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Abstract— The all-pairs-similarity-search (or similarity join) 

problem has been extensively studied for text and a handful of 

other datatypes. However, surprisingly little progress has been 

made on similarity joins for time series subsequences. The lack of 

progress probably stems from the daunting nature of the 

problem. For even modest sized datasets the obvious nested-loop 

algorithm can take months, and the typical speed-up techniques 

in this domain (i.e., indexing, lower-bounding, triangular-

inequality pruning and early abandoning) at best produce one or 

two orders of magnitude speedup. In this work we introduce a 

novel scalable algorithm for time series subsequence all-pairs-

similarity-search. For exceptionally large datasets, the algorithm 

can be trivially cast as an anytime algorithm and produce high-

quality approximate solutions in reasonable time. The exact 

similarity join algorithm computes the answer to the time series 

motif and time series discord problem as a side-effect, and our 

algorithm incidentally provides the fastest known algorithm for 

both these extensively-studied problems. We demonstrate the 

utility of our ideas for many time series data mining problems, 

including motif discovery, novelty discovery, shapelet discovery, 

semantic segmentation, density estimation, and contrast set 

mining.    
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I. INTRODUCTION 

The all-pairs-similarity-search (also known as similarity 
join) problem comes in several variants. The basic task is this: 
Given a collection of data objects, retrieve the nearest neighbor 
for each object. In the text domain the algorithm has 
applications in a host of problems, including community 
discovery, duplicate detection, collaborative filtering, 
clustering, and query refinement [1]. While virtually all text 
processing algorithms have analogues in time series data 
mining, there has been surprisingly little progress on Time 
Series subsequences All-Pairs-Similarity-Search (TSAPSS). 

We believe that this lack of progress stems not from a lack 
of interest in this useful primitive, but from the daunting nature 
of the problem. Consider the following example that reflects the 
needs of an industrial collaborator. A boiler at a chemical 
refinery reports pressure once a minute. After a year, we have a 
time series of length 525,600. A plant manager may wish to do 
a similarity self-join on this data with week-long subsequences 
(10,080) to discover operating regimes (summer vs. winter or 
light distillate vs. heavy distillate etc.) The obvious nested loop 
algorithm requires 132,880,692,960 Euclidean distance 
computations. If we assume each one takes 0.0001 seconds, 
then the join will take 153.8 days. The core contribution of this 
work is to show that we can reduce this time to 6.3 hours, using 
an off-the-shelf desktop computer. Moreover, we show that this 
join can be computed and/or updated incrementally. Thus we 
could maintain this join essentially forever on a standard 

desktop, even if the data arrival frequency was much faster than 
once a minute. 

Our algorithm uses an ultra-fast similarity search algorithm 
under z-normalized Euclidean distance as a subroutine, 
exploiting the overlap between subsequences using the classic 
Fast Fourier Transform (FFT) algorithm.  

Our method has the following advantages/features: 

 It is exact, providing no false positives or false dismissals. 

 It is simple and parameter-free. In contrast, the more 

general metric space APSS algorithms require building and 

tuning spatial access methods and/or hash functions.  

 Our algorithm requires an inconsequential space overhead, 

just O(n) with a small constant factor. 

 While our exact algorithm is extremely scalable, for 

extremely large datasets we can compute the results in an 

anytime fashion, allowing ultra-fast approximate solutions.  

 Having computed the similarity join for a dataset, we can 

incrementally update it very efficiently. In many domains 

this means we can effectively maintain exact joins on 

streaming data forever.  

 Our method provides full joins, eliminating the need to 

specify a similarity threshold, which as we will show, is a 

near impossible task in this domain.  

 Our algorithm is embarrassingly parallelizable, both on 

multicore processors and in distributed systems. 

Given all these features, our algorithm has implications for 
many time series data mining tasks [5][18][28].  

The rest of the paper is organized as follows. Section II 
reviews related work and introduces the necessary background 
materials and definitions. In Section III we introduce our 
algorithm and its anytime and incremental variants. Section IV 
sees a detailed empirical evaluation of our algorithm and shows 
its implications for many data mining tasks. Finally, in Section 
V we offer conclusions and directions for future work. 

II. RELATED WORK AND BACKGROUND 

The basic variant of similarity join problem we are 
interested in is as follows: Given a collection of data objects, 
retrieve the nearest neighbor for every object.   

Other common variants include retrieving the top-K nearest 
neighbors or the nearest neighbor for each object if that 
neighbor is within a user-supplied threshold, τ. (Such variations 
are trivial generalizations of our proposed algorithm, so we 
omit them from further discussion). The latter variant results in 
a much easier problem, provided that the threshold is small. For 
example, [1] notes that virtually all research efforts “exploit a 
similarity threshold more aggressively in order to limit the set 



of candidate pairs that are considered.. [or] ...to reduce the 
amount of information indexed in the first place.” 

This critical dependence on τ is a major issue for text joins, 
as it is known that “join size can change dramatically 
depending on the input similarity threshold” [10]. However, 
this issue is even more critical for time series for two reasons. 
First, unlike similarity (which is bounded between zero and 
one), the Euclidean distance is effectively unbounded, and 
generally not intuitive. For example, if two heartbeats have a 
Euclidean distance of 17.1, are they similar? Even for a domain 
expert that knows the sampling rate and the noise level of the 
data, this is not obvious. Second, a single threshold can produce 
radically different output sizes, even for datasets that are very 
similar.  Consider Figure 1 which shows the output size vs. 
threshold setting for the first and second halves of a ten-day 
period monitoring data center chillers [21]. For the first five 
days a threshold of 0.6 would return zero items, but for the 
second five days the same setting would return 108 items.  This 
shows the difficulty in selecting an appropriate threshold. Our 
solution is to have no threshold, and do a full join. 

 

Figure 1.  Output size vs. threshold for data center chillers [21]. Values beyond 

2.0 are truncated for clarity (but archived at [24]).  

A handful of efforts have considered joins on time series, 
achieving speedup by (in addition to the use of MapReduce) 
converting the data to lower-dimensional representations such 
as PAA [11] or SAX [12] and exploiting lower bounds and/or 
Locality Sensitive Hashing (LSH) to prune some calculations. 
However, the methods are very complex, with many (10-plus) 
parameters to adjust. As [11] acknowledges with admirable 
candor, “Reasoning about the optimal settings is not trivial.” In 
contrast, our proposed algorithm has zero parameters to set. 

A very recent research effort [28] has tackled the scalability 
issue by converting the real-valued time series into discrete 
“fingerprints” before using a LSH approach, much like the text 
retrieval community [1]. They produced impressive speedup, 
but they also experienced false negatives. Moreover, the 
approach has several parameters that need to be set; for 
example, they need to set the threshold to a very precise 0.818.  

As we shall show, our algorithm allows both anytime and 
incremental (i.e. streaming) versions. While a streaming join 
algorithm for text was recently introduced [15], we are not 
aware of any such algorithms for time series data or general 
metric spaces. More generally, there is a large amount of 
literature on joins for text processing [1]. Such work is 
interesting, but of little utility given our constraints, data type 
and problem setting. We require full joins, not threshold joins, 
and we are unwilling to allow the possibility of false negatives. 

A. Definitions and Notation 

We begin by defining the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued 

numbers ti: T = t1, t2, ..., tn where n is the length of T. 

We are not interested in the global properties of time series, 
but in the similarity between local subsequences:  

Definition 2: A subsequence Ti,m of a T is a continuous 

subset of the values from T of length m starting from 

position i.   Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  n-m+1.  

We can take any subsequence from a time series and 
compute its distance to all sequences. We call an ordered vector 
of such distances a distance profile: 

Definition 3: A distance profile D is a vector of the 

Euclidean distances between a given query and each 

subsequence in an all-subsequences set (see Definition 4).  

Note that we are assuming that the distance is measured 
using the Euclidean distance between the z-normalized 
subsequences [8]. The distance profile can be considered a meta 
time series that annotates the time series T that was used to 
generate it. The first three definitions are illustrated in Figure 2. 

 
Figure 2. A subsequence Q extracted from a time series T is used as a query to 
every subsequence in T. The vector of all distances is a distance profile. 

Note that if the query and all-subsequences set belong to the 
same time series, the distance profile must be zero at the 
location of the query, and close to zero just before and just 
after. Such matches are called trivial matches in the literature 
[18], and are avoided by ignoring an exclusion zone (shown as 
a gray region) of m/2 before and after the location of the query. 

We are interested in similarity join of all subsequences of a 
given time series. We define an all-subsequences set of a given 
time series as a set that contains all possible subsequences from 
the time series. The notion of all-subsequences set is purely for 
notational purposes. In our implementation, we do not actually 
extract the subsequences in this form as it would require 
significant time and space overhead. 

Definition 4: An all-subsequences set A of a time series T 

is an ordered set of all possible subsequences of T obtained 

by sliding a window of length m across T: A ={T1,m,, 

T2,m,…, Tn-m+1,m}, where m is a user-defined subsequence 

length. We use A[i] to denote Ti,m. 

We are interested in the nearest neighbor (i.e., 1NN) relation 
between subsequences; therefore, we define a 1NN-join 
function which indicates the nearest neighbor relation between 
the two input subsequences. 

Definition 5: 1NN-join function:  given two all-

subsequences sets A and B and two subsequences A[i] and 

B[j], a 1NN-join function θ1nn (A[i], B[j]) is a Boolean 

function which returns “true” only if B[j] is the nearest 

neighbor of A[i] in the set B. 

With the defined join function, a similarity join set can be 
generated by applying the similarity join operator on two input 
all-subsequences sets. 

Definition 6: Similarity join set: given all-subsequences 

sets A and B, a similarity join set JAB of A and B is a set 

containing pairs of each subsequence in A with its nearest 

neighbor in B: JAB={〈 A[i], B[j] 〉 |θ1nn (A[i], B[j])}.  We 

denote this formally as JAB = A⋈1nnB. 
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We measure the Euclidean distance between each pair 
within a similarity join set and store the resultants into an 
ordered vector. We call the result vector the matrix profile. 

Definition 7: A matrix profile (or just profile) PAB is a 

vector of the Euclidean distances between each pair in JAB. 

We call this vector the matrix profile because one 
(inefficient) way to compute it would be to compute the full 
distance matrix of all the subsequences in one time series with 
all the subsequence in another time series and extract the 
smallest value in each row (the smallest non-diagonal value for 
the self-join case).  In Figure 3 we show the matrix profile of 
our running example. 

 

Figure 3. A time series T, and its self-join matrix profile P.  

Like the distance profile, the matrix profile can be 
considered a meta time series annotating the time series T if the 
matrix profile is generated by joining T with itself. The profile 
has a host of interesting and exploitable properties. For 
example, the highest point on the profile corresponds to the 
time series discord [5], the (tied) lowest points correspond to 
the locations of the best time series motif pair [18], and the 
variance can be seen as a measure of the T’s complexity. 
Moreover, the histogram of the values in the matrix profile is 
the exact answer to the time series density estimation [4]. 

We name this special case of the similarity join set 
(Definition 6) as self-similarity join set, and the corresponding 
profile as self-similarity join profile. 

Definition 8: A self-similarity join set JAA is a result of 

similarity join of the set A with itself. We denote this 

formally as JAA = A ⋈1nn A. We denote the corresponding 

matrix profile or self-similarity join profile as PAA. 

Note that we exclude trivial matches when self-similarity 
join is performed, i.e., if A[i] and A[j] are subsequences from 
the same all-subsequences set A, θ1nn (A[i], B[j]) is “false” 
when A[i] and A[j] are a trivially matched pair. 

The ith element in the matrix profile tells us the Euclidean 
distance to the nearest neighbor of the subsequence of T, 
starting at i.  However, it does not tell us where that neighbor is 
located. This information is recorded in matrix profile index. 

Definition 9: A matrix profile index IAB of a similarity join 

set JAB is a vector of integers where IAB[i] = j if {A[i], B[j]} 

∈ JAB. 

By storing the neighboring information this way, we can 
efficiently retrieve the nearest neighbor of A[i] by accessing the 
ith element in the matrix profile index. 

Note that the function which computes the similarity join set 
of two input time series is not symmetric; therefore, JAB ≠ JBA,  
PAB ≠ PBA, and IAB ≠ IBA. 

For ease of presentation, we have confined this work to the 
single dimensional case; however, nothing intrinsically 
precludes generalizations to multidimensional data. 

Summary of the Previous Section 

The previous section was rather dense, so before moving on 
we summarize the main takeaway points. We can create two 
meta time series, the matrix profile and the matrix profile index, 
to annotate a time series TA with the distance and location of all 
its subsequences nearest neighbors in itself or another time 
series TB. These two data objects explicitly or implicitly contain 
the answers to many time series data mining tasks. However, 
they appear to be too expensive to compute to be practical. In 
the next section we will show an algorithm that can compute 
these efficiently. 

III. ALGORITHMS 

We are finally in a position to explain our algorithms. We 
begin by stating the fundamental intuition, which stems from 
the relationship between distance profiles and the matrix 
profile. As Figure 2 and Figure 3 visually suggest, all distance 
profiles (excluding the trivial match region) are upper bound 
approximations to the matrix profile. More critically, if we 
compute all the distance profiles, and take the minimum value 
at each location, the result is the matrix profile! 

This tells us that if we have a fast way to compute the 
distance profiles, then we also have a fast way to compute the 
matrix profile. As we shall show in the next section, we have an 
ultra-fast way to compute the distance profiles. 

A. Mueen’s ultra-fast Algorithm for Similarity Search (MASS) 

We begin by introducing a novel Euclidean distance 
similarity search algorithm for time series data. The algorithm 
does not just find the nearest neighbor to a query and return its 
distance; it returns the distance to every subsequence. In 
particular, it computes the distance profile, as shown in Figure 
2. The algorithm requires just O(nlogn) time by exploiting the 
FFT to calculate the dot products between the query and all 
subsequences of the time series.  

We need to carefully qualify the claim of “ultra-fast”. There 
are dozens of algorithms for time series similarity search that 
utilize index structures to efficiently locate neighbors [8]. While 
such algorithms can be faster in the best case, all these 
algorithms degenerate to brute force search in the worst case1 
(actually, much worse than brute force search due to the 
overhead of the index). Likewise, there are index-free methods 
that achieve speed-up using various early abandoning tricks 
[22], but they too degrade to brute force search in the worst 
case. In contrast, the performance of the algorithms outlined in 
TABLE I and TABLE II is completely independent of the data. 

TABLE I. CALCULATION OF SLIDING DOT PRODUCTS 

Procedure SlidingDotProduct(Q, T) 
Input: A query Q, and a user provided time series T 
Output: The dot product between Q and all subsequences in T 

1 

2 

3 

4 

5 

6 

7 

n ← Length(T), m ← Length(Q) 

Ta ← Append T with n zeros   

Qr ← Reverse(Q)  

Qra ← Append Qr with 2n-m zeros 

Qraf ← FFT(Qra), Taf ← FFT(Ta) 

QT ← InverseFFT(ElementwiseMultiplication(Qraf, Taf)) 

return QT 

 
1 There are many such worse case scenarios, including high levels of noise blurring 

the distinction between closest and furthest neighbors, and rendering triangular-

inequality pruning and early abandoning worthless. 
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Line 1 determines the length of both the time series T and 
the query Q. In line 2, we use that information to append T with 
an equal number of zeros. In line 3, we obtain the mirror image 
of the original query. This reversing ensures that a convolution 
(i.e. “crisscrossed” multiplication) essentially produces in-order 
alignment. Because we require both vectors to be the same 
length, in line 4 we append enough zeros to the (now reversed) 
query so that, like Ta, it is also of length 2n. In line 5, the 
algorithm calculates Fourier transforms of the appended-
reversed query (Qra) and the appended time series Ta. Note that 
we use FFT algorithm which is an O(nlogn) algorithm. The Qraf 
and the Taf produced in line 5 are vectors of complex numbers 
representing frequency components of the two time series. The 
algorithm calculates the element-wise multiplication of the two 
complex vectors and performs inverse FFT on the product. 
Lines 5-6 are the classic convolution operation on two vectors 
[7]. Figure 4 shows a toy example of the sliding dot product 
function in work. The algorithm time complexity does not 
depend on the length of the query (m). 

 
Figure 4. A toy example of convolution operation being used to calculate 

sliding dot products for time series data. Note the reverse and append 

operation on T and q in the input. Fifteen dot products are calculated for every 

slide. The cells m = 2 to n = 4 from left (red/bold arrows) contain valid 
products. TABLE II takes this subroutine and uses it to create a distance 

profile (see Definition 3). 

In line 1 of TABLE II, we invoke the dot products code 
outlined in TABLE I. The formula to calculate the z-normalized 
Euclidean distance D[i] between two time series subsequence Q 
and Ti,m using their dot product, QT[i] is (see [24] for 
derivation): 

𝐷[𝑖] = √2𝑚(1 −
𝑄𝑇[𝑖] − 𝑚𝜇𝑄𝑀𝑇[𝑖]

𝑚𝜎𝑄𝛴𝑇[𝑖]
) 

where m is the subsequence length, μQ is the mean of Q, 
MT[i] is the mean of Ti,m, σQ is the standard deviation of Q, and  
ΣT[i] is the standard deviation of Ti,m. Normally, it takes O(m) 
time to calculate the mean and standard deviation for every 
subsequence of a long time series. However, here we exploit a 
technique noted in [22] in a different context. We cache 
cumulative sums of the values and square of the values in the 
time series. At any stage the two cumulative sum vectors are 
sufficient to calculate the mean and the standard deviation of 
any subsequence of any length. See [14] for an elaborate 
description and variations of MASS. 

TABLE II. MUEEN’S ALGORITHM FOR SIMILARITY SEARCH (MASS) 

Procedure MASS(Q, T) 
Input: A query Q, and a user provided time series T 
Output: A distance profile D of the query Q  

1 

2 

3 

4 

QT ← SlidingDotProducts(Q, T) 

μQ, σQ, ΜT, ΣT  ← ComputeMeanStd(Q, T)    // see [22] 

D ← CalculateDistanceProfile(Q, T, QT, μQ, σQ, ΜT, ΣT) 

return D 

Unlike the dozens of time series KNN search algorithms in 
the literature [8], this algorithm calculates the distance to every 

subsequence, i.e. the distance profile of time series T. 
Alternatively, in join nomenclature, the algorithm produces one 
full row of the all-pair similarity matrix. Thus, as we show in 
the next section, our join algorithm is simply a loop that 
computes each full row of the all-pair similarity matrix and 
updates the current “best-so-far” matrix profile when needed. 

B. The STAMP Algorithm 

We call our join algorithm STAMP, Scalable Time series 
Anytime Matrix Profile. The algorithm is outlined in TABLE 
III. In line 1, we extract the length of TB. In line 2, we allocate 
memory and initial matrix profile PAB and matrix profile index 
IAB. From lines 3 to line 6, we calculate the distance profiles D 
using each subsequence B[idx] in the time series TB and the 
time series TA. Then, we perform pairwise minimum for each 
element in D with the paired element in PAB (i.e., min(D[i], 
PAB[i]) for i = 0 to length(D) - 1.) We also update IAB[i] with idx 
when D[i] ≤ PAB[i] as we perform the pairwise minimum 
operation. Finally, we return the result PAB and IAB in line 7.  

Note that the algorithm presented in TABLE III computes 
the matrix profile for the general similarity join. To modify the 
current algorithm to compute the self-similarity join matrix 
profile of a time series TA, we simply replace TB in line 1 with 
TA, replace B with A in line 4, and ignore trivial match in D 
when performing ElementWiseMin in line 5. 

TABLE III. THE STAMP ALGORITHM 

Procedure STAMP(TA, TB, m) 
Input: Two user provided time series, TA and TB, interested 
subsequence length m 
Output: A matrix profile PAB and associated matrix profile index IAB of 
TA join TB, JAB = A⋈1nnB 

1 

2 

3 

4 

5 

6 

7 

nB ← Length(TB) 
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1 

for each idx in idxes    // In any order, but random for anytime algorithm 

          D ← MASS(B[idx], TA) 
          PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx) 
end for 

return PAB, IAB 

To parallelize the STAMP algorithm for multicore 
machines, we simply distribute the indexes to secondary 
process run in each core, and the secondary processes use the 
indexes they received to update their own PAB and IAB. Once the 
main process returns from all secondary processes, we use 
ElementWiseMin to merge the received PAB and IAB.  

C. An Anytime Algorithm for TSAPSS 

While the exact algorithm introduced in the previous section 
is extremely scalable, there will always be datasets for which 
time needed for an exact solution is untenable. We can mitigate 
this by computing the results in an anytime fashion, allowing 
fast approximate solutions [30]. To add the anytime nature to 
the STAMP algorithm, we simply ensure a randomized search 
order in line 2 of TABLE III.  

We can compute a (post-hoc) measurement of the quality of 
an anytime solution by measuring the Root-Mean-Squared-
Error (RMSE) between the true matrix profile and the current 
best-so-far matrix profile. As Figure 5 suggests, with an 
experiment on random walk data, the algorithm converges very 
quickly. 

Q2T1 0 00 00 00 00 0Q1T4Q2T2+Q1T1 Q2T3+Q1T2 Q2T4+Q1T3

Output

InputT2T1 T4T3 00 00 Q1Q2 00 00 00



 

Figure 5. main) The decrease in RMSE as the STAMP algorithm updates 

matrix profile with the distance profile calculated at each iteration. inset) The 

approximate matrix profile at the 10% mark is visually indistinguishable from 

the final matrix profile. 

Zilberstein [30] gives a number of desirable properties of 
anytime algorithms, including Low Overhead, Interruptibility, 
Monotonicity, Recognizable Quality, Diminishing Returns and 
Preemptability (these properties are mostly obvious from their 
names, but full definitions are at [30]). 

Because each subsequence’s distance profile is bounded 
below by the exact matrix profile, updating an approximate 
matrix profile with a distance profile with pairwise minimum 
operation either drives the approximate solution closer the exact 
solution or retains the current approximate solution. Thus, we 
have guaranteed Monotonicity. From Figure 5, the approximate 
matrix profile converges to the exact matrix profile 
superlinearly; therefore, we have strong Diminishing Returns. 
We can easily achieve Interruptibility and Preemptability by 
simply inserting a few lines of code between lines 5 and 6 of 
TABLE III that read: 

5new 

6new 

7new 

if CheckForUserInterrupt  = TRUE 
          Report({PAB, IAB}, ‘Here is an approximate answer.’) 
if GetUserChoice = ‘further refine’, CONTINUE, else BREAK 

The space and time overhead for the anytime property is 
effectively zero, thus we have Low Overhead. This leaves only 
the property of Recognizable Quality. Here we must resort to a 
probabilistic argument.  The convergence curve shown in 
Figure 5 is very typical, so we could use past convergence 
curves to predict the quality of solution when interrupted on 
similar data.  

D. Time and Space Complexity 

The overall complexity of the proposed algorithm is 
O(n2logn) where n is the length of the time series. However, our 
experiments (see Section 4.1) empirically suggest that the 
runtime of STAMP’s growth rate is roughly O(n2) instead of 
O(n2logn). One possible explanation for this is that the nlogn 
factor comes from the FFT subroutine. Because FFT is so 
important in many applications, it is extraordinarily well 
optimized. Thus, the empirical runtime is very close to linear. 

In contrast to the above, the brute force nested loop 
approach has a time complexity of O(n2m). Recall the industrial 
example in the introduction section. We have m = 10,080, but 
log(n) = 5.7, so we would expect our approach to be about 
1,768 times faster. In fact, we are empirically even faster. The 
complexity analysis downplays the details of important constant 
factors. The nested loop algorithm must also z-normalize the 
subsequences. This either requires O(nm) time, but with an 
untenable O(nm) space overhead, or an O(n2m) time overhead. 
And recall that this is before a single Euclidean distance 
calculation is performed.  

Finally, we mention one quirk of our algorithm which we 
inherit from using the highly optimized FFT subroutine. Our 
algorithm is fastest when n is an integer power of two, slower 
for non-power of two but composite numbers, and slowest 
when n is prime. The difference (for otherwise similar values of 

n) can approach a factor of 1.6x. Thus, where possible, it is 
worth contriving the best case by truncation or zero-padding to 
the nearest power of two. 

E. Incrementally Maintaining TSAPSS 

Up to this point we have discussed the batch version of 
TSAPSS. By batch, we mean that the STAMP algorithm needs 
to see the entire time series TA and TB (or just TA if we are 
calculating the self-similarity join matrix profile) before 
creating the matrix profile. However, it would be advantageous 
if we could build the matrix profile incrementally. Given that 
we have performed a batch construction of matrix profile, if 
new data arrives, it would clearly be preferable to incrementally 
adjust the current profile, rather than start from scratch.  

Because the matrix profile solves both the times series motif 
and the time series discord problems, an incremental version of 
STAMP would automatically provide the first incremental 
versions of both algorithms. We call such an algorithm the 
STAMPI (STAMP Incremental) algorithm. 

We will demonstrate our ability to incrementally maintain 
the matrix profile in this section. For simplicity and brevity 
TABLE IV only shows the algorithm to maintain the self-
similarity join. The generalizations are obvious. 

TABLE IV. THE STAMPI ALGORITHM 

Procedure STAMPI(TA, t, PAA, IAA) 
Input: The original time series TA, a new data point t following TA, the 
matrix profile PAA and its associated matrix profile index IAA of TA.  
Output: The incrementally updated matrix profile PAA,new and its matrix 
profile index IAA,new of the current time series TA,new= TA, t. 

1 

2 

3 

4 

5 

6 

7 

TA,new = [TA, t] 
S ← last subsequence in TA,new, idx ← index of S in TA,new 

D ← MASS (S, TA) 
PAA, IAA ← ElementWiseMin(PAA, IAA, D, idx) 
pAA,last, iAA,last ← FindMin(D) 
PAA,new ← [PAA, pAA,last], IAA,new ← [IAA, iAA,last] 
return PAA,new, IAA,new 

For clarity, we denote the updated time series as TA,new, the 
updated matrix profile as PAA,new and the associated matrix 
profile index as IAA,new. As each additional data point t arrives, 
the size of the time series TA increases by one, and a new 
subsequence S is generated at the end of TA,new. In line 3 we 
obtain the distance profile of S with regard to TA. Then, as in the 
original STAMP algorithm, in line 4 we perform a pairwise 
comparison between every element in D with the corresponding 
element in PAA to see if the corresponding element in PAA needs 
to be updated. In line 5, we find the nearest neighbor of S and 
the associated index by evaluating the minimum value of D. 
Finally, in line 6, we obtain the new matrix profile and 
associated matrix profile index by concatenating the results in 
line 4 and line 5.  

The time complexity of the STAMPI algorithm is O(nlogn) 
where n is the length of size of the current time series TA. Note 
that as we maintain the profile, each incremental call of 
STAMPI requires invoking the FFT subroutine with a slightly 
longer time series (n becomes n+1). Thus it gets very slightly 
slower at each time step. Therefore, the best way to measure the 
performance is to ask for the Maximum Time Horizon (MTH), 
in essence the answer to this question: “Given this arrival rate, 
how long can we maintain the profile before we can no longer 
update fast enough?” 

Note that the subsequence length m is not considered in the 
MTH evaluation. Recall that overall time complexity of the 
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algorithm is determined by the efficiency of the FFT 
subroutine, which is independent of m. We have computed the 
MTH for two common scenarios of interest to the community. 

 House Electrical Demand [19]: This dataset is updated 

every eight seconds. By iteratively calling the STAMPI 

algorithm, we can maintain the profile for 5.8 years.  

 Oil Refinery:  Most telemetry in oil refineries is sampled 

at once a minute [26]. The relatively low sampling rate 

reflects the “inertia” of massive boilers/condensers. Even if 

we maintain the profile for 40 years, the update time is only 

around 6.78 seconds. Moreover, the raw data, matrix 

profile and index would only require 0.5 gigabytes of main 

memory. Thus the MTH here is forty plus years. Given 

projected improvements in hardware, this effectively 

means we can maintain the matrix profile forever. 

As impressive as these numbers are, they are actually quite 
pessimistic. For simplicity we assume that every value in the 
matrix profile index will be updated at each time step.  
However, empirically, much less than 0.1% of them need to be 
updated. If it is possible to prove an upper bound on the number 
of changes to the matrix profile index per update, then we could 
greatly extend the MTH or handle much faster sampling rates. 
We leave such considerations for future work. 

IV. EXPERIMENTAL EVALUATION 

We begin by stating our experimental philosophy. We have 
designed all experiments such that they are easily reproducible. 
To this end, we have built a webpage [24] which contains all 
datasets and code used in this work, together with spreadsheets 
which contain the raw numbers and some supporting videos.  

Given page limits, and the utility of our algorithm for a host 
of existing (and several new) data mining tasks, we have chosen 
to conduct exceptionally broad but shallow experiments. We 
have conducted such deep detailed experiments and placed 
them at [24]. Unless otherwise stated we measure wall clock 
time on an Intel i7@4GHz with 4 cores. 

A. Scalability of Profile-Based Self-Join 

Because the time performance of STAMP is independent of 
the data quality or any user inputs (there are none except the 
choice of m, which does not affect the speed), our scalability 
experiments are unusually brief.  In TABLE V we show the 
time required for a self-join with m fixed to 256, for 
increasingly long time series.  

TABLE V.  TIME REQUIRED FOR A SELF-JOIN WITH M = 256, VARYING N 

Value of n 217 218 219 220 221 

Time Required 15.1 min 70.4 min 5.4 hours 24.4 hours 4.2 days 

In TABLE VI, we show the time required for a self-join 
with n fixed to 217, for increasing long m. Again recall that 
unlike virtually all other time series data mining algorithms in 
the literature whose performance degrades for longer 
subsequences [8][18], the running time of STAMP does not 
depend on m. 

TABLE VI. TIME REQUIRED FOR A SELF-JOIN WITH N= 217, VARYING M 

Value of m 64 128 256 512 1,024 

Time Required 15.1 min 15.1 min 15.1 min 15.0 min 14.5 min 

Finally, we further exploit the simple parallelizability of the 
algorithm by using four 16-core virtual machines on Microsoft 
Azure to redo the two-million join (n = 221 and m = 256) 

experiment. By scaling up the computational power, we have 
reduced the running time from 4.2 days to just 14.1 hours. This 
use of cloud computing required writing just few dozen lines of 
simple additional code [24]. 

It is difficult to find good baselines to compare to. We 
believe STAMP is the only algorithm that does full, exact joins 
on time series subsequences. Most algorithms do only threshold 
joins and/or do approximate joins, and are not specialized for 
time series subsequences. However, we searched for the best 
baselines and made the following concessions to the rival 
algorithms to allow comparisons. 

 TSFRDAA [11]: While STAMP returns all nearest 

neighbors, we adjust the threshold (the selectively) of 

TSFRDAA such that only needs to return the top 1% nearest 

neighbors, a much easier task. 

 HDSJI-SAX [12]: This method allows false negatives; we 

ignore this. It needs time to build indexes; we do not count 

this time, and as above, we allow it to return the only the 

top 1% nearest neighbors (as before, not the 100% the 

STAMP returns, and therefore a much easier task.). 

 Optimized Nested Loop (ONL): Here we use a nested-loop 

join optimized in the following manner. We use a state-of-

the-art DFT indexing technique to do the search in the 

inner loop, and we do not count the time needed to build 

the indexes [8]. We carefully adjust parameters for best 

performance.  

We consider the first 218 data points of the ECG dataset 
used in [22], with a query length of 256, about one heartbeat; 
TABLE VII shows the results.  

TABLE VII. TIME FOR A SELF-JOIN WITH M = 256, VARYING ALGORITHMS 

Algorithm TSFRDAA HDSJI-SAX ONL STAMP 

Time Required 51.7 hours 19.6 min 28.1 hours 1.17 hours 

As these results show, even if we ignore the limitations of 
the baseline methods, STAMP is still significantly faster. 

B. Profile-Based Self-Join 

A recent paper notes that many fundamental problems in 
seismology can be solved by joining seismometer telemetry 
[28], including the discovery of foreshocks, aftershocks, 
triggered earthquakes, volcanic activity and induced seismicity. 
However, the paper notes a join with a query length of 200 on a 
data stream of length 604,781 requires 9.5 days. Their solution, 
a clever transformation of the data to allow LSH based 
techniques, does achieve significant speedup, but at the cost of 
false negatives and the need for significant parameter tuning.  
The authors kindly shared their data, and, as we hint at in 
Figure 6, confirmed that STAMP does not have false negatives. 

 
Figure 6. top) An excerpt of a seismic time series aligned with its matrix 
profile (bottom). The ground truth provided by the authors of [28] requires that 

the events occurring at time 4,050 and 7,800 match. 

We repeated the n = 604,781, m = 200 experiment and 
found it took just 8.9 hours to finish. As impressive as this is, in 
the next section we show that we can do even better.   
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C. The Utility of Anytime STAMP 

The seismology dataset offers an excellent opportunity to 
demonstrate the utility of the anytime version of our algorithm. 
The authors of [28] revealed in their long-term ambition of 
mining even larger datasets [3]. In Figure 7 we repeated the 
experiment with the snippet shown in Figure 6, this time 
reporting the best-so-far matrix profile reported by the 
algorithm at various milestones. Even with just 0.25% of the 
distances computed (that is to say, 400 times faster) the correct 
answer has emerged. Thus, we can provide the correct answers 
to the seismologists in just minutes, rather than the 9.5 days.  

 

Figure 7. top) An excerpt of the seismic data that is also shown in Figure 6. 

top-to-bottom) The approximations of the matrix profile for increasing 
interrupt times. By the time we have computed just 0.25% of the calculations 

required, the minimum of the matrix profile points to the ground truth. 

To show the generality of this anytime feature of STAMP, 
we consider a very different dataset. As shown in Figure 
8.inset), it is possible to convert DNA to a time series [22]. We 
converted the Y-chromosome of the Chimpanzee this way. The 
resulting time series is little over one-million in length. We 
performed a self-join with m = 60,000.  Figure 8.bottom shows 
the best motif is so well conserved (ignoring the first 20%), that 
it must correspond to a recent (in evolutionary time) gene 
duplication event. In fact, in a subsequent analysis we 
discovered that “much of the Y (Chimp chromosome) consists of 
lengthy, highly similar repeat units, or ‘amplicons’” [9]. 

 

Figure 8. top) The Y-chromosome of the Chimp in time series space with its 
matrix profile. bottom) A zoom-in of the top motif discovered using anytime 

STAMP, we believe it to be an amplicon [9]. 

This demanding join would take just over a day of CPU 
time (see TABLE V). However, using anytime STAMP we 
have the result shown above after doing just 0.021% of the 
computations, in about 18 seconds. At [24] we have videos that 
show the rapid convergence of the anytime variant of STAMP. 

D. Profile-Based Similarity Join Set 

In this section we show two uses of similarity join set. The 
first use is more familiar to APSS users, quantifying what is 
similar between two time series. The second example, 
quantifying what is different between two time series, is novel 
and can only be supported by threshold-free algorithms that 
report the nearest neighbor for all objects. 

Time Series Set Similarity 

Given two (or more) time series collected under different 
conditions or treatments, a data analyst may wish to know what 

patterns (if any) are conserved between the two time series. To 
demonstrate the utility of automating this, we consider a simple 
but intuitive example. Figure 9 shows the raw audio of two 
popular songs converted to Mel Frequency Cepstral 
Coefficients (MFCCs). Specifically, the songs used in this 
example are “Under Pressure” by Queen and David Bowie and 
“Ice Ice Baby” by the American rapper Vanilla Ice. Normally, 
there are 13 MFCCs; here, we consider just one for simplicity. 

 

 
Figure 9. Two songs represented by just the 2nd MFCC at 100Hz. We 

recognize that it is difficult to see any structure in these times series; however, 

this difficulty is the motivation for this experiment. 

Even for these two relatively short time series, visual 
inspection does not offer immediate answers. The problem here 
is compounded by the size reproduction, but is not significantly 
easier with large-scale [24] or interactive graphic tools. We ran 
JAB (Queen-Bowie, Vanilla Ice) on these datasets with m = 500 
(five seconds), the best match, corresponding the minimum 
value of the matrix profile PAB, is shown in Figure 10. 

 

Figure 10. The result of JAB (Queen-Bowie (red/bold), Vanilla-Ice (green/fine)) 
produces a strongly conserved five second region. 

Readers may know the cause for this highly conserved 
subsequence. It corresponds to the famous baseline of “Under 
Pressure,” which was sampled (plagiarized) by Vanilla Ice in 
his song. The join took 21.9 seconds. The ability to find 
conserved structure in apparently disparate time series could 
open many avenues of research in medicine and industry. 

Time Series Difference 

We introduce the Time Series Diff (TSD) operator, which 
informally asks “What happens in time series TA, that does not 
happen in time series TB?” Here TA/TB could be an ECG before 
a drug is administered/after a drug is administered, telemetry 
before a successful launch/before a catastrophic launch etc. The 
TSD is simply the subsequence referred to by the maximum 
value of the JAB join’s profile PAB. 

We begin with a simple intuitive example. The UK and US 
versions of the Harry Potter audiobook series are performed by 
different narrators, and have a handful of differences in the text. 
For example, the UK version contains: 

Harry was passionate about Quidditch. He had played as Seeker on the Gryffindor 
house Quidditch team ever since his first year at Hogwarts and owned a Firebolt, one 
of the best racing brooms in the world... 

But the corresponding USA version has: 

Harry had been on the Gryffindor House Quidditch team ever since his first year at 
Hogwarts and owned one of the best racing brooms in the world, a Firebolt. 

As shown in Figure 11, we can convert the audio 
corresponding to these snippets into MFCCs and invoke a JAB 
join set to produce a matrix profile PAB that represents the 
differences between them. As Figure 11.left shows, the low 
values of this profile correspond to identical spoken phrases 
(despite having two different narrators). However here we are 

4,000 5,000 6,000 7,000 8,000 9,000

data

0.25%

1%

100%

0 1,000,000
0

100

200

Pan troglodytes Y-chromosome 

0 60,000

12,749,475 to 14,249,474 bp
622,725 to 2,122,724 bp

T1 = 0;
for i = 1 to length(chromosome) 

if chromosomei = A, then Ti+1 = Ti + 2 
if chromosomei = G, then Ti+1 = Ti + 1
if chromosomei = C, then Ti+1 = Ti - 1 
if chromosomei = T, then Ti+1 = Ti - 2 

end

0

Queen-Bowie

1,000 2,000

-10

0
10

Vanilla Ice

0 250 500-3

-2

-1

0

1

2



interested in the differences, the maximum value of the profile. 
As we can see in Figure 11.right, here the profile corresponds 
to a phrase unique to the USA edition.  

 
Figure 11. The 2nd MFCC of snippets from the USA (pink/bold) and UK 

(green/fine) Harry Potter audiobooks.  The JAB join of the two longer sections 

in the main text produces mostly small values in the profile correspond to the 
same phrase (left), the largest value in the profile corresponds to a phrase 

unique to the USA edition (right). 

The time required to do this is just 0.067 seconds, much 
faster than real time. While this demonstration is trivial, in [24] 
we show an example applied to ECG telemetry.  

E. Profile-Based Motif Discovery 

Since their introduction in 2003, time series motifs have 
become one of the most frequently used primitives in time 
series data mining, with applications in dozens of domains [2]. 
There are several proposed definitions for time series motifs, 
but in [18] it is argued that if you can solve the most basic 
variant, the closest (non-trivial) pair of subsequences, then all 
other variants only require some minor additional calculations. 
Note that the locations of the two (tying) minimum values of 
the matrix profile are exactly the locations of the 1st motif pair. 

The fastest known exact algorithm for computing time 
series motifs is the MK algorithm [18]. Note, however, that this 
algorithm’s time performance depends on the time series itself. 
In contrast, the Profile-Based Motif Discovery (PBMD) takes 
time independent of the data. To see this, we compared the two 
approaches on an electrocardiogram of length 65,536. In Figure 
12.left we ask what happens as we search for longer and longer 
motifs. In Figure 12.right we ask what happens if the motif 
length is fixed to m = 512, but the data becomes increasing 
noisy.  

 

Figure 12. The time required to find the top-motif pairs in a time series of 

length 216 for increasingly long motif lengths (left), and for a length fixed to 

512, but in the face of increasing noise levels (right). 

These results show that even in the best case for MK, 
PBMD is competitive, but as we have longer queries and/or 
noisier data, its advantage becomes unassailable. Moreover, 
PBMD inherits STAMP’s anytime and incremental 
computability, and is easily parallelizable.  

F. Profile-Based Discord Discovery 

A time series discord is the subsequence that has the 
maximum distance to its nearest neighbor. While this is a 
simple definition, time series discords are known to be very 
competitive as novelty/anomaly detectors [5]. Note that as 
shown in Figure 13, the time series discord is encoded as the 
maximum value in a matrix profile. 

 

Figure 13. top) An excerpt from an ECG incorporating a premature ventricular 
contraction (red/bold). bottom) The time series profile peaks exactly at the 

beginning of the PVC. 

The time taken to compute the discord is obviously just the 
time needed to compute the matrix profile (here, 0.9 seconds). 
There are a few dozen discord discovery algorithms in the 
literature. Some of them may be competitive in the best case, 
but just like motif-discovery algorithms they all degenerate to 
brute force search in the worst case, and none allow the anytime 
properties that we inherit from using STAMP.  

G. Incrementally Maintaining Motifs and Discords 

We have demonstrated the ability to detect time series 
motifs and discords using the matrix profile in the previous two 
sections. However, we assumed that the entire time series was 
available beforehand. Here we remove this assumption and 
show how STAMPI allows us to incrementally maintain time 
series motifs/discords in an online fashion. There are other 
attempts at one [20][2] or both [25] of these tasks, but they are 
all approximate and allow false dismissals.   

In Section III.E, we introduced the STAMPI algorithm. The 
ability to incrementally maintain the matrix profile implies the 
ability to exactly maintain the time series motif [18] and/or time 
series discord [5] in streaming data. We simply need to keep 
track of the extreme values of the incrementally-growing matrix 
profile, report a new pair of motifs when a new minimum value 
is detected, and report a new discord when we see a new 
maximum value. 

We demonstrate the utility of these ideas on the AMPds 
dataset [13]. Here the kitchen fridge and the heat pump are both 
plugged into a single metered power supply. For the first week, 
only the refrigerator is running. At the end of the week, the 
weather gets cold and the heat pump is turned on. The sampling 
rate is one sample/minute, and the subsequence length is 100. 
We apply the STAMP algorithm to the first three days of data, 
then invoke STAMPI to handle newly arriving data, report an 
event when we detect a new extreme value. 

Our first event occurs at the 9,864th minute (6 day 20 hour 
24 minute). As shown in Figure 14, a new minimum value is 
detected, which indicates a new time series motif. The just-
arrived 100-minute-long pattern looks very similar to another 
pattern that occurred five hours earlier. While there is a lot of 
regularity in the fridge data in general, the exceptional 
similarity observed here suggested some underlying physical 
mechanism that caused such a perfectly-conserved pattern, 
perhaps a mechanical ice-making “subroutine.” 

 

Figure 14. top) The matrix profile of the first 9,864 minutes of data. bottom) 
The minimum value of the matrix profile corresponds to a pair of time series 

motifs in the power usage data. right) The time series motif detected. 

Our second event occurs at the 10,473th minute (7 day 6 
hour 33 minute). As shown in Figure 15, a new maximum value 
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is detected, which indicates a new time series discord. The time 
series discord corresponds to the first occurrence of a heat 
pump pattern in the power usage data.  

 
Figure 15. top) The matrix profile for the first 10,473 minutes. bottom) The 

maximum value of the matrix profile corresponds to a time series discord. 

right) The time series discord detected is the first heat pump pattern 
occurrence in the dataset. 

The maximum time needed to process a single data point 
with STAMPI in this dataset is 0.005 seconds, which is less 
than 0.01% of the data sampling rate. Thus, on this dataset we 
could continue monitoring with the STAMPI algorithm for 
several decades before running out of time or memory. 

H. Profile-Based Shapelet Discovery 

Shapelets are time series subsequences which are in some 
sense the maximally representative of a class [23][27]. 
Shapelets can be used to classify time series (essentially, the 
nearest shapelet algorithm), offering the benefits of speed, 
intuitiveness and at least on some domains, significantly 
improved accuracy [23]. However, these advantages come at 
the cost of a very expensive training phase, with O(n2m4) time 
complexity, where m is the length of the longest time series 
object in the dataset, and n is the number of objects in the 
training set. In order to mitigate this high time complexity, 
researchers have proposed various distance pruning techniques 
and candidate ranking approaches for both the admissible [27] 
and approximate [23] shapelet discovery. Nevertheless, 
scalability remains the bottleneck.  

Because shapelets are essentially supervised motifs, and we 
have shown that STAMP can find motifs very quickly, it is 
natural to ask if STAMP has implications for shapelet 
discovery. While space limitations prohibit a detailed 
consideration of this question, we briefly sketch out and test 
this possibility as follows. 

As shown in Figure 16, we can use matrix profile to 
heuristically “suggest” candidate shapelets. We consider two 
time series TA (green/bold) and TB (pink/light) with class 1 and 
class 0 being their corresponding class label, and we take JAB, 
JAA, JBA and JBB. Our claim is the differences in the heights of 
PAB, PAA (or PBA, PBB) are strong indicators of good candidate 
shapelets. The intuition is that if a discriminative pattern is 
present in say, class 1, but not in class 0, then we expect to see a 
“bump” in the PAB (the intuition holds if the order is reversed). 
A significant difference (quantified by a threshold shown in 
dashed line) between the heights of PAA and PAB curves 
therefore indicates the occurrence of good candidate shapelets, 
patterns that only occur in one of the two classes. 

 
Figure 16. top.left) Two time series TA and TB formed by concatenating 

instances of class 1 and 0 respectively of ArrowHead [6]. bottom) The height 

difference between PAB (or PBA) and PAA (or PBB) are suggestive of good 

shapelets. top.right) An example of good shapelet extracted from class 1. 

The time taken to compute all four matrix profiles is 1.0 
seconds and the time to further evaluate the two twelve 
candidates selected takes 2.7 seconds. On the same machine, 
the brute force shapelet classifier takes 4.2 minutes with 2,364 
candidates. Note that, in this toy demonstration, the speedup is 
68X, however, for larger datasets, the speedup is greater [24]. 

I. Profile-Based Semantic Segmentation 

The goal of time series semantic segmentation is to partition 
a dataset containing multiple activities/regimes into atomic 
behaviors or conditions. For example, for human activity data 
the regimes might later be mapped to {eating, working, 
commuting,...}[29]. As this example suggests, most work in this 
area is highly domain-dependent. In contrast, here we show 
how the matrix profile index can be employed for domain 
agnostic time series segmentation.  

The intuition of our approach is as follows. Within a single 
regime we might expect that most subsequences will have a 
nearest neighbor close by (in time). For example, consider the 
toy problem shown in Figure 17 which shows two obvious 
regimes. We would expect that the nearest neighbor to the first 
run gait cycle is the second or third or fourth run cycle, but it 
will almost certainly not be one of the walk cycles. In general, 
this tendency for nearest neighbor pointers not to cross the 
boundaries corresponding to regime changes may be sufficient 
to discover these boundaries, and of course, this is precisely the 
information that is encoded in the matrix profile index. 

Thus, for each point we count how many “arcs” connecting 
two nearest neighbors cross it if we connect each subsequence 
to its nearest neighbor as shown in Figure 17. 

 

Figure 17. top) A (toy) time series (red) and nearest neighbor locations for 

each subsequence. bottom) The number of arcs crossing above each 

subsequence. 

We applied the procedure described above to a heavily 
studied activity segmentation problem [29], which was derived 
from the CMU Motion Capture database [16]. The recordings 
are represented as multi-dimensional time series, and most 
research efforts carefully select the best subset for the 
segmentation task. For example, [29] states that “we only 
consider the 14 most informative joints out of 29.” In contrast, 
we attempt this with a single dimension. The only parameter we 
need to set is sliding window size. In Figure 18 we show the 
segmenting results obtained using our approach, with 
annotations taken from [29] for context. 

Much of the evaluation in this community lacks formal 
metrics, preferring instead visual sanity tests like the one in 
Figure 18. Given this, we can say that our approach is very 
competitive on this dataset, in spite of the fact that we 
handicapped ourselves to only consider one dimension.  
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Figure 18. top) A matrix profile (blue) obtained for the time series (red) and 

number of arcs crossing each point (green). Low values of this green curve 

coorespond to candidate split points. bottom) Human annotations of the 
activities: w – walk, s – stretch, p – punch, c – chop, t – turn, d – drink. 

V. CONCLUSION 

We have introduced a scalable algorithm for creating time 
series subsequences joins. Our algorithm is simple, fast, 
parallelizable and parameter-free, and can be incrementally 
updated for moderately fast data arrival rates. We have shown 
that our algorithm has implications for many existing tasks, 
such as motif discovery, discord discovery, shapelet discovery 
and semantic segmentation, and may open up new avenues for 
research, including computing various definitions of time series 
set difference. Our code is freely available for the community to 
confirm, extend and exploit our ideas. 
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