
Matrix Profile I: All Pairs Similarity Joins for Time Series:

A Unifying View that Includes Motifs, Discords and Shapelets

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, †Diego Furtado Silva, ‡Abdullah Mueen, and Eamonn Keogh

University of California, Riverside, †Universidade de São Paulo, ‡University of New Mexico
{myeh003, yzhu015, lulan001, nbegu001, yding007, hdau001}@ucr.edu, diegofsilva@icmc.usp.br, mueen@unm.edu, eamonn@cs.ucr.edu

Abstract— The all-pairs-similarity-search (or similarity join)

problem has been extensively studied for text and a handful of

other datatypes. However, surprisingly little progress has been

made on similarity joins for time series subsequences. The lack of

progress probably stems from the daunting nature of the

problem. For even modest sized datasets the obvious nested-loop

algorithm can take months, and the typical speed-up techniques

in this domain (i.e., indexing, lower-bounding, triangular-

inequality pruning and early abandoning) at best produce one or

two orders of magnitude speedup. In this work we introduce a

novel scalable algorithm for time series subsequence all-pairs-

similarity-search. For exceptionally large datasets, the algorithm

can be trivially cast as an anytime algorithm and produce high-

quality approximate solutions in reasonable time. The exact

similarity join algorithm computes the answer to the time series

motif and time series discord problem as a side-effect, and our

algorithm incidentally provides the fastest known algorithm for

both these extensively-studied problems. We demonstrate the

utility of our ideas for many time series data mining problems,

including motif discovery, novelty discovery, shapelet discovery,

semantic segmentation, density estimation, and contrast set

mining.

Keywords—Time Series; Similarity Joins; Motif Discovery

I. INTRODUCTION

The all-pairs-similarity-search (also known as similarity
join) problem comes in several variants. The basic task is this:
Given a collection of data objects, retrieve the nearest neighbor
for each object. In the text domain the algorithm has
applications in a host of problems, including community
discovery, duplicate detection, collaborative filtering,
clustering, and query refinement [1]. While virtually all text
processing algorithms have analogues in time series data
mining, there has been surprisingly little progress on Time
Series subsequences All-Pairs-Similarity-Search (TSAPSS).

We believe that this lack of progress stems not from a lack
of interest in this useful primitive, but from the daunting nature
of the problem. Consider the following example that reflects the
needs of an industrial collaborator. A boiler at a chemical
refinery reports pressure once a minute. After a year, we have a
time series of length 525,600. A plant manager may wish to do
a similarity self-join on this data with week-long subsequences
(10,080) to discover operating regimes (summer vs. winter or
light distillate vs. heavy distillate etc.) The obvious nested loop
algorithm requires 132,880,692,960 Euclidean distance
computations. If we assume each one takes 0.0001 seconds,
then the join will take 153.8 days. The core contribution of this
work is to show that we can reduce this time to 6.3 hours, using
an off-the-shelf desktop computer. Moreover, we show that this
join can be computed and/or updated incrementally. Thus we
could maintain this join essentially forever on a standard

desktop, even if the data arrival frequency was much faster than
once a minute.

Our algorithm uses an ultra-fast similarity search algorithm
under z-normalized Euclidean distance as a subroutine,
exploiting the overlap between subsequences using the classic
Fast Fourier Transform (FFT) algorithm.

Our method has the following advantages/features:

 It is exact, providing no false positives or false dismissals.

 It is simple and parameter-free. In contrast, the more

general metric space APSS algorithms require building and

tuning spatial access methods and/or hash functions.

 Our algorithm requires an inconsequential space overhead,

just O(n) with a small constant factor.

 While our exact algorithm is extremely scalable, for

extremely large datasets we can compute the results in an

anytime fashion, allowing ultra-fast approximate solutions.

 Having computed the similarity join for a dataset, we can

incrementally update it very efficiently. In many domains

this means we can effectively maintain exact joins on

streaming data forever.

 Our method provides full joins, eliminating the need to

specify a similarity threshold, which as we will show, is a

near impossible task in this domain.

 Our algorithm is embarrassingly parallelizable, both on

multicore processors and in distributed systems.

Given all these features, our algorithm has implications for
many time series data mining tasks [5][18][28].

The rest of the paper is organized as follows. Section II
reviews related work and introduces the necessary background
materials and definitions. In Section III we introduce our
algorithm and its anytime and incremental variants. Section IV
sees a detailed empirical evaluation of our algorithm and shows
its implications for many data mining tasks. Finally, in Section
V we offer conclusions and directions for future work.

II. RELATED WORK AND BACKGROUND

The basic variant of similarity join problem we are
interested in is as follows: Given a collection of data objects,
retrieve the nearest neighbor for every object.

Other common variants include retrieving the top-K nearest
neighbors or the nearest neighbor for each object if that
neighbor is within a user-supplied threshold, τ. (Such variations
are trivial generalizations of our proposed algorithm, so we
omit them from further discussion). The latter variant results in
a much easier problem, provided that the threshold is small. For
example, [1] notes that virtually all research efforts “exploit a
similarity threshold more aggressively in order to limit the set

of candidate pairs that are considered.. [or] ...to reduce the
amount of information indexed in the first place.”

This critical dependence on τ is a major issue for text joins,
as it is known that “join size can change dramatically
depending on the input similarity threshold” [10]. However,
this issue is even more critical for time series for two reasons.
First, unlike similarity (which is bounded between zero and
one), the Euclidean distance is effectively unbounded, and
generally not intuitive. For example, if two heartbeats have a
Euclidean distance of 17.1, are they similar? Even for a domain
expert that knows the sampling rate and the noise level of the
data, this is not obvious. Second, a single threshold can produce
radically different output sizes, even for datasets that are very
similar. Consider Figure 1 which shows the output size vs.
threshold setting for the first and second halves of a ten-day
period monitoring data center chillers [21]. For the first five
days a threshold of 0.6 would return zero items, but for the
second five days the same setting would return 108 items. This
shows the difficulty in selecting an appropriate threshold. Our
solution is to have no threshold, and do a full join.

Figure 1. Output size vs. threshold for data center chillers [21]. Values beyond

2.0 are truncated for clarity (but archived at [24]).

A handful of efforts have considered joins on time series,
achieving speedup by (in addition to the use of MapReduce)
converting the data to lower-dimensional representations such
as PAA [11] or SAX [12] and exploiting lower bounds and/or
Locality Sensitive Hashing (LSH) to prune some calculations.
However, the methods are very complex, with many (10-plus)
parameters to adjust. As [11] acknowledges with admirable
candor, “Reasoning about the optimal settings is not trivial.” In
contrast, our proposed algorithm has zero parameters to set.

A very recent research effort [28] has tackled the scalability
issue by converting the real-valued time series into discrete
“fingerprints” before using a LSH approach, much like the text
retrieval community [1]. They produced impressive speedup,
but they also experienced false negatives. Moreover, the
approach has several parameters that need to be set; for
example, they need to set the threshold to a very precise 0.818.

As we shall show, our algorithm allows both anytime and
incremental (i.e. streaming) versions. While a streaming join
algorithm for text was recently introduced [15], we are not
aware of any such algorithms for time series data or general
metric spaces. More generally, there is a large amount of
literature on joins for text processing [1]. Such work is
interesting, but of little utility given our constraints, data type
and problem setting. We require full joins, not threshold joins,
and we are unwilling to allow the possibility of false negatives.

A. Definitions and Notation

We begin by defining the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued

numbers ti: T = t1, t2, ..., tn where n is the length of T.

We are not interested in the global properties of time series,
but in the similarity between local subsequences:

Definition 2: A subsequence Ti,m of a T is a continuous

subset of the values from T of length m starting from

position i. Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤ n-m+1.

We can take any subsequence from a time series and
compute its distance to all sequences. We call an ordered vector
of such distances a distance profile:

Definition 3: A distance profile D is a vector of the

Euclidean distances between a given query and each

subsequence in an all-subsequences set (see Definition 4).

Note that we are assuming that the distance is measured
using the Euclidean distance between the z-normalized
subsequences [8]. The distance profile can be considered a meta
time series that annotates the time series T that was used to
generate it. The first three definitions are illustrated in Figure 2.

Figure 2. A subsequence Q extracted from a time series T is used as a query to
every subsequence in T. The vector of all distances is a distance profile.

Note that if the query and all-subsequences set belong to the
same time series, the distance profile must be zero at the
location of the query, and close to zero just before and just
after. Such matches are called trivial matches in the literature
[18], and are avoided by ignoring an exclusion zone (shown as
a gray region) of m/2 before and after the location of the query.

We are interested in similarity join of all subsequences of a
given time series. We define an all-subsequences set of a given
time series as a set that contains all possible subsequences from
the time series. The notion of all-subsequences set is purely for
notational purposes. In our implementation, we do not actually
extract the subsequences in this form as it would require
significant time and space overhead.

Definition 4: An all-subsequences set A of a time series T

is an ordered set of all possible subsequences of T obtained

by sliding a window of length m across T: A ={T1,m,,

T2,m,…, Tn-m+1,m}, where m is a user-defined subsequence

length. We use A[i] to denote Ti,m.

We are interested in the nearest neighbor (i.e., 1NN) relation
between subsequences; therefore, we define a 1NN-join
function which indicates the nearest neighbor relation between
the two input subsequences.

Definition 5: 1NN-join function: given two all-

subsequences sets A and B and two subsequences A[i] and

B[j], a 1NN-join function θ1nn (A[i], B[j]) is a Boolean

function which returns “true” only if B[j] is the nearest

neighbor of A[i] in the set B.

With the defined join function, a similarity join set can be
generated by applying the similarity join operator on two input
all-subsequences sets.

Definition 6: Similarity join set: given all-subsequences

sets A and B, a similarity join set JAB of A and B is a set

containing pairs of each subsequence in A with its nearest

neighbor in B: JAB={〈 A[i], B[j] 〉 |θ1nn (A[i], B[j])}. We

denote this formally as JAB = A⋈1nnB.

0

400

800

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

First 5 Days

Second 5 Days

Data Center Chillers

T, a snippet of an energy

consumption

2,0000 m/2m/2

Q, query of length m

Note that |D| = |T|-|Q|+1D, a distance profile

We measure the Euclidean distance between each pair
within a similarity join set and store the resultants into an
ordered vector. We call the result vector the matrix profile.

Definition 7: A matrix profile (or just profile) PAB is a

vector of the Euclidean distances between each pair in JAB.

We call this vector the matrix profile because one
(inefficient) way to compute it would be to compute the full
distance matrix of all the subsequences in one time series with
all the subsequence in another time series and extract the
smallest value in each row (the smallest non-diagonal value for
the self-join case). In Figure 3 we show the matrix profile of
our running example.

Figure 3. A time series T, and its self-join matrix profile P.

Like the distance profile, the matrix profile can be
considered a meta time series annotating the time series T if the
matrix profile is generated by joining T with itself. The profile
has a host of interesting and exploitable properties. For
example, the highest point on the profile corresponds to the
time series discord [5], the (tied) lowest points correspond to
the locations of the best time series motif pair [18], and the
variance can be seen as a measure of the T’s complexity.
Moreover, the histogram of the values in the matrix profile is
the exact answer to the time series density estimation [4].

We name this special case of the similarity join set
(Definition 6) as self-similarity join set, and the corresponding
profile as self-similarity join profile.

Definition 8: A self-similarity join set JAA is a result of

similarity join of the set A with itself. We denote this

formally as JAA = A ⋈1nn A. We denote the corresponding

matrix profile or self-similarity join profile as PAA.

Note that we exclude trivial matches when self-similarity
join is performed, i.e., if A[i] and A[j] are subsequences from
the same all-subsequences set A, θ1nn (A[i], B[j]) is “false”
when A[i] and A[j] are a trivially matched pair.

The ith element in the matrix profile tells us the Euclidean
distance to the nearest neighbor of the subsequence of T,
starting at i. However, it does not tell us where that neighbor is
located. This information is recorded in matrix profile index.

Definition 9: A matrix profile index IAB of a similarity join

set JAB is a vector of integers where IAB[i] = j if {A[i], B[j]}

∈ JAB.

By storing the neighboring information this way, we can
efficiently retrieve the nearest neighbor of A[i] by accessing the
ith element in the matrix profile index.

Note that the function which computes the similarity join set
of two input time series is not symmetric; therefore, JAB ≠ JBA,
PAB ≠ PBA, and IAB ≠ IBA.

For ease of presentation, we have confined this work to the
single dimensional case; however, nothing intrinsically
precludes generalizations to multidimensional data.

Summary of the Previous Section

The previous section was rather dense, so before moving on
we summarize the main takeaway points. We can create two
meta time series, the matrix profile and the matrix profile index,
to annotate a time series TA with the distance and location of all
its subsequences nearest neighbors in itself or another time
series TB. These two data objects explicitly or implicitly contain
the answers to many time series data mining tasks. However,
they appear to be too expensive to compute to be practical. In
the next section we will show an algorithm that can compute
these efficiently.

III. ALGORITHMS

We are finally in a position to explain our algorithms. We
begin by stating the fundamental intuition, which stems from
the relationship between distance profiles and the matrix
profile. As Figure 2 and Figure 3 visually suggest, all distance
profiles (excluding the trivial match region) are upper bound
approximations to the matrix profile. More critically, if we
compute all the distance profiles, and take the minimum value
at each location, the result is the matrix profile!

This tells us that if we have a fast way to compute the
distance profiles, then we also have a fast way to compute the
matrix profile. As we shall show in the next section, we have an
ultra-fast way to compute the distance profiles.

A. Mueen’s ultra-fast Algorithm for Similarity Search (MASS)

We begin by introducing a novel Euclidean distance
similarity search algorithm for time series data. The algorithm
does not just find the nearest neighbor to a query and return its
distance; it returns the distance to every subsequence. In
particular, it computes the distance profile, as shown in Figure
2. The algorithm requires just O(nlogn) time by exploiting the
FFT to calculate the dot products between the query and all
subsequences of the time series.

We need to carefully qualify the claim of “ultra-fast”. There
are dozens of algorithms for time series similarity search that
utilize index structures to efficiently locate neighbors [8]. While
such algorithms can be faster in the best case, all these
algorithms degenerate to brute force search in the worst case1
(actually, much worse than brute force search due to the
overhead of the index). Likewise, there are index-free methods
that achieve speed-up using various early abandoning tricks
[22], but they too degrade to brute force search in the worst
case. In contrast, the performance of the algorithms outlined in
TABLE I and TABLE II is completely independent of the data.

TABLE I. CALCULATION OF SLIDING DOT PRODUCTS

Procedure SlidingDotProduct(Q, T)
Input: A query Q, and a user provided time series T
Output: The dot product between Q and all subsequences in T

1

2

3

4

5

6

7

n ← Length(T), m ← Length(Q)

Ta ← Append T with n zeros

Qr ← Reverse(Q)

Qra ← Append Qr with 2n-m zeros

Qraf ← FFT(Qra), Taf ← FFT(Ta)

QT ← InverseFFT(ElementwiseMultiplication(Qraf, Taf))

return QT

1 There are many such worse case scenarios, including high levels of noise blurring

the distinction between closest and furthest neighbors, and rendering triangular-

inequality pruning and early abandoning worthless.

2,0000

P, a matrix profile

T, a snippet of an energy

consumption

Note that |P| = |T|-|Q|+1

Line 1 determines the length of both the time series T and
the query Q. In line 2, we use that information to append T with
an equal number of zeros. In line 3, we obtain the mirror image
of the original query. This reversing ensures that a convolution
(i.e. “crisscrossed” multiplication) essentially produces in-order
alignment. Because we require both vectors to be the same
length, in line 4 we append enough zeros to the (now reversed)
query so that, like Ta, it is also of length 2n. In line 5, the
algorithm calculates Fourier transforms of the appended-
reversed query (Qra) and the appended time series Ta. Note that
we use FFT algorithm which is an O(nlogn) algorithm. The Qraf
and the Taf produced in line 5 are vectors of complex numbers
representing frequency components of the two time series. The
algorithm calculates the element-wise multiplication of the two
complex vectors and performs inverse FFT on the product.
Lines 5-6 are the classic convolution operation on two vectors
[7]. Figure 4 shows a toy example of the sliding dot product
function in work. The algorithm time complexity does not
depend on the length of the query (m).

Figure 4. A toy example of convolution operation being used to calculate

sliding dot products for time series data. Note the reverse and append

operation on T and q in the input. Fifteen dot products are calculated for every

slide. The cells m = 2 to n = 4 from left (red/bold arrows) contain valid
products. TABLE II takes this subroutine and uses it to create a distance

profile (see Definition 3).

In line 1 of TABLE II, we invoke the dot products code
outlined in TABLE I. The formula to calculate the z-normalized
Euclidean distance D[i] between two time series subsequence Q
and Ti,m using their dot product, QT[i] is (see [24] for
derivation):

𝐷[𝑖] = √2𝑚(1 −
𝑄𝑇[𝑖] − 𝑚𝜇𝑄𝑀𝑇[𝑖]

𝑚𝜎𝑄𝛴𝑇[𝑖]
)

where m is the subsequence length, μQ is the mean of Q,
MT[i] is the mean of Ti,m, σQ is the standard deviation of Q, and
ΣT[i] is the standard deviation of Ti,m. Normally, it takes O(m)
time to calculate the mean and standard deviation for every
subsequence of a long time series. However, here we exploit a
technique noted in [22] in a different context. We cache
cumulative sums of the values and square of the values in the
time series. At any stage the two cumulative sum vectors are
sufficient to calculate the mean and the standard deviation of
any subsequence of any length. See [14] for an elaborate
description and variations of MASS.

TABLE II. MUEEN’S ALGORITHM FOR SIMILARITY SEARCH (MASS)

Procedure MASS(Q, T)
Input: A query Q, and a user provided time series T
Output: A distance profile D of the query Q

1

2

3

4

QT ← SlidingDotProducts(Q, T)

μQ, σQ, ΜT, ΣT ← ComputeMeanStd(Q, T) // see [22]

D ← CalculateDistanceProfile(Q, T, QT, μQ, σQ, ΜT, ΣT)

return D

Unlike the dozens of time series KNN search algorithms in
the literature [8], this algorithm calculates the distance to every

subsequence, i.e. the distance profile of time series T.
Alternatively, in join nomenclature, the algorithm produces one
full row of the all-pair similarity matrix. Thus, as we show in
the next section, our join algorithm is simply a loop that
computes each full row of the all-pair similarity matrix and
updates the current “best-so-far” matrix profile when needed.

B. The STAMP Algorithm

We call our join algorithm STAMP, Scalable Time series
Anytime Matrix Profile. The algorithm is outlined in TABLE
III. In line 1, we extract the length of TB. In line 2, we allocate
memory and initial matrix profile PAB and matrix profile index
IAB. From lines 3 to line 6, we calculate the distance profiles D
using each subsequence B[idx] in the time series TB and the
time series TA. Then, we perform pairwise minimum for each
element in D with the paired element in PAB (i.e., min(D[i],
PAB[i]) for i = 0 to length(D) - 1.) We also update IAB[i] with idx
when D[i] ≤ PAB[i] as we perform the pairwise minimum
operation. Finally, we return the result PAB and IAB in line 7.

Note that the algorithm presented in TABLE III computes
the matrix profile for the general similarity join. To modify the
current algorithm to compute the self-similarity join matrix
profile of a time series TA, we simply replace TB in line 1 with
TA, replace B with A in line 4, and ignore trivial match in D
when performing ElementWiseMin in line 5.

TABLE III. THE STAMP ALGORITHM

Procedure STAMP(TA, TB, m)
Input: Two user provided time series, TA and TB, interested
subsequence length m
Output: A matrix profile PAB and associated matrix profile index IAB of
TA join TB, JAB = A⋈1nnB

1

2

3

4

5

6

7

nB ← Length(TB)
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1

for each idx in idxes // In any order, but random for anytime algorithm

 D ← MASS(B[idx], TA)
 PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx)
end for

return PAB, IAB

To parallelize the STAMP algorithm for multicore
machines, we simply distribute the indexes to secondary
process run in each core, and the secondary processes use the
indexes they received to update their own PAB and IAB. Once the
main process returns from all secondary processes, we use
ElementWiseMin to merge the received PAB and IAB.

C. An Anytime Algorithm for TSAPSS

While the exact algorithm introduced in the previous section
is extremely scalable, there will always be datasets for which
time needed for an exact solution is untenable. We can mitigate
this by computing the results in an anytime fashion, allowing
fast approximate solutions [30]. To add the anytime nature to
the STAMP algorithm, we simply ensure a randomized search
order in line 2 of TABLE III.

We can compute a (post-hoc) measurement of the quality of
an anytime solution by measuring the Root-Mean-Squared-
Error (RMSE) between the true matrix profile and the current
best-so-far matrix profile. As Figure 5 suggests, with an
experiment on random walk data, the algorithm converges very
quickly.

Q2T1 0 00 00 00 00 0Q1T4Q2T2+Q1T1 Q2T3+Q1T2 Q2T4+Q1T3

Output

InputT2T1 T4T3 00 00 Q1Q2 00 00 00

Figure 5. main) The decrease in RMSE as the STAMP algorithm updates

matrix profile with the distance profile calculated at each iteration. inset) The

approximate matrix profile at the 10% mark is visually indistinguishable from

the final matrix profile.

Zilberstein [30] gives a number of desirable properties of
anytime algorithms, including Low Overhead, Interruptibility,
Monotonicity, Recognizable Quality, Diminishing Returns and
Preemptability (these properties are mostly obvious from their
names, but full definitions are at [30]).

Because each subsequence’s distance profile is bounded
below by the exact matrix profile, updating an approximate
matrix profile with a distance profile with pairwise minimum
operation either drives the approximate solution closer the exact
solution or retains the current approximate solution. Thus, we
have guaranteed Monotonicity. From Figure 5, the approximate
matrix profile converges to the exact matrix profile
superlinearly; therefore, we have strong Diminishing Returns.
We can easily achieve Interruptibility and Preemptability by
simply inserting a few lines of code between lines 5 and 6 of
TABLE III that read:

5new

6new

7new

if CheckForUserInterrupt = TRUE
 Report({PAB, IAB}, ‘Here is an approximate answer.’)
if GetUserChoice = ‘further refine’, CONTINUE, else BREAK

The space and time overhead for the anytime property is
effectively zero, thus we have Low Overhead. This leaves only
the property of Recognizable Quality. Here we must resort to a
probabilistic argument. The convergence curve shown in
Figure 5 is very typical, so we could use past convergence
curves to predict the quality of solution when interrupted on
similar data.

D. Time and Space Complexity

The overall complexity of the proposed algorithm is
O(n2logn) where n is the length of the time series. However, our
experiments (see Section 4.1) empirically suggest that the
runtime of STAMP’s growth rate is roughly O(n2) instead of
O(n2logn). One possible explanation for this is that the nlogn
factor comes from the FFT subroutine. Because FFT is so
important in many applications, it is extraordinarily well
optimized. Thus, the empirical runtime is very close to linear.

In contrast to the above, the brute force nested loop
approach has a time complexity of O(n2m). Recall the industrial
example in the introduction section. We have m = 10,080, but
log(n) = 5.7, so we would expect our approach to be about
1,768 times faster. In fact, we are empirically even faster. The
complexity analysis downplays the details of important constant
factors. The nested loop algorithm must also z-normalize the
subsequences. This either requires O(nm) time, but with an
untenable O(nm) space overhead, or an O(n2m) time overhead.
And recall that this is before a single Euclidean distance
calculation is performed.

Finally, we mention one quirk of our algorithm which we
inherit from using the highly optimized FFT subroutine. Our
algorithm is fastest when n is an integer power of two, slower
for non-power of two but composite numbers, and slowest
when n is prime. The difference (for otherwise similar values of

n) can approach a factor of 1.6x. Thus, where possible, it is
worth contriving the best case by truncation or zero-padding to
the nearest power of two.

E. Incrementally Maintaining TSAPSS

Up to this point we have discussed the batch version of
TSAPSS. By batch, we mean that the STAMP algorithm needs
to see the entire time series TA and TB (or just TA if we are
calculating the self-similarity join matrix profile) before
creating the matrix profile. However, it would be advantageous
if we could build the matrix profile incrementally. Given that
we have performed a batch construction of matrix profile, if
new data arrives, it would clearly be preferable to incrementally
adjust the current profile, rather than start from scratch.

Because the matrix profile solves both the times series motif
and the time series discord problems, an incremental version of
STAMP would automatically provide the first incremental
versions of both algorithms. We call such an algorithm the
STAMPI (STAMP Incremental) algorithm.

We will demonstrate our ability to incrementally maintain
the matrix profile in this section. For simplicity and brevity
TABLE IV only shows the algorithm to maintain the self-
similarity join. The generalizations are obvious.

TABLE IV. THE STAMPI ALGORITHM

Procedure STAMPI(TA, t, PAA, IAA)
Input: The original time series TA, a new data point t following TA, the
matrix profile PAA and its associated matrix profile index IAA of TA.
Output: The incrementally updated matrix profile PAA,new and its matrix
profile index IAA,new of the current time series TA,new= TA, t.

1

2

3

4

5

6

7

TA,new = [TA, t]
S ← last subsequence in TA,new, idx ← index of S in TA,new

D ← MASS (S, TA)
PAA, IAA ← ElementWiseMin(PAA, IAA, D, idx)
pAA,last, iAA,last ← FindMin(D)
PAA,new ← [PAA, pAA,last], IAA,new ← [IAA, iAA,last]
return PAA,new, IAA,new

For clarity, we denote the updated time series as TA,new, the
updated matrix profile as PAA,new and the associated matrix
profile index as IAA,new. As each additional data point t arrives,
the size of the time series TA increases by one, and a new
subsequence S is generated at the end of TA,new. In line 3 we
obtain the distance profile of S with regard to TA. Then, as in the
original STAMP algorithm, in line 4 we perform a pairwise
comparison between every element in D with the corresponding
element in PAA to see if the corresponding element in PAA needs
to be updated. In line 5, we find the nearest neighbor of S and
the associated index by evaluating the minimum value of D.
Finally, in line 6, we obtain the new matrix profile and
associated matrix profile index by concatenating the results in
line 4 and line 5.

The time complexity of the STAMPI algorithm is O(nlogn)
where n is the length of size of the current time series TA. Note
that as we maintain the profile, each incremental call of
STAMPI requires invoking the FFT subroutine with a slightly
longer time series (n becomes n+1). Thus it gets very slightly
slower at each time step. Therefore, the best way to measure the
performance is to ask for the Maximum Time Horizon (MTH),
in essence the answer to this question: “Given this arrival rate,
how long can we maintain the profile before we can no longer
update fast enough?”

Note that the subsequence length m is not considered in the
MTH evaluation. Recall that overall time complexity of the

10,0000

R
M

S
E

iteration1,000

approximate matrix

profile at 1,000 iterations.

exact matrix profile

algorithm is determined by the efficiency of the FFT
subroutine, which is independent of m. We have computed the
MTH for two common scenarios of interest to the community.

 House Electrical Demand [19]: This dataset is updated

every eight seconds. By iteratively calling the STAMPI

algorithm, we can maintain the profile for 5.8 years.

 Oil Refinery: Most telemetry in oil refineries is sampled

at once a minute [26]. The relatively low sampling rate

reflects the “inertia” of massive boilers/condensers. Even if

we maintain the profile for 40 years, the update time is only

around 6.78 seconds. Moreover, the raw data, matrix

profile and index would only require 0.5 gigabytes of main

memory. Thus the MTH here is forty plus years. Given

projected improvements in hardware, this effectively

means we can maintain the matrix profile forever.

As impressive as these numbers are, they are actually quite
pessimistic. For simplicity we assume that every value in the
matrix profile index will be updated at each time step.
However, empirically, much less than 0.1% of them need to be
updated. If it is possible to prove an upper bound on the number
of changes to the matrix profile index per update, then we could
greatly extend the MTH or handle much faster sampling rates.
We leave such considerations for future work.

IV. EXPERIMENTAL EVALUATION

We begin by stating our experimental philosophy. We have
designed all experiments such that they are easily reproducible.
To this end, we have built a webpage [24] which contains all
datasets and code used in this work, together with spreadsheets
which contain the raw numbers and some supporting videos.

Given page limits, and the utility of our algorithm for a host
of existing (and several new) data mining tasks, we have chosen
to conduct exceptionally broad but shallow experiments. We
have conducted such deep detailed experiments and placed
them at [24]. Unless otherwise stated we measure wall clock
time on an Intel i7@4GHz with 4 cores.

A. Scalability of Profile-Based Self-Join

Because the time performance of STAMP is independent of
the data quality or any user inputs (there are none except the
choice of m, which does not affect the speed), our scalability
experiments are unusually brief. In TABLE V we show the
time required for a self-join with m fixed to 256, for
increasingly long time series.

TABLE V. TIME REQUIRED FOR A SELF-JOIN WITH M = 256, VARYING N

Value of n 217 218 219 220 221

Time Required 15.1 min 70.4 min 5.4 hours 24.4 hours 4.2 days

In TABLE VI, we show the time required for a self-join
with n fixed to 217, for increasing long m. Again recall that
unlike virtually all other time series data mining algorithms in
the literature whose performance degrades for longer
subsequences [8][18], the running time of STAMP does not
depend on m.

TABLE VI. TIME REQUIRED FOR A SELF-JOIN WITH N= 217, VARYING M

Value of m 64 128 256 512 1,024

Time Required 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min

Finally, we further exploit the simple parallelizability of the
algorithm by using four 16-core virtual machines on Microsoft
Azure to redo the two-million join (n = 221 and m = 256)

experiment. By scaling up the computational power, we have
reduced the running time from 4.2 days to just 14.1 hours. This
use of cloud computing required writing just few dozen lines of
simple additional code [24].

It is difficult to find good baselines to compare to. We
believe STAMP is the only algorithm that does full, exact joins
on time series subsequences. Most algorithms do only threshold
joins and/or do approximate joins, and are not specialized for
time series subsequences. However, we searched for the best
baselines and made the following concessions to the rival
algorithms to allow comparisons.

 TSFRDAA [11]: While STAMP returns all nearest

neighbors, we adjust the threshold (the selectively) of

TSFRDAA such that only needs to return the top 1% nearest

neighbors, a much easier task.

 HDSJI-SAX [12]: This method allows false negatives; we

ignore this. It needs time to build indexes; we do not count

this time, and as above, we allow it to return the only the

top 1% nearest neighbors (as before, not the 100% the

STAMP returns, and therefore a much easier task.).

 Optimized Nested Loop (ONL): Here we use a nested-loop

join optimized in the following manner. We use a state-of-

the-art DFT indexing technique to do the search in the

inner loop, and we do not count the time needed to build

the indexes [8]. We carefully adjust parameters for best

performance.

We consider the first 218 data points of the ECG dataset
used in [22], with a query length of 256, about one heartbeat;
TABLE VII shows the results.

TABLE VII. TIME FOR A SELF-JOIN WITH M = 256, VARYING ALGORITHMS

Algorithm TSFRDAA HDSJI-SAX ONL STAMP

Time Required 51.7 hours 19.6 min 28.1 hours 1.17 hours

As these results show, even if we ignore the limitations of
the baseline methods, STAMP is still significantly faster.

B. Profile-Based Self-Join

A recent paper notes that many fundamental problems in
seismology can be solved by joining seismometer telemetry
[28], including the discovery of foreshocks, aftershocks,
triggered earthquakes, volcanic activity and induced seismicity.
However, the paper notes a join with a query length of 200 on a
data stream of length 604,781 requires 9.5 days. Their solution,
a clever transformation of the data to allow LSH based
techniques, does achieve significant speedup, but at the cost of
false negatives and the need for significant parameter tuning.
The authors kindly shared their data, and, as we hint at in
Figure 6, confirmed that STAMP does not have false negatives.

Figure 6. top) An excerpt of a seismic time series aligned with its matrix
profile (bottom). The ground truth provided by the authors of [28] requires that

the events occurring at time 4,050 and 7,800 match.

We repeated the n = 604,781, m = 200 experiment and
found it took just 8.9 hours to finish. As impressive as this is, in
the next section we show that we can do even better.

4,000 5,000 6,000 7,000 8,000 9,000
0

5

10

15

Seismic time series (excerpt)

Matrix Profile

C. The Utility of Anytime STAMP

The seismology dataset offers an excellent opportunity to
demonstrate the utility of the anytime version of our algorithm.
The authors of [28] revealed in their long-term ambition of
mining even larger datasets [3]. In Figure 7 we repeated the
experiment with the snippet shown in Figure 6, this time
reporting the best-so-far matrix profile reported by the
algorithm at various milestones. Even with just 0.25% of the
distances computed (that is to say, 400 times faster) the correct
answer has emerged. Thus, we can provide the correct answers
to the seismologists in just minutes, rather than the 9.5 days.

Figure 7. top) An excerpt of the seismic data that is also shown in Figure 6.

top-to-bottom) The approximations of the matrix profile for increasing
interrupt times. By the time we have computed just 0.25% of the calculations

required, the minimum of the matrix profile points to the ground truth.

To show the generality of this anytime feature of STAMP,
we consider a very different dataset. As shown in Figure
8.inset), it is possible to convert DNA to a time series [22]. We
converted the Y-chromosome of the Chimpanzee this way. The
resulting time series is little over one-million in length. We
performed a self-join with m = 60,000. Figure 8.bottom shows
the best motif is so well conserved (ignoring the first 20%), that
it must correspond to a recent (in evolutionary time) gene
duplication event. In fact, in a subsequent analysis we
discovered that “much of the Y (Chimp chromosome) consists of
lengthy, highly similar repeat units, or ‘amplicons’” [9].

Figure 8. top) The Y-chromosome of the Chimp in time series space with its
matrix profile. bottom) A zoom-in of the top motif discovered using anytime

STAMP, we believe it to be an amplicon [9].

This demanding join would take just over a day of CPU
time (see TABLE V). However, using anytime STAMP we
have the result shown above after doing just 0.021% of the
computations, in about 18 seconds. At [24] we have videos that
show the rapid convergence of the anytime variant of STAMP.

D. Profile-Based Similarity Join Set

In this section we show two uses of similarity join set. The
first use is more familiar to APSS users, quantifying what is
similar between two time series. The second example,
quantifying what is different between two time series, is novel
and can only be supported by threshold-free algorithms that
report the nearest neighbor for all objects.

Time Series Set Similarity

Given two (or more) time series collected under different
conditions or treatments, a data analyst may wish to know what

patterns (if any) are conserved between the two time series. To
demonstrate the utility of automating this, we consider a simple
but intuitive example. Figure 9 shows the raw audio of two
popular songs converted to Mel Frequency Cepstral
Coefficients (MFCCs). Specifically, the songs used in this
example are “Under Pressure” by Queen and David Bowie and
“Ice Ice Baby” by the American rapper Vanilla Ice. Normally,
there are 13 MFCCs; here, we consider just one for simplicity.

Figure 9. Two songs represented by just the 2nd MFCC at 100Hz. We

recognize that it is difficult to see any structure in these times series; however,

this difficulty is the motivation for this experiment.

Even for these two relatively short time series, visual
inspection does not offer immediate answers. The problem here
is compounded by the size reproduction, but is not significantly
easier with large-scale [24] or interactive graphic tools. We ran
JAB (Queen-Bowie, Vanilla Ice) on these datasets with m = 500
(five seconds), the best match, corresponding the minimum
value of the matrix profile PAB, is shown in Figure 10.

Figure 10. The result of JAB (Queen-Bowie (red/bold), Vanilla-Ice (green/fine))
produces a strongly conserved five second region.

Readers may know the cause for this highly conserved
subsequence. It corresponds to the famous baseline of “Under
Pressure,” which was sampled (plagiarized) by Vanilla Ice in
his song. The join took 21.9 seconds. The ability to find
conserved structure in apparently disparate time series could
open many avenues of research in medicine and industry.

Time Series Difference

We introduce the Time Series Diff (TSD) operator, which
informally asks “What happens in time series TA, that does not
happen in time series TB?” Here TA/TB could be an ECG before
a drug is administered/after a drug is administered, telemetry
before a successful launch/before a catastrophic launch etc. The
TSD is simply the subsequence referred to by the maximum
value of the JAB join’s profile PAB.

We begin with a simple intuitive example. The UK and US
versions of the Harry Potter audiobook series are performed by
different narrators, and have a handful of differences in the text.
For example, the UK version contains:

Harry was passionate about Quidditch. He had played as Seeker on the Gryffindor
house Quidditch team ever since his first year at Hogwarts and owned a Firebolt, one
of the best racing brooms in the world...

But the corresponding USA version has:

Harry had been on the Gryffindor House Quidditch team ever since his first year at
Hogwarts and owned one of the best racing brooms in the world, a Firebolt.

As shown in Figure 11, we can convert the audio
corresponding to these snippets into MFCCs and invoke a JAB
join set to produce a matrix profile PAB that represents the
differences between them. As Figure 11.left shows, the low
values of this profile correspond to identical spoken phrases
(despite having two different narrators). However here we are

4,000 5,000 6,000 7,000 8,000 9,000

data

0.25%

1%

100%

0 1,000,000
0

100

200

Pan troglodytes Y-chromosome

0 60,000

12,749,475 to 14,249,474 bp
622,725 to 2,122,724 bp

T1 = 0;
for i = 1 to length(chromosome)

if chromosomei = A, then Ti+1 = Ti + 2
if chromosomei = G, then Ti+1 = Ti + 1
if chromosomei = C, then Ti+1 = Ti - 1
if chromosomei = T, then Ti+1 = Ti - 2

end

0

Queen-Bowie

1,000 2,000

-10

0
10

Vanilla Ice

0 250 500-3

-2

-1

0

1

2

interested in the differences, the maximum value of the profile.
As we can see in Figure 11.right, here the profile corresponds
to a phrase unique to the USA edition.

Figure 11. The 2nd MFCC of snippets from the USA (pink/bold) and UK

(green/fine) Harry Potter audiobooks. The JAB join of the two longer sections

in the main text produces mostly small values in the profile correspond to the
same phrase (left), the largest value in the profile corresponds to a phrase

unique to the USA edition (right).

The time required to do this is just 0.067 seconds, much
faster than real time. While this demonstration is trivial, in [24]
we show an example applied to ECG telemetry.

E. Profile-Based Motif Discovery

Since their introduction in 2003, time series motifs have
become one of the most frequently used primitives in time
series data mining, with applications in dozens of domains [2].
There are several proposed definitions for time series motifs,
but in [18] it is argued that if you can solve the most basic
variant, the closest (non-trivial) pair of subsequences, then all
other variants only require some minor additional calculations.
Note that the locations of the two (tying) minimum values of
the matrix profile are exactly the locations of the 1st motif pair.

The fastest known exact algorithm for computing time
series motifs is the MK algorithm [18]. Note, however, that this
algorithm’s time performance depends on the time series itself.
In contrast, the Profile-Based Motif Discovery (PBMD) takes
time independent of the data. To see this, we compared the two
approaches on an electrocardiogram of length 65,536. In Figure
12.left we ask what happens as we search for longer and longer
motifs. In Figure 12.right we ask what happens if the motif
length is fixed to m = 512, but the data becomes increasing
noisy.

Figure 12. The time required to find the top-motif pairs in a time series of

length 216 for increasingly long motif lengths (left), and for a length fixed to

512, but in the face of increasing noise levels (right).

These results show that even in the best case for MK,
PBMD is competitive, but as we have longer queries and/or
noisier data, its advantage becomes unassailable. Moreover,
PBMD inherits STAMP’s anytime and incremental
computability, and is easily parallelizable.

F. Profile-Based Discord Discovery

A time series discord is the subsequence that has the
maximum distance to its nearest neighbor. While this is a
simple definition, time series discords are known to be very
competitive as novelty/anomaly detectors [5]. Note that as
shown in Figure 13, the time series discord is encoded as the
maximum value in a matrix profile.

Figure 13. top) An excerpt from an ECG incorporating a premature ventricular
contraction (red/bold). bottom) The time series profile peaks exactly at the

beginning of the PVC.

The time taken to compute the discord is obviously just the
time needed to compute the matrix profile (here, 0.9 seconds).
There are a few dozen discord discovery algorithms in the
literature. Some of them may be competitive in the best case,
but just like motif-discovery algorithms they all degenerate to
brute force search in the worst case, and none allow the anytime
properties that we inherit from using STAMP.

G. Incrementally Maintaining Motifs and Discords

We have demonstrated the ability to detect time series
motifs and discords using the matrix profile in the previous two
sections. However, we assumed that the entire time series was
available beforehand. Here we remove this assumption and
show how STAMPI allows us to incrementally maintain time
series motifs/discords in an online fashion. There are other
attempts at one [20][2] or both [25] of these tasks, but they are
all approximate and allow false dismissals.

In Section III.E, we introduced the STAMPI algorithm. The
ability to incrementally maintain the matrix profile implies the
ability to exactly maintain the time series motif [18] and/or time
series discord [5] in streaming data. We simply need to keep
track of the extreme values of the incrementally-growing matrix
profile, report a new pair of motifs when a new minimum value
is detected, and report a new discord when we see a new
maximum value.

We demonstrate the utility of these ideas on the AMPds
dataset [13]. Here the kitchen fridge and the heat pump are both
plugged into a single metered power supply. For the first week,
only the refrigerator is running. At the end of the week, the
weather gets cold and the heat pump is turned on. The sampling
rate is one sample/minute, and the subsequence length is 100.
We apply the STAMP algorithm to the first three days of data,
then invoke STAMPI to handle newly arriving data, report an
event when we detect a new extreme value.

Our first event occurs at the 9,864th minute (6 day 20 hour
24 minute). As shown in Figure 14, a new minimum value is
detected, which indicates a new time series motif. The just-
arrived 100-minute-long pattern looks very similar to another
pattern that occurred five hours earlier. While there is a lot of
regularity in the fridge data in general, the exceptional
similarity observed here suggested some underlying physical
mechanism that caused such a perfectly-conserved pattern,
perhaps a mechanical ice-making “subroutine.”

Figure 14. top) The matrix profile of the first 9,864 minutes of data. bottom)
The minimum value of the matrix profile corresponds to a pair of time series

motifs in the power usage data. right) The time series motif detected.

Our second event occurs at the 10,473th minute (7 day 6
hour 33 minute). As shown in Figure 15, a new maximum value

…indor house Quidditch team ever since his first ye…
Harry had been on the Gryffindor House Quidditch te..

since his first year at Hogwarts and owned a Fire..
since his first year at Hogwarts and owned on..

ED = 2.9

Closest Match

0 100(1.6 seconds) 0 100

ED = 10.4

(1.6 seconds)

Furthest Match (Time Series Difference)

256 512 1,024 2,048 4,096

0

40

80

120

160

200

MK Algorithm

Profile-Based Motif

Discovery

Subsequence Length (m)

T
im

e
T

ak
en

 (
m

in
)

80 40 0
0

70
MK Algorithm

Profile-Based Motif

Discovery

Noise Added (dB)

0 1000 2000 3000

ECG qtdb

Sel102

(excerpt)

Premature Ventricular
Contraction

Time Series Profile

0 5,000 10,000

0 100

new minimum value
new motif

Matrix Profile

Power Usage Data

is detected, which indicates a new time series discord. The time
series discord corresponds to the first occurrence of a heat
pump pattern in the power usage data.

Figure 15. top) The matrix profile for the first 10,473 minutes. bottom) The

maximum value of the matrix profile corresponds to a time series discord.

right) The time series discord detected is the first heat pump pattern
occurrence in the dataset.

The maximum time needed to process a single data point
with STAMPI in this dataset is 0.005 seconds, which is less
than 0.01% of the data sampling rate. Thus, on this dataset we
could continue monitoring with the STAMPI algorithm for
several decades before running out of time or memory.

H. Profile-Based Shapelet Discovery

Shapelets are time series subsequences which are in some
sense the maximally representative of a class [23][27].
Shapelets can be used to classify time series (essentially, the
nearest shapelet algorithm), offering the benefits of speed,
intuitiveness and at least on some domains, significantly
improved accuracy [23]. However, these advantages come at
the cost of a very expensive training phase, with O(n2m4) time
complexity, where m is the length of the longest time series
object in the dataset, and n is the number of objects in the
training set. In order to mitigate this high time complexity,
researchers have proposed various distance pruning techniques
and candidate ranking approaches for both the admissible [27]
and approximate [23] shapelet discovery. Nevertheless,
scalability remains the bottleneck.

Because shapelets are essentially supervised motifs, and we
have shown that STAMP can find motifs very quickly, it is
natural to ask if STAMP has implications for shapelet
discovery. While space limitations prohibit a detailed
consideration of this question, we briefly sketch out and test
this possibility as follows.

As shown in Figure 16, we can use matrix profile to
heuristically “suggest” candidate shapelets. We consider two
time series TA (green/bold) and TB (pink/light) with class 1 and
class 0 being their corresponding class label, and we take JAB,
JAA, JBA and JBB. Our claim is the differences in the heights of
PAB, PAA (or PBA, PBB) are strong indicators of good candidate
shapelets. The intuition is that if a discriminative pattern is
present in say, class 1, but not in class 0, then we expect to see a
“bump” in the PAB (the intuition holds if the order is reversed).
A significant difference (quantified by a threshold shown in
dashed line) between the heights of PAA and PAB curves
therefore indicates the occurrence of good candidate shapelets,
patterns that only occur in one of the two classes.

Figure 16. top.left) Two time series TA and TB formed by concatenating

instances of class 1 and 0 respectively of ArrowHead [6]. bottom) The height

difference between PAB (or PBA) and PAA (or PBB) are suggestive of good

shapelets. top.right) An example of good shapelet extracted from class 1.

The time taken to compute all four matrix profiles is 1.0
seconds and the time to further evaluate the two twelve
candidates selected takes 2.7 seconds. On the same machine,
the brute force shapelet classifier takes 4.2 minutes with 2,364
candidates. Note that, in this toy demonstration, the speedup is
68X, however, for larger datasets, the speedup is greater [24].

I. Profile-Based Semantic Segmentation

The goal of time series semantic segmentation is to partition
a dataset containing multiple activities/regimes into atomic
behaviors or conditions. For example, for human activity data
the regimes might later be mapped to {eating, working,
commuting,...}[29]. As this example suggests, most work in this
area is highly domain-dependent. In contrast, here we show
how the matrix profile index can be employed for domain
agnostic time series segmentation.

The intuition of our approach is as follows. Within a single
regime we might expect that most subsequences will have a
nearest neighbor close by (in time). For example, consider the
toy problem shown in Figure 17 which shows two obvious
regimes. We would expect that the nearest neighbor to the first
run gait cycle is the second or third or fourth run cycle, but it
will almost certainly not be one of the walk cycles. In general,
this tendency for nearest neighbor pointers not to cross the
boundaries corresponding to regime changes may be sufficient
to discover these boundaries, and of course, this is precisely the
information that is encoded in the matrix profile index.

Thus, for each point we count how many “arcs” connecting
two nearest neighbors cross it if we connect each subsequence
to its nearest neighbor as shown in Figure 17.

Figure 17. top) A (toy) time series (red) and nearest neighbor locations for

each subsequence. bottom) The number of arcs crossing above each

subsequence.

We applied the procedure described above to a heavily
studied activity segmentation problem [29], which was derived
from the CMU Motion Capture database [16]. The recordings
are represented as multi-dimensional time series, and most
research efforts carefully select the best subset for the
segmentation task. For example, [29] states that “we only
consider the 14 most informative joints out of 29.” In contrast,
we attempt this with a single dimension. The only parameter we
need to set is sliding window size. In Figure 18 we show the
segmenting results obtained using our approach, with
annotations taken from [29] for context.

Much of the evaluation in this community lacks formal
metrics, preferring instead visual sanity tests like the one in
Figure 18. Given this, we can say that our approach is very
competitive on this dataset, in spite of the fact that we
handicapped ourselves to only consider one dimension.

0 100

0 10,0005,000

Matrix Profile

Power Usage Data

new maximum value

new discord

0

7

0 1,400

PAB
PAA

0 1,600

TA

TB

0 300

An example of good shapelet

0 1,400

PBA

PBB

8

0

0 1,400

Diff(PAB ,PAA) Threshold

-1

4

-2

4

0 1,400

Diff(PBA ,PBB) Threshold

0

1

2
1 2 0

walking slow walking slow run run run run

Number of arcs intersecting each point

Figure 18. top) A matrix profile (blue) obtained for the time series (red) and

number of arcs crossing each point (green). Low values of this green curve

coorespond to candidate split points. bottom) Human annotations of the
activities: w – walk, s – stretch, p – punch, c – chop, t – turn, d – drink.

V. CONCLUSION

We have introduced a scalable algorithm for creating time
series subsequences joins. Our algorithm is simple, fast,
parallelizable and parameter-free, and can be incrementally
updated for moderately fast data arrival rates. We have shown
that our algorithm has implications for many existing tasks,
such as motif discovery, discord discovery, shapelet discovery
and semantic segmentation, and may open up new avenues for
research, including computing various definitions of time series
set difference. Our code is freely available for the community to
confirm, extend and exploit our ideas.

REFERENCES

[1] R. J. Bayardo, Y. Ma and R. Srikant, “Scaling up all pairs similarity
search,” WWW 2007, pp 131-140.

[2] N. Begum and E. Keogh, “Rare time series motif discovery from
unbounded streams,” PVLDB 8(2): 149-160, 2014.

[3] G. Beroza, “Personal Correspondence,” Jan 21th, 2016.

[4] T. Bouezmarni and J. Rombouts, “Nonparametric density estimation for
positive time series,” CSDA, 54, 245-261, 2010.

[5] V. Chandola, D. Cheboli and V. Kumar, “Detecting anomalies in a time
series database,” UMN TR09-004.

[6] T. Chen et al., “The UCR time series classification archive,”
http://www.cs.ucr.edu/~eamonn/time_series_data/.

[7] “Convolution - Wikipedia, the free encyclopedia,”
https://en.wikipedia.org/wiki/Convolution, Accessed: 2016-01-19.

[8] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and E. J. Keogh,
“Querying and mining of time series data: experimental comparison of
representations and distance measures,” PVLDB 1(2): 1542-1552. 2008.

[9] J. Hughes et al., “Chimpanzee and human Y chromosomes are
remarkably divergent in structure” Nature 463, (2010).

[10] H. Lee, R. Ng and K. Shim, “Similarity join size estimation using
Locality sensitive hashing,” PVLDB, 4(6):338–349, 2011.

[11] W. Luo, H. Tan, H. Mao and L. M. Ni, “Efficient similarity joins on
massive high-dimensional datasets using mapreduce,” In MDM'12, IEEE
Computer Society, pp. 1-10.

[12] Y. Ma, X. Meng and S. Wang, “Parallel similarity joins on massive high-
dimensional data using MapReduce,” Concurrency and Computation,
Volume 28, Issue 1 Jan 2016. Pages 166–183.

[13] S. V. Makonin, “AMPds: a public dataset for load disaggregation and
eco-feedback research,” EPEC 2013, pp 1-6.

[14] MASS: http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

[15] G. D. F. Morales and A. Gionis, “streaming similarity self-join,” Proc.
VLDB Endow, 2016.

[16] Motion Capture Database, http://mocap.cs.cmu.edu/

[17] A. Mueen, H. Hamooni and T. Estrada, “Time series join on subsequence
correlation,” IEEE ICDM 2014, pp. 450-459.

[18] A. Mueen, E. Keogh, Q. Zhu, S. Cash and B. Westover, “Exact discovery
of time series motif,” SDM 2009.

[19] D. Murray et al., “A data management platform for personalised real-
time energy feedback,” In EEDAL 2015.

[20] V. Niennattrakul et al, “Data editing techniques to allow the application
of distance-based outlier detection to streams,” ICDM 2010: 947-952.

[21] D. Patnaik, et al, “Sustainable operation and management of data center
chillers using temporal data mining,” KDD 2009.

[22] T. Rakthanmanon et al., “Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping,” In KDD 2012, 262-270.

[23] T. Rakthanmanon and E. Keogh, “Fast shapelets: a scalable algorithm for
discovering time series shapelets,” SDM, 2013.

[24] Supporting page. http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

[25] C. D. Truong and D. T. Anh, “An Efficient Method for Motif and
Anomaly Detection in Time Series” IJBIDM, Vol. 10, No. 4, 2015.

[26] A. Tucker and X. Liu, “A Bayesian Network Approach to Explaining
Time Series with Changing Structure,” Intell Data Anal, 8 (5) (2004).

[27] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data
mining,” ACM SIGKDD, 2009, pp 947-56.

[28] C. Yoon, O. O’Reilly, K. Bergen and G. Beroza, “Earthquake detection
through computationally efficient similarity search,” Sci. Adv. 2015.

[29] F. Zhou, F. Torre and J. Hodgins “Aligned Cluster Analysis for
Temporal Segmentation of Human Motion,” IEEE FG'2008.

[30] S. Zilberstein and S. Russell, “Approximate Reasoning Using Anytime
Algorithms,” In Imprecise and Approximate Computation, Kluwer
Academic Publishers, 1995.

0 5,000 10,000

Matrix Profile

Split Points

Prediction

One-dimension of multi-d time series: Subject 86, recording 4, dimension 30

W S P N W C T D P W

