain our framework, we first assume a data
dictionary with the appropriate threshold has already been
created and begin by explaining how our classification model
works. Later, in Section 3.2, we revisit the more difficult task
of learning the data dictionary.
3.1 Classification using a Data Dictionary
Our classification model requires just a data dictionary with
its accompanying threshold distance, r.
For an incoming object to be classified q, we classify it with
the data dictionary using the classic nearest neighbor
algorithm [33]. In Table 1, we show how to determine the
class membership of this query, including the possibility that
this query does not belong to any class in this data dictionary.
For our purposes, there are exactly two possibilities of
interest:
• If the query’s nearest neighbor distance is larger than the

threshold distance, we say this query does not belong to
any class in this data dictionary (line 12).

• If the query’s nearest neighbor distance is smaller than
the threshold distance, then it is assigned to the same
class as its nearest neighbor (line 14).

The algorithm begins by initializing the bsf distance to
infinity and the predicted class_label to NaN in lines 1
and 2. From lines 3 to 9, we find the nearest neighbor of the
query q in data dictionary D. The subroutine NN_search
(shown in Table 2) returns the nearest neighbor distance of q
within a time series. If the nearest neighbor distance within a

time series in line 4 is smaller than the bsf, then in lines 6
and 7 we update the bsf and the class_label.

Table 1: Classification Algorithm using Data Dictionary
Input:

Output:

D, a data dictionary that has N classes; The
total number of time series in D is k
r, a threshold distance of D
q, a query
The class membership of q, including the
possibility of a special class ‘other’

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

bsf = ∞; //initialize the best-so-far distance
class_label = NaN;
for i = 1 to k
 dist = NN_search(q, D(i));
 if dist < bsf

 bsf = dist;
 class_label = class of D(i);
endif

endfor
NN_dist = bsf;
if NN_dist > r
 return q belongs to ‘other’ class;
elseif NN_dist <= r
 return q belongs to ‘class_label’th class;
endif

From lines 11 to 15, we compare the nearest neighbor
distance to the threshold distance r. If the nearest neighbor
distance is smaller than r, then this query belongs to the same
class as its nearest neighbor. Otherwise, this query does not
belong to any class within this data dictionary and is thus
classified as the other class.
As we show in Table 1 line 4, the function NN_search is
slightly different from the classic nearest neighbor search
algorithm [13]. NN_search returns not only the nearest
neighbor distance of a query, but also a distance vector that
contains distances between the query and all the possible
subsequences in a time series. This distance vector is not
exploited at classification time, but as we show in Section 3.2,
it is exploited when building the data dictionary. For
concreteness, we briefly discuss the NN_search function in
Table 2 below.

Table 2: Nearest Neighbor Search within a Time Series
Input:
Output:

q, a query T, a time series
dist_vector,a vector that contains distances
between q and all possible subsequences in T
NN_dist, the nearest neighbor distance

1
2
3
4
5

 6
 7
 8

w = set of all possible subsequences in T;
dist_vector = zeros(1,|w|);
for i = 1 to |w|

 dist_vector(i) = distance(q,w(i));
endfor
NN_dist = minimum(dist_vector);
return dist_vector ;
return NN_dist ;

In line 1, using a sliding window (cf. Definition 3), we extract
all the subsequences of the same length as the query. From
lines 3 to 5, the distances between q and all the possible
subsequences are calculated. We calculate the nearest
neighbor distance in line 6. Note that in line 4, the distance
could be Euclidean distance [13], or Uniform Scaling distance
[15], etc. We will revisit this choice in Section 4.
In addition to finding the nearest neighbor, this function also
returns a distance vector. This additional information is
exploited by the dictionary building algorithm discussed later
in Section 3.2. Figure 5.bottom shows an example of such a
distance vector.
Having demonstrated how the classification model works in
conjuction with the data dictionary, we are in position to

illustrate how to actually build the data dictionary, which is a
more difficult task.

Figure 5: top) A snippet of BIDMC Congestive Heart
Failure Database ECG data: Record-08 [3]. bottom) the
distance vector of an incoming query.The nearest neighbor
and its distance of q is colored in red/bold

3.2 Building the Data Dictionary
As discussed in Section 2, we want to build the data
dictionary automatically. Using human effort to manually edit
the training data into a data dictionary is clearly not a realistic
solution: as it is not scalable to large datasets and invites
human bias into the process.
Before introducing our dictionary building algorithm, we will
show a worked example on a toy dataset in the discrete
domain. We use a small discrete domain example simply
because is it easy to write intuitively; our real goal remains
large real-valued time series data.

1) The intuition behind data dictionary building
Suppose we have a training dataset that contains two classes,
C1 and C2:

 C1 = { dpacekfjklwalkflwalkklpacedalyutekwalksfj}
 C2 = { jhjhleapashljumpokdjklleaphfleapfjjumpacgd}

In this toy example, the data is weakly-labeled. The colored/
bolded text is for the reader’s introspection only; it is not
available to the algorithm. Here the reader can see that in C1,
there appears to be two ways a shorter subsequence query
might belong to this class; if it contains the word pace or
walk. This is similar to the situation shown in Figure 1 where
a query will be classified to the class of Record-08 if it
contains pattern A or pattern PVC.
We want to know whether any incoming queries belong to
either class in this training data or not. In our proposed
framework, we search just the data dictionary.
Recall that one of the desired properties of the data dictionary
is that it contains a minimally redundant set of patterns that is
representative of the training data. In this example for C1,
these are clearly the substrings pace and walk. Likewise for
C2, leap and jump seem to completely define the class. Thus,
the data dictionary D should be the following:
 D = C1:{ pace ; walk } C2: { leap ; jump}, r = 1
Consider now two incoming queries ieap and kklp. The former
is a noisy version of a pattern found in our dictionary, but as it
is within our rejection threshold of (hamming) distance r of 1,
it is correctly labeled as C2. In contrast kklp has a distance of
3 to its nearest neighbor in D, so it is correctly rejected.
Note that had we attempted to classify against the raw data
rather than the dictionary, the query kklp would have been
classified as C1 (it appears in the middle of ..lwalkklpaced.).
This misclassification is clearly contrived, but it does happen
frequently in the real data. Consider the flat section of time
series at the beginning of Figure 1. As noted above, it is
extraneous data, due to a temporary disconnection of the

sensor. However, many other patients’ ECG traces also have
these flat sections, but clearly that does not mean we should
classify them as belonging to patient Record-08.
In our example, we have considered two separate queries;
however a closer analogue of our real-valued problem is to
imagine an endless stream that needs to be classified:
 .. ttgpacedgrteweerjumpwalkflqrafertwqhafhfahfahfbseew..
Up to this point we have not explained how we built our toy
dictionary. The answer is simply to use the results of leaving-
one-out classification to score candidate substrings. For
example, by using leaving-one-out to classify the first
substring of length 4 in C1 dpac, it is incorrectly classified as
C2 (it matches the middle of ..umpacgd.. with a distance of 1).
In contrast, when we attempt to classify the second substring
of length 4 in C1, pace, we find it is correctly classified. By
collecting statistics about which substrings are often used for
correct predictions, but rarely used for wrong predictions, we
find that the four substrings shown in our data dictionary
emerge as the obvious choices. This basic idea is known as
data editing [21][24][33]. In the next section, we formalize
this idea, and generalize it to real-valued data streams.

2) Building the data dictionary
The high-level intuition behind building the data dictionary is
to use a ranking function to score every subsequence in C.
These “scores” rate the subsequences by their expected utility
for classification of future unseen data. We use these scores to
guide a greedy search algorithm, which iteratively selects the
best subsequence and places it in D. How do we know this
utility? We simply estimate it by cross validation, e.g. looking
at the classification error rate and some additional information
as explained below.
As previously hinted, our algorithm iteratively adds
subsequences to the data dictionary. Each iteration has three
steps. In Step 1, the algorithm scores the subsequences in C.
In Step 2, the highest scoring subsequence is extracted and
placed in D. Finally, in Step 3, we identify all the queries that
cannot be correctly classified by the current D. These
incorrectly classified items are passed back to Step 1 to re-
score the subsequences in C.
There is an important caveat. Once we have removed the best
subsequence in Step 2, the scores of all the other
subsequences may change in the next iteration. To return to
our running example in Figure 1, either subsequence A and B
would rank highly. However once we have placed one, say A,
in D, there is little utility in adding B, since having A in D is
sufficient to correctly classify similar patterns in Step 3. Thus
we expect the scores of B will be low in the next iteration,
given that the correctly classified queries by the current D
will not be used to re-score C in the next iteration.
The process iterates until we run out of subsequences to add
to D or the unlikely event of perfect training error rate having
been achieved. In the dozens of problems we have considered,
the training error rate plateaus well before 10% of the training
data has been added to the data dictionary.
Below we consider each step in detail.
Step 1 : In order to rank every point in the time series, we use

0 1000 2000 3000

0 1000 2000 3000
0

15
30

Sliding window
query

PVC1 PVC2

the leaving-one-out classification algorithm2. However, we do
not want to use just the classification error rate to score the
subsequences. Imagine we have two subsequences S1 and S2,
either of which is found to correctly predict 70% of the
queries tested with them. Either appears to be a good
candidate to add to D. However, suppose that in addition to
being close enough to many objects with the same class label
(friends), allowing its 30% error rate, further suppose that S1
is also very close to many objects with different class labels
(enemies). If S2 keeps a larger distance from its enemy class
objects, it is a much better choice for inclusion in D.
This idea, that instead of using just the error rate of
classification, you must also consider the relative distance to
“friends” and “enemies” has been investigated extensively in
the field of data editing [24][33].
Given a query length l, we randomly choose a query q from
the training data C3. In Table 3, lines 2 and 3, we first split the
training data into two parts, Part A (friends only) and Part B
(enemies only). Using the NN_search algorithm in Table 2,
we find nearest neighbor friend in Part A (lines 5 to 13) and
nearest neighbor enemy (lines 14 to 22) in Part B.
In lines 23 to 27, the nearest neighbor friend distance and the
nearest neighbor enemy distance are compared. If the nearest
neighbor friend distance is smaller than the nearest neighbor
enemy distance, we discover all the distances of the query q
in Part A that are also smaller than the nearest neighbor
enemy distance. Such subsequences are likely true positives.
That is to say, our confidence that these subsequences can
produce correct classifications of unseen data has increased.
Similarly, if the nearest neighbor friend distance is larger than
the nearest neighbor enemy distance, we find all the distances
of the query q in Part B that are also smaller than the nearest
neighbor friend distance. We call the corresponding
subsequences likely false positives.

Table 3: Classification of Training Data
Input:
Output:

C, the training data
likely true/false positive subsequences

 1
 2

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

q = a randomly selected subsequence in C;
A = friends ; //all the time series in C that have the same class as q, q
is removed from A;
B = enemies ; // all the time series in C that have different class from q;
dists_A = []; dists_B = [];
bsf = ∞; //initialize the best-so-far distance
for i = 1 to |A|
[dist_vector, NN_dist] = NN_search(q, A(i));
if NN_dist < bsf
 bsf = NN_dist;
endif
dists_A = [dists_A ; dist_vector];
endfor
NN_friend_dist = bsf; // nearest neighbor distance in same class
bsf = ∞; //initialize the best-so-far distance
for j = 1 to |B|
[dist_vector, NN_dist] = NN_search(q, B(j));
if NN_dist < bsf
 bsf = NN_dist;
endif
dists_B = [dists_B ; dist_vector];
endfor
NN_enemy_dist = bsf; // nearest neighbor distance in different class
if NN_friend_dist < NN_enemy_dist
likely_true_positives = find(dists_A < NN_enemy_dist)
elseif NN_friend_dist >= NN_enemy_dist
likely_false_positives = find(dists_B < NN_friend_dist)
endif

2 Where tractably is an issue, we may sample a subset of the queries.
3 We defer the discussion on how to choose a query length to Section 6.

Given the likely true/false positives found in Table 3, we are
now in a position to discuss how to rank them.
By utilizing the simple rank function introduced in [33], we
generalize an algorithm that gives positive score to likely true
positives and negative score to the likely false positives.

() 2 / (_ _ 1),rank S num of class likely false positives= − −∑
Note that subsequences that are not used to classify any
queries (correctly or not) get a zero score. Using a large
number of queries, we compute a score vector for every time
series in C. We denote rank(S) as the score for a subsequence
S in the time series.
In the next step, we demonstrate how to extract the current
best subsequence using the score vectors.
Step 2: We extract the highest scoring subsequence and place
it in D. We demonstrate this step by using the example in
Figure 6. Suppose in one of the iterations in Step 1, the
starting point of the red/bold heartbeat has the highest score.
We therefore need to extract this heartbeat. Because the
Euclidean distance is very sensitive to even slight
misalignments, and our scoring function is somewhat “blurred”
as to its exact location in the x-axis. Extracting exactly the
subsequence with query length l would be very brittle.
Therefore, we “pad” the chosen subsequence some time series
from the left and to the right, in particular with the l/2 data
points to either side.

Figure 6: top) A snippet of BIDMC Congestive Heart Failure
Database ECG data: Record-08 [3]. bottom) the extracted
subsequence has twice the query length
Note that there is a slight difference between the first iteration
and the subsequent iterations. Before the first iteration, D is
empty. After the first iteration, D should contain exactly one
subsequence from each class. This is the smallest D logically
possible. Therefore instead of splitting C to the friends part
and the enemies part, the algorithm finds the most
representative subsequence in each class in Step 1, and then
adds them into D in Step 2.
After the first iteration, we extract only the one subsequence
that holds the highest score in C and add it into D. Thus the
class sizes in D can be skewed, as the algorithm adds more
exemplars to the more diverse/complicated classes. While we
are iteratively building D, the size of C becomes smaller, as
the extracted subsequence is removed from C in each iteration.
Step 3 : The algorithm examines the quality of the current D
by doing classification using all the queries. The queries that
are correctly classified by the current D will not be used to re-
score C in the next iteration Step 1, since the current D is
sufficient to correctly classify them. Only the misclassified
queries will proceed back to Step 1 to re-score C. In each
iteration Step 3, we redo classification experiments on D
using all the queries, since the correctly classified queries in
Dx may become misclassified in Dx+ɛ.
After building a data dictionary for a training data, our last
obligation is to learn the distance threshold.
3.3 Learning the Threshold Distance

ll/2 l/2

the point that has the highest score

the extracted subsequence

After the data dictionary is built, we learn a threshold to allow
us to reject future queries which do not belong to any of our
learned classes. We begin by recording a histogram of the
nearest neighbor distances of testing queries that are correctly
classified using D, as shown in Figure 7. Next, we compute a
similar histogram for the nearest neighbor distances of queries
which should not have a valid and meaningful match within D
(i.e., the other class). Where can we get such queries? In the
example shown in Figure 7, we simply used gesture data as
the other class, knowing gestures should not match a set of
heartbeats. Note that it is occasionally possible that a gesture
might match a heartbeat by coincidence; but our approach is
robust to such spurious matches so long as they are relatively
rare. If external datasets are in short supply, we can also
simply permute subsequences of D to produce the other
class, for example flipping heartbeats upside-down and
backwards.
Given the two histograms, we choose the location that gives
the equal-error-rate as the threshold (about 7.1 in Figure 7).
However, based on their tolerance to false negatives, users
may choose a more liberal or conservative decision boundary.

Figure 7: The green/left histogram contains the nearest
neighbor distances of correctly classified queries for the ECG
datas used in Section 4.2. The red/right histogram shows
nearest neighbor distances for queries from the other class

3.4 Uniform Scaling Technique
Finally we can trivially replace the Euclidean distance with
Uniform Scaling 4 distance in the above data dictionary
building and threshold learning process [15]. We choose the
maximum scaling factor based on the variability of time series
in the domain at hand, see discussion in Section 4. A naive
implementation of Uniform Scaling would be slow, but [15]
shows that it can be computed in essentially the same time as
Euclidean distance.
4. EXPERIMENTAL EVALUATION
We begin by discussing our experimental philosophy. To
ensure that our experiments are easily reproducible, we have
built a website, which contains all the datasets and code [38].
In addition, this website contains additional experiments
which are omitted here for brevity. Our experimental results
support our claim that using only the data dictionary is more
accurate and faster than using all the available training data.
We compare our algorithm with several widely used rival
approaches. The most widely used rival approach extracts
feature vectors from the data and reports the best result
among multiple models [2][25][31]. In addition, we compare
with the obvious strawman of using all the training data,

4 The reader may ask why not Dynamic Time Warping? Empirically, we tried it
and it does not help. Moreover we should not expect it to help this problem [38].

which is just a special case of our framework, in which all the
training data is used (i.e. D100%).
To support our claim that the real-world streaming data is not
as clean as the contrived datasets used in most literature, we
report the percentage of the rejected queries produced by the
learned threshold and show some examples5.
We report the error rate using both Euclidean distance and
Uniform Scaling distance to support our claim that the latter
can be very useful for time series classification problems.
While we are ultimately interested in the testing error rate, we
also report the training error rate, as this can be used to
predict the best size of the data dictionary for a given
problem. However, for completeness, we build and test the
data dictionary Dx for every value of x, from the smallest
logically possible size to whatever value minimizes the
holdout error rate (this is generally much less than x = 10%).
The reader may object that error rate is not the correct
measure here. Imagine that our rejection threshold is so high
that we reject 999 of 1,000 queries, and just happen to get one
classified object correct. In this case, reporting a 0% error rate
would be dubious at best. This is of course what
precision/recall and similar measurements are designed to be
robust to. However, in all our case studies, our rejection rate
is much less than 10%, so reporting just the error rate is
reasonable, and allows us to present more visually intuitive
figures. Moreover, we will show experiments where we
consider the correctness of rejections made by our algorithm.
Finally, we defer experiments that consider the scalability of
dictionary building to [38], noting in passing that this is done
offline, and that in any case we can do this faster than real-
time. In other words we can learn the dictionary for an hour
heartbeats in much less than one hour.
4.1 An Example Application in Physiology
We consider a physical activity dataset containing eight
subjects performing activities such as: normal-walking,
walking-very-slow, descending-stairs,
cycling, and inactivity (an umbrella term for lying-
in-bed/sitting-still/standing-still), etc [22]. Approximately
eight hours of data at 110Hz was collected from wearable
sensors on the subjects’ wrist, chest and shoes.
For simplicity of exposition, we consider only a single time
series, recording the roll-axis from the sensor placed in the
subjects’ shoe. However, our algorithm trivially extends to
multi-dimensional data (examples appear at [38]). Note that
although our algorithm only uses a single axis from the sensor,
we demonstrate that our results are significantly better than
rival algorithms that use all three-axis data (roll, pitch and
yaw) from the same sensor [31].
We randomly choose 60% of the data as training data, and
treat the rest as testing data. In Figure 8, we show the
training/testing error rates as our algorithm grows D from the
smallest logically possible size (about 0.39% of all the
training data) to the point where it is clear that our algorithm
can no longer improve. Although our algorithm bottoms out
earlier in the plot, we wish to demonstrate that the output is
very smooth over a wide range of values.

5 Due to space limitations we only show the rejected queries in the first case
study. See [38] for examples of rejected queries from the other case studies.

0 2 4 8 10 12 14 16 18 206
0

200

400

600 Decision boundary

Nearest neighbor distances of
the correctly classified queries

Nearest neighbor distances of
queries from other class

Euclidean distance

N
um

be
r o

f
qu

er
ie

s

We compare with the widely-used rival approach [2][25][31],
which extracts signal features from the sliding windows. For
fairness to this method, we used their suggested window size
[31], and tested all of the following classifiers: K-nearest
neighbors (K=5), SVM, Naïve Bayes, boosted decision trees
and C4.5 decision tree [2][25][31]. The best classification
result is 0.364 achieved by the C4.5 decision tree.
For the commonly used strawman of using all the training
data, the testing error rate is 0.221. However, our framework
equals this testing error rate using only 1.6% (i.e.D1.6%) of the
training data and obtains the significantly lower error rate of
0.152 at D8.3%. Moreover, given that we are using only about
one twelfth the data, we are able to classify the data about
twelve times faster.
Our algorithm is clearly highly competitive, but does it owe
its performance to choice of which subsequences are placed in
D by our algorithm? To test this, we built another D by
randomly extracting subsequences from C. As Figure 8 also
shows, our systematic method for ranking subsequences is
significantly better than random selection.

Figure 8: The classification error rates for D from D0.39% to
D14.2% for the physical activity dataset [22]

A final observation about these results is that the training
error rate is a very good predictor of the test error rate. As
Figure 8 shows, the training error is only slightly optimistic.
We are now ready to test our claim that Uniform Scaling (c.f.
Section 2.2) can help in datasets containing signals acquired
from human behavior/physiology. We repeated the
experiments above under the exact same conditions, except
we replaced Euclidean distance with Uniform Scaling
distance in both the training and testing phases.
Based on studies of variability for human locomotion
[1][4][19], we chose a maximum scaling factor of 15%; that is
to say, queries are tested at every scale from 85% to 115% of
their original length. Uniform Scaling obtains a 0.085 testing
error rate at D8.1%, significantly better than Euclidean
distance, as shown in Figure 9.

Figure 9: The pink/green(bold) curves are train/test error
rates obtained when we replaced Euclidean distance with
Uniform Scaling distance

We learned a threshold distance of 14.5 for D6. With this
threshold, our algorithm rejects 9.5% of the testing queries. In
Figure 10, we see that the vast majority of rejected queries do
belong to the other class and are thus correctly rejected.

6Experimental results show that the threshold distances for D built with
Euclidean distance and Uniform Scaling distance are almost identical.
Therefore, we only report one threshold distance.

Figure 10: Two examples of rejected queries. Both queries
contain significant amount of noise

We do not present formal numerical results for the rejected
queries, as the weakly-annotated format of the original data
does not provide the label of the objects with certainty.
This dataset draws from sporting activities. We also consider
a similar but independent dataset [2], which considers more
quotidian activities such as tooth-brushing etc. We
achieve near identical improvements on this dataset, thus we
relegate a discussion of it to [38].
4.2 An Example Application in Cardiology
We apply our framework to a large ECG dataset: the BIDMC
Congestive Heart Failure Database [3]. The dataset includes
ECG recordings from fifteen subjects with severe congestive
heart failure. The individual recordings are each about 20
hours in duration, sampled at 250 Hz.
Ultimately, the medical community wants to classify patient-
independent types of heartbeats. However in this experiment,
we classify individuals’ heartbeats. This is simply because we
are able to obtain huge amounts of labeled data this way. Note
that as hinted at in Figure 2, the data is complex and noisy.
Moreover, a single (unhealthy) individual may have many
different types of beats. Cardiologist Helga Van Herle from
USC informs us this is a perfect proxy problem.
We use a randomly selected 150 minutes of data for training,
and 450 minutes of data for testing.
In Figure 11, we show the training/testing error rates as our
algorithm grows the data dictionary from the smallest
possible size (D0.28%) to the point where it is clear that our
algorithm can no longer improve.
Note that the testing error rate is 0.102 using the strawman of
using all the training data, which is significantly better than
the default error rate 0.933. However, our framework
duplicates this error rate using only 2.1% (i.e. D2.1%) of the
training data, and obtains the much lower error rate of 0.076
at D4.5%. From Figure 11 we again see that our method for
building dictionaries is much better than random selection.

Figure 11: The classification error rates for D from D0.28% to
D5.82% for BIDMC Congestive Heart Failure Database[3]

We again test the Uniform Scaling distance instead of
Euclidean distance in both the training/testing phases. Based
on studies of variability for human heartbeats [3][8] and
advice from a cardiologist, we chose a maximum scaling
factor of 25%. In Figure 12 , Uniform Scaling obtains a 0.035
testing error rate at D4.6%, significantly better than using the
Euclidean distance.
As illustrated in Figure 7, the threshold distance for D is 7.1.
With this threshold, the algorithm rejects 4.8% of the testing
queries. Once again, these rejections (which can be seen at

Er
ro

r
 R

at
e

Test error : randomly built DTest error

Percent of the training data used by the data dictionary
4.0% 8.0% 12.0%

Train error
0.0%

Using all the training data, the testing error rate is 0.22

0.39%
0

0.4

0.6

0.2

Er
ro

r
 R

at
e

4.0% 8.0% 12.0%0.0%
0.39%

Test error : Uniform Scaling
Train error : Uniform Scaling

0

0.2

0.4 Euclidean train error
(from Fig. 8) for reference

Percent of the training data used by the data dictionary

0 100 200 300
-4
-2
0
2
4

0 100 200 300
-4
-2
0
2
4

Er
ro

r
 R

at
e

Test error : randomly built DTest error
0

0.2
0.4

Percent of the training data used by the data dictionary

0.28%
2.0% 3.0% 4.0%

Train error
0.0%

Using all the training data, the testing error rate is 0.102

1.0% 5.0%

0.6

[38]) all seem like reasonable rejections due to loss of signal
or extraordinary amounts of noise/machine artifacts.

Figure 12: The pink/green(bold) curves are train/test error
rates obtained when we replaced Euclidean distance with
Uniform Scaling distance

5. RELATED WORK
There is significant literature on time series classification
[2][6][9][20][30][32] both in the data mining community and
beyond. However, almost all of these works make the three
assumptions we relaxed in this work, and are thus orthogonal
to the contributions here. Our algorithm can be seen as
building a data dictionary of primitives for the very long
streaming/continuous time series [26][27]. Other works have
also done this, such as [27], but they use significant amount of
human effort to hand-edit the time series into patterns. In
contrast, we build dictionaries automatically, with no human
intervention.

6. CONCLUSION AND FUTURE WORK
We introduced a novel framework that requires only very
weakly-labeled data and removes the unjustified assumptions
made in virtually all time series classification research. We
demonstrated over several large, real-world datasets that our
method is significantly more accurate than several common
strawman algorithms. Moreover, with less than one tenth of
the original data kept in D, we are at least ten times faster at
classification time.
Our algorithm has just one parameter, the length of queries. In
our activity datasets, we simply used the original authors
values [2][22], and for ECGs we used a cardiologist’s
suggestion. By changing these suggested values we
empirically found that we are not sensitive to this parameter.
Nevertheless in future work, we plan to learn it from the data.

7. ACKNOWLEDGEMENTS
We thank all the donors of dataset. We would like to
acknowledge the financial support for our research provided
by NSF grants IIS – 1161997.

8. REFERENCES
[1] K. Aspelin, Establishing Pedestrian Walking Speeds. Portland State

University. www.usroads.com/journals/p/rej/9710/re971001.htm,
retrieved 2009-08-24.

[2] L. Bao and S.S. Intille, Acitivity Recognition from User-Annotated
Acceleration Data, In Proc’ of the 2nd International Conference on
Pervasive Computing, pages1-17, 2004.

[3] The BIDMC Congestive Heart Failure Database,
www.physionet.org/physiobank/database/chfdb/

[4] G.A. Cavagna, N.C. Heglund and C.R. Taylor, Mechanical work in
terrestrial locomotion: two basic mechanisms for minimizing energy
expenditure, Journal of Physiology 233(5): R243-R261, 1977.

[5] P.de Chazal, M. O’Dwyer, and R. B. Reilly, Automatic classification
of ECG heartbeats using ECG morphology and heartbeat interval
features, IEEE Trans. Biomed. Eng., vol. 51, pp. 1196-06, Jul.2004.

[6] L. Chen, M. T. Özsu and V.Oria, Robust and fast similarity search for
moving object trajectories , In Proc’ of the ACM SIGMOD, 2005.

[7] CMU Graphics Lab Motion Capture Database, mocap.cs.cmu.edu/,
retrieved 2012-04-24.

[8] Electrocardiography,en.wikipedia.org/wiki/Electrocardiography.

[9] D. Gafurov, K. Helkala and T. Søndrol, Biometric Gait Authentication
Using Accelerometer Sensor, Journal of Computers , (1) 6, 2006.

[10] D. Gafurov and E. Snekkenes, Towards Understanding the Uniqueness
of Gait Biometric, 8th IEEE International Conference on Automatic
Face & Gesture Recognition, 2008.

[11] M.A. Hanson, H.C. Powell Jr, A.T. Barth, J. Lach, M.B.C, Brown,
Neural Network Gait Classification for On-Body Inerital Sensors, In
Proc’ of the 2009 Sixth International Workshop on Wearable and
Implantable Body Sensor Networks, 2009.

[12] B. Hu, T. R Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E.
Keogh, Discovering the Intrinsic Cardinality and Dimensionality of
Time Series using MDL, ICDM, 2011.

[13] E. Keogh, Q. Zhu, B. Hu, Y. Hao , X. Xi, L. Wei, and C. A.
Ratanamahatana. The UCR Time Series Classification/Clustering
Homepage: www.cs.ucr.edu/~eamonn/time_series_data/, 2006.

[14] E. Keogh, S. Lonardi and C. Ratanamahatana, Towards Parameter-
Free Data Mining , In Proc’ of the tenth ACM SIGKDD, 2004.

[15] E. Keogh, T. Palpanas, V.B. Zordan, D. Gunopulos and M. Cardle,
Indexing Large Human-Motion Databases, VLDB, 2004.

[16] P. Koch, W. Konen and K. Hein, Gesture Recognition on Few
Training Data using Slow Feature Analysis and Parametric Bootstrap ,
IJCNN, 2010.

[17] J. Lester, T. Choudhury, N. Kern, G. Borriello and B. Hannaford, A
Hybrid Discriminative/Generative Approach for Modeling Human
Activities, IJCAI, 2005.

[18] J. Liu, K. Yu, Y. Zhang and Y. Huang, Training Conditional Random
Fields Using Transfer Learning for Gesture Recognition, ICDM,2010

[19] T.A. McMahon, G.C. Cheng, The mechanics of running : How does
stiffness couple with speed, Journal of Biomechanics, Vol 23, 1990.

[20] M. Morse and J.M. Patel, An Efficient and Accurate Method for
Evaluating Time Series Similarity, Proc SIGMOD, 2007.

[21] V. Niennattrakul, E. Keogh and C.A. Ratanamahatana, Data Editing
Techniques to Allow the Application of Distance-Based Outlier
Detection to Streams, ICDM, 2010.

[22] PAMAP, Physical Activity Monitoring for Aging People,
www.pamap.org/demo.html , retrieved 2012-05-12.

[23] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I.
Korhonen, Activity classification using realistic data from wearable
sensors, IEEE Trans. Inf. Tech. Biomed., vol. 10, pp. 119-28, 2006.

[24] E. Pekalska, R.P.W. Duin and P. Paclík, Prototype selection for
dissimilarity-based classifiers, Pattern Recognition, 39, 2006.

[25] C.Pham, T. Plötz, P. Olivier, A dynamic time warping approach to
real-time activity recognition for food preparation, In Proc’ of the
First international joint conference on Ambient intelligence, 2010.

[26] M. Raptis, D. Kirovski, and H. Hoppes, Real-Time Classification of
Dance Gestures from Skeleton Animation, In Proc’of the ACM
SIGGRAPH symposium on Computer animation, 2011.

[27] M. Raptis, K. Wnuk, and S. Soatto, Flexible Dictionaries for Action
Recognition, In Proc’ of the 1st International Workshop on Machine
Learning for Vision-based Motion Analysis, 2008.

[28] T.Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans. Time Series
Epenthesis: Clustering Time Series Streams Requires Ignoring Some
Data. ICDM 2011.

[29] C.A. Ratanamahatana (2012). Personal communcation. May 2012.
[30] C.A. Ratanamahatana and E. Keogh, Making Time-series

Classification More Accurate Using Learned Constraints, SDM, 2004.
[31] A. Reiss and D. Stricker, Introducing a Modular Activity Monitoring

System, 33th International EMBC, 2011.
[32] J. Song and D. Kim, Simultaneous Gesture Segmentation and

Recognition based on Forward Spotting Accumulative HMM, In Proc’
of the 18th ICPR, 2006.

[33] K. Ueno, X. Xi, E. Keogh and D. Lee, Anytime Classification Using
the Nearest Neighbor Algorithm with Applications to Stream
Mining, ICDM, 2010.

[34] J. Usabiaga, G. Bebis, A. Erol, M. Nicolescu, Recognizing simple human
actions using 3D head movement, Computational Intelligence, 23(4), 2007.

[35] R.D. Vatavu, The Effect of Sampling Rate on the Performance of
Template-based Gesture Recognizers, Proc of ICMI, 2011.

[36] L. Ye, X. Wang, E. Keogh and A. Mafra-Neto, Autocannibalistic and
Anyspace Indexing Algorithms with Applications to Sensor Data Mining,
SDM, 2009.

[37] A.Y. Yang, A. Giani, R. Giannatonio, K. Gilani, etc. “Distributed
Human Action Recognition via Wearable Motion Sensor Networks ”,
www.eecs.berkeley.edu/~yang/software/WAR/index.html,

[38] Project URL: sites.google.com/site/sdm13realistic/

Er
ro

r
 R

at
e

0
0.1
0.2
0.3

Percent of the training data used by the data dictionary

0.28%
2.0% 3.0% 4.0%0.0% 1.0% 5.0%

Test error : uniform scaling
Train error : uniform scaling

Euclidean train error (from
Fig. 11) for reference

 .

http://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf
http://en.wikipedia.org/wiki/Portland_State_University
http://en.wikipedia.org/wiki/Portland_State_University
http://mocap.cs.cmu.edu/
http://en.wikipedia.org/wiki/Electrocardiography
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4810099

	1. INTRODUCTION
	2. DEFINITIONS AND NOTATION
	3. ALGORITHMS
	1) The intuition behind data dictionary building
	2) Building the data dictionary

	4. EXPERIMENTAL EVALUATION
	7. ACKNOWLEDGEMENTS

