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Abstract 
The problem of efficiently finding images that are similar to a 
target image has attracted much attention in the image 
processing community and is rightly considered an 
information retrieval task. However, the problem of finding 
structure and regularities in large image datasets is an area in 
which data mining is beginning to make fundamental 
contributions. In this work, we consider the new problem of 
discovering shape motifs, which are approximately repeated 
shapes within (or between) image collections. As we shall 
show, shape motifs can have applications in tasks as diverse 
as anthropology, law enforcement, and historical manuscript 
mining. Brute force discovery of shape motifs could be 
untenably slow, especially as many domains may require an 
expensive rotation invariant distance measure. We introduce 
an algorithm that is two to three orders of magnitude faster 
than brute force search, and demonstrate the utility of our 
approach with several real world datasets from diverse 
domains.  
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1. Introduction 
The classic information retrieval task of efficiently 
locating images that are similar to a target image (i.e. 
query-by-content) has attracted much attention in the 
image processing community in the last decade 
[1][20][41]. However, the problem of finding structure and 
regularities in large image datasets is an area in which data 
mining is only just beginning to make contributions [30]. 
In this work, we consider a new image mining problem, 
the task of discovering approximately repeated shapes 
within an image/shape database. We call such repeated 
shapes image motifs. 
To enhance the reader’s intuition of image motifs, we 
begin with a simple concrete motivating example. Figure 1 
shows a subset of a collection of petroglyphs. 

 

Figure 1: Five abstract petroglyphs from southwestern United 
States (the images have been filtered to enhance contrast) 

Petroglyphs are images that are carved or abraded into 
stone. The outer patina covered surface of the parent rock 
is removed to expose the usually lighter stone underneath. 
It has been estimated that there may be several million 
petroglyphs in North America alone [31][38]. These 
artifacts are a potential goldmine for anthropologists 
studying the spatiotemporal spread of cultures and 
peoples. While there has been an increasing effort to 
digitally document this valuable cultural resource, the 
sheer volume of data involved is a bottleneck to 
researchers. An important first step in exploring these 
massive image collections is to find repeated images or 
“motifs”. Some petroglyphs motifs, such as images of 
bighorn sheep, are well known. However much less is 
known about the bewildering assortment of abstract 
images that abound. We have built a tool (explained in 
detail below) to allow rapid discovery of potential motifs 
in any collection of images. We applied this tool to a 
collection of 1,800 petroglyphs images, which includes the 
five images in Figure 1. The most promising motif is 
shown in Figure 2. 

 

Figure 2:  Two of the petroglyphs shown in Figure 1. To 
make the similarities of the two shapes clear, one is rotated 
and both shapes are mapped to one-dimensional 
representations. Top) From 15 miles west of Blythe, 
California. Bottom) From Cinder Cone Volcanic field, 
located 15 miles east of Baker, California 

Remarkably, the dataset contains two examples of a shape 
consisting of three overlapping rings. While none of the 
anthropologists we showed this finding to could explain 
this (several tentatively suggested astronomical 
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significance1), they considered the finding interesting and 
novel. 
While this simple example introduces and motivates the 
idea of image motifs, it also hints at the difficultly in 
finding them. The naïve brute force algorithm to find the 
closest matching pairs requires an all-to-all comparison of 
everything in the database. Furthermore, if, as in this case, 
we need to discover motifs with invariance to rotation, 
each comparison will require an expensive calculation, 
because most rotation invariant distance measures are 
quadratic. Many researchers have already noted (in the 
context of query-by-content) “rotation is always 
something hard to handle compared with translation and 
scaling” [24]. 
Most attempts to handle the rotation alignment problem 
work by aligning all the shapes to some cardinal 
orientation, typically the major axis. This approach may be 
useful for the limited domains in which there is a well-
defined major axis, perhaps the indexing of long bones. 
However there is increasing recognition that the “…major 
axis is sensitive to noise and unreliable” [41]. For example 
a recent paper shows that under some circumstances, a 
single extra pixel can change the rotation by ± 90 degrees 
[43]. 
In this work, we introduce a linear time, rotation invariant 
algorithm to discover image motifs. While our algorithm is 
approximate, we will show with comprehensive 
experiments that it can find motifs with very high 
precision. Our approach works for most popular shape 
representations, for example, one-dimensional transforms 
of the original two-dimensional representations 
[1][3][5][12][32][41]. We will demonstrate the utility of 
image motifs in tasks as diverse as anthropology, crime 
prevention, and historical manuscript mining. 
The rest of paper is organized as follows. In Section 2, we 
review related work and discuss some background 
material. In Section 3 and Section 4, we first give a 
generic framework for image motif discovery, and then 
introduce our techniques to speed up the search. Section 5 
sees an extensive empirical evaluation. Finally Section 6 
offers some conclusions and suggestions for future work.  

2. Background and Related Work 
2.1 Notation 
Recall that in Figure 2 we emphasized the similarity 
between two shapes by comparing their one-dimensional 
representations. This is more than a visualization trick; this 
representation is at the heart of our approach. We first 
convert images into pseudo “time series” by measuring the 
distance from the centroid to all points on the shape 
boundary. Figure 3 offers a visual explanation. 

                                                                 
1 This is not as implausible as it first seems; just before this paper was 

submitted, astronomer John Barentine presented strong evidence 
that a petroglyph in Arizona records a supernova that occurred in 
1006 AD. 

 

Figure 3:  A visual explanation of how to convert a two-
dimensional shape to a one-dimensional pseudo “time series” 

Note that this 1-D representation of shape is only one of 
many proposed in the literature, however it does have the 
advantage of being simple and completely parameter free. 
Note that each 1-D representation is Z-normalized, 
removing the effects of scale or offset within the image 
(rotation invariance is considered below). At first glance, it 
may appear that this representation is too simple to really 
capture the true essence of a shape. However, a recent 
paper [20] compared this representation to state-of-the-art 
“sophisticated” representations on six diverse 
classification problems and found that it is at least as 
accurate, in spite (or perhaps, because) of its simplicity. 
For brevity and simplicity we will refer to “time series” 
from now on, however the reader is aware that this 
representation can always be mapped back to the original 
shape. For concreteness, we begin with the definition of 
time series. 

Definition 1. Time Series: A time series T = (t1,t2,…,tn) 
is an ordered set of n real-valued variables. In our case 
the ordering is not temporal but spatial; it is defined by a 
clockwise sweep of the shape boundary.  

Recall that we want to find approximately repeated images 
in an image database, which we formally define as image 
matches.  

Definition 2. Image Match: Given two image time 
series T1, T2, and a threshold ξ > 0, if D(T1 , T2) < ξ, then 
T1 is a match of T2. 

Note that the distance between T1 and T2 can be measured 
by any of the common distance measures for time series, 
including Euclidean distance, Longest Common 
Subsequence, Dynamic Time Warping, etc. We will 
specify the distance function D() in Section 4. 
In some domains we may wish to exclude the possibility 
of certain items being matched together. For example, as 
illustrated in Figure 4, adjacent image frames in a video 
clip are usually very similar and are not interesting to us. 
We call such matches trivial matches. 

Definition 3. Image Trivial Match: Given two adjacent 
image frames Ti, Ti+1, and a threshold ε > 0 (ε < ξ), if 
D(Ti , Ti+1) < ε, Ti trivial matches with Ti+1. 
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Figure 4: An illustration of a trivial match. The similarity 
between shapes A and C is interesting, because it suggests 
that the actor returned to a particular pose after a few 
minutes. In contrast, the similarity between shapes A and B is 
simply a result of the fact that they are adjacent frames 

We are finally in a position to formally define motifs 
within an image dataset.   

Definition 4. Inner-class K-Motifs: Given an image 
dataset Ω = {Ti}, i = 1 … N,  and a threshold ξ, the most 
significant image motif in Ω (called 1st-Motif) is the 
image Tj that has the highest count of non-trivial 
matches. The Kth most significant motif in Ω (called 
thereafter Kth-Motif) is the image Tk with the kth highest 
count of non-trivial matches.  

There is a simple generalization of this definition that can 
be very useful in some domains. Given two image datasets 
we may be interested in discovering if there are any shapes 
that occur in both datasets. Such an operation resembles a 
join over two image databases. Concrete examples of how 
this might be useful include: 
• Anthropology: Given a set of petroglyphs (or 

arrowheads) from two regions or time periods, we 
may wish to find all examples that occur in both 
datasets. Such images may hint at cultural transfer 
[14] (cf. Figure 5). 

• Palaeography (Study of old texts): Given a collection 
of shapes from an old manuscript and a set of modern 
images from the same domain, link all matching 
images. This linking can help annotate and give 
context to the older document (cf. Figure 11 and 
Figure 12). 

• Zoology: Given a collection of shapes from two 
distinct taxonomic groups (i.e. Class, Order, Family, 
Genus etc), link all matching shapes. This linking 
may help identify organisms that look similar because 
of convergent evolution or mimicry (cf. Figure 10). 

• Law Enforcement: Graffiti, which may be seen as an 
unwelcome successor to the petroglyphs discussed 
above, is the major source of intelligent for many law 
enforcement agencies [21]. An occurrence of a “tag” 
repeated in two distant locations may signal an 
attempt by a gang to take over a new territory [13].  

We formalize these ideas with the definition of inter-class 
motifs.  

Definition 5. Inter-class K-Motifs: Given two image 
datasets Ω = {Ti}, Ψ = {Tj}, and a threshold ξ, the most 
significant image motif (called 1st-Motif) is the image 
pair (Tp,Tq), Tp ∈ Ω, Tq ∈ Ψ, which is the image match 
between these two image datasets with the shortest 
distance D(Tp, Tq). The Kth most significant motif (called 

thereafter Kth-Motif) is the image pair (Ti,Tj), Ti ∈ Ω, Tj ∈ 
Ψ, having the kth shortest distance in all image matches. 

2.2 Related Work 
To the best of our knowledge, the discovery of image 
motifs is a new problem. However, in order to frame our 
contribution in its proper context, we will briefly consider 
related work and discuss their differences to our work.  
It is important to recognize that image motif discovery is 
very different to the superficially similar sounding 
replicate image [7] or near-duplicate image detection [16] 
problems. In these research efforts, the problem is to 
detect copied images that are slightly altered by some 
transformations, e.g., changing exposure, contrast, color, 
saturation, cropping, or scaling. The typical application is 
detection of copyright violation or forged images 
[4][11][42].  
These works usually first extract signatures invariant to 
transformation from images, then find replicates by 
comparing signatures. This body of work does not offer a 
solution to the task at hand, as we are interested in image 
motifs which ignore color and texture information, and 
consider only shape. For example in Figure 5, we are 
interested in automatically annotating centuries old 
documents [9] and finding evidence of cultural transfer 
between two locations. In both cases only shapes contain 
relevant information, colors and textures are not only 
irrelevant, but positively misleading. 

 

Figure 5: A visual explanation of why existing “near 
duplicate image detection” algorithms cannot be used for the 
task at hand. A) An 1839 lithograph by Cuvier of a 
flamingo’s skull [9]. B) A 2006 X-ray CT scan of a 
flamingo’s skull (lateral slice). C) A collection of arrowheads 
found in Texas. D) An anthropologist’s field sketch of some 
arrowheads in southwestern United States  

Image motif discovery must be robust to many distortions, 
especially rotation, which is generally agreed to be 
difficult to handle.  A large number of papers achieve fast 
rotation invariant matching by extracting only rotation 
invariant features and indexing them with a feature vector 
[5]. This feature vector is often called the shapes 
“signature”. There are literally dozens of rotation invariant 
features, including ratio of perimeter to area, fractal 
measures, elongatedness, circularity, min/max/mean 
curvature, entropy, perimeter of convex hull etc. In 
addition, many researchers have attempted to frame the 
shape-matching problem as a more familiar histogram-
matching problem. For example in [29] the authors built a 
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histogram containing the distances between two randomly 
chosen points on the perimeter of the shapes in question. 
The approach seems to be attractive, for example it can 
trivially also handle 3D shapes. However it suffers from 
extremely poor precision. For example, it cannot 
differentiate between the shapes of the lowercase letters 
“d” and “b”, or “p” and “q”, since these pairs of shapes 
have identical histograms. In general, all these methods 
suffer from very poor discrimination ability [5]. Our 
experience with these methods suggests that they can be 
useful for making quick coarse discriminations, for 
example differentiating between skulls and arrowheads. 
However they could not make the fine distinctions to 
meaningfully match similar shapes of one class, for 
example arrowheads.   
There are a handful of papers that recognize that the above 
attempts at approximating rotation invariance are 
unsatisfactory for most domains/applications, and they 
achieve true rotation invariance by exhaustive brute force 
search, testing all possible rotations. This robustness 
comes at the expense of computational efficiency 
[1][2][3][12]. For example, paper [1] also matches shapes 
in the time series domain. While they note that most 
invariances are trivial to handle in this representation, they 
state “rotation invariance can (only) be obtained by 
checking all possible circular shifts for the optimal 
diagonal path.” Similarly paper [37] notes “in order to 
find the best matching result, we have to shift one curve n 
times, where n is the number of possible start points.”. Our 
application potentially suffers even more from the high 
computational complexity of true rotation invariant 
matching, because brute force motif discovery would 
require O(|Ω|2) calls to the expensive rotation invariant 
comparison. As we shall see, our image motif discovery 
does use this brute force rotation alignment, but we are 
able to achieve enormous speedup by avoiding a large 
fraction of the expensive comparisons.  

3. A Review of SAX 
To avoid the high computational cost, our solution uses the 
idea of hashing to quickly locate potential motifs. 
However raw time series cannot be meaningfully hashed, 
because it is real-valued and high dimensional data. Thus 
the first step of our approach is to convert time series to 
symbolic representations. While there are at least 200 
different symbolic representations of time series in the 
literature, the SAX (Symbolic Aggregate approXimation) 
representation is unique in that it supports both 
dimensionality reduction and lower bounding for 
Euclidean distance. In recent years, SAX has been widely 
used in anomaly detection [19], visualization [23][26], 
time series repeated pattern discovery [8][34], feature 
extraction [22], and many other data mining applications. 
In this section, we will briefly review the SAX 
representation, which is at the heart of our solution to the 
image motif discovery problem. 

3.1 SAX Notation  
A time series T of length n can be represented in a w-
dimensional space by a vector 

wttT ,...,1= . The ith element 
of T is calculated by the following equation: 

∑
+−=
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In other words, the time series is divided into w equal 
sized segments and the dimensionality of time series is 
decreased from n to w. The mean value of each segment is 
calculated and a vector of these values becomes the 
dimensionality-reduced representation. This simple 
representation, known as Piecewise Aggregate 
Approximation (PAA) [17], has been shown to rival more 
sophisticated dimensionality reduction techniques like 
Fourier transforms and wavelets [6] for the task of 
indexing and compressing time series [18].  
Having transformed a time series into the PAA 
representation, we apply a further transformation to obtain 
a discrete representation. It is desirable to have a 
discretization technique that will produce symbols with 
equiprobability [8][19]. After performing extensive 
experiments on more than 100 datasets, we discovered that 
normalized time series have highly Gaussian distribution 
[25]. Based on this observation, we can simply determine 
the “breakpoints” that will produce equal-sized areas 
under a Gaussian curve.  
 Definition 6. Breakpoints: breakpoints are a sorted list 

of numbers B = β1,…,βa-1 such that the area under a 
N(0,1) Gaussian curve from βi  to βi+1  = 1/a (β0 and βa 

are defined as -∞ and ∞, respectively, a is the size of the 
alphabet).  

These breakpoints may be determined by looking them up 
in a statistical table. For example Table 1 gives the 
breakpoints for values of a from 3 to 6.  

Table 1: A lookup table that contains the breakpoints that 
divide a Gaussian distribution into an arbitrary number (from 
3 to 6) of equiprobable regions 

 

It is important to note that the assumption of Gaussian 
distribution is not critical to our work, and deviations from 
this distribution will only affect the efficiency of our 
algorithms, not their correctness.  
Once the breakpoints have been obtained we can discretize 
a time series in the following manner. We first obtain a 
PAA of the time series. All PAA coefficients that are 
below the smallest breakpoint are mapped to the symbol 
“a”, all coefficients greater than or equal to the smallest 
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breakpoint and less than the second smallest breakpoint 
are mapped to symbol “b”, etc. Figure 6 shows the idea.  

 

Figure 6: A time series (heavy blue line) is discretized by 
first obtaining a PAA approximation (shaded region) and 
then mapped to symbols (bold letters) using predetermined 
breakpoints. In this example, with n = 240, w = 6, and a = 4, 
the time series is mapped to the word cbadab 

Note that in this example the four symbols, “a”, “b”, “c”, 
and “d” are approximately equiprobable as we desired. We 
call the concatenation of symbols a word. 
 Definition 7. Word: A time series T of length n can be 

represented as a word 
wttT ˆ,...,ˆˆ

1=  as follows. Let αi 

denotes the ith element of the alphabet, i.e., α1 = a and α2 
= b. Then the mapping from a PAA approximation T to 
a word T̂  is obtained as follows: 

jiji tt ββα <≤= 1-j   iff     ˆ   (2) 

We have now completely defined our symbolic 
representation, then simply need to define an 
appropriated distance measure on it. By far the most 
common distance measure for time series is the Euclidean 
distance [18]. Given two time series T1 and T2 of the 
same length n, Eq. 3 defines their Euclidean distance. 
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If we further transform the time series into the symbolic 
representation, we can define a MINDIST function that 
returns the lower bounding distance between the original 
time series of two words:  

∑
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The function resembles Eq. 3 except for the multiplication 
by the square root of the compression rate, and the fact 
that the distance between individual points has been 
replaced by the sub-function dist(). The dist() function can 
be implemented using a table lookup as shown in Table 2. 

Table 2: A lookup table used by the MINDIST function. This 
table is for an alphabet of size 4. The distance between two 
symbols can be read off by examining the corresponding row 
and column. For example dist(a,b) = 0 and dist(a,c) = 0.67 

 

The value in cell (r,c) for any lookup table can be 
calculated by the following expression. 
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For a given alphabet size a, the table needs only be 
calculated once, then stored for fast lookup. 

4. Image Motif Discovery 
Although SAX has proven to be a very effective method in 
finding motif subsequence from long time series 
[8][26][34], none of this work applies to the task of image 
matching/querying, given that it is hard to handle rotation 
invariance. In this section, we first show how to adapt 
SAX to handle shape matching with arbitrary rotations, 
and then show how to apply it in motif discovery problem.  
Recall that the distance measure in definition 2 can be any 
common distance measures for time series. We use 
Euclidean distance in this work. If the shapes in question 
are rotationally aligned, Euclidean distance will reflect the 
intuitive similarity. However if the shapes are not 
rotationally aligned, the corresponding time series will 
also be misaligned. In this case, Euclidean distance can 
produce extremely poor results. To overcome this problem, 
we need the distance function to be rotation invariant. To 
achieve this, we need to hold one shape fixed, rotate the 
other, and record the minimum distance of all possible 
rotations. We accomplish this in the time series space by 
representing all rotations of a shape in a rotation matrix. 

Definition 8. Rotation Matrix: Given a time series T of 
length n, all its possible rotations (i.e. circular shifts) 
constitute a rotation matrix RT of size n by n. 

 
 
 

    (6) 

Each row of the matrix is simply a time series shifted 
(rotated) by one from its neighbors. For notational 
convenience, we denote the ith row as Ti, which allows us 
to denote the rotation matrix in the more compact form of 
RT = {T1, T2,…, Tn}. 
Note that we do not need to actually build the full matrix if 
space is premium, however doing this simplifies the 
notation and allows some optimizations [20]. 
As we have already seen in Figure 1 and Figure 2 (and as 
we shall see again in Figure 11 and Figure 12), we cannot 
generally expect images be perfectly aligned. We therefore 
define the Rotation invariant Euclidean Distance between 
two time series. 

Definition 9. Rotation invariant Euclidean Distance: 
Given two time series T1 and T2 of length n, the rotation 
invariant Euclidean distance between them is defined as 
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The rotation invariant Euclidean distance provides an 
intuitive measure of the distance between two shapes, at 
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the expense of efficiency. The time complexity to compare 
two time series of length n is O(n2). Note that this rotation 
invariant Euclidean distance is denoted as “D(Tk, Ti)” in 
definition 4 and 5. 

4.1 Min-error SAX 
As illustrated in Figure 6 we can convert any time series 
into a SAX word. The conversion of time series into SAX 
is at the heart of dozens of research efforts 
[8][19][22][26][34] and a well-understood process. 
However in the special case that the time series comes 
from a shape, we are offered a unique chance to improve 
the quality of approximation with no space overhead. 
Recall that, as illustrated in Figure 3, we convert shapes 
into time series with a simple “unwinding” process. Note 
that the starting point for this process is completely 
arbitrary. This observation allows an optimization, because 
it may happen that some of the arbitrary starting points 
will lead to better SAX approximations.  
For example, assume we have two arrow images A and B, 
where B is simply A being rotated by 15 degrees. Their 
time series and corresponding SAX representations are 
shown in Figure 7.  

 

Figure 7: An arrowhead image with different rotations. Top) 
The first SAX symbol c approximates the first 40 data points 
perfectly. Bottom) However the same plateau time series is 
divided into two parts (the first and last segments of time 
series) 

At the first sight, they look similar. But note that for in the 
top version of the arrowhead, the first symbol c matches 
perfectly with a plateau in the time series, while in the 
bottom version of the arrowhead, this plateau segment 
spreads across two segments (the first and the last 
segments). Intuitively, we may expect that the SAX word 
cbadab gives better approximation than bottom one 
cadcac. In fact, this is the case; the reconstruction errors 
are 106.35 and 144.65 respectively (see Appendix A for 
definition of SAX reconstruction error). Based on this 
observation, every time we convert a shape time series into 
a SAX word, we test all possible circular shifts of the time 
series and choose the one that has the smallest 
reconstruction error. We apply this optimization 
throughout the paper. 

4.2 Random Projection Motif Discovery 
The image motif discovery problem lands itself to a simple 
brute force solution. We simply need to compare each 
shape in Ω to every other shape using rotation invariant 
Euclidean distance, and record all those shapes that are 
within threshold ξ of each other. This can be trivially 
achieved with a pair of nested loops. The problem with 
this solution is its high time complexity O(|Ω|2n2) , which 
is clearly intractable for large datasets. Note that O(n2) is 
the time for a single rotation invariant comparison. There 
are some optimizations for rotation invariant comparison 
to reduce its complexity close to linear for most datasets 
[20]. It is the quadratic dependence on |Ω| that makes the 
brute force algorithm untenable for larger datasets. 
We propose a motif discovery algorithm which reduces the 
number of rotation invariant comparisons as much as 
possible. The intuition of our solution is that two similar 
shapes are likely to have similar SAX representations (for 
the moment ignores the problem of rotation invariance). 
Actually this observation is at the heart of dozens of 
research efforts [8][22][25][26].  
Our algorithm takes advantage of techniques that can 
efficiently find approximately repeated patterns in discrete 
strings [36]. The work of Tompa and Buhler and follow-
up work by many researchers show that approximately 
repeated patterns can be found by hashing randomly 
“masked” versions of the strings in question. Information 
about which strings collide with others can then be used to 
prune the search space. Here “masked” simply means that 
one or more positions in the strings are ignored during the 
hashing process. The idea is that two words might be 
similar, but differ in just a few locations, as in abca and 
aaca. By randomly masking and therefore ignoring some 
positions, the algorithm has a chance to ignore the 
“misspelled” position and discover the similarities. A 
surprising fact is that only a small constant number of 
iterations of masking and hashing are needed to find all 
motifs with high probability [36]. 
This solution, known as random projection, requires two 
modifications before we can apply it to image motif 
discovery. First, we need to do some modification to make 
it be able to find rotation invariant similarities between 
time series or circular shifts of SAX words. Second, unlike 
the usage of random projection on DNA strings, we are 
not finished after discovering motifs in SAX words. We 
must check the raw time series pointed by the SAX words 
to make sure they are true motifs.  
As the first modification, for each SAX word T̂  
corresponding to an image, we add every possible circular 
shift of it to the list of words to be hashed. We call this list 
the rotation matrix RT. So that if two images Ti and Tj are 
similar, but are rotated differently, they may still be 
similar under some circular shifts. For example in Figure 
8, the ith shape in the arrowheads datasets maps to the SAX 
word T̂ = bacb, so we add bacb, acbb, cbba, and bbac to 
the rotation matrix.  

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a
b

flat, matched by ‘c’

20 40 60 80 100 120 140 160 180 200 220 240

c

a

d
c

a

c

segment 
one

segment 
two

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a
b

flat, matched by ‘c’

20 40 60 80 100 120 140 160 180 200 220 240

c

a

d
c

a

c

segment 
one

segment 
two

A

B



 

Figure 8: An example of representing an image with rotation 
variant SAX words. Because the length of SAX string is 4, 
every image time series has four possible rotations 

The redundancy of having all possible circular shifts may 
appear to hurt the space complexity, but recall that a SAX 
word only requires ⎡ ⎤aw  bits. With all possible circular 
shifts this becomes ⎡ ⎤aw2  bits per original shape. This is 
still much smaller than the raw time series, and completely 
inconsequent compared to the raw images. 
After getting all possible circular shifted SAX words for 
each image time series, we start random projection. As in 
[36], several randomly chosen columns are masked off, 
and the rest columns are hashed into the buckets. At the 
same time, a collision matrix is maintained to keep record 
of collisions. Because similar shapes have high possibility 
to be hashed to the same bucket, after many times of 
random projections, these similar pairs will have larger 
values in collision matrix. Figure 9 illustrates the random 
projection process. 

 

Figure 9: Random projection performed on SAX words. The 
mask size is 2 and the (randomly chosen) mask is {2, 4}.  
Columns 2 and 4 are masked off and the substrings at column 
{1, 3} are hashed to buckets. The value in collision matrix at 
the bottom right records the number of collisions between 
arrowheads Ti and Tj after one projection 

In order to give the algorithm a high probability to ignore 
“misspelled” positions, we need to perform several 
iterations of random projections. A natural question is 
when to stop. The simplest stopping criterion is user 

interruption. We can treat the random projection process 
as an anytime algorithm, letting user interrupt the 
execution at any time and retrieve the best-so-far result. 
Another stopping criterion will be keeping random 
projection until collision matrix requires more than linear 
space. In this case, the number of iterations can be O(|Ω|). 
But in practice generally it is significantly smaller than 
O(|Ω|). According to our experiments, 20 to 100 iterations 
are enough to catch similar images. So we hardcoded 
number of iterations to 30 for experiments in this paper. 
During the random projection, we change mask size 
dynamically. Initially mask size is set to zero, which 
means at the beginning all SAX words are compared in 
full length. Then in each iteration, the mask size increases 
by 1. The iteration repeats until the user issues an 
interruption or the predefined number of iterations is 
reached. After projection, if some cells have values that 
are significantly larger than the average in collision 
matrix, we treat them as motif candidates. We then 
calculate the rotation invariant Euclidean distance between 
the original time series of these candidates. Thanks to the 
lower bounding property of SAX representation, the last 
step can be conducted very efficiently. If MINDIST( it̂ ,

jt̂ ) 

≤ ξ, we only need to check kt̂ if and only if 

MINDIST( it̂ , kt̂ ) ≤ ξ or MINDIST( jt̂ , kt̂ ) ≤ ξ.  We will 

show in Section 5 that our algorithm is very effective in 
catching image motif candidates during projection step 
and locating true motifs by examining these candidates. 
Note that we only consider the image pairs that have the 
largest collision value as candidates. As we will show in 
Section 5, the number of these ties is less than 0.1% of 
total number of pairs |Ω|2, and it is enough to give us high 
precision of true motifs. Table 3 outlines our motif 
discovery algorithm, where Ω is the image dataset, K is 
the number of motifs to be mined, and ξ is distance 
threshold for image motifs.  

Table 3: Motif Discovery Algorithm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Function {K-motifs} = Motif-discover(Ω, K, ξ, i )  
{ T̂ j } = SAX(Ω) ;            //convert image time series to SAX 
generate RT (T̂ j) ;     // rotation invariance matrix in fig. 8 
K-moifs = Ø ;  
iteration = 0; 
M = zeros;          // initialize collision matrix as zero matrix 
while iteration  ≤ i  and user_not_interrupt 
    Random_Projection(RT) ; 
    Update(M) ;                           // update collision matrix M   
    iteration = iteration + 1; 
end; 
Sort(M) ;  
k = 0; 
for each (p,q) in M that has the largest value 
     if {p,q} ∩ {k-motif} != Ø and RED(Tp, Tq) < ξ 
         add p, q to {k-motif} 
     else if k < K 
         k = k + 1; 
         add p, q to {k-motif} 
     end; 
end; 
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4.3 Time and Space Complexity 
Motif discovery is generally computationally expensive, 
which in worst case needs O(N2) time, where N is the size 
of dataset. In this subsection, we will show that our motif 
discovery algorithm requires only linear space and time.  
We first look at space complexity. Assume we have N 
image time series of length n, with corresponding SAX 
words of length m. As illustrated in Figure 8, the rotation 
matrix RT has m*N rows and m columns. Note that 
although the length of time series varies from one hundred 
to several thousands, its SAX word length is much shorter, 
usually from 10 to 100 based on our experiments. 
Furthermore, each SAX word only needs m*log2a bits (a 
is the alphabet size, usually from 3 to 5), so the actual size 
of RT is in linear space, and much less than original size of 
dataset. In addition, collision matrix M is implemented as 
sparse matrix, which takes up much smaller size compared 
to full matrix. Although in the worst situation, the matrix 
will be filled with i*|RT| non-zero values (i is the number 
of iterations), from our experiments and also as pointed in 
[8], i is usually a small value from 20 to 100.  
The most time-consuming part of our algorithm is the 
random projection with collision recording process. Its 
time complexity is O(i*|RT|), which is linear.  

5. Experimental Evaluation 
In this section, we demonstrate the utility of image motifs 
and provide a detailed study of the effectiveness and 
efficiency of our algorithm.  

5.1 Mining Butterfly Images 
There is an increasing interest in using computers to aid in 
the study of zoology, particularly in morphometrics, the 
study of organism shape and form [33]. This is especially 
true in entomology because entomologists are challenged 
by the extraordinary number of insect species, with more 
than 925,000 species described — more than all other 
animal groups combined. Even if we were to limit our 
attention to just the order of Lepidoptera (butterflies and 
moths), we must deal with more than 20,000 species. 
To demonstrate the potential utility of motifs in 
entomological morphometrics, we performed a simple 
experiment. The experiment was contrived in that we had 
a strong suspicion as to the final result, however it at least 
hints at the utility of our ideas. 
We chose to work with an extraordinarily diverse group 
with about 5,000 members, the Nymphalidae, one of the 
five families of butterflies. Within Nymphalidae there are 
12 subfamilies, including Danainae and Limenitidinae. We 
collected several hundred examples of each group and 
performed motif join. The 1st Inter-class motif is shown in 
Figure 10. 
The fact that the Inter-class 1st-Motif pair is not only 
similar in shape, but in color and pattern is at first 
surprising, given the extraordinary variation that exists 
within both subfamilies. However this convergence in 
physical appearance is not a coincidence, but rather an 
example of Müllerian mimicry. Müllerian mimicry is a 

result of the evolutionary pressure for toxic species mimic 
each other to display similar warning signals 
(aposematism) because predators that better associate 
these signs with unprofitability have higher survival rates 
than those that do not.  Mulerian mimicry drives the 
evolution and establishment large regional mimetic rings 
often seen in tropical habitats, made up from the 
summation of tens of mimicry rings, each containing 
dozens of species, most belonging to Nymphalidae 
butterflies, but a few species belonging to other butterfly 
families (e.g., Papilionidae, Pieridae, Arctiidae and others) 
[15]. 

 

Figure 10: Top) Some examples from two subfamilies of 
Nymphalidae, Limenitidinae and Danainae. Bottom) The 
Inter-class 1st-Motif pair is not only similar in shape, but in 
color and pattern, a fact which can be explained by Müllerian 
mimicry 

5.2 Annotating Historical Manuscripts   
In this experiment, we demonstrate one potential 
application of inter-class K-Motifs, mining historical texts. 
The need for algorithms to automatically index and 
annotate old manuscripts has been brought to the forefront 
by Google’s announcement of a long term plan to digitize 
tens of millions of old texts in the next decade [35]. While 
the bulk of the old volumes will contain nothing but text, 
we can expect millions of images will also be digitized and 
benefit from enhancement of annotation.  
We consider a classic text, British Desmidiaceae, vol. 2 
(1905) by the father and son team, West & West [39]. This 
is a fundamental work on desmids (single-celled 
freshwater green algae). The book was published when 
microscopy was a mature science, but before microscopic 
photography was possible. It contains color and 
monochrome drawings of exceptional quality. 
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Approximately 1,150 taxa are described in the five 
volumes. 
The modern reader is impressed by the quality of the 
illustrations, and stunned by the diversity of algae shapes. 
However they cannot help but curious if the alien looking 
illustrations are faithful reproductions of reality or fanciful 
imaginings2. To test this we used our algorithm to find 
Inter-class K-Motifs between two image datasets, Ω is the 
set of pages from the text in question, and Ψ are the results 
of a Google image query for “Desmidiaceae, Micrasterias, 
Closterium, Euastrum” (keywords used in the original 
text). Figure 11 shows one page from the text, and three of 
the linked images from the web. 

 

Figure 11: Right) Plate 41 from the classic text, British 
Desmidiaceae, vol. 2 (1905) by West & West. Left) After 
finding the Inter-class K-Motifs, individual figures have been 
linked to images returned by a Google image query. Only 
three linked images are shown for clarity 

Note that the algorithm only considered the shape 
information, however the color and texture similarity of 
many of the matches, for example “B” in Figure 11, 
strongly suggests that the results are not spurious. In 
Figure 12 we give a visual intuition as to why two shapes 
are considered so similar in the time series representation.   

                                                                 
2  Note that contemporary publications using the microscopes 

astronomical analogue, the telescope, had “discovered” and 
detailed complex systems of canals on Mars [10]. 

 

Figure 12: A visual explanation of why two shapes from 
Figure 11 were linked as Inter-class Motifs. The real image 
was taken by Fabio Rindi and David John (who retain the 
copyright). It shows a Micrasterias oscitans found in a bog 
pool in Galway, Ireland on 22nd of Sep 2005 

In Figure 13 we show another example on a page featuring 
drawings of the genus Closterium. 

 

Figure 13: Left) Plate 11 from British Desmidiaceae, vol. 2 
(1905) by West & West. Right) After performing a shape-
motif-join, individual figures have been linked to images 
returned by a Google image query ‘Closterium’ 

Note that in all these examples, the need for rotation 
invariance is apparent. 

5.3 Efficiency of Motif Discovery Algorithm 
In the previous subsections, we have shown that our motif 
discovery algorithm is very effective in finding image 
motifs. In this subsection, we will further demonstrate that 
our approach is not only effective but also efficient, which 
allows us to discover motifs in linear time with high 
precision. All the datasets used here are freely available at 
our website [40]. 
We test on six image datasets, including SQUID3 [27], 
mpeg-7 shapes 4 , yoga, chicken [28], Swedish-leaf, and 
MNIST. SQUID contains 1,100 different sea animal 
                                                                 
3 www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html 
4 www.cis.temple.edu/~latecki/research.html#shape 
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images. Mpeg-7 shapes dataset consists of 1,400 different 
shapes of animals, insects, crafts etc. Yoga dataset is 
generated from video sequences of male and female 
performing yoga actions. Chicken dataset has images of 
chicken legs, breasts etc. with different rotations. Swedish 
leaf dataset has 15 species of leaves. MNIST contains 
10,000 instances of handwriting number ‘0’ to ‘9’. There 
are several reasons why we choose these datasets to test. 
Firstly, all these datasets contain rotated shapes. We can 
verify that our motif discovery algorithm is able to locate 
similar shapes with different rotations. Secondly, each of 
these datasets has very similar shapes, which guarantees 
that they contain image motifs. Finally, these diverse 
datasets include different kinds of images, such as marine 
animals, human actions sequences, and Arabian numbers 
etc. Figure 14 shows example images from these six 
datasets.  

 

Figure 14: Examples of shapes from six datasets, A - mpeg-7 
shapes, B - SQUID, C - yoga, D - chicken, E - Swedish 
leaves, F -  MNIST 

We randomly select 1,000 instances from each dataset. 
Chicken dataset has only 446 images, so we make 1,000 
instances by rotating them with random angles. These 
6,000 images are converted into time series. Because the 
lengths of these time series vary from 128 to 3,280, we 
unify their lengths to 1,024.  
We compare three strategies for motif discovery: brute 
force method, brute force with early abandon, and our 
motif discovery described in Section 4. Brute force method 
performs an exhaustive search, computing rotation 
invariant Euclidean distance for each pair of images. 
Suppose we have N image time series of length n, then 
brute force requires N2 rotation invariant comparisons. 
Brute force with early abandon prunes distance 
computation by the threshold (best-so-far minimum 
distance in the computation). We randomly select 500, 
1000, 2000 and 4000 instances from all 6000 instances, 
execute three methods ten times to get the average results. 
Both the number of rotation invariant Euclidean distance 
computations and the running time of the three strategies 
are given in Figure 15.  

 

Figure 15: Compared to brute force method, only 0.076% 
distance computations are needed by our motif discovery 
algorithm. The running time is 2 to 3 orders of magnitude 
shorter  

We can see that the motif discovery algorithm prunes more 
than 99.99% computations of the brute force method, and 
only takes about 3% to 7% computation of the early 
abandon method. For running time, we record time spent 
on motif discovery from three parts: converting time series 
to SAX, random projection, and searching true motif in 
candidate time series. Although the first part can be done 
offline, we still include it in execution time because it is 
nearly constant. The time spent on the second part is 
almost constant, since in practice we simply set length of 
SAX word m to 20 and the iteration number i to 30 (user 
can use different parameter settings in a certain range, but 
according to our experiments, it will not affect much of the 
accuracy in motif discovery). Actually the most time-
consuming part is in phase three, finding true motifs from 
candidates. Notice that as shown in the right of Figure 15, 
SAX projection pruned more than 99.99% computations, 
indicating that the third part is also very efficient. Overall, 
our motif discovery algorithm is 2 to 3 orders of magnitude 
faster than brute force method, which is clearly shown in 
the left of Figure 15.   
In addition to efficiency, the motif discovery is very 
effective in finding true motif images.  We compare the 
motifs found by our algorithm with those found by brute 
force method, which guarantees to catch all true motif 
images. Table 4 shows that our method achieves very high 
accuracy (the ratio that number of true motifs found by our 
method over the number of true motifs found by brute 
force method).  

Table 4: Accuracies of motif discovery algorithm. Because 
the number of motifs is averaged over ten times run, we 
record them as real values. ξ is the distance threshold given 
in definition 2 

500 1000 2000 4000 
Dataset size 

ξ = 1.0 ξ = 1.0 ξ  = 0.5 ξ  = 0.3 

Brute force 5.9 16.4 18.3 17.2 Number 
of 
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Motif 

discovery 
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85.14 95.31 99.83 100 

A B

DC

E F

A
ve

ra
ge

 ru
nn

in
g 

tim
e 

(%
)

Time improvement over BruteForce

Dataset size

500
1000

2000
4000

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Brute Force
Motif Discovery

Early Abandon

500
1000

2000
4000

0

0

0.2

0.4

0.6

0.8

1

Brute ForceMotif Discovery

Early Abandon
Dataset size

A
ve

ra
ge

 ru
nn

in
g 

tim
e 

(%
)

Euclidean Distance Computations

A
ve

ra
ge

 ru
nn

in
g 

tim
e 

(%
)

Time improvement over BruteForce

Dataset size

500
1000

2000
4000

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Brute Force
Motif Discovery

Early Abandon

500
1000

2000
4000

0

500
1000

2000
4000

0

0

0.2

0.4

0.6

0.8

1

Brute ForceMotif Discovery

Early Abandon
Dataset size

A
ve

ra
ge

 ru
nn

in
g 

tim
e 

(%
)

Euclidean Distance Computations



6. Conclusions 
We have introduced the new problem of finding 
approximately repeated shapes in large image databases. 
Although the brute force approach needs quadratic time, 
we propose a novel algorithm that uses random projection 
to identify potential image motifs efficiently. Experimental 
results show that our approach can efficiently find image 
motifs with high precision.  
Ongoing work includes collaboration with anthropologists 
on a detailed study of projectile-point cultural artifact 
transfer, and an application to the study on convergent 
evolution in the order Coleoptera (beetles). We are also 
considering combing the shape information currently used 
with (appropriately weighted) information about color and 
texture to find image motifs.  
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Appendix A: SAX Reconstruction Error 
In the main text we made reference to SAX reconstruction 
error. While the term “reconstruction error” is well defined 
for other representations such as wavelets and Fourier 
approximations, it is not generally used for symbolic 
representations of discrete data. Here we show that we can 
quantitively measure the reconstruction error of SAX 
representation. 
By converting time series to SAX words, we reduce the 
dimensionality of time series. Clearly some information is lost 
during the conversion. To measure how well the SAX 
representation approximates the original time series, we 
define SAX reconstruction error. The SAX reconstruction 
error is the sum of the distance between each data point in the 
time series and the middle line of the SAX symbol that the 
data point maps, or more formally as: 

∑
=

−−=
n

i
i iterror

1

2
12 )( αβ   (8) 

where it  is the ith data point of the time series, iα  is the SAX 
symbol that it maps to, and 12 −iαβ is the value that divides the 

region of SAX symbol iα into two equiprobable parts. For 
example, in Figure 16, a time series is converted into SAX 
word cadcac. The alphabet size is four. According to Table 1, 
the breakpoints are (-0.67, 0, 0.67), as shown by the left Y-
axis of Figure 16. The values that divide each symbol region 
to two equiprobable parts are (-1.15, -0.32, 0.32, 1.15), shown 
in the right Y-axis of Figure 16. These can again be looked up 
from Table 1 since dividing each region (the shaded area in 
Figure 16) to two parts is equivalent to doubling the alphabet 
size to eight.  

 

Figure 16: A visual illustration of SAX reconstruction error. 
The reconstruction error is calculated as the sum of the 
distance between each data point and the middle line (the dot 
line) of the SAX symbol that the data point maps to 
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