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Abstract—Each year, insect-borne diseases kill more than
one million people, and harmful insects destroy tens of billions
of dollars worth of crops and livestock. At the same time,
beneficial insects pollinate three-quarters of all food consumed
by humans. Given the extraordinary impact of insects on
human life, it is somewhat surprising that machine learning
has made very little impact on understanding (and hence,
controlling) insects. In this work we discuss why this is the
case, and argue that a confluence of facts make the time ripe
for machine learning research to reach out to the entomological
community and help them solve some important problems. As
a concrete example, we show how we can solve an important
classification problem in commercial entomology by leveraging
off recent progress in shape, color and texture measures.

Keywords-Live insect classification, distance measures com-
bination, k-nearest neighbor

I. INTRODUCTION

The impact of insects on human health and well-being
are immeasurable, both in a positive and negative sense.
However these complex interrelationships are not static, but
changing as humans change the environment. As a simple
example, consider the Spruce Bark Beetle (Dendroctonus
rufipennis). Due to global warming the average temperature
in Anchorage has increased 3.9 degrees Fahrenheit over the
last century. This has allowed the more Beetles to survive
the normally harsh winters, exploding their population and
allowing them to devastate and estimated 30 million trees
per year over the last few years [1]. A similar story can be
told in all the Northern US states and in Canada.

These problems have attracted the attention of entomol-
ogists, chemists, geologists etc. However we are unaware
of any computer science efforts, apart from some GIS data
management. Does computer science, in particular machine
learning, really have nothing to offer here? Most of the
techniques to mitigate insect’s impact, be they mosquitoes
carrying malaria, beetles destroying forest or moths ruining
crops, rely on knowing the locations of outbreaks early on.
This is typically achieved by using traps (pitfall traps, flight
interception traps etc) to capture some insects, which are
manually counted every few days. The obvious problem with
this is that it is labor intensive and expensive, and a few days

are a long time in the life span of many insects. Thus by the
time the infestation has recognized, the insects have already
gotten a head start. An obvious solution to this problem
would be to use computers to count insects, yet this has not
happened, why?

In an influential paper Gaston & O’Neill ask “Automated
species identification: why not?” [2]. They go on to answer
their own question by listing the most commonly stated
objections. The most important of these is suggested as “the
simplest explanation for why automated identifications have
not become the norm for routine identifications is that such
an approach is too difficult.” We believe the difficulties
lie in the two areas, the need for preprocessing of the
data (cropping, edge extraction, histogram equalization and
rectification, dimensionality reduction etc) and the need for
careful setting of many parameters. For example, they note
“Artificial neural networks (ANNs) are the most commonly
employed computerized pattern recognition tool” however,
ANNs can have more than a dozen parameters (initial
weights, transfer functions, architectures and learning rules
etc).

In this work we propose to mitigate these difficulties by
removing the need for complex preprocessing and using a
simple approach based on a k-nearest neighbor classifier that
combines distance measures for texture, color and shape.
We show that our approach is conceptually simple but still
competitive with more sophisticated approaches previously
published in literature1.

The rest of this paper is organized as follows. Section II
discusses how the texture, color and shape primitives are
extracted from images and codified as distance measures.
Section III explains how our approach combines distance
measures using a simple grid search procedure. Section IV
presents our experimental results and compares with pre-
viously published work. Section V gives conclusions and
directions for future work.

1There are results in the literature that are slightly superior to our
results. However, it appears that the authors went through multiple cycles
of adjusting the parameters on the test set. In contrast we have scrupulously
avoiding changing (our very few) parameters after seeing the test set.
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II. TEXTURE, COLOR AND SHAPE PRIMITIVES

In this work, we classify moths according to their species
combining color, shape and texture information, encoded
as distance measures among objects. Identification of live
insects from images imposes several challenges. For in-
stance, light conditions may vary according to time, weather
and equipment available, imposing difficulties in recognizing
colors. Live insects are not easily photographed in the exact
same pose and orientation, meaning that the same species
of insects might present considerably different shapes. Ad-
ditionally, cameras might be slightly out of focus, causing
blurred images that make texture identification difficult. Al-
though these issues might impose difficulties for a classifier
that relies in only one of these features, we show that a
combination of these features can produce an accurate and
robust classifier.

Our approach leverages off a recently introduced texture
distance measure, CK-1 [3], by combining it with color and
shape distances using a simple linear combination. A nearest
neighbor classifier uses the combined distance to classify
new images. This approach is evaluated in a collection of live
moth images with 35 different species found in the British
Isles [4]. In order to make this paper self-contained, we start
by reviewing the distance measures used in this work.

A. Texture Similarity

CK-1 is a compression-based distance for texture inspired
by the theoretical concept of Kolmogorov complexity. Al-
though Kolmogorov conditional complexity gives rise to
a distance measure that is optimal in the sense that it
subsumes other measures [5], such distance is uncomputable
in the general case. Therefore, several researchers have
proposed approximations to this distance using compression
algorithms [6], [7] and many others have evaluated these
approximations in diverse domains [8], [9].

CK-1 extends the applicability of compression-based dis-
tances to image textures by using video compression. Given
two images x and y, CK-1 is defined by Equation 1.

d(x, y) =
C(x|y) + C(y|x)
C(x|x) + C(y|y)

− 1 (1)

where C(a|b) is the size of a synthetic MPEG-1 video
composed by two frames a and b, in this order.

MPEG-1, and most video encoding algorithms, achieve
compression by finding recurring patterns within a frame
(intra frame compression) and/or between frames (inter
frame compression). When x and y are two similar images,
inter frame compression step should be able to exploit that
to produce a smaller file size, which can be interpreted as
significant similarity. As digital video is an important com-
mercial application, many efforts have been made to achieve
high compression rates in video encoding, making it a good
approximation of the Kolmogorov conditional complexity.

Another observation is that there is no necessity to “hack”
the video encoding algorithm, since no internal modification
is necessary. In order to reinforce its simplicity, [3] shows
that this measure can be implemented in just one line of
Matlab code.

Notice that as CK-1 uses video encoding, there is no ne-
cessity to linearize images. Therefore, no spatial information
is lost. This feature makes CK-1 well suited for measuring
texture similarity. In order to achieve color invariance, all
images are converted to gray scale intensity values. However,
in the case of moth classification, color and shape might also
present useful information to classify at least some classes.
We extract this information in the form of distance measures,
as explained next.

B. Color Similarity

Color histograms are a simple representation to capture
color information from images. Although color histograms
are insensitive to position and rotation of an insect in an
image, different species might share the same color, making
color an useful secondary information. For instance, several
moth species have similar shades of gray or brown, such as
Agrotis exclamationis and Ochropleura plecta, two common
European moths. However, color is useful in discriminating
at least some species, such as Campaea margaritata also
known as the Light Emerald moth because of its distinctive
green hue, and Cabera pusaria also known as the Common
White Wave.

In our experiments, we extracted histograms for red, green
and blue color channels independently, and concatenated
these histograms in a unique “time” series. Since light con-
ditions vary for different images, we reduced color variation
by grouping pixels in bins of size 4, resulting in 256/4 = 64
observations for each color channel. We also did not count
white pixels since virtually all of them were present in the
images background, and therefore do not present any useful
information for classification purposes. We employed the
standard Euclidean distance to measure distances between
pairs of color histograms. We chose Euclidean distance since
it proved to be competitive to more sophisticated measures,
and it is parameter-free.

C. Shape Similarity

Shape is one of the most relevant features to determine
similarity among objects. Although there are dozens of
different shape similarities measures [10], we are interested
in one that is simple to compute and does not require
tuning many parameters. In this work, we convert a two-
dimensional shape to a single-dimensional “time” series,
by calculating the distance between a central point and the
object contour. This approach is simple to implement and
does not require any parameters to be tuned.

Once each moth shape was converted to a time series,
several distance measures can be used to estimate similarity
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between each pair of specimen. In this work, we use the Eu-
clidean distance due its simplicity and competitiveness with
more complex measures on shape matching problems [11].

Shape is an useful feature for classifying insects, since
species frequently present morphological differences. In the
case of moths, although several species can roll their wings
close to their bodies when resting, and therefore having a
similar “triangular” shape, such as Anaplectoides prasina,
other species do not have the same ability and present a
very different shape when resting, such as the odd-looking
Laothoe populi. Nevertheless, some individuals are difficult
to classify using shape similarity only. Unlike photographs
of dead insects that can are precisely posed, images of live
moths might present a large variety of shapes.

III. COMBINING DISTANCE MEASURES

Linear combination is a simple approach to compose
distances measures. In the case of composing texture, color
and shape, it assumes the form shown in Equation 2.

dcomb(x, y) = wt × dtexture(x, y) + wc × dcolor(x, y)

+ ws × dshape(x, y) (2)

where x and y are two images, dtexture, dcolor and dshape
are distance measures for the texture, color and shape
primitives, respectively, and wt, wc and ws are weights for
texture, color and shape, respectively. In order to make the
distance measures commensurable, we normalized the three
distance measures in the interval [0, 1]. A problem is how
to determine values for wt, wc and ws that would maximize
accuracy or other measure of success.

Notice that certain values of distance weights produce the
exact same combined distance measure, but with different
scales. For instance, dcomb1 = (wt = 0.1, wc = 0.1, ws =
0.1) and dcomb2 = (wt = 0.2, wc = 0.2, wc = 0.2)
have the same distance information, since dcomb2(x, y) =
2 × dcomb1(x, y) for any images x and y. However, for a
classification procedure such as k-nearest neighbor, the scale
is not relevant. We simplify the search space eliminating one
degree of freedom by making:

wt = w (3)
wc = (1− w) (4)

This choice of wt and wc is arbitrary. However, we veri-
fied that choosing any other combination of two parameters
produce similar results.

Therefore, Equation 2 can be rewritten as:

dcomb(x, y) = w × dtexture(x, y) + (1− w)× dcolor(x, y)

+ ws × dshape(x, y) (5)

Figure 1: Our greedy search algorithm uses a 3 × 3 grid
(top). The central cell, p, stores the current values for w and
ws parameters. The highest accuracy in grid, p′, determines
the new values for w and ws (bottom).

with w ∈ [0, 1]. Parameter ws can vary independently from
w.

Several approaches can be used to search for the w and ws

parameters, ranging from a simple and computationally in-
tensive brute-force search to more sophisticated approaches
such as heuristic and stochastic search procedures.

We designed a simple greedy search procedure, using a
3× 3 grid. The central cell of this grid stores the classifier
accuracy for current values of w and ws. Remaining grid
cells store accuracies for possible combinations of param-
eter values using a single increment or decrement. In our
experiments, a 0.1 increment was used for both w and ws.
Figure 1 illustrates this grid.

The greedy search algorithm simply chooses the highest
accuracy in grid and updates the values of w and ws

accordingly. The new values for these parameters are stored
in the middle of a new grid, and the accuracies for the new
grid are updated. The search ends when, for a given grid,
the current parameter values, i.e. the central cell, has the
highest accuracy in the grid.

IV. RESULTS AND DISCUSSION

The collection used in this paper consists of 774 images
of live moths belonging to 35 different species found in
United Kingdom [12]. Each image is 1024 × 960 pixels
in resolution with 24-bit RGB color. As moths usually
occupy about 10% of the total image area, we cropped each
image by finding the nearest bounding rectangle around each
moth, resulting in images of approximately 500×800 pixels
each. In addition, the background was deleted with a semi-
automatic technique.

We used accuracy as the main method to assess our re-
sults. All results were obtained using the 1-nearest neighbor
classifier with leave-one-out cross-validation. We measured
the accuracy for 1-nearest neighbor for each distance in-
dividually, and obtained 70.98% for texture, 50.13% for
color and 49.87% for shape. Combining the three distance
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functions with our greedy grid search algorithm with 10%
of the training set used to evaluate the parameters values
(validation set), the 1-nearest neighbor classifier obtained
79.53% accuracy.

The work of Mayo & Watson [4] used the same data set,
but with different features and pre-processing techniques.
Their approach uses a much more data intensive algorithm
that extracts a total of 11,300 numerical features, including
global statistics and local features extracted from images
“patches” of 30 × 30 pixels each. In addition, they used
several pre-processing techniques including smoothing by
averaging color intensity in a 3 × 3 pixel neighborhood
grid, edge detection, background removal and conversion to
binary images. Features were extracted from the black and
white images as well as color images. In the case of color
images, features were extracted from the RGB and HSB
color spaces.

With the same nearest neighbor classifier used in this
work, Mayo & Watson obtained accuracies of 71.6% for one
neighbor and 65.36% for five neighbors. Their best approach
was a Support Vector Machine classifier that obtained 84.8%
accuracy. Beyond the much greater time complexity of their
method, the authors acknowledge (personal communication)
that their results may be optimistic given that they adjusted
parameters, settings and choice of pre-processing techniques
by looking at test data.

V. CONCLUSION AND FUTURE WORK

In [2], Gaston & O’Neill discuss the possible reasons
why automated classification is not the norm for routine
insect identification, and they point out that a commonly
stated objection is that such approach is too difficult. As a
concrete example, we present in this paper a conceptually
simple scheme to classify live moths from images based on
texture, color and shape features. The algorithms employed
to extract those features require the set up of few or no
parameters, and can be implemented in few lines of source
code. Nevertheless, our results are competitive with more
sophisticated techniques previously published in literature.

We believe that simple techniques with few parameters
can boost the adoption of our ideas by researchers of diverse
areas such as biology, entomology and lepidopterology.
The application of parameter laden algorithms have many
problems, one of them is that with several parameter to
set up it is difficult to avoid overfitting. An additional
problem of parameter-laden algorithms is that they make it
exceptionally difficult to reproduce published experimental
results, and to truly understand the contribution of a pro-
posed algorithm [7].
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