
Finding Motifs in Database of Shapes

Xiaopeng Xi Eamonn Keogh Li Wei Agenor Mafra-Neto
Computer Science & Engineering Department

University of California - Riverside
Riverside, CA 92521

{xxi,eamonn,wli}@cs.ucr.edu

ISCA Entomological Technologies
2060 Chicago Avenue
Riverside, CA 92507

isca@iscatech.com

Abstract
The problem of efficiently finding images that are similar to a
target image has attracted much attention in the image
processing community and is rightly considered an
information retrieval task. However, the problem of finding
structure and regularities in large image datasets is an area in
which data mining is beginning to make fundamental
contributions. In this work, we consider the new problem of
discovering shape motifs, which are approximately repeated
shapes within (or between) image collections. As we shall
show, shape motifs can have applications in tasks as diverse
as anthropology, law enforcement, and historical manuscript
mining. Brute force discovery of shape motifs could be
untenably slow, especially as many domains may require an
expensive rotation invariant distance measure. We introduce
an algorithm that is two to three orders of magnitude faster
than brute force search, and demonstrate the utility of our
approach with several real world datasets from diverse
domains.

Keywords
shape, motif, time series, data mining

1. Introduction
The classic information retrieval task of efficiently
locating images that are similar to a target image (i.e.
query-by-content) has attracted much attention in the
image processing community in the last decade
[1][20][41]. However, the problem of finding structure and
regularities in large image datasets is an area in which data
mining is only just beginning to make contributions [30].
In this work, we consider a new image mining problem,
the task of discovering approximately repeated shapes
within an image/shape database. We call such repeated
shapes image motifs.
To enhance the reader’s intuition of image motifs, we
begin with a simple concrete motivating example. Figure 1
shows a subset of a collection of petroglyphs.

Figure 1: Five abstract petroglyphs from southwestern United
States (the images have been filtered to enhance contrast)

Petroglyphs are images that are carved or abraded into
stone. The outer patina covered surface of the parent rock
is removed to expose the usually lighter stone underneath.
It has been estimated that there may be several million
petroglyphs in North America alone [31][38]. These
artifacts are a potential goldmine for anthropologists
studying the spatiotemporal spread of cultures and
peoples. While there has been an increasing effort to
digitally document this valuable cultural resource, the
sheer volume of data involved is a bottleneck to
researchers. An important first step in exploring these
massive image collections is to find repeated images or
“motifs”. Some petroglyphs motifs, such as images of
bighorn sheep, are well known. However much less is
known about the bewildering assortment of abstract
images that abound. We have built a tool (explained in
detail below) to allow rapid discovery of potential motifs
in any collection of images. We applied this tool to a
collection of 1,800 petroglyphs images, which includes the
five images in Figure 1. The most promising motif is
shown in Figure 2.

Figure 2: Two of the petroglyphs shown in Figure 1. To
make the similarities of the two shapes clear, one is rotated
and both shapes are mapped to one-dimensional
representations. Top) From 15 miles west of Blythe,
California. Bottom) From Cinder Cone Volcanic field,
located 15 miles east of Baker, California

Remarkably, the dataset contains two examples of a shape
consisting of three overlapping rings. While none of the
anthropologists we showed this finding to could explain
this (several tentatively suggested astronomical

Blythe, California

Baker, California

Blythe, California

Baker, California

significance1), they considered the finding interesting and
novel.
While this simple example introduces and motivates the
idea of image motifs, it also hints at the difficultly in
finding them. The naïve brute force algorithm to find the
closest matching pairs requires an all-to-all comparison of
everything in the database. Furthermore, if, as in this case,
we need to discover motifs with invariance to rotation,
each comparison will require an expensive calculation,
because most rotation invariant distance measures are
quadratic. Many researchers have already noted (in the
context of query-by-content) “rotation is always
something hard to handle compared with translation and
scaling” [24].
Most attempts to handle the rotation alignment problem
work by aligning all the shapes to some cardinal
orientation, typically the major axis. This approach may be
useful for the limited domains in which there is a well-
defined major axis, perhaps the indexing of long bones.
However there is increasing recognition that the “…major
axis is sensitive to noise and unreliable” [41]. For example
a recent paper shows that under some circumstances, a
single extra pixel can change the rotation by ± 90 degrees
[43].
In this work, we introduce a linear time, rotation invariant
algorithm to discover image motifs. While our algorithm is
approximate, we will show with comprehensive
experiments that it can find motifs with very high
precision. Our approach works for most popular shape
representations, for example, one-dimensional transforms
of the original two-dimensional representations
[1][3][5][12][32][41]. We will demonstrate the utility of
image motifs in tasks as diverse as anthropology, crime
prevention, and historical manuscript mining.
The rest of paper is organized as follows. In Section 2, we
review related work and discuss some background
material. In Section 3 and Section 4, we first give a
generic framework for image motif discovery, and then
introduce our techniques to speed up the search. Section 5
sees an extensive empirical evaluation. Finally Section 6
offers some conclusions and suggestions for future work.

2. Background and Related Work
2.1 Notation
Recall that in Figure 2 we emphasized the similarity
between two shapes by comparing their one-dimensional
representations. This is more than a visualization trick; this
representation is at the heart of our approach. We first
convert images into pseudo “time series” by measuring the
distance from the centroid to all points on the shape
boundary. Figure 3 offers a visual explanation.

1 This is not as implausible as it first seems; just before this paper was

submitted, astronomer John Barentine presented strong evidence
that a petroglyph in Arizona records a supernova that occurred in
1006 AD.

Figure 3: A visual explanation of how to convert a two-
dimensional shape to a one-dimensional pseudo “time series”

Note that this 1-D representation of shape is only one of
many proposed in the literature, however it does have the
advantage of being simple and completely parameter free.
Note that each 1-D representation is Z-normalized,
removing the effects of scale or offset within the image
(rotation invariance is considered below). At first glance, it
may appear that this representation is too simple to really
capture the true essence of a shape. However, a recent
paper [20] compared this representation to state-of-the-art
“sophisticated” representations on six diverse
classification problems and found that it is at least as
accurate, in spite (or perhaps, because) of its simplicity.
For brevity and simplicity we will refer to “time series”
from now on, however the reader is aware that this
representation can always be mapped back to the original
shape. For concreteness, we begin with the definition of
time series.

Definition 1. Time Series: A time series T = (t1,t2,…,tn)
is an ordered set of n real-valued variables. In our case
the ordering is not temporal but spatial; it is defined by a
clockwise sweep of the shape boundary.

Recall that we want to find approximately repeated images
in an image database, which we formally define as image
matches.

Definition 2. Image Match: Given two image time
series T1, T2, and a threshold ξ > 0, if D(T1 , T2) < ξ, then
T1 is a match of T2.

Note that the distance between T1 and T2 can be measured
by any of the common distance measures for time series,
including Euclidean distance, Longest Common
Subsequence, Dynamic Time Warping, etc. We will
specify the distance function D() in Section 4.
In some domains we may wish to exclude the possibility
of certain items being matched together. For example, as
illustrated in Figure 4, adjacent image frames in a video
clip are usually very similar and are not interesting to us.
We call such matches trivial matches.

Definition 3. Image Trivial Match: Given two adjacent
image frames Ti, Ti+1, and a threshold ε > 0 (ε < ξ), if
D(Ti , Ti+1) < ε, Ti trivial matches with Ti+1.

0 0.2 0.4 0.6 0.8 1

Texas
Duran

Arrowhead

0 0.2 0.4 0.6 0.8 1

Texas
Duran

Arrowhead

Figure 4: An illustration of a trivial match. The similarity
between shapes A and C is interesting, because it suggests
that the actor returned to a particular pose after a few
minutes. In contrast, the similarity between shapes A and B is
simply a result of the fact that they are adjacent frames

We are finally in a position to formally define motifs
within an image dataset.

Definition 4. Inner-class K-Motifs: Given an image
dataset Ω = {Ti}, i = 1 … N, and a threshold ξ, the most
significant image motif in Ω (called 1st-Motif) is the
image Tj that has the highest count of non-trivial
matches. The Kth most significant motif in Ω (called
thereafter Kth-Motif) is the image Tk with the kth highest
count of non-trivial matches.

There is a simple generalization of this definition that can
be very useful in some domains. Given two image datasets
we may be interested in discovering if there are any shapes
that occur in both datasets. Such an operation resembles a
join over two image databases. Concrete examples of how
this might be useful include:
• Anthropology: Given a set of petroglyphs (or

arrowheads) from two regions or time periods, we
may wish to find all examples that occur in both
datasets. Such images may hint at cultural transfer
[14] (cf. Figure 5).

• Palaeography (Study of old texts): Given a collection
of shapes from an old manuscript and a set of modern
images from the same domain, link all matching
images. This linking can help annotate and give
context to the older document (cf. Figure 11 and
Figure 12).

• Zoology: Given a collection of shapes from two
distinct taxonomic groups (i.e. Class, Order, Family,
Genus etc), link all matching shapes. This linking
may help identify organisms that look similar because
of convergent evolution or mimicry (cf. Figure 10).

• Law Enforcement: Graffiti, which may be seen as an
unwelcome successor to the petroglyphs discussed
above, is the major source of intelligent for many law
enforcement agencies [21]. An occurrence of a “tag”
repeated in two distant locations may signal an
attempt by a gang to take over a new territory [13].

We formalize these ideas with the definition of inter-class
motifs.

Definition 5. Inter-class K-Motifs: Given two image
datasets Ω = {Ti}, Ψ = {Tj}, and a threshold ξ, the most
significant image motif (called 1st-Motif) is the image
pair (Tp,Tq), Tp ∈ Ω, Tq ∈ Ψ, which is the image match
between these two image datasets with the shortest
distance D(Tp, Tq). The Kth most significant motif (called

thereafter Kth-Motif) is the image pair (Ti,Tj), Ti ∈ Ω, Tj ∈
Ψ, having the kth shortest distance in all image matches.

2.2 Related Work
To the best of our knowledge, the discovery of image
motifs is a new problem. However, in order to frame our
contribution in its proper context, we will briefly consider
related work and discuss their differences to our work.
It is important to recognize that image motif discovery is
very different to the superficially similar sounding
replicate image [7] or near-duplicate image detection [16]
problems. In these research efforts, the problem is to
detect copied images that are slightly altered by some
transformations, e.g., changing exposure, contrast, color,
saturation, cropping, or scaling. The typical application is
detection of copyright violation or forged images
[4][11][42].
These works usually first extract signatures invariant to
transformation from images, then find replicates by
comparing signatures. This body of work does not offer a
solution to the task at hand, as we are interested in image
motifs which ignore color and texture information, and
consider only shape. For example in Figure 5, we are
interested in automatically annotating centuries old
documents [9] and finding evidence of cultural transfer
between two locations. In both cases only shapes contain
relevant information, colors and textures are not only
irrelevant, but positively misleading.

Figure 5: A visual explanation of why existing “near
duplicate image detection” algorithms cannot be used for the
task at hand. A) An 1839 lithograph by Cuvier of a
flamingo’s skull [9]. B) A 2006 X-ray CT scan of a
flamingo’s skull (lateral slice). C) A collection of arrowheads
found in Texas. D) An anthropologist’s field sketch of some
arrowheads in southwestern United States

Image motif discovery must be robust to many distortions,
especially rotation, which is generally agreed to be
difficult to handle. A large number of papers achieve fast
rotation invariant matching by extracting only rotation
invariant features and indexing them with a feature vector
[5]. This feature vector is often called the shapes
“signature”. There are literally dozens of rotation invariant
features, including ratio of perimeter to area, fractal
measures, elongatedness, circularity, min/max/mean
curvature, entropy, perimeter of convex hull etc. In
addition, many researchers have attempted to frame the
shape-matching problem as a more familiar histogram-
matching problem. For example in [29] the authors built a

C

A B

C

A B

A

B

C

D

Int
er-

cla
ss

1s
t M

oti
f

Int
er-

cla
ss

2n
d
M

oti
f

Int
er-

cla
ss

3r
d
M

oti
f

Inter-class
1st Motif

A

B

C

D

Int
er-

cla
ss

1s
t M

oti
f

Int
er-

cla
ss

2n
d
M

oti
f

Int
er-

cla
ss

3r
d
M

oti
f

Inter-class
1st Motif

histogram containing the distances between two randomly
chosen points on the perimeter of the shapes in question.
The approach seems to be attractive, for example it can
trivially also handle 3D shapes. However it suffers from
extremely poor precision. For example, it cannot
differentiate between the shapes of the lowercase letters
“d” and “b”, or “p” and “q”, since these pairs of shapes
have identical histograms. In general, all these methods
suffer from very poor discrimination ability [5]. Our
experience with these methods suggests that they can be
useful for making quick coarse discriminations, for
example differentiating between skulls and arrowheads.
However they could not make the fine distinctions to
meaningfully match similar shapes of one class, for
example arrowheads.
There are a handful of papers that recognize that the above
attempts at approximating rotation invariance are
unsatisfactory for most domains/applications, and they
achieve true rotation invariance by exhaustive brute force
search, testing all possible rotations. This robustness
comes at the expense of computational efficiency
[1][2][3][12]. For example, paper [1] also matches shapes
in the time series domain. While they note that most
invariances are trivial to handle in this representation, they
state “rotation invariance can (only) be obtained by
checking all possible circular shifts for the optimal
diagonal path.” Similarly paper [37] notes “in order to
find the best matching result, we have to shift one curve n
times, where n is the number of possible start points.”. Our
application potentially suffers even more from the high
computational complexity of true rotation invariant
matching, because brute force motif discovery would
require O(|Ω|2) calls to the expensive rotation invariant
comparison. As we shall see, our image motif discovery
does use this brute force rotation alignment, but we are
able to achieve enormous speedup by avoiding a large
fraction of the expensive comparisons.

3. A Review of SAX
To avoid the high computational cost, our solution uses the
idea of hashing to quickly locate potential motifs.
However raw time series cannot be meaningfully hashed,
because it is real-valued and high dimensional data. Thus
the first step of our approach is to convert time series to
symbolic representations. While there are at least 200
different symbolic representations of time series in the
literature, the SAX (Symbolic Aggregate approXimation)
representation is unique in that it supports both
dimensionality reduction and lower bounding for
Euclidean distance. In recent years, SAX has been widely
used in anomaly detection [19], visualization [23][26],
time series repeated pattern discovery [8][34], feature
extraction [22], and many other data mining applications.
In this section, we will briefly review the SAX
representation, which is at the heart of our solution to the
image motif discovery problem.

3.1 SAX Notation
A time series T of length n can be represented in a w-
dimensional space by a vector

wttT ,...,1= . The ith element
of T is calculated by the following equation:

∑
+−=

=
i

w
n

i
w
nj

ji t
n
wt

1)1(

 (1)

In other words, the time series is divided into w equal
sized segments and the dimensionality of time series is
decreased from n to w. The mean value of each segment is
calculated and a vector of these values becomes the
dimensionality-reduced representation. This simple
representation, known as Piecewise Aggregate
Approximation (PAA) [17], has been shown to rival more
sophisticated dimensionality reduction techniques like
Fourier transforms and wavelets [6] for the task of
indexing and compressing time series [18].
Having transformed a time series into the PAA
representation, we apply a further transformation to obtain
a discrete representation. It is desirable to have a
discretization technique that will produce symbols with
equiprobability [8][19]. After performing extensive
experiments on more than 100 datasets, we discovered that
normalized time series have highly Gaussian distribution
[25]. Based on this observation, we can simply determine
the “breakpoints” that will produce equal-sized areas
under a Gaussian curve.
 Definition 6. Breakpoints: breakpoints are a sorted list

of numbers B = β1,…,βa-1 such that the area under a
N(0,1) Gaussian curve from βi to βi+1 = 1/a (β0 and βa

are defined as -∞ and ∞, respectively, a is the size of the
alphabet).

These breakpoints may be determined by looking them up
in a statistical table. For example Table 1 gives the
breakpoints for values of a from 3 to 6.

Table 1: A lookup table that contains the breakpoints that
divide a Gaussian distribution into an arbitrary number (from
3 to 6) of equiprobable regions

It is important to note that the assumption of Gaussian
distribution is not critical to our work, and deviations from
this distribution will only affect the efficiency of our
algorithms, not their correctness.
Once the breakpoints have been obtained we can discretize
a time series in the following manner. We first obtain a
PAA of the time series. All PAA coefficients that are
below the smallest breakpoint are mapped to the symbol
“a”, all coefficients greater than or equal to the smallest

0.97

0.430.84

00.250.67

-0.43-0.2500.43

-0.97-0.84-0.67-0.43

0.97

0.430.84

00.250.67

-0.43-0.2500.43

-0.97-0.84-0.67-0.43

3 4 5 6
a

β1

β2

βi

β3

β4

β5

breakpoint and less than the second smallest breakpoint
are mapped to symbol “b”, etc. Figure 6 shows the idea.

Figure 6: A time series (heavy blue line) is discretized by
first obtaining a PAA approximation (shaded region) and
then mapped to symbols (bold letters) using predetermined
breakpoints. In this example, with n = 240, w = 6, and a = 4,
the time series is mapped to the word cbadab

Note that in this example the four symbols, “a”, “b”, “c”,
and “d” are approximately equiprobable as we desired. We
call the concatenation of symbols a word.
 Definition 7. Word: A time series T of length n can be

represented as a word
wttT ˆ,...,ˆˆ

1= as follows. Let αi

denotes the ith element of the alphabet, i.e., α1 = a and α2
= b. Then the mapping from a PAA approximation T to
a word T̂ is obtained as follows:

jiji tt ββα <≤= 1-j iff ˆ (2)

We have now completely defined our symbolic
representation, then simply need to define an
appropriated distance measure on it. By far the most
common distance measure for time series is the Euclidean
distance [18]. Given two time series T1 and T2 of the
same length n, Eq. 3 defines their Euclidean distance.

∑
=

−=
n

i
ii ttTTED

1

2
2121)(),(

 (3)

If we further transform the time series into the symbolic
representation, we can define a MINDIST function that
returns the lower bounding distance between the original
time series of two words:

∑
=

=
w

i
ii ttdist

w
nTTMINDIST

1

2
2121))ˆ,ˆ(()ˆ,ˆ((4)

The function resembles Eq. 3 except for the multiplication
by the square root of the compression rate, and the fact
that the distance between individual points has been
replaced by the sub-function dist(). The dist() function can
be implemented using a table lookup as shown in Table 2.

Table 2: A lookup table used by the MINDIST function. This
table is for an alphabet of size 4. The distance between two
symbols can be read off by examining the corresponding row
and column. For example dist(a,b) = 0 and dist(a,c) = 0.67

The value in cell (r,c) for any lookup table can be
calculated by the following expression.

⎩
⎨
⎧

−
≤

=
otherwise

 if |r-c|
cell

cr
cr ,

1 ,0

),min(1-c)max(r,
, ββ

 (5)

For a given alphabet size a, the table needs only be
calculated once, then stored for fast lookup.

4. Image Motif Discovery
Although SAX has proven to be a very effective method in
finding motif subsequence from long time series
[8][26][34], none of this work applies to the task of image
matching/querying, given that it is hard to handle rotation
invariance. In this section, we first show how to adapt
SAX to handle shape matching with arbitrary rotations,
and then show how to apply it in motif discovery problem.
Recall that the distance measure in definition 2 can be any
common distance measures for time series. We use
Euclidean distance in this work. If the shapes in question
are rotationally aligned, Euclidean distance will reflect the
intuitive similarity. However if the shapes are not
rotationally aligned, the corresponding time series will
also be misaligned. In this case, Euclidean distance can
produce extremely poor results. To overcome this problem,
we need the distance function to be rotation invariant. To
achieve this, we need to hold one shape fixed, rotate the
other, and record the minimum distance of all possible
rotations. We accomplish this in the time series space by
representing all rotations of a shape in a rotation matrix.

Definition 8. Rotation Matrix: Given a time series T of
length n, all its possible rotations (i.e. circular shifts)
constitute a rotation matrix RT of size n by n.

 (6)

Each row of the matrix is simply a time series shifted
(rotated) by one from its neighbors. For notational
convenience, we denote the ith row as Ti, which allows us
to denote the rotation matrix in the more compact form of
RT = {T1, T2,…, Tn}.
Note that we do not need to actually build the full matrix if
space is premium, however doing this simplifies the
notation and allows some optimizations [20].
As we have already seen in Figure 1 and Figure 2 (and as
we shall see again in Figure 11 and Figure 12), we cannot
generally expect images be perfectly aligned. We therefore
define the Rotation invariant Euclidean Distance between
two time series.

Definition 9. Rotation invariant Euclidean Distance:
Given two time series T1 and T2 of length n, the rotation
invariant Euclidean distance between them is defined as

),(min),(21
1

21
j

nj
TTEDTTRED

≤≤
= (7)

The rotation invariant Euclidean distance provides an
intuitive measure of the distance between two shapes, at

000.671.34

0000.67

0.67000

1.340.6700

000.671.34

0000.67

0.67000

1.340.6700

a b c d

a

b

c

d

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

−

121

112

121

, ... ,,,
.
.

,, , .. .,
, , ... ,,

nn

nn

nn

tttt

tttt
tttt

RT

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a

b

-1

0

1

-1

0

1

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a

b

-1

0

1

-1

0

1

the expense of efficiency. The time complexity to compare
two time series of length n is O(n2). Note that this rotation
invariant Euclidean distance is denoted as “D(Tk, Ti)” in
definition 4 and 5.

4.1 Min-error SAX
As illustrated in Figure 6 we can convert any time series
into a SAX word. The conversion of time series into SAX
is at the heart of dozens of research efforts
[8][19][22][26][34] and a well-understood process.
However in the special case that the time series comes
from a shape, we are offered a unique chance to improve
the quality of approximation with no space overhead.
Recall that, as illustrated in Figure 3, we convert shapes
into time series with a simple “unwinding” process. Note
that the starting point for this process is completely
arbitrary. This observation allows an optimization, because
it may happen that some of the arbitrary starting points
will lead to better SAX approximations.
For example, assume we have two arrow images A and B,
where B is simply A being rotated by 15 degrees. Their
time series and corresponding SAX representations are
shown in Figure 7.

Figure 7: An arrowhead image with different rotations. Top)
The first SAX symbol c approximates the first 40 data points
perfectly. Bottom) However the same plateau time series is
divided into two parts (the first and last segments of time
series)

At the first sight, they look similar. But note that for in the
top version of the arrowhead, the first symbol c matches
perfectly with a plateau in the time series, while in the
bottom version of the arrowhead, this plateau segment
spreads across two segments (the first and the last
segments). Intuitively, we may expect that the SAX word
cbadab gives better approximation than bottom one
cadcac. In fact, this is the case; the reconstruction errors
are 106.35 and 144.65 respectively (see Appendix A for
definition of SAX reconstruction error). Based on this
observation, every time we convert a shape time series into
a SAX word, we test all possible circular shifts of the time
series and choose the one that has the smallest
reconstruction error. We apply this optimization
throughout the paper.

4.2 Random Projection Motif Discovery
The image motif discovery problem lands itself to a simple
brute force solution. We simply need to compare each
shape in Ω to every other shape using rotation invariant
Euclidean distance, and record all those shapes that are
within threshold ξ of each other. This can be trivially
achieved with a pair of nested loops. The problem with
this solution is its high time complexity O(|Ω|2n2) , which
is clearly intractable for large datasets. Note that O(n2) is
the time for a single rotation invariant comparison. There
are some optimizations for rotation invariant comparison
to reduce its complexity close to linear for most datasets
[20]. It is the quadratic dependence on |Ω| that makes the
brute force algorithm untenable for larger datasets.
We propose a motif discovery algorithm which reduces the
number of rotation invariant comparisons as much as
possible. The intuition of our solution is that two similar
shapes are likely to have similar SAX representations (for
the moment ignores the problem of rotation invariance).
Actually this observation is at the heart of dozens of
research efforts [8][22][25][26].
Our algorithm takes advantage of techniques that can
efficiently find approximately repeated patterns in discrete
strings [36]. The work of Tompa and Buhler and follow-
up work by many researchers show that approximately
repeated patterns can be found by hashing randomly
“masked” versions of the strings in question. Information
about which strings collide with others can then be used to
prune the search space. Here “masked” simply means that
one or more positions in the strings are ignored during the
hashing process. The idea is that two words might be
similar, but differ in just a few locations, as in abca and
aaca. By randomly masking and therefore ignoring some
positions, the algorithm has a chance to ignore the
“misspelled” position and discover the similarities. A
surprising fact is that only a small constant number of
iterations of masking and hashing are needed to find all
motifs with high probability [36].
This solution, known as random projection, requires two
modifications before we can apply it to image motif
discovery. First, we need to do some modification to make
it be able to find rotation invariant similarities between
time series or circular shifts of SAX words. Second, unlike
the usage of random projection on DNA strings, we are
not finished after discovering motifs in SAX words. We
must check the raw time series pointed by the SAX words
to make sure they are true motifs.
As the first modification, for each SAX word T̂
corresponding to an image, we add every possible circular
shift of it to the list of words to be hashed. We call this list
the rotation matrix RT. So that if two images Ti and Tj are
similar, but are rotated differently, they may still be
similar under some circular shifts. For example in Figure
8, the ith shape in the arrowheads datasets maps to the SAX
word T̂ = bacb, so we add bacb, acbb, cbba, and bbac to
the rotation matrix.

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a
b

flat, matched by ‘c’

20 40 60 80 100 120 140 160 180 200 220 240

c

a

d
c

a

c

segment
one

segment
two

20 40 60 80 100 120 140 160 180 200 220 240

c b

a

d

a
b

flat, matched by ‘c’

20 40 60 80 100 120 140 160 180 200 220 240

c

a

d
c

a

c

segment
one

segment
two

A

B

Figure 8: An example of representing an image with rotation
variant SAX words. Because the length of SAX string is 4,
every image time series has four possible rotations

The redundancy of having all possible circular shifts may
appear to hurt the space complexity, but recall that a SAX
word only requires ⎡ ⎤aw bits. With all possible circular
shifts this becomes ⎡ ⎤aw2 bits per original shape. This is
still much smaller than the raw time series, and completely
inconsequent compared to the raw images.
After getting all possible circular shifted SAX words for
each image time series, we start random projection. As in
[36], several randomly chosen columns are masked off,
and the rest columns are hashed into the buckets. At the
same time, a collision matrix is maintained to keep record
of collisions. Because similar shapes have high possibility
to be hashed to the same bucket, after many times of
random projections, these similar pairs will have larger
values in collision matrix. Figure 9 illustrates the random
projection process.

Figure 9: Random projection performed on SAX words. The
mask size is 2 and the (randomly chosen) mask is {2, 4}.
Columns 2 and 4 are masked off and the substrings at column
{1, 3} are hashed to buckets. The value in collision matrix at
the bottom right records the number of collisions between
arrowheads Ti and Tj after one projection

In order to give the algorithm a high probability to ignore
“misspelled” positions, we need to perform several
iterations of random projections. A natural question is
when to stop. The simplest stopping criterion is user

interruption. We can treat the random projection process
as an anytime algorithm, letting user interrupt the
execution at any time and retrieve the best-so-far result.
Another stopping criterion will be keeping random
projection until collision matrix requires more than linear
space. In this case, the number of iterations can be O(|Ω|).
But in practice generally it is significantly smaller than
O(|Ω|). According to our experiments, 20 to 100 iterations
are enough to catch similar images. So we hardcoded
number of iterations to 30 for experiments in this paper.
During the random projection, we change mask size
dynamically. Initially mask size is set to zero, which
means at the beginning all SAX words are compared in
full length. Then in each iteration, the mask size increases
by 1. The iteration repeats until the user issues an
interruption or the predefined number of iterations is
reached. After projection, if some cells have values that
are significantly larger than the average in collision
matrix, we treat them as motif candidates. We then
calculate the rotation invariant Euclidean distance between
the original time series of these candidates. Thanks to the
lower bounding property of SAX representation, the last
step can be conducted very efficiently. If MINDIST(it̂ ,

jt̂)

≤ ξ, we only need to check kt̂ if and only if

MINDIST(it̂ , kt̂) ≤ ξ or MINDIST(jt̂ , kt̂) ≤ ξ. We will

show in Section 5 that our algorithm is very effective in
catching image motif candidates during projection step
and locating true motifs by examining these candidates.
Note that we only consider the image pairs that have the
largest collision value as candidates. As we will show in
Section 5, the number of these ties is less than 0.1% of
total number of pairs |Ω|2, and it is enough to give us high
precision of true motifs. Table 3 outlines our motif
discovery algorithm, where Ω is the image dataset, K is
the number of motifs to be mined, and ξ is distance
threshold for image motifs.

Table 3: Motif Discovery Algorithm

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Function {K-motifs} = Motif-discover(Ω, K, ξ, i)
{ T̂ j } = SAX(Ω) ; //convert image time series to SAX
generate RT (T̂ j) ; // rotation invariance matrix in fig. 8
K-moifs = Ø ;
iteration = 0;
M = zeros; // initialize collision matrix as zero matrix
while iteration ≤ i and user_not_interrupt
 Random_Projection(RT) ;
 Update(M) ; // update collision matrix M
 iteration = iteration + 1;
end;
Sort(M) ;
k = 0;
for each (p,q) in M that has the largest value
 if {p,q} ∩ {k-motif} != Ø and RED(Tp, Tq) < ξ
 add p, q to {k-motif}
 else if k < K
 k = k + 1;
 add p, q to {k-motif}
 end;
end;

bcbb

::::

cbbb
bbbc
bbcb
::::
cabb
abbc
bbca
bcab
::::

RTi

RTj

bcbb

::::

cbbb
bbbc
bbcb
::::
cabb
abbc
bbca
bcab
::::

i

j

bcbb

::::

cbbb
bbbc
bbcb
::::
cabb
abbc
bbca
bcab
::::

RTi

RTj

bcbb

::::

cbbb
bbbc
bbcb
::::
cabb
abbc
bbca
bcab
::::

i

j

bcbb

::::

cbbb

bbbc

bbcb

::::
cabb

abbc

bbca

bcab

::::

RTi

RTj

i j

i

i j

i

j

2

2

.. i .. j ..

:
i
:
j
:

bc

ab

cb

ba

bb

bcbb

::::

cbbb

bbbc

bbcb

::::
cabb

abbc

bbca

bcab

::::

i

j

i j

i

i j

i

j

2

2

.. i .. j ..

:
i
:
j
:

bc

ab

cb

ba

bb

bcbb

::::

cbbb

bbbc

bbcb

::::
cabb

abbc

bbca

bcab

::::

RTi

RTj

i j

i

i j

i

j

2

2

.. i .. j ..

:
i
:
j
:

bc

ab

cb

ba

bb

bcbb

::::

cbbb

bbbc

bbcb

::::
cabb

abbc

bbca

bcab

::::

i

j

i j

i

i j

i

j

2

2

.. i .. j ..

:
i
:
j
:

bc

ab

cb

ba

bb

4.3 Time and Space Complexity
Motif discovery is generally computationally expensive,
which in worst case needs O(N2) time, where N is the size
of dataset. In this subsection, we will show that our motif
discovery algorithm requires only linear space and time.
We first look at space complexity. Assume we have N
image time series of length n, with corresponding SAX
words of length m. As illustrated in Figure 8, the rotation
matrix RT has m*N rows and m columns. Note that
although the length of time series varies from one hundred
to several thousands, its SAX word length is much shorter,
usually from 10 to 100 based on our experiments.
Furthermore, each SAX word only needs m*log2a bits (a
is the alphabet size, usually from 3 to 5), so the actual size
of RT is in linear space, and much less than original size of
dataset. In addition, collision matrix M is implemented as
sparse matrix, which takes up much smaller size compared
to full matrix. Although in the worst situation, the matrix
will be filled with i*|RT| non-zero values (i is the number
of iterations), from our experiments and also as pointed in
[8], i is usually a small value from 20 to 100.
The most time-consuming part of our algorithm is the
random projection with collision recording process. Its
time complexity is O(i*|RT|), which is linear.

5. Experimental Evaluation
In this section, we demonstrate the utility of image motifs
and provide a detailed study of the effectiveness and
efficiency of our algorithm.

5.1 Mining Butterfly Images
There is an increasing interest in using computers to aid in
the study of zoology, particularly in morphometrics, the
study of organism shape and form [33]. This is especially
true in entomology because entomologists are challenged
by the extraordinary number of insect species, with more
than 925,000 species described — more than all other
animal groups combined. Even if we were to limit our
attention to just the order of Lepidoptera (butterflies and
moths), we must deal with more than 20,000 species.
To demonstrate the potential utility of motifs in
entomological morphometrics, we performed a simple
experiment. The experiment was contrived in that we had
a strong suspicion as to the final result, however it at least
hints at the utility of our ideas.
We chose to work with an extraordinarily diverse group
with about 5,000 members, the Nymphalidae, one of the
five families of butterflies. Within Nymphalidae there are
12 subfamilies, including Danainae and Limenitidinae. We
collected several hundred examples of each group and
performed motif join. The 1st Inter-class motif is shown in
Figure 10.
The fact that the Inter-class 1st-Motif pair is not only
similar in shape, but in color and pattern is at first
surprising, given the extraordinary variation that exists
within both subfamilies. However this convergence in
physical appearance is not a coincidence, but rather an
example of Müllerian mimicry. Müllerian mimicry is a

result of the evolutionary pressure for toxic species mimic
each other to display similar warning signals
(aposematism) because predators that better associate
these signs with unprofitability have higher survival rates
than those that do not. Mulerian mimicry drives the
evolution and establishment large regional mimetic rings
often seen in tropical habitats, made up from the
summation of tens of mimicry rings, each containing
dozens of species, most belonging to Nymphalidae
butterflies, but a few species belonging to other butterfly
families (e.g., Papilionidae, Pieridae, Arctiidae and others)
[15].

Figure 10: Top) Some examples from two subfamilies of
Nymphalidae, Limenitidinae and Danainae. Bottom) The
Inter-class 1st-Motif pair is not only similar in shape, but in
color and pattern, a fact which can be explained by Müllerian
mimicry

5.2 Annotating Historical Manuscripts
In this experiment, we demonstrate one potential
application of inter-class K-Motifs, mining historical texts.
The need for algorithms to automatically index and
annotate old manuscripts has been brought to the forefront
by Google’s announcement of a long term plan to digitize
tens of millions of old texts in the next decade [35]. While
the bulk of the old volumes will contain nothing but text,
we can expect millions of images will also be digitized and
benefit from enhancement of annotation.
We consider a classic text, British Desmidiaceae, vol. 2
(1905) by the father and son team, West & West [39]. This
is a fundamental work on desmids (single-celled
freshwater green algae). The book was published when
microscopy was a mature science, but before microscopic
photography was possible. It contains color and
monochrome drawings of exceptional quality.

Greta morganeLimenitis reducta

Catuna crithea

Aterica galene

Tellervo zoilus Placidina euryanassa

Danaus plexippus

Limenitis archippus

Limenitis (subset) Danaus (subset)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Limenitis
archippus

Danaus
plexippus

Greta morganeLimenitis reducta

Catuna crithea

Aterica galene

Tellervo zoilus Placidina euryanassa

Danaus plexippus

Limenitis archippus

Limenitis (subset) Danaus (subset)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Limenitis
archippus

Danaus
plexippus

Approximately 1,150 taxa are described in the five
volumes.
The modern reader is impressed by the quality of the
illustrations, and stunned by the diversity of algae shapes.
However they cannot help but curious if the alien looking
illustrations are faithful reproductions of reality or fanciful
imaginings2. To test this we used our algorithm to find
Inter-class K-Motifs between two image datasets, Ω is the
set of pages from the text in question, and Ψ are the results
of a Google image query for “Desmidiaceae, Micrasterias,
Closterium, Euastrum” (keywords used in the original
text). Figure 11 shows one page from the text, and three of
the linked images from the web.

Figure 11: Right) Plate 41 from the classic text, British
Desmidiaceae, vol. 2 (1905) by West & West. Left) After
finding the Inter-class K-Motifs, individual figures have been
linked to images returned by a Google image query. Only
three linked images are shown for clarity

Note that the algorithm only considered the shape
information, however the color and texture similarity of
many of the matches, for example “B” in Figure 11,
strongly suggests that the results are not spurious. In
Figure 12 we give a visual intuition as to why two shapes
are considered so similar in the time series representation.

2 Note that contemporary publications using the microscopes

astronomical analogue, the telescope, had “discovered” and
detailed complex systems of canals on Mars [10].

Figure 12: A visual explanation of why two shapes from
Figure 11 were linked as Inter-class Motifs. The real image
was taken by Fabio Rindi and David John (who retain the
copyright). It shows a Micrasterias oscitans found in a bog
pool in Galway, Ireland on 22nd of Sep 2005

In Figure 13 we show another example on a page featuring
drawings of the genus Closterium.

Figure 13: Left) Plate 11 from British Desmidiaceae, vol. 2
(1905) by West & West. Right) After performing a shape-
motif-join, individual figures have been linked to images
returned by a Google image query ‘Closterium’

Note that in all these examples, the need for rotation
invariance is apparent.

5.3 Efficiency of Motif Discovery Algorithm
In the previous subsections, we have shown that our motif
discovery algorithm is very effective in finding image
motifs. In this subsection, we will further demonstrate that
our approach is not only effective but also efficient, which
allows us to discover motifs in linear time with high
precision. All the datasets used here are freely available at
our website [40].
We test on six image datasets, including SQUID3 [27],
mpeg-7 shapes 4 , yoga, chicken [28], Swedish-leaf, and
MNIST. SQUID contains 1,100 different sea animal

3 www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
4 www.cis.temple.edu/~latecki/research.html#shape

A

B

C

A

B

C

Micrasterias
oscitans

British
Desmidiaceae,
vol. 2 (1905),
plate 41, fig. 5

Micrasterias
oscitans

British
Desmidiaceae,
vol. 2 (1905),
plate 41, fig. 5

Micrasterias
oscitans

British
Desmidiaceae,
vol. 2 (1905),
plate 41, fig. 5

images. Mpeg-7 shapes dataset consists of 1,400 different
shapes of animals, insects, crafts etc. Yoga dataset is
generated from video sequences of male and female
performing yoga actions. Chicken dataset has images of
chicken legs, breasts etc. with different rotations. Swedish
leaf dataset has 15 species of leaves. MNIST contains
10,000 instances of handwriting number ‘0’ to ‘9’. There
are several reasons why we choose these datasets to test.
Firstly, all these datasets contain rotated shapes. We can
verify that our motif discovery algorithm is able to locate
similar shapes with different rotations. Secondly, each of
these datasets has very similar shapes, which guarantees
that they contain image motifs. Finally, these diverse
datasets include different kinds of images, such as marine
animals, human actions sequences, and Arabian numbers
etc. Figure 14 shows example images from these six
datasets.

Figure 14: Examples of shapes from six datasets, A - mpeg-7
shapes, B - SQUID, C - yoga, D - chicken, E - Swedish
leaves, F - MNIST

We randomly select 1,000 instances from each dataset.
Chicken dataset has only 446 images, so we make 1,000
instances by rotating them with random angles. These
6,000 images are converted into time series. Because the
lengths of these time series vary from 128 to 3,280, we
unify their lengths to 1,024.
We compare three strategies for motif discovery: brute
force method, brute force with early abandon, and our
motif discovery described in Section 4. Brute force method
performs an exhaustive search, computing rotation
invariant Euclidean distance for each pair of images.
Suppose we have N image time series of length n, then
brute force requires N2 rotation invariant comparisons.
Brute force with early abandon prunes distance
computation by the threshold (best-so-far minimum
distance in the computation). We randomly select 500,
1000, 2000 and 4000 instances from all 6000 instances,
execute three methods ten times to get the average results.
Both the number of rotation invariant Euclidean distance
computations and the running time of the three strategies
are given in Figure 15.

Figure 15: Compared to brute force method, only 0.076%
distance computations are needed by our motif discovery
algorithm. The running time is 2 to 3 orders of magnitude
shorter

We can see that the motif discovery algorithm prunes more
than 99.99% computations of the brute force method, and
only takes about 3% to 7% computation of the early
abandon method. For running time, we record time spent
on motif discovery from three parts: converting time series
to SAX, random projection, and searching true motif in
candidate time series. Although the first part can be done
offline, we still include it in execution time because it is
nearly constant. The time spent on the second part is
almost constant, since in practice we simply set length of
SAX word m to 20 and the iteration number i to 30 (user
can use different parameter settings in a certain range, but
according to our experiments, it will not affect much of the
accuracy in motif discovery). Actually the most time-
consuming part is in phase three, finding true motifs from
candidates. Notice that as shown in the right of Figure 15,
SAX projection pruned more than 99.99% computations,
indicating that the third part is also very efficient. Overall,
our motif discovery algorithm is 2 to 3 orders of magnitude
faster than brute force method, which is clearly shown in
the left of Figure 15.
In addition to efficiency, the motif discovery is very
effective in finding true motif images. We compare the
motifs found by our algorithm with those found by brute
force method, which guarantees to catch all true motif
images. Table 4 shows that our method achieves very high
accuracy (the ratio that number of true motifs found by our
method over the number of true motifs found by brute
force method).

Table 4: Accuracies of motif discovery algorithm. Because
the number of motifs is averaged over ten times run, we
record them as real values. ξ is the distance threshold given
in definition 2

500 1000 2000 4000
Dataset size

ξ = 1.0 ξ = 1.0 ξ = 0.5 ξ = 0.3

Brute force 5.9 16.4 18.3 17.2 Number
of

motifs
Motif

discovery
5.2 15.8 18.2 17.2

Accuracy (%)
(motif discovery/brute force)

85.14 95.31 99.83 100

A B

DC

E F

A
ve

ra
ge

 ru
nn

in
g

tim
e

(%
)

Time improvement over BruteForce

Dataset size

500
1000

2000
4000

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Brute Force
Motif Discovery

Early Abandon

500
1000

2000
4000

0

0

0.2

0.4

0.6

0.8

1

Brute ForceMotif Discovery

Early Abandon
Dataset size

A
ve

ra
ge

 ru
nn

in
g

tim
e

(%
)

Euclidean Distance Computations

A
ve

ra
ge

 ru
nn

in
g

tim
e

(%
)

Time improvement over BruteForce

Dataset size

500
1000

2000
4000

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

Brute Force
Motif Discovery

Early Abandon

500
1000

2000
4000

0

500
1000

2000
4000

0

0

0.2

0.4

0.6

0.8

1

Brute ForceMotif Discovery

Early Abandon
Dataset size

A
ve

ra
ge

 ru
nn

in
g

tim
e

(%
)

Euclidean Distance Computations

6. Conclusions
We have introduced the new problem of finding
approximately repeated shapes in large image databases.
Although the brute force approach needs quadratic time,
we propose a novel algorithm that uses random projection
to identify potential image motifs efficiently. Experimental
results show that our approach can efficiently find image
motifs with high precision.
Ongoing work includes collaboration with anthropologists
on a detailed study of projectile-point cultural artifact
transfer, and an application to the study on convergent
evolution in the order Coleoptera (beetles). We are also
considering combing the shape information currently used
with (appropriately weighted) information about color and
texture to find image motifs.
Acknowledgments: We would like to thank Dr. Leslie
Quintero and Dr. Sang-Hee Lee of the Department of
Anthropology, UC Riverside, and Dr. David Marshall and the
other members of the DIADIST project based in Cardiff
University.

REFERENCE

[1] Adamek, T. and O’Connor, N.E. A multiscale
representation method for nonrigid shapes with a single
closed contour. IEEE Circuits and Systems for Video
Technology, 14(5): 742-753, 2004.

[2] Adamek, T. and O'Connor, N.E. Efficient contour-based
shape representation and matching. Multimedia
Information Retrieval 2003: 138-143.

[3] Attalla, E. and Siy, P. Robust shape similarity retrieval
based on contour segmentation polygonal
multiresolution and elastic matching. Pattern
Recognition, 38(12): 2229-2241, 2005.

[4] Berrani, S., Amsaleg, L., and Gros, P. Robust content-
based image searches for copyright protection. In
Proceedings of ACM Workshop on Multimedia
Databases, 2003.

[5] Cardone, A., Gupta, S.K., and Karnik, M. A survey of
shape similarity assessment algorithms for product
design and manufacturing applications. ASME Journal of
Computing and Information Science in Engineering,
3(2): 109-118, 2003.

[6] Chan, K. and Fu, A. W. Efficient time series matching
by wavelets. In Proceedings of the 15th IEEE
International Conference on Data Engineering
(ICDE’99), pp. 126-133, 1999.

[7] Chang, E., Wang, J., Li, C., and Wiederhold, G. RIME:
A replicated image detector for the world-wide web. In
Proceedings of SPIE, 1998.

[8] Chiu, B., Keogh, E., and Lonardi, S. Probabilistic
discovery of time series motifs. In Proceedings of 9th

International Conference on Knowledge Discovery and
Data Mining (SIGKDD’03), pp 493-498, 2004.

[9] Cuviers, G. Le Règne Animal distribue d’après son
Organisation pour servir de Base à l’Histoire Naturelle

des Animeaux et d’Introduction à l’Anatomie combarée.
Printed by Paul Renouard, published by Fortin, Masson
et Cie, Libraires, in Paris/France, 1839.

[10] Evans, J. E. and Maunder, E. W. Experiments as to the
Actuality of the 'Canals' observed on Mars. MNRAS, 63
(1903) 488.

[11] Fridrich, J., Soukal, D., and Lukas, J. Detection of copy-
move forgery in digital images. In Digital Forensic
Research Workshop, 2003.

[12] Gdalyahu, Y. and Weinshall, D. Flexible syntactic
matching of curves and its application to automatic
hierarchical classification of silhouettes. IEEE
Transactions on Pattern Analysis and Machine
Intelligence (PAMI’99), 21(12): 1312-1328, Dec. 1999.

[13] Gutierrez, A. www.graffititracker.net, 2006.
[14] Hall, D, A and Wisner, G. Texas site suggests link with

European Upper Paleolithic. Mammoth Trumpet (Journal
of the Center for the Study of the First Americans)
Volume 15, Number 1, 2000.

[15] Joron, M. Mimicry. In Resh V. and Cardé, RT (eds)
Encyclopedia of Insects. Elsevier Science, San Diego
CA, pp 714-726, 2003.

[16] Ke, Y., Sukthankar, R., and Huston, L. Efficient near-
duplicate detection and sub-image retrieval. ACM
Multimedia Conference, 2004.

[17] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra.
Dimensionality reduction for fast similarity search in
large time series databases. Journal of Knowledge and
Information Systems, pp 263-286, 2000.

[18] Keogh, E. and Kasetty, S. On the need for time series
data mining benchmarks: a survey and empirical
demonstration. In Proceedings of 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp 102-111, 2002.

[19] Keogh, E., Lonardi, S., and Ratanamahatana, C.A.
Towards parameter-free data mining. In Proceedings of
10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004.

[20] Keogh, E., Wei, L., Xi, X., Lee, S.H., and Vlachos, M.
LB_Keogh Supports Exact Indexing of Shapes under
Rotation Invariance with Arbitrary Representations and
Distance Measures. In Proceedings of Very Large
Databases(VLDB’06), 2006, to appear.

[21] Kephart, T. Graffiti as Intelligence for Law Enforcement.
Western Society of Criminology 31st Annual Conference,
February 19- 22, 2004.

[22] Kitaguchi, S. Extracting Feature based on Motif from a
Chronic Hepatitis Dataset. In Proceedings of 18th Annual
Conference of the Japanese Society for Artificial
Intelligence (JSAI’04), 2004.

[23] Kumar, N., Lolla N., Keogh E., Lonardi, S.,
Ratanamahatana, C., and Wei, L. Time-series bitmaps: a
practical visualization tool for working with large time
series datasets. SIAM Data Mining Conference, 2005.

[24] Li, D. and Simske, S. Shape retrieval based on distance
ratio distributions. HP Tech Report. HPL-2002-251.

[25] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. A Symbolic
Representation of Time Series, with Implications for
Streaming Algorithms. In Proceeding of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 2003.

[26] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P., and
Nystrom, D.M. Visually Mining and Monitoring
Massive Time Series. In Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp 460-469, 2004.

[27] Mokhtarian, F. and Bober, M. Curvature Scale Space
Representation: Theory, Applications and MPEG-7
Standardization. Kluwer Academic, 2003.

[28] Mollineda, R. A., Vidal, E., and Casacuberta, F. Cyclic
Sequence Alignments: Approximate Versus Optimal
Techniques. International Journal of Pattern
Recognition and Artificial Intelligence (IJPRAI), 16(3):
291-299, 2002.

[29] Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D.
Shape Distributions. ACM Transactions on Graphics,
21(4): 807-832, October, 2002.

[30] Pan, J.Y., Balan, A., Xing, P., Traina, A.J.M., and
Faloutsos, C. Automatic Mining of Fruit Fly Embryo
Images. SIGKDD, 2006, to appear.

[31] Pope, G. A. Weathering of petroglyphs: direct
assessment and implications for dating methods.
Antiquity, 74(2000): 833–843.

[32] Ratanamahatana, C.A. and Keogh, E. Three myths about
Dynamic Time Warping Data Mining. In Proceedings of
SIAM International Conference on Data Mining (SDM
’05), Newport Beach, CA, 2005.

[33] Richtsmeier J, DeLeon V, Lele S. The Promise of
Geometric Morphometrics. American Journal of Physical
Anthropology. vol:119 iss:s35 pp:63 -91, 2002.

[34] Rombo, S. and Terracina, G. Discovering Representative
Models in Large Time Series Databases. In Proceedings
of the 6th International Conference on Flexible Query
Answering Systems, pp 84-97, 2004.

[35] Said, C. Revolutionary chapter: Google's ambitious
book-scanning plan seen as key shift in paper-based
culture. San Francisco Chronicle. December 20, 2004.

[36] Tompa, M. & Buhler, J. Finding motifs using random
projections. In proceedings of the 5th Int’l Conference on
Computational Molecular Biology. Montreal, Canada,
Apr 22-25. pp 67-74, 2001.

[37] Wang, Z., Chi, Z., Feng, D., and Wang, Q. Leaf Image
Retrieval with Shape Features. In Proceedings of the 4th
International Conference on Advances in Visual
Information Systems, pp 477- 487, 2000.

[38] Watchman, A. A universal standard for reporting the
ages of petroglyphs and rock paintings. In M. Strecker

and P. Bahn (eds), Dating and the earliest known rock
art, pp. 1-3. Oxbow Books, Oxford, 1999.

[39] West, W. and West, G.S. A Monograph of the British
Desmidiaceae. Vols.I–V. The Ray Society, London,
1904–1922.

[40] www.cs.ucr.edu/~xxi/SDM07.
[41] Zhang, D. and Lu, G. Review of shape representation

and description techniques. Pattern Recognition,
37(1):1-19, 2004.

[42] Zhang, D. and Chang, S. Detecting image near-duplicate
by stochastic attributed relational graph matching with
learning. ACM Multimedia 2004: 877-884.

[43] Zunic, J., Rosin, p., and Kopanja, L. Shape Orientability.
ACCV (2) 2006: pp 11-20.

Appendix A: SAX Reconstruction Error
In the main text we made reference to SAX reconstruction
error. While the term “reconstruction error” is well defined
for other representations such as wavelets and Fourier
approximations, it is not generally used for symbolic
representations of discrete data. Here we show that we can
quantitively measure the reconstruction error of SAX
representation.
By converting time series to SAX words, we reduce the
dimensionality of time series. Clearly some information is lost
during the conversion. To measure how well the SAX
representation approximates the original time series, we
define SAX reconstruction error. The SAX reconstruction
error is the sum of the distance between each data point in the
time series and the middle line of the SAX symbol that the
data point maps, or more formally as:

∑
=

−−=
n

i
i iterror

1

2
12)(αβ (8)

where it is the ith data point of the time series, iα is the SAX
symbol that it maps to, and 12 −iαβ is the value that divides the

region of SAX symbol iα into two equiprobable parts. For
example, in Figure 16, a time series is converted into SAX
word cadcac. The alphabet size is four. According to Table 1,
the breakpoints are (-0.67, 0, 0.67), as shown by the left Y-
axis of Figure 16. The values that divide each symbol region
to two equiprobable parts are (-1.15, -0.32, 0.32, 1.15), shown
in the right Y-axis of Figure 16. These can again be looked up
from Table 1 since dividing each region (the shaded area in
Figure 16) to two parts is equivalent to doubling the alphabet
size to eight.

Figure 16: A visual illustration of SAX reconstruction error.
The reconstruction error is calculated as the sum of the
distance between each data point and the middle line (the dot
line) of the SAX symbol that the data point maps to

20 40 60 80 100 120 140 160 180 200 220 240

- 0.67

0.67
0

0.32

1.15

- 0.32

- 1.15

c

a

c c

d

a
20 40 60 80 100 120 140 160 180 200 220 240

- 0.67

0.67
0

0.32

1.15

- 0.32

- 1.15

c

a

c c

d

a

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

